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bstract

Various time–frequency methods have been used to study time-varying properties of non-stationary neurophysiological signals. In the present
tudy, a time–frequency coherence estimate using continuous wavelet transform (CWT) together with its confidence intervals are proposed to
valuate the correlation between two non-stationary processes. The approach is based on averaging over repeat trials. A systematic comparison
etween approaches using CWT and short-time Fourier transform (STFT) is carried out. Simulated data are generated to test the performance of
hese methods when estimating time–frequency based coherence. In contrast to some recent studies, we find that CWT based coherence estimates
o not supersede STFT based estimates. We suggest that a combination of STFT and CWT would be most suitable for analysing non-stationary
eural data. Tests are presented to investigate the time and frequency discrimination capabilities of the two approaches. The methods are applied

o two experimental data sets: electroencephalogram (EEG) and surface electromyogram (EMG) during wrist movements in a healthy subject,
nd local field potential (LFP) and surface EMG recordings during resting tremor in a Parkinsonian patient. Supporting software is available at
ttp://www.dcs.warwick.ac.ukffeng/software/COD and http://www.neurospec.org.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Coherence analysis has been extensively applied to the study
f neural activity. Neurophysiological signals contain noise at all
evels and are treated as random signals or stochastic processes
Lin and Chen, 1996). A single stationary stochastic process is
ften characterised by its autocovariance function and its power

pectrum. The power spectrum is the Fourier transform of the
utocovariance function and provides a frequency description
f the process. The frequency or spectral contents of neural
ignals display important information and have been used to
valuate physiological and functional states of the nervous sys-

∗ Corresponding author. Tel.: +44 7799572480.
E-mail address: jianfeng.feng@warwick.ac.uk (J. Feng).

1 Present address: Laboratory of Cognitive and Behavioural Neuroscience,
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em. Fourier analysis has been used extensively in studying
he spectra of neurophysiological signals and in recent years
nterest has been focused on the study of correlated phenomena
etween two or more signals, such as synchronisation between
rain areas (Andrew and Pfurtscheller, 1996; Shibata et al.,
998) and correlation between electroencephalogram (EEG),
lectromyogram (EMG) and magnetoencephalogram (MEG)
Halliday et al., 1998; Mima and Hallett, 1999; Mima et al.,
000; Grosse et al., 2002). In general, the investigated sig-
als or data are assumed to be stationary and the estimates of
he auto and cross spectra are calculated to obtain the coher-
nce estimate. Based on Fourier analysis and under Gaussian
ssumption, confidence intervals of the estimated coherence

an be estimated. The construction of the confidence inter-
als is of vital importance since it allows significant correlation
o be detected and statistically assessed at various frequency
anges.

http://www.dcs.warwick.ac.ukffeng/software/cod
http://www.neurospec.org/
mailto:jianfeng.feng@warwick.ac.uk
dx.doi.org/10.1016/j.jneumeth.2006.02.013
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which has the form of a Gaussian function centred at f0, where
f0 determines the wave numbers within the envelope. Here
Y. Zhan et al. / Journal of Neuros

A wide range of neural signals encountered in biomedi-
al applications fall into the category of non-stationary sig-
als whose statistical properties change with time. Traditional
ourier analysis provides no information about evolution of
requency components over time. Short-time Fourier trans-
orm (STFT), a method which applies a short-time window
o the signal and performs a series of Fourier transforms
ithin this window as it slides across all the data, can over-

ome this limitation, providing a time–frequency representa-
ion of the signal. Alternatively, wavelet transforms provide

useful approach in investigating non-stationary signals, this
s often regarded as an “optimal” solution with regard to
ime and frequency resolution. Wavelet analysis has previ-
usly been used to study EEG (Samar, 1999; Lambertz et al.,
000; Senhadji and Wendling, 2002; Slobounov et al., 2000)
nd EMG (Pope et al., 2000; Karlsson et al., 2003). Trans-
orm methods based on Fourier and wavelet analysis are com-
ared in Bruns (2004) in the context of neural data. Corre-
ation detection based on wavelet transforms has been used
n wind engineering (Gurley et al., 2003) and climatic and
ceanic research (Torrence and Webster, 1999). In recent years
n connection with neurophysiological applications, wavelet
ased cross spectral and coherence analysis have been used
o analyse spike train activity (Pezaris et al., 2000; Lee,
002).

The main contribution of this paper is the following. First, a
ime–frequency coherence based on continuous wavelet trans-
orm (CWT) using averaging over repeat trials is proposed,
nd a way of estimating confidence intervals is described.
econd, simulation studies are used to compare the relative
erits of CWT and STFT approaches. Similar results are

btained with both approaches. However, our results indicate
hat STFT gives higher coherence values at low frequencies
<10 Hz) compared to CWT based estimates. Third, statisti-
al tests are introduced to determine the relative abilities of
TFT and CWT based coherence estimates to resolve com-
onents in frequency and time. Results from applying these
ests to simulated data indicate that CWT generally outperforms
TFT. Previous results presented in the literature suggest CWT
as a clear advantage over STFT. Although it has been shown
hat STFT and CWT approaches are mathematically equiva-
ent (Bruns, 2004), for any particular parameter set the methods
artition the time–frequency plane in a different manner, in par-
icular the CWT uses a variable length data window at each
requency (or scale). Based upon our results, we suggest that a
ore reasonable approach to detect the time-varying coherence

etween two signals would be to consider both STFT and CWT
pproaches.

Our approach is then applied to two sets of experimen-
al data: EEG-EMG obtained from healthy subjects during a
oluntary wrist movement task (Halliday et al., 1998), and
FP-EMG obtained from Parkinson’s disease patients during

nvoluntary resting tremor (Liu et al., 2002, 2003). We expect

hat our approach could reveal some fundamental facts with
arge data sets, for example, LFPs recorded from a multi-
lectrode array (Horton et al., 2005; Feng, 2004; Tate et al.,
005).
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. Methods

.1. Time–frequency coherence

.1.1. Continuous wavelet transform and short-time
ourier trans-from

The continuous wavelet transform of x(t) is defined as

WTx(a, b) =
∫ ∞

−∞
x(t)ψ∗

a,b(t) dt (1)

here

a,b(t) = 1√
a
ψ

(
t − b

a

)
(2)

(t) is called the mother wavelet where a is the dilation
arameter, b is the location parameter and * denotes complex
onjugate. The choice of the wavelet should satisfy a num-
er of selection criteria, such as the candidate functions hav-
ng finite energy (the integral of the magnitude squared over
ime must be finite) and satisfying an admissibility condition
Addison, 2002).

The CWT is usually presented as a time–frequency represen-
ation by converting the scale parameter to frequency. To fulfil
his representation, a characteristic frequency, f0, defined as the
andpass centre or central frequency of the wavelet energy spec-
rum is chosen. The relationship between the frequency and scale
s then f = f0/a (Addison, 2002). The CWT can be expressed as

WTx(τ, f ) = CWTx(a, b)|a=f0/f,b=τ

=
√
f

f0

∫ ∞

−∞
x(t)ψ∗

(
t − τ

f0

)
dt (3)

ne of the most commonly used wavelets in practice is the Mor-
et wavelet, defined as

(t) = 1

π1/4 (ej2πf0t − e−(2πf0)2/2)e−t2/2 (4)

here f0 is the central frequency of the wavelet. If the choice of
0 is appropriate the second term in the bracket, which is known
s the correction term becomes negligible, thus giving a simple
orlet wavelet (Kronland-Martinet et al., 1987)

(t) = 1

π1/4 ej2πf0te−t2/2 (5)

his expression shows that Morlet wavelet is a complex sine
ave within a Gaussian envelope. The Fourier transform of the
orlet wavelet is

ˆ (f ) = π1/4
√

2e−(1/2)(2πf−2πf0)2
(6)
0 = 0.849, this gives a real part where the peaks next to the cen-
ral peak are half the amplitude of the central peak. In Fig. 1a

orlet wavelet with f0 = 0.849 and its Fourier transform are
hown.



324 Y. Zhan et al. / Journal of Neuroscience Methods 156 (2006) 322–332

F . The
l ashed

c
s

C

T
t
t
r
p

t

S

T
d
|
s
w
i
v
m

t

S

w
t
F
p
i

S

I
y

2

s
e
t
c
t

S

a

S

S

T
s
b

R

T
i
s
o
H
a
(
s
n
a
s
b

ig. 1. Morlet wavelet and its Fourier transform, f0 = 0.849. (a) Morlet wavelet
ine is the envelope. (b) Fourier transform of Morlet wavelet, with the vertical d

By employing the convolution theorem the wavelet transform
an be expressed as the product of the Fourier transforms of the
ignal and wavelet, x̂(f ) and ψ̂(f )

WTx(a, b) = √
a

∫ ∞

−∞
x̂(f )ψ̂∗(af )ej2πfb df (7)

his relationship provides a convenient way to implement
he CWT, since the Fourier transform of the wavelet func-
ion ψ̂a,b(f ) is known in analytic form. The computation only
equires an FFT of the original signal and an inverse FFT of the
roduct of x̂(f ) and ψ̂∗(a, f ).

The square modulus of the wavelet transform is often called
he scalogram and is defined as

CALx(τ, f ) = |CWTx(τ, f )|2 (8)

he scalogram is a time-varying spectral representation, which
escribes the energy distribution of the signal. The scalogram
CWTx(τ, f)|2 is often used to give an estimate of the wavelet
pectrum (Torrence and Compo, 1998; Addison, 2002). The
avelet spectrum gives a time–frequency representation, and

t measures the contribution to the total energy coming from the
icinity of a point at a specific time and frequency for a given
other wavelet (Perrier et al., 1995).
Another commonly used time–frequency representation is

he short-time Fourier transform (Qian, 2002), defined as

TFTx(τ, f ) =
∫ ∞

−∞
x(t)w(t − τ)e−j2πft df

=
∫ ∞

−∞
x(t)w∗

t,f (t) dt (9)

here w∗
t,f (t) = w(t − τ)e−2πft . STFT analyses the signal x(t)

hrough a short-time window w(t) : x(t)w(t − τ), and then a
ourier transform is performed on this product using a com-

lex exponential basis functions. The square modulus of STFT
s referred to as the spectrogram

PECx(τ, f ) = |STFTx(τ, f )|2 (10)

n this report, both CWT and STFT are used for coherence anal-
sis and the performance of the two is compared.

a
a
c

R

solid line is the real part and the dashed line is the imaginary part. The dotted
line corresponding to the characteristic frequency f0.

.1.2. Estimation of time–frequency coherence
In order to study the relationship between two non-

tationary processes, definitions of cross spectrum and coher-
nce are required. Given two processes x(t) and y(t) with
heir time–frequency representations X(τ, f) and Y(τ, f) (these
an be based on either STFT or wavelet transforms), the
ime–frequency cross spectrum between them is defined as

xy(τ, f ) = X(τ, f )Y∗(τ, f ) (11)

nd the auto spectra are given by

x(τ, f ) = |X(τ, f )|2 (12)

y(τ, f ) = |Y (τ, f )|2 (13)

he time–frequency based coherence, the square of the cross
pectrum normalised by the individual auto spectra, is defined
y

2
xy(τ, f ) = |Sxy(τ, f )|2

Sx(τ, f )Sy(τ, f )
(14)

he above definitions are straightforward and they follow a sim-
lar approach to that in Fourier analysis. In Fourier analysis, the
pectra and the coherence can be estimated by virtue of the peri-
dogram method in which a number of segments are averaged.
owever, in the case of time–frequency coherence problems

rise when using averaging because there are two dimensions
time and frequency). It is unclear along which direction the
moothing should be done (Torrence and Compo, 1998). As
oted in Torrence and Compo (1998), the coherence will have
n identical value of one at all times and frequencies without
moothing. Localised smoothing allows wavelet coherence to
e estimated for a single trial (Gurley et al., 2003; Lachaux et
l., 2002). Here a series of repeat trials is analysed by averaging
cross trials without smoothing within trials. The estimate of the

oherence is defined in this case as

ˆ 2
xy(τ, f ) = |Ŝxy(τ, f )|2

Ŝx(τ, f )Ŝy(τ, f )
(15)
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here

ˆ
x(τ, f ) = 1

K

K∑
k=1

|Xk(τ, f )|2 (16)

ˆ
y(τ, f ) = 1

K

K∑
k=1

|Yk(τ, f )|2 (17)

ˆ
xy(τ, f ) = 1

K

K∑
k=1

Xk(τ, f )Y∗
k (τ, f ) (18)

qs. (15)–(18) outline the procedure for estimating
ime–frequency coherence. The two channels of data contain

series of repeated trials {x1(t) . . . xk(t)} and {y1(t) . . . yK(t)}
hat are recorded simultaneously. In each trial xk(t) and yk(t),
he time–frequency representations Xk(τ, f) and Yk(τ, f) are
alculated and their squared magnitude |Xk(τ, f)|2 and |Yk(τ,
)|2 (spectrogram or scalo-gram) as well as the cross spec-
rum Xk(τ, f )Y∗

k (τ, f ) are calculated. After averaging across
hese multiple trials, the estimates for auto spectra and cross
pectrum are obtained and they lead to the estimate of the
ime–frequency based coherence as expressed in (15). The
ross spectra consist of complex values, and the amplitude and
hase spectra can be defined as the absolute value and angle,
espectively.

.1.3. Confidence intervals
In order to construct confidence intervals for the above

ime–frequency coherence some assumptions are required of
he data. In Fourier analysis, the two time series are assumed
o be stationary and a theoretical distribution (e.g. Gaus-
ian) is used to approximate the probability density of the
ata.

However, because the time–frequency analysis contains tem-
oral changes or time-varying information, the description of
he statistics is confined to a localised interval (Priestley, 1996).
he wavelet spectra have been compared to Fourier spectra

n Perrier et al. (1995) and the variance of the wavelet spec-
ra was analysed in Percival (1995). The wavelet spectrum
ased on continuous wavelet transform was studied in Li and
h (2002); where it was concluded that the wavelet spectrum

an represent the second-order statistical properties of random
rocesses for stationary and some non-stationary processes. It
as shown that the local wavelet spectrum follows the mean
ourier spectrum (Torrence and Compo, 1998). Based on this
ssumption, the wavelet power spectrum should be χ2 dis-
ributed and confidence levels for the cross-wavelet spectrum
an be derived from the square root of the product of two χ2

istributions.
For the setting of confidence intervals for the time–frequency
ased coherence the notion of generalised coherence is used
ere Gish and Cochran (1988). Let X = {Xk(τ, f )}Kk=1 and Y =
Yk(τ, f )}Kk=1 denote the complex time–frequency representa-
ion of a sequence of repeated trials. Then the estimate of the

c
m
f
f
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oherence in (15) can be denoted by

ˆ 2
xy(τ, f ) = |〈X,Y〉|2

||X||2 × ||Y||2

= |∑K
k=1Xk(τ, f )Y∗

k (τ, f )|2∑K
k=1|Xk(τ, f )|2 ×∑K

k=1|Yk(τ, f )|2 (19)

here 〈X, Y〉 is the inner product of X and Y, defined by

X,Y〉 =
∑K

k=1
Xk(τ, f )Y∗

k (τ, f ) (20)

|X||2 = 〈X,X〉 and ||Y||2 = 〈Y,Y〉 are the squared magnitudes
f X and Y. The time–frequency based coherence takes the val-
es between 0 and 1 and in particular, R̂xy(τ, f ) = 0 if X and Y
re orthogonal. If X = aY for any non-zero complex number a
hen R̂xy(τ, f ) = 1.

If the two processes are independent the coherence is partic-
larly useful because no common signal component is present.
nder the hypothesis that the two processes are independent
aussian noise, thresholds corresponding to a particular prob-

bility can be set. The distribution of the coherence estimate
Gish and Cochran, 1988) is given by

r(R2 ≤ r) = 1 − (1 − r)K−1, 0 ≤ r ≤ 1 (21)

here Pr(·) denotes the probability, and r is the detection
hreshold. For a 95% confidence interval, 1 − (1 − r)K−1 = 0.95,
nd the detection threshold is r95% = 1–0.051/(K−1) An estimate
hich is less than this value is regarded as not significant.
The above construction of the confidence interval is based

n the assumption that the two processes have independent
aussian distribution. However, as pointed out in Gish and
ochran (1987), the distribution of the coherence estimate does
ot depend on the statistics of one of the two processes pro-
ided that the other process is Gaussian and the two processes
re independent. This property shows that the coherence esti-
ate is invariant with respect to the second channel statistics

s long as one of the two independent processes is Gaussian.
his assumption can be further weakened by a geometric argu-
ent that the process has spherically symmetric distribution (see
ppendix A) instead of the stronger Gaussian assumption (Gish

nd Cochran, 1987; Sinno and Cochran, 1992).

.2. Discrimination in frequency domain

This section considers the issue of frequency discrimination
y CWT and STFT based coherence estimates. Theoretically the
ime–frequency resolution of the STFT and CWT is bounded by
he Heisenberg box, centred at a given position with time and
requency widths defined as the root mean square spread of the
ransform basis functions in the time and frequency domain. This
ectangular box illustrates the trade-off relationship between
ime and frequency (Akansu and Haddad, 2000; Cohen, 1995).
ere, we consider the ability to resolve two nearby frequency
omponents in noisy data using the above time–frequency esti-
ates. Assume that two local maxima of coherence exist at

requencies f1 and f2, f2 �= f1, we want to statistically test whether
1 �= f2 or not.
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Fig. 2. Illustration of frequency discrimination test (see text for details).

A frequency discrimination test is important since it tells us
he ability of the coherence estimator to discriminate two corre-
ated components that are close in frequency. Using simulated
ata with localised coherent components at f1 and f2, R2(f1) and
2(f2), repeat runs can be used to obtain the distribution of the
eak frequencies: g1(f) and g2(f) (see Fig. 2). To see if f2 can be
iscriminated from f1, we can choose an observation value F = f0
here g1(f0) = g2(f0) and use the following error probability as

he discrimination criterion

r(F ≥ f0|g1) = α (22)

f a 5% error probability is selected, i.e. when α< 0.05 we can
ay that the nearby frequency f2 can be discriminated from f1.

.3. Discrimination in time domain

In this section, we consider the issue of time discrimination
y CWT and STFT based coherence estimates. Coherence in
he time dimension is usually reflected as correlation during a
pecific time interval. Fixing one interval and testing alongside a
earby interval (as used above for the frequency discrimination
est) requires the width of each interval to be chosen in advance.
n alternative approach, which is used here, is to have two pro-

esses correlated across the entire time range, with a small period
overing the same time interval in each process having no cor-
elation at all. This should result in a gap in the time–frequency
oherence estimate. The width of this gap period is used to assess
he time discrimination of the coherence estimate.

The coherence estimate at the chosen frequency will have a
ignificant dip around the chosen gap but remain high in ampli-
ude on either side of the gap (see Fig. 3). The distance between
he minimum coherence value at the dip and the neighbouring
average) is used to quantify the time discrimination abilities
f CWT and STFT coherence estimates. Simulated data with a
xed gap in each trial is used for this test. As the duration of the
ime gap in each trial is reduced a point will be reached where
here is no significant difference in the two distributions describ-
ng the estimated coherence values in the gap and the average on
ither side. A t-test is used below to determine if the two distri-

T
a
V
d

Fig. 3. Illustration of time discrimination test (see text for details).

utions of coherence values have significantly different means
or different values of time gap.

. Results

.1. Simulated data

In order to test the performance of the time–frequency coher-
nce defined above, artificial data was generated to simulate the
rocesses containing repeat trials. The two test time series are
aussian white noise with sine waves embedded in each trial of

he two processes. Three values of signal-to-noise ratio (SNR)
re used, −10 dB, −15 dB and −20 dB. The Gaussian white
oise used has unit variance and the amplitudes of sine wave
n each trial are adjusted according to the value of SNR. The
umber of repeat trials is fixed for each value of SNR, at 20,
0 and 200, respectively. In general higher SNR will require a
reater number of trials to reliably detect the signal (sine wave)
n the presence of noise.

Fig. 4 shows a three-dimensional plot of the CWT based
ime–frequency coherence defined above, with SNR was chosen
s −10 dB and 20 trials were used. The coherent signal consisted
f 25 Hz sine waves embedded into each trial from 500 ms to
00 ms. The plane in the figure shows the 95% confidence inter-
al calculated based on (21). A significant peak can be seen
n the estimate between 500 ms and 600 ms and around 25 Hz
n the time–frequency plane, as expected. This figure illustrates
he localised nature (in both time and frequency) of the common
inusoidal component across the repeat trials in the two signals.
imilar results are obtained from an STFT coherence estimate
not shown).

In Fig. 5, time–frequency coherence estimates are shown
sing STFT and CWT based coherence estimates, for two SNR
ettings, −15 dB with 50 trials, and −20 dB with 200 trials.

hree different common sinusoidal components are embedded
t different fixed times within each trial (see legend for details).
isual inspection of the results shows that both methods can
etect the correlations. There are some qualitative differences
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Fig. 4. Time–frequency coherence using CWT of two Gaussian white noise
signals with a trial length of 1000 ms, and with a common sine wave of 25 Hz
e
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mbedded from 500 ms to 600 ms in both channels in each trial. The SNR was
10 dB and 20 trials were generated with sampling rate 1 kHz. Morlet wavelet
as used with f0 = 0.849.

etween the two estimators. The STFT estimates have a fixed
eisenberg box across the time–frequency plane. The CWT
ased estimates have a variable Heisenberg box, with narrower
requency resolution at low frequencies and narrower time res-
lution at higher frequencies. This shapes the significant areas
n each estimates. The STFT has a larger magnitude at 5 Hz,
hereas the CWT estimate has a larger magnitude at 25 Hz and
0 Hz. This suggests the estimates have different resolving abil-
ties at different frequency ranges. This was verified using repeat
uns with the same configuration, the STFT estimate consistently

ave larger coherence values for the 5 Hz component.

To further characterise the resolving abilities of the two esti-
ators, they were applied to simulated data where the frequency

f the common component was varied systematically from 1 Hz

r
t
d
T

ig. 5. Time–frequency coherence using STFT and CWT with SNR ratios of −15 dB
hite noise signals in each trial at 200–300 ms with 5 Hz, 400–500 ms with 25 Hz a
ith sampling rate 1 kHz, 50 trials at −15 dB and 200 trials at −20 dB. In the figure, t
f 15 dB and (bottom) −20 dB. In the STFT, a Gaussian data window of width 300 m
sed a Morlet wavelet with f0 = 0.849.
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o 50 Hz, Fig. 6. The data consists of 500 samples (0.5 s) with
ommon sine waves embedded from 200 ms to 300 ms. For
he STFT, we use two different window lengths of 100 ms
nd 150 ms, which gives a fundamental frequency resolution of
0 Hz and 6.7 Hz, respectively. The STFT estimate with 100 ms
indow length gives consistently higher coherence values when

ompared with the CWT estimate. The 150 ms window STFT
stimate gives higher coherence values than the CWT at frequen-
ies below 23 Hz, above this the CWT estimate gives higher val-
es. Both approaches are sensitive to the wide range of sine wave
requencies embedded in the data. The four plots on the right of
ig. 6 show the time (upper) and frequency (lower) at which the
aximal coherence occurred. Both approaches (STFT, 150 ms

ata window and CWT) detect a maximum between 200 ms and
00 ms, as expected. Frequency localisation in both methods is
oor at the lowest frequencies. For the STFT estimate, a win-
ow length of 150 ms defines a frequency resolution of 6.7 Hz,
his will explain the poor frequency localisation below 10 Hz
n the STFT estimate. The CWT estimate at lower frequencies

ay suffer from edge effects, as the broader wavelets extend
o areas outside the data window. This phenomenon is referred
o as the cone of influence (COI) (Torrence and Compo, 1998).
n addition, the test sine wave is only 100 ms duration, which
oes not cover a complete oscillatory cycle at frequencies below
0 Hz. Frequency localisation may improve if longer periods of
oherent activity are to be detected, this could be verified with
dditional simulations similar to those used here.

.2. Frequency discrimination test

The method described above for frequency discrimination
as applied to simulated data (SNR −10 dB, 20 trials). The
eference frequency was fixed at f1 = 20 Hz and the distribu-
ion of the frequency of maximal coherence for 100 indepen-
ent sets approximated by a normal distribution (see Fig. 7).
he second frequency, f2, was systematically varied and 100

and −20 dB. Three sine wave components were embedded into both Gaussian
nd 600–700 ms with 40 Hz. Different trials were generated for different SNRs
he left column used STFT and the right column used the CWT, with (top) SNR
s with maximum overlap points between each time step was used. The CWT
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Fig. 6. Time–frequency coherence estimates for simulated data with varying frequency of common sine wave. Data was generated using two white noise series of
length 500 ms with one single period of a sine wave embedded from 200 ms to 300 ms, with frequencies varying from 1 Hz to 50 Hz. Coherence is calculated at
each frequency using STFT and CWT estimates. The SNR is −15 dB and 50 trials are included. Left, comparison of peak coherence between CWT and STFT (with
w ncy lo
( its ma
a

i
w
b
d
c
f
t
f
C
b

3

p
(
e
e
e

s
1
C
S
m
o
h
b
a

3

e
i

F
f
b

indow lengths of 100 ms and 150 ms) based estimates. Right, time and freque
150 ms data window). The top two plots are time where the coherence reaches
maximum.

ndependent coherence estimates generated at each value, which
ere approximated by a normal distribution. A 5% error proba-
ility was selected as the discrimination criterion, i.e. when the
istributions overlap by less than 5% we conclude that the nearby
oherence peak at frequency f2 represents a different component
rom f1. Fig. 7 shows that for a reference frequency f1 = 20 Hz
he critical frequency is around f2 = 28 Hz, for the STFT, and
2 = 25 Hz for the CWT. Therefore, for this simulated data, the
WT exhibits better frequency discrimination than the STFT
ased coherence estimate.

.3. Time discrimination test

Using the time discrimination test described above, 100 inde-
endent samples were generated for time gaps of 5–80 ms,

Fig. 8). The top left plot shows the CWT coherence with differ-
nt gap widths from 10 to 80 ms in 10 ms steps using the CWT
stimate. There is a systematic increase in the drop in coher-
nce as the time gap increases. The lower time–frequency plots

w
t
r
−

ig. 7. Histograms showing the distribution of peak coherence frequency for 100 inde

1 = 20 Hz was used, and the distribution of nearby frequencies i plotted for compariso
y the vertical line. For the STFT the 5% criterion is satisfied for frequencies about 2
calization of estimates. The left column is for CWT and the right is for STFT
ximum, the bottom two plots are the frequencies where the coherence reaches

how the average coherence estimates for time gaps of 5 ms,
0 ms, 20 ms and 50 ms at a coherent frequency of 20 Hz. The
WT has a narrower strip in the frequency domain than the
TFT estimate. Visual inspections suggest that the STFT esti-
ate is more sensitive to gaps in the data. However, application

f the t-test described above (upper right plot), give consistently
igher t-values for the CWT method, suggesting the CWT may
e more sensitive to gaps in the data. Both coherence estimates
re sensitive to gaps in the data of greater than 5 ms.

.4. Data with unmatched sine waves

All the above simulated data used sine waves symmetrically
mbedded into each trial of both channels. To test the effects of
nhomogeneity between trials, this section uses simulated data

ith unmatched sine waves. In one channel 25% of trials have

he sine wave components deleted at random, the other channel
emains unaffected. Results are in Fig. 9, using 20 Hz sine waves,
10 dB SNR, 20 trials. Both STFT and CWT estimates identify

pendent sets of test data (SNR −10 dB, 20 trials). A fixed reference frquency of
n. A 5% error probability was selected as the discrimination criterion, indicated
8 Hz, for the CWT is satisfied for frequencies about 26 Hz.
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Fig. 8. Time discrimination test for data with time gaps of 5 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, 70 ms and 80 ms starting from 500 ms at a fixed frequency
of 20 Hz. Top left, coherence averaged across 100 independent samples using CWT, the eight lines from top to bottom correspond to time gaps from 10 ms to 80 ms.
T heren
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f
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c
t
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F
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op right, calculated t-value as described in the text. Middle panel, averaged co
ight, the estimates corresponds to time gaps of 5 ms, 10 ms, 20 ms and 50 ms.
or STFT and wavelet for CWT is the same as in Fig. 5.

he 20 Hz correlation between 200 ms and 300 ms. However,

dditional peaks are present, suggesting that inhomogeneity can
reate coherence values, which are not present in the signals. In
his single run, these subsidiary peaks appear more prominent
n the CWT based estimate.

3

c

ig. 9. Coherence analysis for simulated data with unmatched sine waves. The dat
mbedded between 200 ms and 300 ms, 25% of the sine wave components are random
avelet for CWT is the same as in Fig. 5. Regions above the 95% confidence interva
ce for STFT. Bottom panel, averaged coherence for CWT, from the left to the
NR is −15 dB and the trial number is 50. The choice of the analysing window

.5. Application to neural and muscular signals
.5.1. Movement-related signals
This section considers application of the time–frequency

oherence analysis to movement related signals in the form of

a consists of 20 trials, 200 ms duration, SNR −10 dB with 20 Hz sine waves
ly deleted in one channel. The choice of the analysing window for STFT and

l are shown. Left: STFT method; right: CWT method.



330 Y. Zhan et al. / Journal of Neuroscience Methods 156 (2006) 322–332

F a wr
w ce in

s
i
t
d
E
a
m
e
t
s
o
3
a
s
r

a
e
n
t
2
r
m
p
t
A
o
h

a
b
l
p
i

t
c
d
f
C
t
d
c

3

t
t
f
2
o
E
r

F
T

ig. 10. Analysis using STFT and CWT coherence on EEG and EMG during
avelet for CWT is the same as in Fig. 5. Only regions above the 95% confiden

imultaneous recordings of scalp EEG and muscle EMG dur-
ng an externally cued wrist extension/flexion task. The data is
aken from the study of Halliday et al. (1998), where a detailed
escription of the experimental protocol can be found. Briefly,
EG was recorded from the contralateral sensorimotor cortex
nd EMG from the wrist extensor muscles while the subject
ade repeated wrist extension flexion movements in response to

xternal auditory cues. The movement phase lasted around 1.5 s,
his was followed by a hold phase of 2–3 s duration. Fig. 10 left
hows EEG and EMG signals from a single trial, wrist extension
ccurs from 0 s to 1.5 s, maintained wrist flexion from 1.5 s to
.5 s. The data set analysed here consists of 40 repeat trials from
single subject, before analysis both channels have their mean

ubtracted and a linear trend removed, and the EMG is full wave
ectified.

STFT and CWT coherence estimates between EEG and EMG
re shown in Fig. 10. The dominant features in the CWT coher-
nce are a peak of magnitude 0.20 at 2.8 s, 20 Hz, other compo-
ents are at 2.5 s, 20 Hz and 3.0 s, 21 Hz. In the STFT coherence
he dominant feature is 2.8 s, 22 Hz, other peaks are at 2.3 s,
0 Hz and 3.2 s, 20 Hz. Both approaches indicate a clear cor-
elation between contralateral EEG and extensor EMG during
aintained wrist extension from 2.5 s to 3.0 s. The estimated

hase spectrum (not shown) at a frequency of 20 Hz indicates

hat the two signals are out of phase during this time period.
part from these dominant features in the time–frequency plane,
ther more localised peaks are present. Both STFT and CWT
ave coherence peaks at movement onset around 0.1 s at 5 Hz

m
E
e

ig. 11. STFT and CWT coherence between STN LFP and EMG signals during Parki
he choice of the analysing window for STFT and wavelet for CWT is the same as in
ist flexion extension task. The choice of the analysing window for STFT and
terval are shown.

nd 23 Hz. The effects of time scaling can be seen in the CWT
ased estimate, where isolated peaks at low frequency are well
ocalised in frequency (and dispersed in time), whereas isolated
eak at high frequency are well localised in time (and dispersed
n frequency).

The SNR, calculated as the ratio of the power from 1 Hz
o 250 Hz and from 251 Hz to 500 Hz, is <−10.2091 dB, this
ompared broadly with the SNR used previously with simulated
ata. The major concentration of coherence has three peaks at
requencies between 20 Hz and 22 Hz, and times 2.3–2.5 s, 2.8 s.
omparison with the previous time and frequency discrimina-

ion tests suggests that these peaks cannot be said to have a
ifferent frequency, but may represent different time periods of
oherent activity.

.5.2. Tremor-related signals
Deep brain stimulation is regarded as an effective clinical

reatment for Parkinson’s disease, it also provides an opportunity
o study neuronal activity recorded from electrodes implanted
or stimulation of the subthalamic nucleus (STN) (Liu et al.,
002, 2003). The second sample application is to simultane-
us recordings of STN local field potentials (LFPs) and surface
MGs from the forearm extensor muscle during Parkinsonian

est tremor.

The 66 s of STN and EMG data was partitioned into 33 seg-

ents, each 2 s. Fig. 11 (left) shows a period of typical LFP and
MG activity in a single trial. The STFT and CWT coherence
stimates both indicate a broad band of coherence across the 2 s

nsonian rest tremor. Only regions above the 95% confidence interval are shown.
Fig. 5.
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where fss is a one-dimensional function, i.e. the value of the
Y. Zhan et al. / Journal of Neuros

ime scale at the tremor frequency of 3–7 Hz, in accordance with
revious findings from spectral analysis of Parkinsonian data
Liu et al., 2002; Wang et al., 2001). There is an indication that
he 3–7 Hz coherence exhibits some temporal structure, e.g. in
he STFT coherence estimate the coherence peaks at times 0.12 s,
.85 s and 1.47 s. In the CWT based estimate the peak times in
his frequency band are 0.01 s, 0.79 s and 1.47 s, thus both esti-

ates identify three main concentrations of coherence at the
remor frequency. This further suggests that the coherent oscil-
ations between STN and EMG vary over time. However, the
recise details of this are difficult to characterise from the present
nalysis, which split a single long record into 2 s blocks. Other
istinct coherence peaks are present in the coherence estimates,
articularly in the 10–15 Hz frequency band and the 20–30 Hz
requency band. Comparison with the analysis of EEG-EMG in
he previous section from a healthy subject indicates different
atterns of oscillatory activation exist between healthy subjects
nd Parkinson’s disease.

. Discussion

A framework has been presented for time–frequency coher-
nce analysis using both Fourier (STFT) and Wavelet (CWT;
orlet) transforms, which relies on averaging across repeat tri-

ls. The techniques have been used to examine time dependency
n experimental data consisting of EEG-EMG during volun-
ary wrist extension/flexion, and LFP-EMG during Parkinsonian
remor. For these data sets, both methods were able to suc-
essfully detect coherent components in the time–frequency
lane. The first experimental data set (EEG-EMG) demon-
trated the presence of 15–30 Hz, �, oscillations during main-
ained position holding, in agreement with previous studies
Halliday et al., 1998; Kilner et al., 2000). Analysis of the sec-
nd experimental data set examined the relationship between
FP and EMG during Parkinsonain tremor. This showed a con-

inuous band of coherence at the tremor frequency (3–7 Hz),
s well as other isolated coherence peaks in the 10–15 Hz
nd 20–30 Hz range. These two examples illustrate the use-
ulness of a time–frequency coherence in studying how cor-
elation evolves with time, within a repeat trial experimental
rotocol.

A method to estimate confidence intervals for time–frequency
oherence estimates is given, based on the concept of gen-
ralised coherence. Averaging across repeat trials is an inte-
ral part of the present framework. The value of confidence
imit is determined by the number of trials, which are aver-
ged. A low number of trials will result in a large confidence
imit. It is not possible to estimate coherence from spectro-
rams of scalograms, which have not been smoothed (Torrence
nd Compo, 1998). The assumption underlying the present
ramework is that the pattern of correlation follows a sim-
lar time evolution across repeat trials. Results from simu-
ated data suggest that non homogeneity between trials may

esult in additional spurious peaks, which will complicate
nterpretation.

Tests were developed to assess the time and frequency dis-
rimination capabilities of the present methods. Using results

d
a
m
s
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rom 100 independent sets of simulated data, we have shown
hat the CWT method has a better frequency resolution than
TFT, for our chosen frequency of 20 Hz, using a 5% error
robability for the discrimination of two nearby frequencies.
or time discrimination, both methods can resolve time gaps
bove 5 ms, which may be a useful property in time–frequency
nalysis. A t-test analysis (based on the magnitude of the dip in
oherence at a gap in the common sine wave component) sug-
ested the CWT method may have an improved performance
ver the STFT. The actual resolution in the time–frequency
lane will be determined by the Heisenberg uncertainty prin-
iple, this can be usefully illustrated using Heisenberg boxes
Addison, 2002). The statistical approaches used here could be
roadened to test other issues related to discrimination in the
ime–frequency plane.

The STFT has been extensively applied to analyse non-
tationary biomedical signals (Lin and Chen, 1996). The STFT
ses a fixed time window across the entire time–frequency
lane, recently wavelet methods have become more popular
or time–frequency analysis, (e.g. Addison, 2002; Qian, 2002;
achaux et al., 2002). However as pointed out in Bruns (2004)
orlet wavelet and Fourier methods are formally equivalent.
ur results support this conclusion, and demonstrate that STFT

nd CWT based coherence estimates provide a very similar
escription of the same data. Indeed, in the present study the
TFT based coherence estimates generally have larger mag-
itudes than the CWT based estimates at lower frequencies,
lthough a number of factors may contribute to this (e.g. sensi-
ivity, bias, parameter values). Our results suggest both methods
hould be evaluated when undertaking a time–frequency coher-
nce analysis.

Although the current study is confined to bivariate EEG, LFP
nd EMG data, this approach could be applied to data from in
ivo multi-unit recordings, including multi unit spike train data.
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ppendix A. Spherically symmetric processes

Given a complex random processes denoted by
a = xn + iyn}Ni=1, if the probability density function of a
an be expressed as

a(x1, . . . , xN, y1, . . . , yN ) = fss

(
N∑
n=1

(x2
n + y2

n)

)
(23)
ensity function depends only on the distance from the origin
nd not on the direction, then a is said to be spherically sym-
etric. For detailed discussion about the property spherically

ymmetric, one can refer to Gish and Cochran (1987).
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