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Abstract

Recently there has been an increase in the use of spectral methods for the analysis of experimental data. These analytical
methods allow the study of interactions between simultaneously recorded signals and are particularly suited to the study of
systems displaying rhythmic behaviour. A useful parameter in this context is the coherence function which provides a bounded
measure of linear association between two signals. In this report we introduce two new techniques for dealing with an arbitrary
number of independent coherence estimates. The first technique provides a test to compare the coherence estimates for statistically
significant differences. The second allows the original coherence estimates to be combined, or ‘pooled’ into a single representative
estimate. These two measures, taken together, provide a powerful tool for characterising and summarising the correlations within
data sets. Applications of the techniques are illustrated by analysing the interactions between single motor unit discharges and
finger tremor, and between pairs of motor unit discharges in human subjects. © 1997 Elsevier Science B.V.
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1. Introduction

In neurophysiology, correlation techniques have been
widely used to investigate dependencies between signals,
and to determine signal pathways in the central nervous
system. These investigations have traditionally been
done in the time domain using, for example, Post
Stimulus Time Histogram (PSTH) studies and spike
triggered averaging (STA) studies. Recently there has
been an increase in the use of spectral methods (see
Rosenberg et al., 1989; Farmer et al., 1993; Hamm and
McCurdy, 1995). A spectral based approach can have
advantages over a time domain approach since it ex-

tends the range of questions that can be asked about
experimental data by allowing the study of interactions
between more than two simultaneously recorded signals
or processes (Rosenberg et al., 1989; Halliday et al.,
1996). Spectral methods are also particularly well suited
to the study of systems displaying rhythmic behaviour
(e.g. Conway et al., 1995b). In many cases estimates of
time domain parameters equivalent to those mentioned
above can be arrived at via the frequency domain
(Halliday et al., 1996). One clear advantage of fre-
quency domain parameters is that confidence limits for
parameter estimates can be easily constructed, the ex-
pressions are simple and the quantities are generally
independent of the characteristics of the data
(Brillinger, 1981, 1983; Rosenberg et al., 1989; Halliday
et al., 1996). This follows from the fact that the large
sample statistical properties of the finite Fourier trans-

* Corresponding author. Present address: West Medical Building,
University of Glasgow, Glasgow G12 8QQ, UK. Tel.: +44 141
3304759; fax: +44 141 3304100; e-mail: gpaa34@udcf.gla.ac.uk

0165-0270/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S 0 1 6 5 -0270 (96 )02214 -5



A.M. Amjad et al. / Journal of Neuroscience Methods 73 (1997) 69–7970

form of a stationary process are often simpler than
those of the process itself, and lead to easily managed
quantities suitable for the construction of confidence
limits. (Brillinger, 1974, 1983).

A useful parameter for characterising the linear inter-
action between two processes in the frequency domain
is the coherence function (Brillinger, 1981; Rosenberg et
al., 1989; Halliday et al., 1996), estimates of which
provide a bounded measure of linear association be-
tween two processes. The coherence function has two
advantages over time domain measures of association.
(1) It is a bounded measure, constrained within the
range 0–1, with zero occurring in the case of indepen-
dence, and one in the case of a perfect linear relation-
ship. (2) It is a unitless measure, i.e. it does not depend
on the units of measurement. In addition, the large
sample properties of coherence estimates are known for
the case of both dependent and independent processes
(Brillinger, 1981; Rosenberg et al., 1989; Halliday et al.,
1996). In the dependent case of two correlated pro-
cesses a simple transformation, (Tan h−1), of the esti-
mated coherence results in an expression with constant
variance. This procedure has been used to construct a
test to determine if two independent coherence esti-
mates are statistically different (Brillinger, 1981; Rosen-
berg et al., 1989), and has been referred to as the
‘difference of coherence’ test.

While some progress has been made in determining
the sampling distributions of time domain parameter
estimates, the resulting expressions are generally com-
plex in nature (Torres-Melo, 1974), rely on frequency
domain parameters for their estimation (Rigas, 1983;
Conway et al., 1993; Halliday et al., 1996), and are only
valid under the assumptions of Poisson spike train data
(Sears and Stagg, 1976), or a more general condition of
independence (Brillinger et al., 1976; Rigas, 1983; Con-
way et al., 1993; Halliday et al., 1996). The implications
of this last point are particularly important since most
cases of interest will be when there is a dependence
between signals. In practice this means that, as yet, no
statistical test exists for comparison of two or more
independent time domain parameter estimates. Some
previous work on time domain correlation studies of
spike train data has dealt with the derivation and
application of synchronization indices, measures
derived from cross correlation histograms. These mea-
sures are intended to provide an estimate of the
strength of correlation between two spike trains. Given
the above comments about sampling distributions of
time domain measures, direct comparison of two or
more of these synchronization indices may be mislead-
ing.

The aims of the present report are twofold. First to
extend the difference of coherence test by introducing a
measure which can be used to compare an arbitrary
number of independent coherence estimates for statisti-

cally significant differences. Second to introduce the
measure of ‘pooled coherence’ which combines several
independent coherence estimates into a single estimate
representative of all the data. These two measures,
taken together, provide a powerful tool for characteris-
ing and summarising the correlations within data sets.
The data sets could consist, for example, of a series of
recordings of the same signals obtained from the same
subject under different experimental conditions, allow-
ing task dependency to be studied, or a series of
recordings of different signals obtained from different
subjects. Both these situations are illustrated in this
report, the first by analysing the interactions between
single motor unit discharges and finger tremor in hu-
man subjects with increased inertial loading, the second
by comparing the coupling between different pairs of
motor unit discharges obtained from different subjects.
The key assumption of independent coherence estimates
places no restrictions on the number of such estimates
which can be included in an analysis. A preliminary
account of this work has appeared in abstract form
(Halliday et al., 1995).

2. Analytical methods

In the present report we will consider both time series
and point process data. A time series is a real valued
sequence, which we denote by x(t), with sample values,
denoted by xt, available at equispaced intervals equal to
the sampling interval. A point process, which we denote
by N, may be defined as a random non-negative integer
valued measure (Rosenberg et al., 1989), and in practice
this leads to the ordered times of occurrence of discrete
events (spikes) being the principle quantities available
for analysis. The representation of neuronal spike trains
by stochastic point processes is discussed in Conway et
al. (1993). The tremor acceleration signal is treated as a
time series, and motor unit spike trains as point pro-
cesses.

The mathematical framework for the analysis is that
of stationary interval processes, set out in Brillinger
(1972) and Brillinger (1974). These processes can be
used to represent either point process or time series
data. Extensive development of this framework can be
found, including estimation procedures and examples in
Brillinger (1981) for time series data, in Rosenberg et
al. (1989) for point process data, and in Halliday et al.
(1996) for mixed (or hybrid) point-process/time-series
data.

The processes are assumed to be second order sta-
tionary and satisfy a mixing condition, where values
widely separated in time are independent. Time series
are assumed to be zero mean, and point processes are
assumed to be orderly, such that only one event occurs
in a small interval dt (the sampling interval). These
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assumptions are further discussed in Brillinger (1981),
Rosenberg et al. (1989), Conway et al. (1993) and
Halliday et al. (1996).

Before considering the finite Fourier transform of a
point process it is necessary to introduce the notation
for differential increments. For a point process, N, the
counting variate N(t) counts the number of events in
the interval (0,t ]. The differential increment, denoted by
dN(t), is defined as dN(t)=N(t, t+dt ]. This counts
the number of events in a small interval of duration dt
starting at time t, and in practice since the process N is
assumed to be orderly will take on the value 0 or 1
depending on the occurrence of a spike in the sampling
interval dt.

The spectral estimation procedure used in the present
report is the method of disjoint sections, as set out for
point process data in Rosenberg et al. (1989) and
Halliday et al. (1996) for hybrid data. Using this
method, the complete record, denoted by R, is divided
into L non-overlapping disjoint sections each of length
T. The finite Fourier transform of the l th segment
(l=1,…, L) from time series x(t) at frequency l is
denoted by dT

x (l,l), and defined as (Brillinger, 1972)

dT
x (l,l)=

& lT

(l−1)T

x(t)e− iltdt: %
lT−1

t= (l−1)T

e− iltxt (2.1)

For point process data the finite Fourier transform of
a segment of length T from process N is denoted by
dT

N(l,l), and defined as (Brillinger, 1972; Rosenberg et
al., 1989)

dT
N(l,l)=

& lT

(l−1)T

e− iltdN(t): %
(l−1)T5tjB lT

e− iltj (2.2)

where tj are the times of occurrence of the N events.
In the following derivation we will denote the sta-

tionary interval processes to be considered by a, b. If
the interval process a represents a time series, the finite
Fourier transform of the l th segment, da

T(l,l), is given
by Eq. (2.1), if process a is a point process then Eq.
(2.2) is the appropriate equation. Similar comments
apply to db

T(l,l). The distinction between point process
and time series data will no longer be made, the follow-
ing derivations are valid for all types of combinations
of the two data types (Brillinger, 1983).

The cross spectrum between processes a and b is
denoted by fab(l). A consistent estimate, denoted by
f. ab(l), and estimated using the method of disjoint sec-
tions, is given by (Brillinger (1981); Rosenberg et al.
(1989); Halliday et al. (1996))

f. ab(l)=
1

2pLT
%
L

l=1

dT
a (l,l)dT

b (l,l) (2.3)

where the overbar ‘——’ on db
T(l,l) indicates a complex

conjugate. The auto spectrum of process a, denoted by
faa(l), is estimated by replacing the subscript b with a
in Eq. (2.3). A similar procedure applies for the auto
spectrum of process b, fbb(l).

Given two stationary interval processes, a and b, the
coherence between these, denoted by �Rab(l)�2, can be
defined, suppressing the dependency on section number
l, as

�Rab(l)�2 = lim
T��

�corr{dT
a (l), dT

b (l)}�2 (2.4)

with da
T(l) and db

T(l) defined by Eq. (2.1) for time series
data, and by Eq. (2.2) for point process data. This
function can be seen to be the magnitude squared of the
correlation between the finite Fourier transforms of a
and b. An alternative definition of the coherence func-
tion in terms of the second order spectra of processes a
and b is given by

�Rab(l)�2= � fab(l)�2
faa(l)fbb(l)

(2.5)

Eq. (2.5) leads naturally to an estimation procedure by
direct substitution of estimates of spectra, obtained
from Eq. (2.3). The complex valued function represent-
ing the square root of Eq. (2.5) is called the coherency,
following Wiener (1930). It is defined by

Rab(l)=
fab(l)


faa(l)fbb(l)
(2.6)

Coherency functions are complex valued, and will
have magnitude and phase components associated with
them. An estimation procedure for Eq. (2.6) follows in
a similar fashion to Eq. (2.5) by substitution of esti-
mates of the spectra. Estimates of coherency functions
are the starting point for the present analysis.

In the following discussion it is assumed we are
considering k independent pairs of processes, where
each pair is denoted by (ai, bi : i=1,…, k). We denote
the magnitude of the estimated coherency between the
i th pair of processes, �R. aibi

(l)�, as �R. i �. Applying Fisher’s
transform, Tan h−1, the variance of the transformed
estimated coherency is given by the constant value
(Brillinger, 1981; Rosenberg et al., 1989)

var{Tan h−1�R. i �}=
1

2Li

(2.7)

where Li is the number of disjoint sections used to estimate
the second order spectra for the i th pair of processes. The
null hypothesis to be tested is that the k transformed
coherency estimates have a common mean, and therefore
the k original coherence estimates have a common mean.
Denoting the Fisher transform, Tan h−1�R. i �, of
the i th pair as ẑi, then an estimate of this common mean,
denoted by z̄, which has minimum variance, may be
obtained by weighting the values ẑi inversely as their
variances

z̄=
%
k

i=1

2Liẑi

%
k

i=1

2Li

=
%
k

i=1

Liẑi

%
k

i=1

Li

(2.8)
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Then, under the above null hypothesis, the sum

%
k

i=1

2Li(ẑi − z̄)2 (2.9)

is distributed approximately as x2 with (k−1) degrees
of freedom, where the mean z̄ is computed from the
data. The test statistic, Eq. (2.9), will contain a bias,
this can be minimized by increasing the number of
segments (�Li). For the numbers of segments in the
present results this bias will be negligible and can be
ignored. The computation of this test statistic can be
simplified to allow direct numerical calculation from
the data by combining Eq. (2.8)) and Eq. (2.9) to give

2Ã
Ã

Ã

Á

Ä

%
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i=1

Liẑ
2
i −

� %
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i=1

Liẑi
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%
k

i=1

Li

Ã
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É

(2.10)

The computation of Eq. (2.10) is done separately at
each frequency, l, over the range of interest. A confi-
dence limit at the 100(1-a)% level can be set at the
value x2

(a;k−1) and the null hypothesis rejected if the
variate Eq. (2.10) exceeds this limit. Estimated values of
Eq. (2.10) below this level would indicate that the null
hypothesis of equal coherence estimates is plausible at
that frequency, l. The above test represents an exten-
sion of the difference of two independent coherence
estimates, (see Section 1; Brillinger, 1981; Rosenberg et
al., 1989) to deal with an arbitrary number of indepen-
dent coherence estimates.

We may replace the original coherence estimates with
a single coherence, which we call the pooled coherence
estimate. This can be done by combining or ‘pooling’
the individual second order spectra using a weighting
scheme similar to above and computing the pooled
estimate of coherence in the manner of Eq. (2.5) as) %

k

i=1

f. aibi
(l)Li

)2
� %

k

i=1

f. aiai
(l)Li

�� %
k

i=1

f. bibi
(l)Li

� (2.11)

where f. aibi
(l) denotes an estimate of the second order

spectrum faibi
(l) estimated from Li disjoint sections.

Pooled coherence estimates, like ordinary coherence
estimates, have values constrained within the range 0 to
1. The upper 95% confidence limit for an estimate of
Eq. (2.11) based on the assumption of independence
between the k pairs of processes is given by

1− (0.05)1/(%Li−1) (2.12)

where �Li is the total number of segments in the pooled
coherence estimate. Values of the pooled estimate of
coherence lying below this line can be taken as evidence
that, on average, no coupling occurs between the two
processes (a, b) at a particular frequency, l. For the

individual coherence estimates, �R. aibi
(l)�2, an upper 95%

confidence limit, based on the assumption of indepen-
dence, can be estimated by 1− (0.05)1/(Li−1) (Brillinger,
1981; Rosenberg et al., 1989; Halliday et al., 1996)

If the data from the k pairs of processes supports the
null hypothesis that the k transformed coherency esti-
mates have a common mean, then we can interpret Eq.
(2.11) as representative of each coherence estimate be-
tween the k pairs of processes. In situations where the
coefficient Eq. (2.10) does not support the null hypoth-
esis the pooled coherence estimate can still provide
useful information about the processes under study, by
providing a single summary coherence estimate.

The above analysis requires all second order spectra
to be estimated with the same spectral bandwidth, i.e.
with the same value of T. If the individual pooled
spectra in Eq. (2.11) are used in an analysis then a

further correction factor of
� %

k

i=1

Li
�−1

is required for

each of the three pooled spectral estimates in Eq. (2.11).
For example, the inverse Fourier transform of the
pooled cross spectrum can be used to compute an
estimate of the pooled cumulant density function (see
Halliday et al., 1996), providing a time domain measure
of association between the k pairs of processes.

3. Results

The above techniques will be illustrated by their
application to several data sets. These data sets are
drawn from a data base of motor unit and tremor
recordings made from normal healthy adult human
subjects. Recordings were made with informed consent
from each subject, and with local ethical committee
approval. The tremor signal was derived from an ac-

Fig. 1. Log plot of estimated auto spectrum of tremor signal, f. xx(l)
for data set one, with 0 g load (solid line) and 25 g load (dotted line).
The solid vertical line at the top right shows the magnitude of the
95% confidence interval for the estimates (see Halliday et al., 1996).
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Fig. 2. Estimated coherences between a single motor unit discharge and tremor, �R. x0(l)�2, for the six records in data set one, with added loads
of (A) 0, (B) 5, (C) 10, (D) 15, (E) 20 and (F) 25 g. The horizontal dashed line in each graph represents an estimate of the upper 95% confidence
limit based on the assumption of independence.

celerometer fixed to the distal phalanx of the unsup-
ported middle finger maintained in an approximately
horizontal position. The subject’s other fingers, wrist
and forearm were all supported by a custom designed
rigid polypropylene cast. During data collection the
subject was asked to extend and maintain the position
of the unsupported middle finger. Pairs of single motor
units were recorded from two concentric needle elec-
trodes inserted into the extensor digitorum communis
(EDC) muscle.

The accelerometer output (bandwidth DC — 200
Hz.) was amplified and fed to a data collection interface
for digitising. The needle electrode signals were am-
plified and band pass filtered before being passed
through window discrimination devices. The TTL

pulses output from these were fed to the digital input of
the data collection device. Motor unit spike times were
recorded to the nearest 1 ms, and the acceleration
signal sampled at 1 ms intervals. Further details of the
experimental protocol, as well as a description and
detailed analysis of a single data set can be found in
Halliday et al. (1996).

Physiological tremor is a complex signal resulting
from interactions between several mechanical and neu-
ral factors (Elble and Koller, 1990). The spectrum of
physiological tremor contains two types of components,
which can be identified by distinct peaks in the esti-
mated tremor spectrum. The dominant component is
due in part to the mechanical resonance of the structure
from which the tremor is recorded, and has been
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Fig. 3. (A) Computed values of x2 test statistic, Eq. (2.10), for the six records in data set one. Dashed line represents the upper 95% confidence
limit under the null hypothesis of equal coherences. (B) Pooled estimate of coherence, Eq. (2.11), for the six records in data set one. Dashed line
represents an estimate of the upper 95% confidence limit, Eq. (2.12), under the assumption of independent processes.

termed the mechanical reflex component of tremor
(Stiles and Randall, 1967; Stiles, 1980). The frequency
of this component of tremor can be altered by inertial
loading. The other type of frequency components are
load independent, and have been referred to as neuro-
genic components (Stiles and Randall, 1967; Elble and
Koller, 1990). Neurogenic components have been
shown to contribute to two distinct frequency bands of
the tremor spectrum (Amjad et al., 1994). Increased
inertial loading can be used to investigate which com-
ponents in tremor spectra are mechanical reflex, and
which are neurogenic (Stiles and Randall, 1967).

The above x2 test, Eq. (2.10), provides a framework
to assess if coupling between tremor related signals is
neurogenic, i.e. that coherence estimates are not af-
fected by inertial loading. The first example examines
the effect of increased inertial loading on motor unit-
tremor coupling in a data set consisting of a series of
six recordings from the same motor unit. The inertial
loading is provided by the addition of weights to the

end of the unsupported finger, ranging from 0 to 25 g
mass, in 5 g increments. The acceleration signal is
assumed to be a realisation of stationary time series,
which we denote by x. The sequence of motor unit
firing times is assumed to be a realisation of a station-
ary and orderly point process, which we denote by N0.
Each record is 100 s in duration and was processed
according to the methods set out above, where the
record, R, was split into L complete disjoint sections
each of length T (T=1024, R=100 000 giving L=97).
After estimating auto spectra, cross spectra and co-
herency for all six records, the variate Eq. (2.10) and
the pooled estimate of coherence, Eq. (2.11), were
computed. For this data, Li=97; i=1,…, 6. The seg-
ment length of T=1024, along with the sampling inter-
val of 1 ms determines the spectral resolution, 0.97 Hz.

In Fig. 1 are shown autospectral estimates of the
finger acceleration signal, f. xx(l), estimated from Eq.
(2.3), for the first and last record, corresponding to 0 g
(solid line) and 25 g (dotted line) added mass. These are
plotted on a log scale, the vertical bar on the right of
the graph represents an estimate of the 95% confidence
interval for the estimated spectra (Halliday et al., 1996),
and provides a scale bar against which to assess the
significance of distinct features in the spectra. The main
difference between the two estimates is the downward
shift of the dominant spectral peak from around 23 Hz
with no loading to around 16 Hz with 25 g loading.
This is the mechanical reflex component of tremor
discussed above. Also present in the unloaded record is
a component around 9–12 Hz, this is taken to be a
neurogenic component which is masked in the other
record by the dominant mechanical reflex component.

The coherence estimates between x and N0, denoted
by �R. x0(l)�2 and estimated from Eq. (2.5), are shown in
Fig. 2 for all six records in data set one, along with an
estimate of the upper 95% confidence limits for these
estimates (horizontal dashed lines). Despite the large
downward shift in the dominant frequency of the

Fig. 4. Log plot of estimated auto spectrum of tremor signal, f. xx(l)
for data set two, with 0 g load (solid line) and 25 g load (dotted line).
The solid vertical line at the top right shows the magnitude of the
95% confidence interval for the estimates.
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Fig. 5. Estimated coherences between a single motor unit discharge and tremor, �R. x0(l)�2, for the six records in data set two, with added loads
of (A) 0, (B) 5, (C) 10, (D) 15, (E) 20 and (F) 25 g. The horizontal dashed line in each graph represents an estimate of the upper 95% confidence
limit based on the assumption of independence.

tremor spectrum, (Fig. 1), visual inspection of these
coherence estimates indicates a similar range of signifi-
cant coupling present in two distinct frequency bands,
with a division around 15 Hz, a maximum around 10
Hz in the lower frequency band, and a maximum
between 20–30 Hz in the higher frequency band. This is
more clearly demonstrated by the results in Fig. 3. Fig.
3A shows the results of the x2 test, Eq. (2.10), along
with the upper 95% confidence limit (dashed line,
x (0.05;5)

2 =11.1). Since almost all the values lie below the
line, the null hypothesis of equal coherence estimates
cannot be rejected for this data set. The pooled coher-
ence estimate Eq. (2.11), along with the upper 95%
confidence limit (Eq. (2.12), horizontal dashed line) are
shown in Fig. 3B. It is clear from this figure that the

coherence is concentrated in two distinct frequency
bands, with maxima at 9 Hz and 28 Hz. The minimum
between the two frequency bands is located at 17 Hz. It
is interesting to note that the mean firing rate of the
motor unit ranged from 14.2 spikes/s at 0 g load to 16.3
spikes/s at 25 g load. This corresponds largely to the
region where the pooled coherence in Fig. 3B is at a
minimum. The significance of this result has been dis-
cussed elsewhere (Conway et al., 1995a). Elble and
Randall (1976) found a similar result in coherence
estimates between EDC motor units and tremor in
force records. Their study, which involved much greater
force levels and was restricted to frequencies below 25
Hz, found that coherence between motor units and
tremor was generally not present at the firing rate of the
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Fig. 6. (A) Computed values of x2 test statistic, Eq. (2.10), for the six records in data set two. Dashed line represents the upper 95% confidence
limit under the null hypothesis of equal coherences. (B) Pooled estimate of coherence, Eq. (2.11), for the six records in data set two. Dashed line
represents an estimate of the upper 95% confidence limit, Eq. (2.12), under the assumption of independent processes.

motor unit, but concentrated in the frequency band 8 to
12 Hz.

The second data set consists of the same series of
measurements from a different subject. The results of
the corresponding analysis for these six records are
shown in Figs. 4–(6). The acceleration spectra in Fig. 4
are very similar to those in Fig. 1, with the dominant
peak shifting down from around 23 Hz to around 16
Hz with increased inertial loading. In this example one
neurogenic component can be seen for the unloaded
case around 12 Hz, with a evidence of a second neuro-
genic component around 32 Hz. The six coherence
estimates are shown in Fig. 5. There is a suggestion of
banding in some of these coherence estimates, similar to
that observed in data set one, but not as well defined in
this case. The results of the x2 test are shown in Fig.
6A. This shows a significant difference in the coherence
estimates over the range 2–6 Hz, with the maximum
value of the x2 variate, Eq. (2.10), occurring at 3 Hz.
The pooled coherence estimate in Fig. 6B no longer has
the same interpretation as the one in Fig. 3B, however
at frequencies higher than 6 Hz it can be considered as
representative of the motor unit-tremor coupling over
the six records. This estimate exhibits banding similar
to that seen in Fig. 3B, with a distinct low frequency
section centred around 9 Hz. The range of mean firing
rate of the motor unit discharges in this case is from
10.9 spikes/s to 12.0 spikes/s, again corresponding to a
minimum in the pooled coherence estimate.

The third example consists of 50 records of the
discharges from motor unit pairs in EDC. Each record
was obtained from a different motor unit pair, under
the same experimental conditions as above, with the
middle finger unloaded in all records. The data was
collected during 20 experiments on 12 subjects. The
record lengths vary from 20 to 180 s, with an average of
89 s. The range of firing rates is 7.5 spikes/s to 16.0
spikes/s, with an average of 11.7 spikes/s. The se-
quences of motor unit firing times are assumed to be

realisations of stationary and orderly point processes,
denoted by N0 and N1. Before computing pooled
parameter estimates, each motor unit pair underwent a
process of ‘temporal alignment’, in which one spike
train of the pair was adjusted by a constant time offset.
This offset was chosen so that the peak in the time
domain correlation between the spike trains was cen-
tred at zero lag, the offset was always an integer
multiple of the sampling interval. The reason for this
alignment is discussed below. Each pair was processed
as above, T=1024, with the range of values of Li

(i=1,…, 50) from 19 to 175. Estimates of the coher-
ence function between N0 and N1, denoted by �R. 10(l)�2,
and the cumulant density function, denoted by q̂10(u),
were constructed for each pair. Cumulant density func-
tions provide a time domain measure of association
between two processes, in the point process case they
have an interpretation similar to a cross-correlation
histogram. For further details, including estimation
procedures and the construction of confidence limits for
cumulant density function see Halliday et al. (1996).

Fig. 7 shows estimates of the coherence function,
�R. 10(l)�2 and cumulant density function, q̂10(u) for three
examples from this data set. These examples all have
the same record length of 100 s. The first example (Fig.
7A, B) has the strongest coupling, with significant
coherence (Fig. 7B) in two distinct frequency bands
around 0–10 Hz and 20–30 Hz. The corresponding
cumulant density function (Fig. 7B) has a clear central
peak illustrating the short term synchrony between the
two motor unit discharges. The other two examples
(Fig. 7C, D and Fig. 7E, F) show progressively weaker
coupling between the motor unit discharges, indeed the
last has barely any significant features in either the time
or frequency domain estimates.

The pooled coherence, Eq. (2.11), and pooled cumu-
lant density estimates are shown in Fig. 8A and B,
respectively. The pooled cumulant density is estimated
as the inverse Fourier transform of the pooled cross
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Fig. 7. (A, C, E) Estimated coherences between three pairs of motor unit discharges, �R. 10(l)�2. The horizontal dashed line in each graph represents
an estimate of the upper 95% confidence limit based on the assumption of independence. (B, D, F) Estimated cumulant density between the same
three pairs, q̂10(u). The horizontal lines in each graph show the asymptotic value (dashed line at zero), and estimated upper and lower 95%
confidence limits based on the assumption of independence (see Halliday et al., 1996).

spectrum, the confidence limits are estimated from the
individual pooled auto spectra, according to the meth-
ods set out in Halliday et al. (1996). The pooled coher-
ence illustrates the presence of two distinct frequency
bands in the motor unit coupling, with the mean firing
rate of 11.7 spikes/s corresponding to the minimum
coherence between these two bands. In a similar study
of motor unit coupling in human 1DI muscles, Farmer
et al. (1993) observed significant coherence between
pairs of motor units in the same two frequency bands.
Fig. 8(a) confirms this finding for the EDC muscle. The
technique used by Farmer et al. (1993) to detect weak
coupling in a population was to construct a histogram
of the percentage of estimates with a significant coher-
ence estimate at each frequency. The present method

has the advantage of providing an estimate of the
average strength of coupling within a population. In the
present case the peak values of around 0.04 in the 0–10
Hz band and 0.015 in the 20–30 Hz band show we are
dealing with weak correlations.

The pooled cumulant density estimate has a well
defined time course, with a central peak of around 14
ms in width. The temporal alignment process described
above was necessary since the peak in the individual
cumulant density estimate was not always at zero lag.
Computing the pooled cumulant density from the 50
motor unit pairs without this alignment resulted in a
pooled cumulant density estimate with a much reduced
peak spread over a broad range of lags compared to
Fig. 8B. The difference in peak latencies for individual
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Fig. 8. (A) Pooled estimate of coherence, Eq. (2.11), for the 50 records from different motor unit pairs in data set three. Dashed line represents
an estimate of the upper 95% confidence limit, Eq. (2.12), under the assumption of independent processes. (B) Pooled estimate of cumulant density
for the same 50 pairs. The horizontal lines show the asymptotic value (dashed line at zero), and estimated upper and lower 95% confidence limits
based on the assumption of independence. (C) Computed values of x2 test statistic, Eq. (2.10), for the 50 records in data set three. Dashed line
represents the upper 95% confidence limit under the null hypothesis of equal coherences.

records is taken to reflect conduction delays in nerve
and muscle, which the alignment process corrects for.

The individual examples in Fig. 7 indicate a wide
variability in the estimated strength of coupling be-
tween individual motor unit pairs. This is borne out by
the x2 test shown in Fig. 8C, plotted with the estimated
upper 95% confidence limit (dashed line, x (0.05;49)

2 =
66.3). This shows that the hypothesis of equal coher-
ences is rejected in the range 0–10 Hz and 22–28 Hz.
This alters the interpretation of the pooled coherence in
Fig. 8A, which cannot now be considered as representa-
tive of all the 50 individual coherence estimates. How-
ever, it does provide a single coherence estimate
summarizing the coupling within the 50 motor unit
pairs, illustrating that this coupling in the population is
concentrated in two frequency bands, with a minimum
at the mean firing rate. The three estimates in Fig. 7
will all have equal weight in this pooled coherence,
since they all have the same value of Li (97 segments).

4. Conclusions

In the present report a method has been introduced
for comparing several coherence estimates from inde-
pendent experiments, and combining the individual esti-

mates into a single pooled coherence estimate. These
procedures represent an extension to spectral methods
of techniques for comparison of correlation coefficients
for random variables derived from large samples, (e.g.,
see Rao, 1973, chpt. 6). This approach complements the
extensive framework set out in Halliday et al. (1996) for
dealing with dependent processes. If the object of an
analysis is to summarise the correlations within a data
set, the methods presented in the present report may be
preferable to the more traditional approach of using
one ‘illustrative’ example, since they can include all the
data, appropriately weighted.

The first two examples (Figs. 1–6) illustrate how
these techniques can be used to investigate neurogenic
features in coupling between tremor related signals. It is
worth noting that the individual records of 100 s dura-
tion, which equate to data sets of 105 points, represent
statistically ‘large’ sample sizes. Despite this it is not
clear from visual inspection alone that the six coher-
ences in Fig. 2 satisfy the hypothesis of equal coherence
estimates, whereas those in Fig. 5 do not. In these two
examples where the record lengths in each data set are
equal, the pooled spectra in Eq. (2.11) are the average
of the individual spectral estimates. The concept of
averaging coherence estimates has been used previously
in a neurophysiological context (Brillinger, 1992). Other
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applications of these techniques include the study of task
dependency in neural correlations.

The third example (Figs. 7 and 8) illustrates a slightly
different approach to using these tools, namely the
investigation of population effects in the coupling be-
tween processes, where it is required to summarise the
coherence by estimating a weighted average. This is
particularly useful where the coupling is weak with
considerable variability between coherence estimates, as
in the present case. Indeed, given the variability in the
individual examples in Fig. 7, it would be unreasonable
to expect that the null hypothesis of equal coherence
estimates is verified, as is illustrated in Fig. 8C. Nonethe-
less, the pooled coherence estimate provides new insight
into the strength of coupling within a large population
of motor units recorded under the same experimental
conditions, by providing a single measure which summa-
rizes the coupling within this population. Computation
of the pooled coherence estimate from weighted spectra,
Eq. (2.11), means that pooled phase and cumulant
density estimates (Fig. 8B) can be constructed, allowing
population behaviour to be investigated in both time and
frequency domains. This example is estimated from data
equivalent to a single record of 73.3 min duration
(�Li=4296), this results in pooled parameter estimates
with greatly reduced standard errors, allowing weak
correlations to be specified to a greater precision.

The above analysis would also be suitable for compar-
ing several independent pooled estimates of coherences,
as well as pooled estimates of partial coherences. Partial
coherence estimates constructed using the method of
disjoint sections (Halliday et al., 1996) have the same
asymptotic distribution as ordinary coherence estimates,
for all orders (Brillinger, 1981; Halliday et al., 1996).
Thus expression Eq. (2.7) and the following derivation
is valid for partial coherence estimates also. Estimation
of the pooled partial coherence is achieved by substitu-
tion of the appropriate weighted partial spectra into an
equation similar to Eq. (2.11).
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