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Abstract

The cross-correlation histogram has provided the primary tool for inferring the structure of common inputs to pairs of
neurones. While this technique has produced useful results it not clear how it may be extended to complex networks. In this report
we introduce a linear model for point process systems. The finite Fourier transform of this model leads to a regression type
analysis of the relations between spike trains. An advantage of this approach is that the full range of techniques for multivariate
regression analyses becomes available for spike train analysis. The two main parameters used for the identification of neural
networks are the coherence and partial coherences. The coherence defines a bounded measure of association between two spike
trains and plays the role of a squared correlation coefficient defined at each frequency l. The partial coherences, analogous to the
partial correlations of multiple regression analysis, allow an assessment of how any number of putative input processes may
influence the relation between any two output processes. In many cases analytic solutions may be found for coherences and partial
coherences for simple neural networks, and in combination with simulations may be used to test hypotheses concerning proposed
networks inferred from spike train analyses. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The cross-correlation histogram computed from pairs
of spike trains and various time domain measures
derived from it have been used as the basis for inferring
the parameters of underlying postsynaptic potentials as
well as the patterns of neuronal connections. Moore et
al. (1970) set out rules for making inferences about the
structural relations between the observed neurones, and
about neurones whose discharges are not directly ob-
served. Moore et al. (1970) introduced the terms pri-
mary and secondary effects to describe the structure of
the cross-correlation histogram. The primary effect is

the peak or trough near the origin, shifted by a variable
time u according to conduction delays, and thought to
reflect the amplitude and form of the synaptic poten-
tials involved. Kirkwood (1979) extended the analysis
of the primary peak by proposing a model that related
the parameters characterising the excitatory synaptic
potential to the shape of the primary peak. This model
has been widely applied. For example, Cope et al.
(1987) studied the relation between single-fibre e.p.s.p.s
from Ia-axons on to motoneurones determined by spike
triggered averaging and the cross-correlation histogram
between the same afferent and the motoneurone spikes;
Bremner et al. (1991) applied the Kirkwood model to
estimate e.p.s.p. parameters associated with common
inputs to finger muscles in man. (see Cope et al. (1987))
for further discussion and additional references).
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Secondary effects, which occur further from the
origin, often in the form of periodicities, are thought to
be due to the temporal structure of both pre- and
post-synaptic spike trains. Moore et al. (1970) sug-
gested that the structure of the secondary effects in the
cross-correlation histogram, together with the form of
the auto-correlation histograms, could form the basis
for inferring patterns of connectivity between neurones.
For example, in the particular case that the secondary
effect appears as a periodic component different from
that of each neurone alone, then the most likely inter-
pretation is that the observed cells share a common
periodic input (Moore et al., 1970). In the general case,
however, the contribution of the discharge patterns of
the observed cells to the cross-correlation histogram
may result in a complex, and not easily interpretable
cross-correlation histogram (Moore et al., 1970; Perkel,
1970). Perkel (1970) suggested, however, that the sev-
eral effects contributing to this histogram may be most
readily separated through the techniques of spectral
analysis.

In this report we illustrate how Fourier methods can
extend the traditional time domain analyses of neuronal
interactions. The cross-correlation histogram may be
thought of as an estimate of the correlation between
spikes in one spike train displaced in time with respect
to those in a second spike train (Rosenberg et al.,
1989). One could equally well consider measures of
association between some function of the spike train,
for example, its Fourier transform. This approach leads
to frequency domain measures of association between
spike trains (Rosenberg et al., 1989). One particular
measure of association, analogous to the correlation
squared, called the coherence has been used to infer the
frequency content of common inputs first identified
through the cross-correlation histogram (Farmer et al.,
1993). Their study related the dominant periodicity of
the secondary effect observed in the correlation to one
of the components of the coherence. By examining the
coherence in stroke patients compared with a subject
with large afferent fibre neuropathy, Farmer et al.
(1993) inferred that this periodic component was of a
descending as opposed to a peripheral origin. In the
present report we set out the theoretical framework
showing explicitly how the coherence between pairs of
neurones may reflect the structure of a single common
input, and how this framework may be extended to
detect the presence of several common inputs.

The analysis depends on the properties of the finite
Fourier transform and linear models that incorporate
this transform, and consequently may be seen as simple
extensions of well established multiple regression and
multivariate analyses techniques. The application of
these techniques considerably extends the range of tools
available for the description and analysis of neuronal
interactions. To facilitate access to the original statisti-

cal literature an attempt has been made to follow the
terminology and notation for point process parameters
and time series analysis used in this literature (e.g.,
Brillinger, 1975a, 1981, 1983; Cox and Isham, 1980;
Cox and Lewis, 1972). Since there are important and
subtle mathematical differences between the representa-
tion of point processes and the usual signals that occur
in the analyses of many dynamical systems we have
tried to set down precise definitions and assumptions
for these parameters. An understanding of these as-
sumptions and the limits to the analyses of neuronal
interactions imposed by them should be helpful in the
applications of the techniques presented in this paper.

2. Stochastic point process parameters

2.1. Notation

The recorded spike trains are denoted by
N1(t), N2(t),…, indicating the number of events (spikes)
in an interval from zero to time t. To indicate the
number of events in a small interval dt the notation
dN(t) is used, and defined as dN(t)=N(t+dt)−N(t).
For dt sufficiently small dN(t) will take on the value
zero or one depending on whether or not an event has
occurred in the interval dt. When a parameter is intro-
duced its name will be displayed in italics. If f(l) is a
parameter, then f. (l) denotes an estimate of this
parameter. The semi-open interval of real numbers t
satisfying the relation aB t5b is denoted by (a, b ]. If Z
is a complex number, its magnitude squared is denoted
by �Z�2. E{ ·} denotes the averaging operator or mathe-
matical expectation of a random variable and E{X �Y}
conditional expectation of the random variable X with
respect to Y. d(u) denotes the Dirac delta function
where&+�

−�

d(u−u0)f(u) du= f(u0).

X(t) denotes a zero mean time series with sampled
values denoted by xt for t=0,…, T−1 for a record of
duration T.

2.2. Assumptions

The recorded spikes are assumed to be realizations of
stochastic point processes with the following properties:
(a) that events of the process N(t) do not occur simulta-
neously, i.e., the process is orderly allowing an interpre-
tation of point process parameters either as expected
values or probabilities. (b) the parameters characteriz-
ing the process do not change with time (the process is
stationary), (c) the number of events occurring in inter-
vals widely separated in time are independent (the
process is mixing). These assumptions are discussed in
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Brillinger (1972), Cox and Lewis (1972), Daley and
Vere-Jones (1988) in general, and in Conway et al.
(1993), Halliday et al. (1995) in the context of spike
train analysis.

2.3. Stochastic point process parameters

Before discussing the problem of identification of
patterns of neuronal connectivity we introduce certain
parameters that characterise stochastic point processes.
Each of the parameters defined may be estimated con-
sistently as T��, and estimation procedures are con-
sidered in detail in Brillinger (1975b), Conway et al.
(1993), Halliday et al. (1995), Rosenberg et al. (1989).

Let (M, N) represent a bivariate point process. The
mean intensity of process N is defined as

PN= lim
h�0

Prob{N event in (t, t+h ]}/h (1)

and since the process is orderly may be interpreted as

E{dN(t)}=PN dt (2)

The second-order cross product density at lag u,
PNM(u), is defined as

PNM(u)

= lim
h,h%�0

Prob{N event in (t+u, t+u+h ]

and M event in (t, t+h %]}/hh % (3)

and may be interpreted through the relation

E{dN(t+u) dM(t)}=PNM(u) du dt (4)

A conditional mean intensity, mNM(u), is defined as

mNM(u)=
PNM(u)

PM

(5)

and interpreted as

mNM(u)

= lim
h�0

Prob{N event in (t+u, t+u+h ]

given an M event at t}/h (6)

or in terms of a conditional expectation as

E{dN(t+u)�M event at time t}=
PNM(u)

PM

(7)

In the case that u"0 the product density Eq. (3) and
the conditional intensity Eq. (6) may be obtained for
each process alone by setting M equal to N. The value
of PNN(u) at u=0 is defined to make the function
continuous at this point.

Under the assumption of mixing ((c)), as u becomes
large, increments of the process become independent, so
that

lim�u��� PNM(u)=PNPM (8)

This phenomenon leads to the definition of a cross-co-
6ariance, cross-intensity or cumulant density, qNM(u), as

qNM(u)=PNM(u)−PNPM u"0 (9)

which tends to zero as �u ���. qNM(u) may also be
interpreted through

cov{dN(t+u), dM(t)}=qNM(u) du dt (10)

where ‘cov’ denotes covariance. In the case of the
individual processes, however, one must write

cov{dN(t+u), dN(t)}= (d(u)PN+qNN(u)) du dt
(11)

Following Bartlett (1963) the cross-spectrum, fNM(l),
between process M and N may be defined as the
Fourier transform of the cross-covariance density Eq.
(10) as

fNM(l)=
1

2p

&+�

−�

e− ilu cov{dN(t+u), dM(t)}
dt

(12)

and the auto-spectrum, fNN(l), as the Fourier transform
of the auto-covariance density Eq. (11) as

fNN(l)=
1

2p

&+�

−�

e− ilu cov{dN(t+u), dN(t)}
dt

(13)

with a similar expression for fMM(l). Expressions Eqs.
(12) and (13) are referred to as cumulant spectra
(Brillinger, 1972). Point process spectra differ from
spectra associated with ordinary time series (Lewis,
1972). In the point process case as l�� fNN(l)=
PN/2p, whereas in the time series case the value of the
limiting value of the spectrum is zero. The spectrum of
a Poisson process is also equal to PN/2p. Thus, point
process spectra will fluctuate about a value propor-
tional to that for a Poisson process of the same mean
rate as the spike train. Corresponding to Eqs. (12) and
(13) are the inverse transforms giving the second-order
cumulants

qNM(u)=
&

fNM(l) eilu dl

qNN(u)=
& !

fNN(l)−
PN

2p

"
eilu dl (14)

The cumulants may be estimated either directly from
the cross-correlation histogram or as the inverse
Fourier transform of the cross-spectrum (Halliday et
al., 1995).

3. The finite fourier transform and linear models for
neuronal interactions

Our approach to the identification of patterns of
neuronal connectivity will depend on the use of linear
models for the interactions between spike trains. These
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models will be based on the finite Fourier transforms of
the observed processes. The extension of this approach
to hybrids of point processes and time series processes
is set out in Halliday et al. (1995). The finite Fourier
transform has proved to be of substantial use in the
analysis of random processes assumed to satisfy these
models. We will show that models based on it can play
an important role in the analysis of neuronal
interactions.

The finite Fourier transform of the point process,
spike train, N(T), denoted dN

T (l), is defined as

dT
N(l)=

&T

0

e− ilt dN(t)=%
j

e− iltj (15)

where the tj are the times of occurrence of the spikes
from process N(T). The central limit theorems given in
Brillinger (1983) suggest that the auto- and cross spec-
tra of the point processes N(T) and M(T), may be
estimated, respectively, as

f. NN(l)=
1

2pLT
%
L

l=1

dT
N(l, l) dT

N(l, l)

f. NM(l)=
1

2pLT
%
L

l=1

dT
N(l, l) dT

M(l, l) (16)

where the spike train records are divided into L disjoint
sections each of duration T, and dN

T (l, l) represents the
finite Fourier transform of the lth section. (see Halliday
et al. (1995), Rosenberg et al. (1989); for applications of
this procedure to spike trains and hybrids of spike
trains and continuous processes). The definitions of
spectra given by expressions Eqs. (12) and (13) and
those in Eq. (16) are asymptotically equivalent.

The linear point process model and its frequency
domain representation via the finite Fourier transform
may be developed as follows. Suppose that M(t) is a
point process input to and N(t) the point process
response of a linear time invariant point process system.
Following Brillinger (1975a) we set down a series of
models for the relation

m1(t)= lim
h�0

Prob{N event in (t, t+h ]�M}/h

=E{dN(t)�M}/dt (17)

corresponding to a sequence of input processes. In the
absence of any input, M0, m1 exists and is equal to a
constant

m1(t)=a0 (18)

where a0 is interpreted as the rate of the output process
N in the absence of an input process M, i.e., a0 repre-
sents the rate of the spontaneous activity of the point
process system modelled by Eq. (17). Now, if the input
to the system corresponds to a single event at time u,
then m1(t) would become

m1(t)=a0+a1(t−u) (19)

where a1(t−u) represents the effect on the output
process of the single event that occurred at time u.
Similarly, if a number of events occurred at times
u1, u2,…, uk, and there were no interactions between the
effects of these inputs, then expression Eq. (19) would
become

m1(t)=a0+a1(t−u1)+a1(t−u2)+ ···+a1(t−uk)
(20)

or, written in more compact notation as

m1(t)=a0+
&

a1(t−u) dM(u) (21)

to give the linear model

E{dN(t)�M}=
�

a0+
&

a1(t−u) dM(u)
n

dt (22)

a1(u), by analogy with the terminology used for linear
systems operating on continuous process, may be called
the a6erage impulse response (see, Brillinger (1975a)),
and its Fourier transform

A(l)=
&

a1(u) e− ilu du (23)

the transfer function of the system.
If N(t) and M(t) are observed over the interval

0B tBT, and are assumed to satisfy the model

dN(t)=
�

a0+
&

a1(t−u) dM(u)
n

dt+o(t) (24)

where o(t) is a zero mean process satisfying the assump-
tions of stationarity and mixing, then, following
Brillinger (1983), the Fourier transform of Eq. (24)
becomes

dT
N
�2ps

T
�
:A(l) dT

M
�2ps

T
�

+dT
s
�2ps

T
�

(25)

for 2ps/T near l, with s=0,…, T−1, and where

A(l)=
&

a(u) e− ilu du and dT
s
�2ps

T
�

the Fourier transform of the error process o(t). Expres-
sion Eq. (24) represented as

yk=axk+ok (26)

where k indexes distinct frequencies near l suggests a
relation between the frequency domain representation
of the single input single output linear point process
model and the standard simple linear regression model.
This relation further suggests that the full range of
regression techniques is available for the analysis of
interactions between spike trains in the frequency
domain.

The analogy with regression techniques may be made
explicit. The solution to Eq. (22) leads to the following
relations
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a0=PN−
&

a1(u) du

qNM(u)=PNa1(u)+
&

a1(u−6)qMM(6) d6 (27)

The Fourier transform of the second expression in Eq.
(27) can be shown to be

fNM(l)=A(l)fMM(l) (28)

indicating that A(l) may be estimated from the auto-
and cross-spectra of the observed processes N and M.
From the central limit theorems for finite Fourier trans-
forms set out in Brillinger (1983) the cross-spectrum
and auto-spectrum can be thought of as covariance and
variance parameters, respectively. Their ratio, the trans-
fer function, consequently may be thought of as
analogous to a regression coefficient evaluated at each
frequency l.

The analogy may be pursued further using the
relation

do(t)=dN(t)−
�

a0+
&

a1(t−u) dM(u) dt
n

(29)

where do(t) represents an error process with stationary
increments. The spectrum of the error process, foo(l),
can be shown to be

foo(l)= fNN(l)[1− �RNM(l)�2] (30)

where

�RNM(l)�2= � fNM(l)�2
fNN(l)fMM(l)

(31)

The value of the error spectrum depends on the value
of the ratio of the magnitude squared of the cross-
spectrum between the input and output processes to
the product of their spectra. The closer this ratio is to
one the smaller the error. This ratio is called the
coherence, is denoted by �RNM(l)�2, and provides a
measure of the degree of linear predictability of pro-
cess N from process M. The coherence has the same
form as the square of the correlation coefficient, takes
on values between zero and one, and plays the role of
the squared correlation coefficient defined at each fre-
quency l.

4. Frequency domain measures of association for vector
valued processes

The development of the linear point process model
extends directly to the general case of vector valued
processes. Let {N(t), M(t)} represent an (s+r) real
valued stationary point process. The model Eq. (24)
extends directly to a multivariate linear model relating
N(t) to M(t) as

dN(t)=
!

aN+
&

aNM(t−u) dM(u)
"

dt+do(t) (32)

where

dN(t)=Ã
Ã

Ã

Æ

È

dN1(t)
dN2(t)

�
dNs(t)

Ã
Ã

Ã

Ç

É

, aN=Ã
Ã

Ã

Æ

È

aN1

aN2

�
aNs

Ã
Ã

Ã

Ç

É

,

dM(u)=Ã
Ã

Ã

Æ

È

dM1(u)
dM2(u)

�
dM r(u)

Ã
Ã

Ã

Ç

É

, do(t)=Ã
Ã

Ã

Æ

È

do1(t)
do2(t)

�
do s(t)

Ã
Ã

Ã

Ç

É

(33)

and

aNM(u)=Ã
Ã

Ã

Æ

È

aN1M1
u

aN2M1
(u)

�
aNsM1

(u)

aN1M2
(u)

aN2M2
(u)

�
aNsM2

(u)

···
···
���
···

aN1Mr
(u)

aN2Mr
(u)

�
aNsMr

(u)

Ã
Ã

Ã

Ç

É

(34)

In the multivariate case the finite Fourier transform of
the linear model becomes

dT
N
�2pk

T
�
:ANM(l) dT

M
�2pk

T
�

+dT
o

�2pk
T

�
(35)

where

ANM(l)=Ã
Ã

Ã

Æ

È

AN1M1
(l)

AN2M1
(l)

�
ANsM1

(l)

AN1M2
(l)

AN2M2
(l)

ANsM2
(l)

···
···

···

AN1Mr
(l)

AN2Mr
(l)

�
ANsMr

(l)

Ã
Ã

Ã

Ç

É

(36)

is the (s+r) matrix of transfer functions, (2pk/T) is
near l for k=0,…, T−1, and where the remaining
terms are the Fourier transforms of the vectors defined
by expressions Eq. (33)

Expression Eq. (32) may be written in more compact
notation as

Yk:AXk+ok (37)

where k indexes distinct frequencies near l, and A the
matrix of transfer functions, is analogous to a matrix of
parameters to be estimated in regression analysis. Ex-
pression Eq. (35) shows the extension of Eq. (25) to the
multivariate case (Brillinger, 1980). The approximate
relation Eq. (35) applies to both the point process and
continuous time series case, as well as hybrids of the
two (Brillinger, 1983; Halliday et al., 1995).
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4.1. Partial spectra and partial coherences

The matrix of error spectra for the general model for
the pair of vector valued processes M and N may be
shown to be

Foo(l)=FNN(l)−FNM(l)FMM(l)−1FMN(l) (38)

where the F’s represent spectral density matrices of the
vectors indicated by the subscripts. A typical entry,
fo ao b

(l), of the matrix Foo(l) is defined as the partial
spectrum between processes Na and Nb after removing
the linear effects of processes M, and written as

fo ao b
(l)= fNaNb/M(l) (39)

where a=b defines the partial auto-spectrum and a"b
the partial cross-spectrum.

The idea of partial spectra can be extended to partial
coherences, where the partial coherence between Na and
Nb gives the coherence between these processes after
removing the linear contribution from processes M, and
is defined as

�RNaNb/M(l)�2= � fNaNb/M(l)�2
fNaNa/M

(l)fNbNb/M(l)
(40)

Expressions Eqs. (39) and (40) may also be evaluated
for partial parameters of order k5r having removed
the linear effects of k components of M (Rosenberg et
al., 1989). For example, in the case of a two input two
output system there are two output partial cross-spectra
of order-1, given as

f43/1(l)= f43(l)−
f41(l)f13(l)

f11(l)

f43/2(l)= f43(l)−
f42(l)f23(l)

f22(l)
(41)

where the subscripts 1 and 2 represent input processes
and 3 and 4 output processes, and one partial cross-
spectrum of order-2, written as

f43/12(l)= f43(l)− [ f41(l) f42(l)]

×
�f11(l)

f21(l)
f12(l)
f22(l)

n−1 �f13(l)
f23(l)

n
(42)

which in the special case that the processes 1 and 2 are
independent becomes

f43/2(l)= f43(l)−
�f41(l)f13(l)

f11(l)
+

f42(l)f23(l)
f22(l)

n
(43)

where the two terms in the brackets represents the
independent contributions of processes 1 and 2 to
f43(l). Expressions Eqs. (41) and (43) can be seen to be
analogous to the partial covariances between N3 and N4

controlling for N1 or N2 in expressions Eq. (41) and for
both N1 and N2 in expression Eq. (43).

The inverse relations corresponding to the partial
spectra define partial cumulant densities. For example,

the partial cumulant density of order-2 corresponding
to expression Eq. (42) would be

q43/12(u)=
&p

−p

f43/12(l) eilu dl (44)

with similar expressions for the partial cumulant densi-
ties of order-1. The partial cumulant densities may not
be evaluated easily directly in the time domain. How-
ever, the process of removing a particular linear contri-
bution to the correlation between two processes can
easily be carried out in the frequency domain (Halliday
et al., 1995).

The first-order partial coherences may be written in
terms of the first-order partial spectra as

�R43/1(l)�2= � f43/1(l)�2
f44/1(l)f33/1(l)

�R43/2(l)�2= � f43/2(l)�2
f44/2(l)f33/2(l)

(45)

From the definitions of the partial spectra it follows
directly that the first-order partial coherences may also
be written in terms of the ordinary coherence. For
example, �R43/1(l)�2 may be written as

�R43/1(l)�2= �R43(l)−R41(l)R13(l)�2
(1− �R41(l)�2)(1−R13(l)�2) (46)

where the separate terms in the numerator are referred
to as the coherencies. The relevant second-order partial
coherence for the two input two output system may be
written in terms of the partial spectra as

�R43/12(l)�2= � f43/12(l)�2
f44/12(l)f33/12(l)

(47)

or in terms of the first-order partial coherences as

�R43/12(l)�2= �R43/1(l)−R42/1(l)R23/1(l)�2
(1− �R42/1(l)�2)(1− �R23/1(l)�2) (48)

Although the expressions for the higher-order partial
coherences appear complicated, their general form is
clear. Each higher order partial coherence may be
calculated in terms of all lower order partial coher-
ences, which in turn may be calculated in terms of the
partial-spectra (Rosenberg et al., 1989). The partial
spectra themselves are calculated in terms of the ordi-
nary spectra Eq. (38), therefore, given the ordinary
auto- and cross-spectra all of the partial coherences
may be estimated by simple algebraic manipulations of
the ordinary spectra. This is precisely analogous to the
procedure for calculating partial correlations in multi-
ple regression analysis. Alternatively, one may estimate
the partial spectra via expression Eq. (38), and in
addition obtain by matrix inversion the partial
cumulants.

Expression Eq. (38) for the matrix of error spectra of
the general model for a pair of vector valued processes
may also be written as
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Foo(l)=FNN(l)1/2

[Is−FNN(l)−1/2FNM(l)FMM(l)−1FMN(l)

FNN(l)−1/2]FNN(l)1/2 (49)

which for s=r=1 reduces to expression Eq. (30), so that
it can be seen, by analogy with expression Eq. (30) that

FNN(l)−1/2FNM(l)FMM(l)−1FMN(l)FNN(l)−1/2 (50)

may be viewed as a generalised coherence between two
vector valued processes M and N.

5. Applications of the frequency domain representation
of the linear model for the relation between spike trains

In this section we illustrate how the coherence pro-
vides a useful tool for inferring the structure of com-
mon inputs and how partial coherences may be used to
decide whether two processes are linked as input–out-
put or if the correlation between them is a consequence
of common inputs. These simple operations may form
the basis for inferring the structure of more complex
networks than those discussed. Three simple neuronal
networks are analysed. (a) Two neurones receiving a
common excitatory or a common inhibitory input (Fig.
1A). This example may be considered as analogous to a
pair of motoneurones coupled by a branched stem
common input giving rise to what has been called short
term synchrony (Sears and Stagg, 1976; Kirkwood,
1979). (b) Two different sets of common inputs to a
pair of neurones (Fig. 1B). The common inputs are
excitatory to both neurones, and (c) Two different sets
of common inputs, one inhibitory and the other excita-
tory, to a pair of neurones (Fig. 1C). The common
inputs in (c) are themselves correlated. This example
combines the effects of common branched stem inputs
where the common inputs themselves are correlated.
The correlation of the common inputs may be consid-
ered as analogous to synchronised presynaptic inputs
on to motoneurones as discussed by Datta and
Stephens (1990), Kirkwood (1991). In each of these
examples neurones receive a large number of inputs
independent of the common inputs as well as of each
other (indicated by the dashed lines in Fig. 1A–C).
Given the simultaneous measurement of a number of
spike trains, the systematic application of coherence
and partial coherence measures is a powerful tool for
determining plausible patterns of neuronal connectivity.

5.1. Example 1: paired neurones with a single common
excitatory input

N1 represents the single common input to two neurones
whose output spike trains are denoted by N4 and N5. N2

and N3 represent independent inputs to the paired

neurones as indicated by the schematic diagram of the
neural network shown in Fig. 1A. The common input,
N1, is assumed to be independent of processes N2 and N3,
which in turn are independent of each other.

Fig. 1. Diagrammatic representation of the three neural networks
investigated in this report. (A) A pair of neurones with spike trains
N4 and N5, receiving the single common input, N1, where N1 may be
either excitatory or inhibitory. The spike trains N2 and N3 are
independent of each other as well as of N1. (B) A pair of neurones
with spike trains N5 and N6 with two independent common excitatory
inputs, N1 and N2, where N1 and N2 are both excitatory. In addition
to the common inputs each of the paired neurones receives inputs, N3

and N4, independent of each other and of the common excitatory
inputs. (C) A pair of neurones, N3 and N4, with two common inputs,
one of which is excitatory, N2, and the other inhibitory, N1. The
common inputs themselves receive a common excitatory input, N0.
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Under these assumptions the coherence between N4

and N5 may be developed directly from the linear
model Eq. (25) (see Perkel (1970), Tick (1963) for a
similar approach to problems of this kind). It follows
from Eq. (35) that the finite Fourier transforms of N4

and N5, d4
T and d5

T, suppressing the dependencies on l,
may be written as

dT
4 =h41dT

1 +dT
o 41

+h42dT
2 +dT

o 42

dT
5 =h51d

T
1 +dT

o 51
+h53d

T
3 +dT

o 53
(51)

where the subscripts in each term indicate particular
processes, and the h ’s and o ’s the transfer functions and
error processes, respectively. Expressions Eq. (51) are in
turn used, according to Eq. (16), to derive the cross-
spectrum and auto-spectra from which, after some ma-
nipulation, gives the estimated coherence between N4

and N5 suppressing the dependencies on l as

�R. 45�2=
f. 211

�h. 41�2�h. 51�2
(f. 11�h. 41�2+f. 22�h. 42�2+f. o 42

+f. o 41
)(f. 11�h. 51�2+f. 33�h. 53�2+f. o 53

+f. o 51
)

(52)

If contributions to the coherence from independent
inputs and the noise series are large compared with that
of the common input, and constant over the range of
frequencies of interest, then the estimated coherence
between N4 and N5 is approximately

�R. 45(l)�2:K1f. 211(l) (53)

where K1 is a constant. Under the appropriate condi-
tions one might expect that the coherence between the
discharges from such a pair of neurones, provided the
common input is not dominant, would represent a
scaled version of the square of the auto-spectrum of
this common input.

The example illustrated by Fig. 2 takes a sinusoidally
modulated spike train as a common input to a pair of
neurones. The spike train in the absence of the modu-
lating signal had a Gaussian distribution of intervals.
The auto-spectrum of the modulated spike train is
shown in Fig. 2A. In this example the modulation

frequency was set at 10 Hz, and appears as a sharp
peak in the spectrum at 10 Hz, whereas the second peak
centred about 25 Hz corresponds to the mean rate.
Below and in register with the auto-spectrum is the

Fig. 2.

Fig. 2. Frequency domain analysis of the neural network in which a
pair of neurones N4 and N5 receive a common excitatory input N1.
Estimated (A) auto-spectrum of the common input, N1, to the pair of
neurones N4 and N5, (B) coherence between the discharges from N4

and N5, (C) partial coherence between N4 and N5 taking into account
the contribution from N1, and (D) auto-spectrum of N4 (which is
similar to that of N5). The solid horizontal lines in (A) and (D)
represent an approximate 95% confidence interval for the estimated
auto-spectra, and the dashed horizontal lines the asymptotic value of
the estimate equal to Log10 P/2p, where P is the mean rate of the
spike train. The horizontal dashed lines in (B) and (C) represent the
upper level of the approximate 95% confidence interval for the
estimated coherence under the assumption that the two processes are
independent.
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coherence estimated from a sample of the discharges
from the pair of neurones driven by the common input
(Fig. 2B). The peaks in the coherence are seen to reflect
the two dominant frequency components that appear in
the spectrum of the common input. The auto-spectra of
the two output processes were similar to each other,
showing a dominant peak near 13 Hz (Fig. 2D), and
clearly different from either of the peaks in the coher-
ence, and the input auto-spectrum (Fig. 2A).

When it is possible to record from a suspected com-
mon input process, the partial coherence may be used
to provide an indication of whether the observed cou-
pling between the two neurones is a consequence of the
common input (Brillinger, 1975a; Rosenberg et al.,
1989). One would expect that the sample partial coher-
ence, �R. 45/1(l)�2, in this example would be close to zero,
as is shown in Fig. 2C. In this example, the pairwise
coherences between the three recorded process are all
significant. The combined application of the coherence
and partial coherence would then lead to the conclusion
that the coupling between N4 and N5 is not direct, but
a consequence of N1.

The corresponding time domain estimates are shown
in Fig. 3. Fig. 3A shows the auto-covariance of the
modulated common input, Fig. 3C and D the auto-co-
variances of the two outputs. The estimated cross-co-
variance (cumulant) between the two outputs is shown
in Fig. 3B. Although there is some suggestion of peri-
odicities in this estimate for lag uB0, it is not clear that
the presence of two distinct components in the modu-
lated input could be accurately inferred. This example
illustrates some the difficulties highlighted by Moore et
al. (1970), Perkel (1970) who emphasised that the cross-
correlation histogram resulting from shared inputs may
not have a simple interpretation. Indeed, from expres-
sion Eq. (51) it follows that the cross-covariance be-
tween the two output processes would be proportional
to the convolution between the common input and the
two output processes. The periodicities of the three
processes would be confounded, and any inference re-
garding the periodicity of the common input need not
be correct. However, the techniques introduced by Ger-
stein and his colleagues may be used to unravel the
three neurone case (e.g., Aertsen et al., 1989; Gerstein
and Perkel, 1972; Palm et al., 1988).

5.2. Example 2: paired neurones with a single common
inhibitory input.

This example only differs from Example 1 in that the
single input, N1, common to processes N4 and N5 is
inhibitory. In this example the three pairwise cross-co-
variances would allow the identification of a common
inhibitory input from N1 to N4 and N5. From the rules
of Moore et al. (1970) common inhibition can be
expected to give a peak in the cross-covariance centred

Fig. 3. Time domain analysis of the neural network in which a pair of
neurones N4 and N5 receive a common excitatory input N1. Estimated
(A) second-order cumulant of the common input, N1, to the pair of
neurones N4 and N5, (B) second-order cumulant between N4 and N5,
and (C) and (D) the second-order cumulants of the discharge of
neurones N4 and N5. The solid horizontal lines in each panel repre-
sent approximate 95% confidence intervals, and the dashed horizontal
lines the asymptotic value of the estimate, which in each case is zero.

near lag u=0 (Fig. 4A). The magnitude of this peak
would be expected to be smaller than if the common
input was excitatory, as in Example 1 (Fig. 3B). The
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Fig. 4. Estimated (A) cumulant between N4 and N5 when the common input process, N1, is inhibitory, (B) coherence between N4 and N5, (C) the
second-order cumulant between N1 and N4 illustrating the inhibitory effect of N1 on N4, and (D) the second-order cumulant between N1 and N5

illustrating the inhibitory effect of N1 on N5. The solid horizontal lines in (A), (C) and (D) represent approximate 95% confidence intervals, and
the dashed horizontal line the asymptotic value of the estimate equal to zero. The horizontal dashed line in (B) represents the upper level of the
approximate 95% confidence interval at frequency l under the assumption that the two processes are independent.

remaining cross-covariances, q41(u) and q51(u), (Fig. 4C
and D) have troughs near lag u=0 suggesting in-
hibitory connections from N1 on to N4 and N5. The
three cross-covariances taken together would be suffi-
cient to identify common inhibition. The coherence,
�R45(l)�2 (Fig. 4B), would further the analysis by identi-
fying the frequency structure of the common inhibitory
input.

5.3. Example 3: paired neurones with two common
excitatory inputs.

The following example is based on the schematic
neural network shown in Fig. 1B. The common inputs
to the paired neurones are denoted by N1 and N2. The
output processes from the pair of neurones are denoted
by N5 and N6. Processes N3 and N4 represent indepen-
dent inputs to the paired neurones as indicated in Fig.
1B.

By direct extension of the procedure set out above,
the coherence between processes N5 and N6 may be
written, suppressing the dependencies on l, as

Under the same considerations used in discussing Ex-
ample 2, one would expect that the coherence, �R56�2,
would have two components proportional to the mag-
nitude squared of the sum of scaled versions of the
auto-spectra of the two common input processes writ-
ten as

�R. 56(l)�2:K2�f. 11h. 51h. 61+ f. 22h. 52h. 62�2 (55)

where K2 is a constant.
In this example the simulation was set up so that the

common input N1 was periodic with centre frequency of
10 Hz, and that of the second common input, N2,
periodic with a centre frequency of 30 Hz. The auto-
spectra of the two common inputs are shown in Fig. 5A
and B. The peaks in the auto-spectra of the common
inputs centred about 10 and 30 Hz (Fig. 5A and B) are
in turn reflected in the coherence between processes N5

and N6, �R56(l)�2, by significant peaks centred about the
same frequencies (Fig. 5C). The coherence, �R56(l)�2,
alone (Fig. 5C) may suggest either a single frequency

�R56�2= �f. 11h. 51h. 61+ f. 22h. 52h. 62�2
(f. 11�h. 51�+ f. 22�h. 52�+ f. 33�h. 53�+ f. o 51

+ f. o 52
+ f. o 53

)(f. 11�h. 61�+ f. 22�h. 62�+ f. 44�h. 64�+ f. o 61
+ f. o 65

+ f. o 64
)

(54)
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Fig. 5. Frequency domain analysis of the neural network in which a pair of neurones N5 and N6 receive two common excitatory inputs N1 and
N2. Estimated (A, B) auto-spectra of the two common inputs N1 and N2 to neurones N5 and N6, (C, E) coherence between N5 and N6 in response
to the shared inputs N1 and N2, (D) auto-spectrum of one of the paired neurones N5 (which is similar to that of N6), (F) first-order partial
coherence between N5 and N6 taking into account the common input N1, (G) first-order partial coherence between N5 and N6 taking into account
the common input N2, and (H) second-order partial coherence between N5 and N6 taking into account the common inputs N1 and N2. The solid
horizontal lines in (A, B, D) provide approximate 95% confidence intervals for the estimated auto-spectra, and the dashed horizontal lines the
asymptotic value of the estimate equal to Log10 P/2p, where P is the mean rate of the spike train. The horizontal dashed line in (C, E–H)
represents the upper level of the approximate 95% confidence interval at frequency l.
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modulated periodic common input as in Example 1 or
two independent inputs at the different frequencies. If
one has access to the suspected common inputs, the
analysis may be furthered through the application of
first- and second-order partial coherences. The only
significant peak in the first-order partial coherence be-
tween processes N5 and N6 taking into account N1,
�R56/1(l)�2, is centred about 30 Hz (Fig. 5F)—the 10 Hz
component present in �R56(l)�2 (Fig. 5E) has been re-
moved. The partial coherence �R56/2(l)�2 removes the
peak in �R56(l)�2 centred about 30 Hz leaving the com-
ponent at 10 Hz (Fig. 5G). The second-order partial
coherence between N5 and N6 taking into account
processes N1 and N2, �R56/12(l)�2, is not significant,
further suggesting that N1 and N2 are the only common
inputs to N5 and N6.

5.4. Example 4: paired neurones, N3 and N4, with two
common inputs, one of which is excitatory, N2, and the
other inhibitory, N1: these common inputs are
themsel6es correlated by the common excitatory process
N0.

The common input, N0, is strongly periodic (Fig.
6A). This periodicity, by expression Eq. (53), appears in
the coherence �R12(l)�2 as peaks centred about 10 Hz
and its higher harmonics (Fig. 6B and F).

The auto-spectra of the two neurones, N1 and N2,
driven by N0 are shown in Fig. 6C and D, respectively.
These spectra have components related to the 10 Hz
component of the common input as well to the intrinsic
periodicity at 25 Hz of each of these cells. Consequently
the coherence between N3 and N4 (Fig. 6E) will reflect
the combined influence of the rhythmic components of
the common inputs (Fig. 6A, C and D).

The successive application of partial coherences will
help to identify this more complex network. For ease of
interpretation the two coherences �R12(l)�2 and �R43(l)�2
are replotted in Fig. 6F and H. The first-order partial
coherence between N1 and N2 taking into account N0 is
not significant (Fig. 6G). The strong coherence between
N1 and N2 at 10 Hz and its higher harmonics may be
attributed to a common input process. The observation
that none of the significant components of �R12(l)�2
appear in �R12/0(l)�2 suggest a single common input as
opposed to several independent common inputs with
frequencies at multiples of 10 Hz. The partial coherence
�R43/0(l)�2 (Fig. 6I) shows a reduction corresponding to
the peak at 10 Hz in �R43(l)�2 (Fig. 6H), which in turn
corresponds to the periodicity of the input common to
N1 and N2 (Fig. 6A). The strongly periodic 10 Hz signal
arising from N0 acts across two synaptic junctions to
appear in the coherence between N3 and N4. The re-
maining peaks in �R43/0(l)�2 (Fig. 6I) may be attributed
to different and possibly independent sources of com-
mon inputs. The third-order partial coherence between

N3 and N4 taking into account processes N0, N1 and N2,
�R43/012(l)�2, is not very significant (Fig. 6J), identifying
these processes as additional sources of common inputs
to N3 and N4.

The separate effects of each of these processes on the
coherence between N3 and N4 may be assessed by
considering the effects of each process alone in combi-
nation with N0 on the coherence between N3 and N4.
The two second-order partial coherences �R43/01(l)�2 and
�R43/02(l)�2 (Fig. 7B and C) show that each process, N1

and N2, reduces the coherence between N3 and N4 (Fig.
7A) over the same range of frequencies, although one
of these processes, N1, appears to have a stronger effect
than N2. The coherences do not provide any indication
of whether this second set of common inputs are in-
hibitory or excitatory. The cross-covariances, however,
do provide this information. The cross-covariance be-
tween N3 and N4, q43(u) (Fig. 7D), gives the expected
peak centred about lag u=0, combining the effects of
the different levels of common input processes de-
scribed by �R43/0(l)�2 (Fig. 7A). Note the absence of
significant secondary features in q43(u) suggesting a
nonperiodic common input, contrary to the rules of
Moore et al. (1970). The separate effects of each of the
common inputs N1 and N2 on N3 or N4 can be assessed
by the cross-intensities of each of these inputs on to N3

and N4. From Fig. 7F and H process N1 may be said to
be inhibitory to N3 and N4, whereas, N2 is seen to be
excitatory to N3 and N4 (Fig. 7E and G).

6. Summary of results

(a) The finite Fourier transform of the model of a
linear point process system leads to a regression type
analysis of the relation between spike trains that con-
siderably develops the range of tools available for spike
train analysis.

(b) The analysis and simulation of simple neural
networks based on the frequency domain representa-
tion of these networks can be used to identify common
inputs to pairs of neurones, and to estimate their fre-
quency content.

(c) Measures of coherence in combination with those
of partial coherence and cumulants provide a powerful
approach for identifying plausible patterns for neural
networks based on the analysis of spike trains alone.

(d) When inferring the structure of common inputs
the coherence alone will not distinguish between multi-
ple common inputs with different dominant frequency
components, and a single input that is frequency modu-
lated to give the same components of frequency as
found in the several common inputs. In favourable
cases, the selective application of partial coherences in
combination with cumulants can, however, be used to
distinguish frequency modulated from multiple com-
mon inputs.
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Fig. 6. Frequency domain analysis of the neural network in which a pair of neurones N3 and N4 receive two common inputs, one of which is
excitatory, N2, and the other inhibitory, N1. N1 and N2 in turn receive the common excitatory input N0 Estimated (A) auto-spectrum of common
excitatory input N0 to neurones N1 and N2, (B, F) coherence between N1 and N2 in response to shared input N0, (C) auto-spectrum of the common
inhibitory input, N1, to neurones N3 and N4, (D) auto-spectrum of the common excitatory input, N2, to neurones N3 and N4, (E, H) coherence
between N3 and N4, (G) first-order partial coherence between N1 and N2 taking into account the common input N0, (I) first-order partial coherence
between N3 and N4 taking into account process N0, (J) third-order partial coherence between N3 and N4 taking into account processes N0, N1 and
N2. The solid horizontal lines in (A, C, D) represent approximate 95% confidence intervals for the estimated auto-spectra, and the dashed
horizontal lines the asymptotic value of the estimate equal to Log10 P/2p, where P is the mean rate of the spike train. The horizontal dashed line
in (B, E–J) represents the upper level of the approximate 95% confidence interval at frequency l.



J.R. Rosenberg et al. / Journal of Neuroscience Methods 83 (1998) 57–7270

Fig. 7. For the same network as Fig. 6 (shown in the lower left hand corner of Fig. 7), estimated (A) first-order partial coherence between
processes N3 and N4 taking into account process the common input process N0, (B) second-order partial coherence between N3 and N4 taking into
account processes N0 and N1, (C) second-order partial coherence between N3 and N4 taking into account processes N0 and N2, (D) second-order
cumulant between N3 and N4, (E) second-order cumulant between excitatory process N2 and N3, (F) second-order cumulant between inhibitory
process N1 and N3, (G) second-order cumulant between excitatory process N2 and N4, (H) second-order cumulant between inhibitory process N1

and N4. The horizontal dashed line in (A–C) represents the upper level of the approximate 95% confidence interval at frequency l. The solid
horizontal lines in (D–H) represent approximate 95% confidence intervals, and the dashed horizontal lines the asymptotic value of the estimate,
which in each case is zero.
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7. Concluding remarks

The starting point for our study was an investigation
of the suggestion that the frequency content of a com-
mon presynaptic input to synchronously discharging
motor-units may be inferred from the coherence esti-
mated from the discharge of the two motor-units
(Farmer et al., 1993). We have shown that, under
certain conditions, this coherence reflects the auto-spec-
trum of the common input. The analysis techniques
based on a linear model for point process systems may
be extended to estimate how any number of input
processes influence the correlation between any two
output processes. If we assume that the processes arise
on an equal footing, in the sense that no structural
information is available on the underlying neural net-
work, then the systematic application of coherences,
partial coherences and cumulant density functions leads
to plausible models for the pattern of connectivity
between these processes, and whether a given interac-
tion between two processes is excitatory or inhibitory.
As pointed out by Moore et al. (1970) much of the
value of the statistical measures for analysing neuronal
interactions lies in their usefulness in developing or
testing hypotheses about neuronal network structures.
The Fourier based methods described in this report
extend the time domain procedures considered by
Moore et al. (1970) to a wider class of problems, and at
the same time allow analytic solutions to questions
about the structure of common inputs to pairs of
neurones.

The coherences, and particularly the partial coher-
ences, however, must be interpreted with caution, since
their application assumes a simple linear model for the
neuronal interactions. In cases where the association
between two neurones is entirely a consequence of a
single common process that acts in a more complex
manner on each of these neurones, the partial coher-
ence taking into account the effect of this process will
not necessarily be zero (see Appendix A). A non-signifi-
cant partial coherence cannot therefore always be taken
as an indication that a particular process does not
influence the coherence, it may do so, but in a non-lin-
ear way. The partial coherence, however, will be cor-
rectly interpreted when it is significant.

The partial coherences in the case of multiple com-
mon inputs to a pair of neurones reveal an interesting
feature of neuronal discharges. The partial coherences
have identified particular frequency bands within a
neuronal discharge that may be associated with particu-
lar inputs to the neurone. The preservation of the
frequency content of the common inputs in the dis-
charge of a neurone implies that these neurones carry
information in a single spike train related to different
inputs to the neurone. Rosenberg and Rigas (1985)

demonstrated that single Ia-afferents from cat muscle
spindles carry information in different frequency bands
related to length and fusimotor inputs. The partial
coherences applied to neural networks made up from
realistic models of motoneurones may be indicating a
general property of neuronal spike trains.

Appendix A

A.1. Simulation—paired neurones with common inputs

We have set up a conductance based neurone model
in which a pair of model neurones can receive a spe-
cified number of common inputs as well as a specified
number of independent inputs. The basic simulation
generates spike trains from the pair of model neurones.
The spike trains of the common inputs are also avail-
able. Details of the model may be found in Farmer et
al. (1993).

A.2. The effect of non-linearities on the partial
coherence

When assessing the effect that a third process may
have on the coupling between two other processes the
interpretation of the partial coherence in cases where
there is little difference between the estimated ordinary
and partial coherences requires considerable care. The
absence of a significant difference may occur for several
reasons. The third process may not influence the cou-
pling between the other two processes or the effect of
the common input is non-linear. In the non-linear case
even if the common input is the only source of coupling
between the two processes there may be no significant
difference between the estimates of the ordinary coher-
ence and the partial coherence taking into account the
contribution from the common input.

We may approach one type of non-linear behaviour
as follows. Let X(t) represent the common input giving
rise to two processes Y1(t) and Y2(t). The partial coher-
ence between the output processes taking into account
X(t) will be close to zero when the partial cross-spec-
trum between these processes is close to zero, i.e., when

fY 1Y 2/X
(l)= fY 1Y 2

(l)−
fY 1X(l)fXY 2

(l)
fXX(l)

(A1)

is close to zero, then �RN 1N 2/M
(l)�2 will be close to zero.

The development of an expression for the cross-spec-
trum when the common input exerts this non-linear
effect on each of the output neurones may be developed
as follows.

Given the common input X(t), then a possible model
containing a quadratic term for the input effects on
each output may be written as
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Yj(t)=%aj(u)X(t−u)+% % bj(u, 6)X(t−u)X(t−6)

+noisej j=1, 2 (A2)

Assume that X(t) is Gaussian, and neglecting the noise
term, then

fYj X(l)=Aj(l)fXX(l) and

fY 1Y 2
(l)=A1(l)A2(l)fXX(l)

+2
&

B1(l−n, n)B2(l−n, n)fXX(n)

fXX(l−n) dn (A3)

where Aj( · ) and Bj( · ) are the Fourier transforms of
aj( · ) and bj( · ), and so generally

fY 1Y 2/X
(l)= fY 1Y 2

(l)−
fY 1X(l)fXY 2

(l)
fXX(l)

"0 (A4)

Non-linearities cause difficulties, and their possible
presence must be taken into account in the interpreta-
tion of partial coherences, particularly in situations
when there is no significant difference between the
ordinary and partial coherences. One cannot conclude
that an absence of an effect means that process X(t)
has no influence on the coupling between processes
Y1(t) and Y2(t). In this non-linear case X(t) may be the
only source of coupling between Y1(t) and Y2(t) and
the partial coherence taking X(t) into account will not
necessarily be zero.
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