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a  b  s  t  r  a  c  t

In  this  paper,  we test  the  performance  of  a synchronicity  estimator  widely  applied  in  Neuroscience,
phase  lag  index  (PLI),  for brain  network  inference  in  EEG.  We  implement  the four  sphere  head  model  to
simulate  the  volume  conduction  problem  present  in  EEG  recordings  and  measure  the  activity  at  the  scalp
of surrogate  sources  located  at the  brain  level.  Then,  networks  are  estimated  under  the  null  hypothesis
(independent  sources)  using  PLI,  coherence  (R)  and  phase  coherence  (PC)  for  the  volume  conduction
and  no  volume  conduction  (NVC)  cases.  It is  known  that  R and  PC  are  highly  influenced  by  volume
hase lag index
oherence
lectroencephalography
olume conduction

conduction,  leading  to the  inference  of  clustered  grid  networks.  PLI  was  designed  to solve  this problem.
Our simulations  show  that PLI  is partially  invariant  to volume  conduction.  The  networks  found  by  PLI show
small-worldness,  with  a clustering  coefficient  higher  than  random  networks.  On  the  contrary,  PLI-NVC
obtains  networks  whose  distribution  is  closer  to random  networks  indicating  that  the  high clustering
shown  by  PLI networks  are  caused  by  volume  conduction.  The  influence  of volume  conduction  in PLI
might  lead  to  biased  results  in brain  network  inference  from  EEG  if this  behaviour  is ignored.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

In recent years, the interest of the Neuroscience community in
rain networks inference has increased. Small-world networks in
articular have been found in the nervous systems of several simple
nd complex organisms, for instance C . elegans (Watts and Strogatz,
998), the cat (Scannell et al., 1995), the monkey (Young, 1992),
nd the human (Sporns and Zwi, 2004; Sporns and Honey, 2006;
e et al., 2007; Zhang and Zhang, 2009).

Brain network research is aided by imaging technologies such
s functional magnetic resonance imaging (fMRI), magnetoen-
ephalography (MEG) and electroencephalography (EEG). Much of
he current work is focused on brain synchronization, searching for
ifferent brain regions in continuous interaction. This interaction
an be causal, where a small delay can be detected between two
ources, or fully synchronized where no delay is present. Brain net-

ork theory has evolved mainly helped by current knowledge from

ther areas such as graph theory, social networks, and informatics
Newman, 2010), whose network metrics are applied to study brain

∗ Corresponding authors. Tel.: +44 1904 322345.
E-mail addresses: luis.peraza@gmail.com (L.R. Peraza),

avid.halliday@york.ac.uk (D.M. Halliday).

165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jneumeth.2012.04.007
anatomy, its functional behaviour, and also the resilience against
diseases.

Several techniques have been applied for brain network infer-
ence. Some of these are coherence (R), partial coherence, Granger
causality (Granger, 1969), mostly applied as partial directed
coherence (PDC) (Sameshima and Baccalá, 1999), synchronization
likelihood (Stam and Dijk, 2002), phase coherence (PC) (Tass et al.,
1998), imaginary part of coherency (ImCy) (Nolte et al., 2004), and
phase lag index (PLI) (Stam et al., 2007).

In this paper we are interested in effects of the volume con-
duction problem on a recent synchronization measure for brain
network inference, PLI. PLI is a technique designed to overcome
the volume conduction problem, which causes techniques such
as R and PC to favour close range connections due to the pres-
ence of neighbouring sources (Stam et al., 2007; Schoffelen and
Gross, 2009; Nunez et al., 1997, 1999). Our simulations show that
networks obtained by PLI present small-worldness due to high
clustered nodes produced by volume conduction. This behaviour
might lead to biased results in brain network inferences in EEG
experiments if it is ignored.
Section 2 introduces brain networks and network measures, and
R, PC and PLI are defined. Section 3 explains the volume conduc-
tion problem and its effects on synchronicity for bipolar recordings.
In Section 4 we  briefly explain the four sphere model. Our

dx.doi.org/10.1016/j.jneumeth.2012.04.007
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:luis.peraza@gmail.com
mailto:david.halliday@york.ac.uk
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xperiments are shown in Section 5 and our discussions on the
esults and conclusions are in Sections 6 and 7.

. Brain networks

Brain neural network characteristics and properties are not
ompletely understood yet. Nevertheless, technologies such as EEG,
EG, and fMRI, allow us to study the brain and search for its func-

ional connectivity. In the case of the brain, small-world has been
cknowledged as the topology of the brain’s neural network and
urrent research focuses on the understanding of the small-world
rain (Sporns and Zwi, 2004).

.1. Small world networks and metrics

In the seminal paper of Watts and Strogatz (1998),  the small
orld network was quantitatively described for the first time.
efore that, small world behaviour was already acknowledged in
ocial networks but the manner to describe them and also to model
heir generation was unknown. For instance, it was  known that
ocial networks exhibited high clustering and short path length.
igh clustering is a feature of regular networks, networks that

orm symmetrical structures or lattice patterns by being connected
ith their closest neighbours. On the other hand, short path length
hich describes the number of edges among vertices, was a fea-

ure known for random networks. Small-world networks have a
igh clustering such as lattices but a short path length as random
etworks (Watts and Strogatz, 1998; Bassett and Bullmore, 2006;
ewman, 2010). The path length is defined as

 = 1
n

∑
j∈N

Lj = 1
n

∑
j∈N

∑
k∈N,k /=  jdjk

n − 1
,  (1)

here djk is the number of steps (edges) between nodes j and k.
ence, Lj is the average distance between the node j and the rest of

he network nodes. A problem in the path length measure L is that
hen one node is completely disconnected from the network, djk

ecomes undetermined and Eq. (1) is not valid. For disconnected
etworks there is another path length estimator called harmonic
ean distance (Newman, 2010), defined by

′ =

⎛
⎝1

n

∑
j∈N

∑
k( /=  j)(1/djk)

n − 1

⎞
⎠

−1

. (2)

he clustering coefficient C is defined as

 = 1
n

∑
j∈N

Cj = 1
n

∑
j∈N

2tj

pj(pj − 1)
(3)

here

j = 1
2

∑
k,h∈N

ajkajhakh, (4)

j =
∑
k∈N

ajk, (5)

here ajk = 1 if there is an edge between nodes j and k, and ajk = 0
f there is no connection between j and k. Eq. (5) is known as the
ode degree, the number of edges per node. The network average

egree D is defined as

 = 1
N

∑
j∈N

pj. (6)
e Methods 207 (2012) 189– 199

A concentrated measure for small-worldness is defined as

S = C/Crand

L/Lrand
. (7)

Here Crand and Lrand are the clustering and path length coeffi-
cients of a random network with equal number of nodes. S � 1 is
indicative of small-worldness. For a review on these measures see
Sporns and Zwi (2004),  Newman (2010),  and Rubinov and Sporns
(2009).

2.2. Brain network inference

The searching of brain networks requires the design and study of
brain network inference techniques. Several techniques have been
applied for this task, among them are coherence, ImCy, PDC, PC,
and PLI. Coherence itself defines a group of techniques that mea-
sure synchronization consistency between two  or more time series.
In this group of coherence techniques we  can also find ImCy, PC,
PLI and PDC. The latter one can be seen as parametric coherence,
where an autoregressive (AR) model is used instead of the Fourier
coefficients. There are practically two requirements to belong to
this group of measures; to provide a measure for synchrony and
to be bounded between 0 and 1, where 1 represents maximum
consistency or completely dependent time series.

2.2.1. Coherence
Coherence can be seen as the spectral version of correlation.

This measure is bounded between 0 and 1, this last one represent-
ing total dependence between both studied signals. Coherence is
defined as

Rjk(�) = |fjk(�)|2
fjj(�)fkk(�)

, (8)

where fjk(�) is the cross spectrum between time series j and k,
and � is the frequency index. If the modulus square is omitted in
Eq. (8) the term is called coherency, which is a complex measure.
Using coherency it is possible to infer causality between j and k by
analysing the phase slope in complex coherency, see for instance
Rosenberg et al. (1989) and Halliday et al. (1995).  Causality can
also be estimated by the imaginary part of Eq. (8) or ImCy, using
the fact that ImCy can not be explained by instantaneous source
interaction (see Nolte et al., 2004). Nevertheless, as explained in
Stam et al. (2007), ImCy is affected by the amplitude of the sources
and their phase delay, and in some cases it gives less useful results
than standard coherence (Wheaton et al., 2005).

A coherence index R can be estimated by integrating Eq. (8) as

Rjk = 1
F

∫
F∈�

Rjk(�)d� (9)

where F defines the frequency band. Eq. (9) is used to estimate EEG
networks in our simulations. In this paper we  use periodograms
for the estimation of fjk(�) using segments of 210 samples with a
square window, with no overlapping, and the FFT algorithm.

2.2.2. Phase coherence
Phase coherence (or PC) comes from the concept of phase lock-

ing or phase synchrony, see Tass et al. (1998) and Mormann et al.
(2000). Here it is desired to measure if there is consistency between
the phase difference of two  time series, j and k. This difference is
represented as

|��n,m(t)| = |n�j(t) − m�k(t)| < const, (10)
where n and m are integers, and �j,k are the phase of time series j and
k. When this concept is applied to Neuroscience, we  are interested
in the isofrequency case, n and m = 1 (Tass et al., 1998; Quiroga et al.,
2002). The difference in Eq. (10) becomes a stochastic variable on
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he unit circle whose angle difference will tend to a constant value
f both times series are synchronized. Using this phase difference
onsistency, PC is defined as

C =
∣∣∣∣∣

1
M

M−1∑
l=0

ei��(tl)

∣∣∣∣∣ , (11)

here we are using notation as in Stam et al. (2007) and M is the
ime series length. Since PC depends only on the phase difference,
t is insensitive to the amplitude of both time series. The most used

ethod to extract the instantaneous phase for PC is by using the
nalytical signal

H(t) = x(t) + ix̃(t), (12)

here xH is the analytical signal which is complex valued, x(t) is the
riginal time series, and x̃(t) is its Hilbert transform. Hence, xH(t)
an be represented as

H(t) = A(t)ei�(t), (13)

here

(t) =
√

[x(t)]2 + [x̃(t)]2, (14)

nd

(t) = arctan
x̃(t)
x(t)

. (15)

.2.3. Phase lag index
Phase lag index (or PLI) is another measure for phase con-

istency. PLI was proposed in Stam et al. (2007) as a measure
or synchronicity which avoids the volume conduction problem
explained below) present in EEG. The logic of PLI is based on the
act that the imaginary part of coherency cannot be explained by
olume conduction. In consequence the imaginary part reflects true
nteraction among different brain regions, and because it uses phase
nformation only, PLI is also immune to the source amplitude prob-
em (Guevara et al., 2005). Just as PC, PLI uses the phase difference
n Eq. (10) to find phase consistency and it is defined by

LI =
∣∣∣∣∣

1
M

M−1∑
l=0

sign(��(tl))

∣∣∣∣∣ . (16)

ue to its close relation to PC, PLI can be represented as

LI =
∣∣∣∣∣

1
M

M−1∑
l=0

sign(Im(ei��(tl)))

∣∣∣∣∣ . (17)

y their constructions, PC and PLI are bounded measures between
 and 1.

. Volume conduction

The volume conduction problem in EEG results from the mixing
f signals of neural origin caused by the conductive properties of
he environment they propagate through. For EEG, the conductive
roperties of the brain, the cerebro spinal fluid (CSF), the skull, and
he scalp cause a signal current generated by a neural source in the
rain cortex to diffuse before reaching the scalp electrodes. Hence,

 recorded time series using a scalp electrode is not necessarily
enerated by a source below it.

Volume conduction produces an instant (zero lag) correlation

mong sources, and it is represented commonly as a linear mixture
f the brain sources S as

= HS , (18)
e Methods 207 (2012) 189– 199 191

where X = [x1(t) . . . xN(t)]T, S is a column matrix with the source time
series sn(t), and H is the mixing matrix that describes the behaviour
of the conductive environment. Common techniques that deal with
volume conduction rely on the solution of the inverse problem,
these techniques aim to unmix the source signals in Eq. (18) by
estimating H. In this paper we are not dealing with the inverse prob-
lem since in our simulations we are assuming that the real sources
are known and also their position, which is exactly below the EEG
electrodes. For a review on this topic see Nunez and Srinivasan
(2006).

3.1. Volume conduction and synchronicity

Volume conduction might affect the output of synchronization
measures when using EEG signals, because EEG is bipolar by nature.
This means that EEG signals are composed of a difference between
an electrode of interest and a reference. Guevara et al. (2005)
discuss this issue when using bipolar signals and synchronicity
measures. The straight forward approach to deal with this problem
in EEG is by referencing digitally the EEG montage. In our simu-
lations we  used electrode averaging (Nunez and Srinivasan, 2006)
because this is the most common reference method applied in clin-
ical EEG. Recalling Eq. (18) and assuming a common reference, ref,
we can represent the acquired set of bipolar signals XB as

XB = X − ref . (19)

Subtracting the averaged bipolar signals we have that

XA = X − ref − 1
N

N∑
n=1

xBn(t)

= X − 1
N

N∑
n=1

xn(t),
(20)

where XA is the acquired EEG using average reference. Eq. (20)
shows that in theory, when performing average reference in EEG
we are only dealing with volume conduction and solving in part
the bipolar synchrony problem mentioned in Guevara et al. (2005).
Therefore, two  independent neural sources, xj(t) and xk(t), will have
instant relation due to the volume conduction problem.

If we define three time series s(t), x(t), and y(t) where
s(t) = x(t) + y(t), compute their analytic signals (sH(t), xH(t), yH(t))
using the Hilbert transform to obtain sH(t) = s(t) + is̃(t) where s̃ is
the Hilbert transform of s and the same applies for x(t) and y(t), we
can obtain instant phase. Then, we  compute the relative phases of
s(t) and y(t) with respect to x(t) (this is equivalent to zeroing out
the phase of xH(t)) leading to

sin �s = ỹ(t)
|sH(t)| and sin �y = ỹ(t)

|yH(t)| , (21)

where |sH(t)| and |yH(t)| represent magnitude values. Eq. (21)
is valid for the range 0 ≤ �y ≤ �/2, from which we  can see that
|sH(t)| ≥ |yH(t)|. Hence

sin �s ≤ sin �y or �s(t) ≤ �y(t). (22)

Subtracting �x from both sides of the inequality, we have that

�s − �x ≤ �y − �x,
�sx(t) ≤ �yx(t).

(23)

Notice that Eq. (23) holds for all the complex plane, but

for negative phase differences we have to use absolute values
|�sx(t)| ≤ |�yx(t)|. In consequence, we are able to state that the
phase difference of two linearly dependent signals is always lower
than the phase difference of their unmixed independent elements
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ig. 1. Analytic phasors of two  correlated signals s(t) and y(t) on the complex plane.
he figure shows that �s(t) is always lower than �y(t), being the phase angles of s(t)
nd y(t), respectively.

egardless of their magnitude (equality holds when x(t) = 0). For a
isual reference see Fig. 1.

The distributions of �y and �x are uniform from −� to �, this
akes �yx distribution triangular from −2� to 2� (uniform from
� to �). Nevertheless, the �sx phase distribution will be more

entred around 0 due to Eq. (23). Fig. 2 shows these scenarios in
he first and third column for the correlated and independent cases,
espectively.

Now, assume that we have a fourth independent signal z(t) and
e want to know how �yz(t)  relates to �yx(t)  and �sx(t).  �yz(t)
ill have a probability distribution equal to �yx(t),  thus we  can

ay that both phase differences are statistically equivalent. Fur-
hermore �sx(t)  has a more centred distribution than �yx(t),  and
n consequence more centred than �yz(t).  Therefore, we  can state
hat �sx(t)  is lower in probability than �yz(t).  In other words, if we
ample at any instant t �yz(t),  it will be most of the cases higher
han samples obtained from �sx(t).  We  can represent this as

p(|�yz(t)| < �) = p(|�yx(t)| < �)
p(|�yz(t)| < �) < p(|�sx(t)| < �)

(24)
here � is a constant between 0 and �. Notice that techniques like
oherence and PC are highly affected by Eqs. (23) and (24), while

ig. 2. Histograms for different cases of phase difference estimation using the ana-
ytic signal. The first column shows the case of two  mixed signals with zero lag,
he  middle column a true delayed interaction and the third column shows phase
ifference histograms for independent time series. The second and third row show
istograms for the real and imaginary part of the analytic signal for the three cases.
e Methods 207 (2012) 189– 199

PLI is invariant to this cross mixing. We can see this from Eqs. (23)
and (16), since

PLI[�sx(t)] = PLI[�yx(t)]. (25)

Nevertheless, we show that PLI is affected by the cross mixing
and the influence of multiple sources.

4. Methods

In this section we explain the framework to develop our exper-
iments. In order to simulate EEG recordings as close as possible to
a real EEG test, we implemented the four sphere model for vol-
ume  conduction (Nunez and Srinivasan, 2006). The four sphere
model allows to simulate the interaction among different sources
at cortical level and measure their potential at scalp level.

4.1. Volume conduction model

We simulate volume conduction in the human head using the
four sphere model described in Nunez and Srinivasan (2006).  The
model consists of four concentric spheres representing the brain,
CSF, the skull, and the scalp skin. The conductivity ratios of the four
tissues are �1/�2 = 0.2, �1/�3 = 40, �1/�4 = 1. The radii of the spheres
from r1 to r4 are 8, 8.1, 8.6 and 9.2 cm as shown in Fig. 3a.

Fig. 3b shows the acquisition simulation with the 64 electrodes
on the spherical head scalp. The figure also shows the voltage distri-
bution of a radial source below electrode F6. 64 radial sources were
placed below each electrode at 7.5 cm from the spheres’ centre, and
their activity were modulated by independent AR processes whose
coefficients were estimated from real EEG recordings.

4.2. EEG modelling

We create synthesized brain signals using an AR model (see
Hayes, 1996) whose coefficients were estimated from real time
series from an EEG experiment published in Halliday et al. (1998).
Using the AR coefficients we are able to generate infinite sets of
synthesized EEG signal segments while preserving the spectral
properties of real brain time series. In Halliday et al. (1998),  EEG
recordings were made over the sensorimotor cortex at 1000 Hz
sampling rate. For our simulations we downsampled these record-
ings to change the sampling rate to 500 Hz. We  choose one clean
segment in order to avoid artifacts and this was modelled with an
AR model of order 10. Sets of 64 independent brain sources were
synthesized after throwing away the first 2000 generated samples.

4.3. EEG electrode montage

We  use the Biosemi EEG 64-electrode layout available at
http://www.biosemi.com. In order to simplify our experiments, we
locate the simulated brain sources below each of the 64 available
electrodes. Hence, in our experiments we measure the interaction
among 64 independent brain sources.

5. Experiments

In this section we test PLI for network inference in two experi-
ments. First the performance of PLI when estimating synchronicity
between two independent and two linearly mixed sources is tested.
This experiment aims to prove that PLI is invariant to linear mixing,

and see if its statistical behaviour is similar for the independent
and correlated cases. For the second experiment we  implement
an EEG test simulation using the four sphere head model and 64
sources located in the brain. This simulation will allow to test PLI

http://www.biosemi.com
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Fig. 3. The four sphere head model. (a) The model is composed of four concentric
spheres representing from the inner one to the outer; the brain, CSF, the skull, and
the  scalp (image adapted from Nunez and Srinivasan, 2006). Also, a schematic view
of  the EEG acquisition simulation is shown. Electrodes were arranged according
to  the Biosemi EEG 64 electrode layout (http://www.biosemi.com) and the brain
sources were located below each electrode. (b) EEG acquisition simulation using
the four sphere model with the 64 electrodes plus 2 references placed on the scalp.
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Fig. 4. PLI estimation between correlated and independent sources. PLI13 (top)
shows PLI estimation between two dependent signals, whose correlation is defined
by  the mixing matrix in Eq. (26) and shown in the x-axis. The graph shows 40 his-
tograms arranged in columns, all of them centred at zero approximately and having
similar shape distribution. The only remarkable difference is achieved when �13

reaches one, when PLI gives only zeros. The middle graph also shows 40 histograms
arranged in columns for PLI12 estimations between two fully independent signals.
The bottom graph shows p-values from the non-parametric permutation test (5000

esis. If the NP p-value results higher than the chosen significance
he figure shows the voltage distribution of an activated brain source located below
lectrode F6.

ehaviour when several independent sources are interacting in an
nvironment affected by volume conduction.

.1. Correlated and independent sources

For the first experiment we calculate PLI for two  pairs of time
eries x1, x2 and x1, x3. x1 and x3 are related by the mixing equation

x1
x3

]
=

[
a b
b a

] [
y1
y3

]
(26)

here 0 ≤ a ≤ 0.5 and b = 1 − a. a and b are constants that vary the
evel of interaction from independent to full correlated sources,
nd y1, y3 and x2 are independent EEG signal sources modelled as
xplained in Section 4.2, and filtered at the alpha band (8–12 Hz)
o obtain narrower spectrum. Here we want to measure PLI for (x1,
2) or PLI12 and PLI13 with no delay.

In the first case we are testing the null hypothesis, where we

now in advance that no interaction exists between x1 and x2
PLI12), and in the second case we are measuring a true interaction
ith no delay (PLI13).
permutations) between histograms in PLI13 and PLI12. If the p-value surpasses the
significance criterion (p-value= 0.05 and marked with an horizontal line), we  say
that  both histograms were created using samples taken from the same process.

Fig. 4-top shows the PLI results for PLI13. Here a consists of 40
values linearly spaced and varying from 0 to 0.5 to create different
levels of correlation according to Eq. (26). The correlation coeffi-
cient between x1 and x3 is defined by �13 = 2ab/(a2 + b2).

Each column in Fig. 4-top shows the normalized histograms of
5000 PLI13 estimates using time series of 5000 samples for 40 cor-
relation levels from 0 to 1 as defined in Eq. (26). As expected, PLI13
is invariant to different levels of correlations giving very low PLI
values, and the sample distributions show similar shape through
all correlation levels. The only remarkable difference is found when
the correlation level reaches �13 = 1, at which PLI13 gives only zeros,
indicating full synchronicity. These results agrees with Eq. (25)
which refers to the correlation invariant property of PLI.

Fig. 4-middle row shows the results for PLI estimations between
two independent sources (PLI12). The computations are the same
as in Fig. 4-top for PLI13. PLI12 estimations show similar results to
PLI13, the histograms peak around 0 and their shapes remain sim-
ilar. In this case similar distribution shapes was expected since all
estimations were taken from independent sources.

To test the equivalence between PLI13 and PLI12 we  use the non-
parametric permutation (NP) test (Nichols and Holmes, 2002) using
5000 permutations. The NP test aims to find if two  datasets were
sampled from the same distribution, in this case the null hypoth-
threshold, the null hypothesis cannot be rejected. Fig. 4-bottom
shows 40 p-value outcomes from the NP test between PLI13 and
PLI12 sample distributions. The level of significance chosen was 0.05

http://www.biosemi.com


194 L.R. Peraza et al. / Journal of Neuroscience Methods 207 (2012) 189– 199

Fig. 5. Single experiment of simulated EEG acquisition using uncorrelated sources, volume conduction and inference of networks using coherence (R), phase coherence (PC),
and  phase lag index (PLI). The results for every estimator (R, PC, and PLI) are shown in pairs; the estimated network and the degree plot. The former shows estimated scalp
networks using the synchronicity measures, where in all cases the chosen average network degree is D = 3. The degree plot shows the node degree (the number of edges)
of  every electrode. Here the size of the circles are proportional to the degree at their location. Network results for random (Rand) and PLI-NVC (NVC stands for no volume
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onduction) are also shown. Random network’s edges were chosen with uniform di
LI  values among the original sources before volume conduction. Notice that PLI o
ome  of its nodes is higher than expected.

hich is marked with a horizontal line. As can be seen, both distri-
utions passed the NP test at all correlation levels, with exception of

 = 1 which gave a p-value=0.0 and � = 0.55 which is the only value
elow the threshold produced by the variability of the distributions.

These results agree with Eq. (24) (first row), which refers to the
quality in probability distributions of independent sources. Fig. 4
hows that PLI is invariant to zero lag correlation.

.2. EEG acquisition simulation

For the second experiment, 64 independent brain sources
ere placed in the four sphere head model at the level of the

rain cortex, a radius of 7.5 cm.  The sources’ time series were
odelled as explained in Section 4.2 generating segments of

120 samples (5 × 210 plus 2000 samples that are discarded
fter filtering). The time series were filtered at Theta (4–8 Hz),
lpha (8–12 Hz), Beta 1 (12–20 Hz), Beta 2 (21–29 Hz), Gamma  1

30–35 Hz) and Gamma  2 (35-40 Hz). This section shows the results
or the alpha band only, since the other bands gave similar results.
evertheless, statistical significance tests using the NP test (see
ection 5.1) are shown for the six defined frequency bands.

The position of the modelled sources is exactly below the EEG
calp electrodes which were placed at positions defined by the

4-electrode Biosemi’s layout, see Fig. 3. The implementation of
he four sphere model allows to obtain the matrix H in Eq. (18)
hat performs the source mixing in Eq. (20), according to the vol-
me  conduction model, the positions of the sources, and the scalp
tion until an average degree of 3 was obtained. PLI-NVC was obtained by estimating
 networks that resemble at first glance a random network, but the edge degree of

electrodes. For plotting purposes, the distance among electrodes is
shown normalized for a sphere of unit radius.

Fig. 5 shows a single experiment of network estimation for R,
PC and PLI under the null hypothesis whose networks were thresh-
olded (an edge was set to 1 if it was  above the threshold and deleted
otherwise) for an average network degree D = 3 in all cases. Further-
more, in order to compare the networks obtained under the null
hypothesis, we also compute a random network, where the edges
were connected among the nodes with uniform distribution until
a D = 3 was  obtained. Finally, we estimated networks without the
volume conduction effect, PLI-NVC (where NVC stands for no vol-
ume  conduction), R-NVC and PC-NVC, using the original modelled
brain sources at the cortical level under the same criterion for D.

It can be seen in Fig. 5 that PLI gives a network similar to
a random network but some of the nodes show high clustering.
Since it is assumed that PLI is invariant to volume conduction, it
is expected that the edges found in a network experiment under
the null hypothesis will be at least similar to a random network, as
it occurs for PLI-NVC. Nevertheless, the null network found by PLI
under volume conduction is different from random. This suggests
that PLI is affected by volume conduction in this case. In Fig. 5, D = 3
was chosen as example because this degree value offers a network
density that allows to observe the network behaviour more eas-
ily (see PLI case in Fig. 5). Higher values of D will show cluttered

networks that obscure the purpose of the figure.

In order to study the behaviour of PLI in network inference we
repeated the previous experiment 500 times, for different average
network degrees from D = 2 to D = 32. Varying the edge threshold
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Fig. 6. Results of 500 iterations of the experiment shown in Fig. 5 for multiple aver-
age degree values from D = 2 to D = 32. The figure shows the average edge distance
(y-axis) among electrodes on a normalized sphere (radius 1) versus the average
node degree D (x-axis). The standard deviation at every degree is also shown as
error intervals. Notice that the distance for PLI, PLI-NVC and Random networks are
similar through all degree cases. Bottom graph shows a zoom of the top graph. This
result shows that PLI does not favour close range connections as PC and R do due to
v
t
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Fig. 8. Harmonic mean for the same experiments in Figs. 6 and 7. The harmonic
mean shows an estimate for the path length in networks that have disconnected
nodes. There are two curve crossings between PLI and PC-Coherence, the first one
olume conduction and as can be observed in the PC and R curves. NVC stands for
he  no volume conduction case.

hile maintaining the network degree fixed is a common prac-
ice for network comparison, see for instance Micheloyannis et al.
2009), Sporns and Zwi  (2004),  and Milo et al. (2002).  An equiva-
ent approach is to take only the strongest P number of connections
ince P = D × N/2 (De Vico Fallani et al., 2009). All experiments were

erformed for the six frequency bands defined above. Figs. 6–8
how results for the Alpha band.

ig. 7. Clustering coefficient versus average node degree curves. The figure shows
he clustering coefficient value of EEG networks using PLI, R, PC and their no volume
onduction (NVC) cases, through different average node degrees from D = 2 to D = 32.
s  expected random networks show a low coefficient while PC and R gave a high
oefficient. PLI obtained clustering not as high as PC and R, but significantly higher
han random networks and PLI-NVC. The difference in the curves of PLI and PLI-NVC
uggest that volume conduction influence the PLI edge estimation performance.
between D = 2 and D = 3, and the second one between D = 7 and D = 8. PLI-NVC and
Random show similar values. As the average node degree increases, all coefficients
tend to a common value.

Fig. 6 shows curves of the edge length between electrodes
(nodes), this means the physical distance over the spherical scalp
among connected electrodes. Notice that PLI and PLI-NVC curve
trajectories are similar to random networks, practically constant
among the different network degrees, around 1.65. Also, the aver-
age edge length trajectories of curves R and PC are similar. At the
lowest degree, D = 2, it is just above 0.4 (the minimum normal-
ized distance between two electrodes for the Biosemi EEG layout
is 0.32). As the average degree grows, the electrode edge distance
tends to values close to random networks due to the network edge
cluttering. For R-NVC and PC-NVC, the edge length follows random
network behaviour. This was expected since R and PC are being
computed between independent sources.

Fig. 7 shows the results for the clustering coefficient. As expected
R and PC gave high clustering values compared to random net-
works. PLI showed a clustering coefficient above Random and
PLI-NVC, these two follow similar trajectories. R-NVC and PC-NVC
show also values above Random, even though R and PC are being
computed for independent sources. R and PC are also affected by
the length of the time series and their amplitudes besides volume
conduction. We  discuss this in Section 6.

Because the estimated networks are highly disconnected, it
is impossible to compute the path length metrics as commonly
defined. Instead, we used the harmonic mean distance (Eq. (2))
commonly applied in network analysis to obtain an estimate for
the path length ignoring the disconnected nodes whose paths are
undetermined. Fig. 8-top shows the results for the harmonic mean
distance results in a log10–log10 scale for better visibility. There are
two crossings between R and PLI, the first between D = 2 and D = 3
and the second between D = 7 and D = 8. In all cases PLI showed a

higher harmonic distance than Random and PLI-NVC, these latter
ones showing similar values and the same for R-NVC and PC-NVC.

Since PLI networks under the null hypothesis resembles at first
glance a random network (see Fig. 5 for a visual example), the
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Fig. 9. Using previous results, we compute small-worldness S for all experiments.
Networks obtained by PLI show in all cases higher small-worldness than PLI-NVC
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Fig. 10. Non-parametric permutation (NP) test between PLI-NVC and Random
small-world using 10, 000 network estimations and 10, 000 permutations for the NP
test.  The chosen significance threshold p-value is 0.05 shown with a horizontal line.
The  NP p-values at the bottom graph show important peaks where the small-world
means of Random and PLI-NVC intersect; Theta at D = 11, Alpha at D = 10, Beta 1 at

worldness.
Fig. 11 shows the same tests but for PLI when it is affected by vol-

ume  conduction, PLI-VC. All p-values were 0.0, which indicates that
nd random networks. Although S indices obtained by PLI are not much higher than
 as it is for PC and R. It is still significantly higher than the random network cases.
ottom graph shows a zoom of the top graph.

armonic mean values were expected to be in the range of a random
etwork, but instead of that their values are higher.

Finally, using the previous results we compute the small-
orldness index using the clustering coefficients and the harmonic
istance means of random networks as normalizing factors. The
esults for the 500 experiments are shown in Fig. 9 for all network
egree cases. Again, small-worldness was expected for PC and R,
ince this is common for grid networks produced by the sensitivity
f PC and R to volume conduction. For random networks, the mean
s exactly 1 and PLI-NVC in Fig. 9 is close to 1. In network analysis

 small-worldness index much higher than 1 is considered an indi-
ator of a small-world, and PLI shows clearly a small-world index
bove one for networks that do not resemble a grid but a random
etwork. R-NVC and PC-NVC also show small-worldness due to the
lustering in these networks, see Fig. 7.

.2.1. Statistical comparisons
In order to measure the differences between PLI, PLI-NVC

nferred networks and random networks, we use the NP test. For
hese experiments we estimate 10, 000 networks per each net-
ork degree from D = 2 to D = 32 and the NP tests were computed
sing 10, 000 permutations (Nichols and Holmes, 2002). NP p-
alues for network metrics between the sample population pairs
andom-PLI-NVC and Random-PLI are computed for six frequency
ands: Theta (4–8 Hz), Alpha (8–12 Hz), Beta 1 (12–20 Hz), Beta 2
21–29 Hz), Gamma  1 (30–35 Hz), and Gamma  2 (35–40 Hz). The
rst pair (Random-PLI-NVC) aims to test the statistical differences
etween Random networks and networks inferred using PLI with
o volume conduction. Random-PLI sees if networks inferred using

LI under volume conduction differ from random networks.

Fig. 10 shows the NP p-values for the small-world simulation
etween Random and PLI-NVC inferred networks. We  hypoth-
sized that networks inferred using PLI-NVC under the null
D  = 8, Beta 2 at D = 5, Gamma  1 at D = 8, and Gamma 2 at D = 6. Top graph shows p-
values with a logarithmic (log 10) scale for the y-axis. Bottom graph shows the same
results in a linear scale.

hypothesis (independent sources) should present a random topol-
ogy. Fig. 10 shows that this is not true. Although PLI-NVC is very
close in all their network measures to Random networks, the NP
test for the small-world metrics shows that there are significant
differences between both topologies at a significance level of 0.05.
Small-world curves in Fig. 13 for PLI-NVC and Random show that
these curves are very close and their means intersect at D = 10 in
this case for the Alpha band. The other bands also show crossovers
at different degrees; Theta at D = 11, Beta 1 at D = 8, Beta 2 at D = 5,
Gamma  1 at D = 8, and Gamma 2 at D = 6. These curves’ crossovers
between the small-world means of PLI-NVC and Random produce
large p-value peaks as shown in Fig. 10.  Large p-values at lower
degrees (D = 2 −4) are produced by the small-world variance. As
the network degree increases, the small-world variance decreases
highlighting the difference between PLI-NVC and Random small-
Fig. 11. Non-parametric permutation (NP) test between PLI and Random small-
world network using 10, 000 network estimations and 10, 000 permutations for the
NP  test. The significance threshold is shown with a horizontal line at p-value=0.05.
In  this plot all NP p-values are 0.0.
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Fig. 12. Similar test than in Figs. 10 and 11 but for the clustering coefficient esti-
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e cannot say that both distributions are similar at all frequency
ands and network degrees.

The difference between PLI-NVC and Random networks is
ainly governed by the clustering coefficient. This is shown in

ig. 12 where the p-values show similar behaviour to the ones
n Fig. 10.  The curves’ intersections between PLI-NVC and Ran-
om clustering produces a p-value peak per each frequency band
s labelled in the bottom graph. High p-values at lower degrees
D = 2 −4) occur because the clustering variance is large at these
egree values.

Using experimental setup in Section 5.2, we  created PLI his-
ograms for the N(N − 1)/2 possible EEG electrode edge connections
n the Alpha band. This allows the estimation of the probability dis-
ribution of the null hypothesis taking into account the volume
onduction effect. Fig. 14 aims to show similar phenomenon to
ig. 4 for the invariance of PLI to zero-lag correlation, but here we
re showing the standard deviations of PLI estimates taken from
ndependent sources in a volume conduction environment.

Fig. 14 shows the standard deviations of 10,000 PLI estimates
or the N(N − 1)/2 possible connections using PLI and PLI-NVC. The
ower triangular matrix shows the case for volume conduction
hile the upper triangular part shows the standard deviations for
LI-NVC. Notice that the upper triangular matrix has higher values
han the lower part. This indicates that PLI when affected by volume
onduction tends to be closer to zero than the NVC case.

mator. Top graph shows p-values in a logarithmic log 10 scale for the y-axis. Bottom
graph shows the same results in a linear scale.

ig. 13. Small-world mean crossovers. The figure shows the small-world means of the 10,000 network estimation experiments for the pairs PLI-NVC and Random network
t  the analysed frequency bands: Theta, Alpha, Beta 1, Beta 2, Gamma  1, and Gamma  2. Notice the the NP p-values peaks in Fig. 10 correspond to the graph intersections.
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Fig. 14. PLI distributions for volume and no-volume conduction. The matrix shows
the standard deviation of the PLI histograms for the N(N − 1)/2 possible pairs of
98 L.R. Peraza et al. / Journal of Neuro

. Discussion

We tested the performance of a well known edge estimation
echnique, PLI, widely applied for network estimation in EEG. Other
echniques like coherence and PC are well documented in the liter-
ture (see for instance Nunez et al., 1997, 1999; Guevara et al., 2005;
tam et al., 2007). Coherence and PC obtain networks that resemble

 grid due to the volume conduction problem which favours close
ange connections. To overcome the volume conduction problem,
LI was proposed in Stam et al. (2007) as a variant of PC that takes
nto account the phase difference sign only.

The results in Fig. 4 show an interesting property of PLI when
orking with correlated and independent time series. PLI gives

imilar values for zero-lag correlated signals and also for indepen-
ent signals. This is a favourable behaviour for PLI since it is desired
o ignore the zero-lag mixing between sources, and at least when
nly two sources are involved, the PLI correlation invariant prop-
rty holds. Nevertheless, our simulations suggest that when more
ources are involved, PLI is affected by the sources’ interaction.

We  used the four sphere model to simulate EEG acquisition.
hen we placed 64 independent EEG sources at brain level. This
mplementation gave us access to the 64 brain sources and also to
he 64 electrode EEG recordings, which represent the activity of the
riginal sources after volume conduction. Our original hypothesis
as that if PLI is invariant to volume conduction as normally stated,

he PLI networks found in source domain should be similar to the
nes found in the electrode domain. Our simulations showed that
his is not the case. The networks at the electrode level are signifi-
antly different to the ones found at the source level, proving that
olume conduction affects PLI network estimation when working
ith multiple sources.

Furthermore, our results show that although the networks
nferred using PLI-NVC and Random networks are very similar
s shown in Figs. 7 and 9, they are statistically different. The
mall-world PLI-NVC curves produced by the analysed frequency
ands intersect the small-world Random curve, see Fig. 13.  These
rossovers produce large p-value peaks as can be seen in in Fig. 10-
ottom. PLI-NVC inferred networks differ statistically from Random
ut they are still very close to this topology, and closer than R-NVC
nd PC-NVC proving that PLI is more robust than these techniques.

The higher variability of the network measures (clustering,
armonic mean distance, and small-worldness) at low average net-
ork degrees is because at these degrees there is a larger universe

f network structures that can be built due to the “free” node pairs
here an edge can be placed. As the average degree increases and

n consequence the number of edges, the number of network struc-
ures that can be built decreases, which means that there are less
ariability for the networks and lower variance in all network mea-
ures.

The main characteristic of PLI networks when affected by vol-
me  conduction are their high clustering coefficient compared
o random networks. Since PLI-NVC networks did not show high
lustering we can state that high clustering in PLI was  produced
y volume conduction, which also causes small-worldness as we
howed in Fig. 9. The clustered nodes produce a second characteris-
ic for PLI estimated networks, their high harmonic mean distance.
igh clustered nodes produce long paths when several of these
odes make contact through their edges.

There is also an interesting behaviour of PLI under volume con-
uction shown in the standard deviation matrix (lower triangular
art) in Fig. 14.  The PLI distributions of the N(N − 1)/2 possible
onnections have lower standard deviations than PLI-NVC. This

ndicates that volume conduction affects PLI by narrowing its dis-
ribution when several sources interact. This result is against the
LI invariant property to zero-lag correlation shown in Fig. 4 and
uggests that when PLI is affected by several spurious sources its
electrodes. The lower triangular matrix has all standard deviations for the volume
conduction case. The upper triangular matrix represents all standard deviations of
PLI  histograms without volume conduction.

correlation invariant property cancels. Nevertheless, as we  men-
tion previously PLI is more robust than coherence and PC for edge
estimation even in the NVC case as can be seen in Figs. 7–9,  where
the topology of networks inferred by PLI-NVC is very close to ran-
dom networks, see Fig. 13.  It is well known that PC and coherence
are affected by the amplitude of the sources and also volume con-
duction, being PC affected by this latter one only. Furthermore, as
mentioned in Vinck et al. (2011),  PLI, R and PC are also influenced
by the length of the time series. In our experiments, all compar-
ison tests were made with time series of same length, hence this
parameter does not affect our final conclusion, the small-worldness
shown by PLI networks.

In this paper we  tested PLI performance under the null hypoth-
esis. However, a true delayed interaction will not be affected by
the issues shown in this paper. The interaction among two  sources
with a true delay will cause an asymmetric phase distribution easily
estimated by PLI with a high index value, see Fig. 2 middle col-
umn. This makes necessary in the future the designing of strategies
to identify true connectivity, and minimize the spurious cluster-
ing produced by the volume conduction problem. For instance, if a
fixed degree D threshold strategy is used as in this paper, attention
should be paid to those high degree nodes whose edges are close
to the threshold value. Also, solving the inverse problem to work
in the source domain instead of the sensor domain might diminish
the PLI small-world bias.

7. Conclusions

In our experiments we  applied PLI for brain network inference
in EEG using the four sphere head model to simulate the volume
conduction problem. We  also tested PC and coherence for the same
task. The performance of coherence and PC is well known in the lit-
erature. Both measures are highly affected by volume conduction,
and coherence in particular is also affected by the time series ampli-
tude. PLI is a newer and robust measure that has shown remarkable
results in recently published work. PLI has the characteristic of
being partially invariant to volume conduction, and also offers esti-

mations for delayed synchronization between two  sources.

The networks found by applying PLI to independent sources in a
volume conduction environment were different from random net-
works, showing that volume conduction affects PLI inference. This
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as not the case for PLI-NVC networks whose behaviour was  very
lose to random networks. The volume conduction influence on PLI
roduces small-worldness in the estimated networks, a result that
roduces a bias in network analysis.

The results presented in this paper do not try to disqualify any of
he techniques applied in our experiments, but to show their per-
ormance and make the Neuroscience community aware of their
ehaviour. Future work must focus on designing strategies to min-

mize the effect of volume conduction on network estimation.
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