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We determine the bandwidth of a model neurone to large-scale synap-
tic input by assessing the frequency response between the outputs of a
two-cell simulation that share a percentage of the total synaptic input. For
temporally uncorrelated inputs, a large percentage of common inputs are
required before the output discharges of the two cells exhibit significant
correlation. In contrast, a small percentage (5%) of the total synaptic in-
put that involves stochastic spike trains that are weakly correlated over
a broad range of frequencies exert a clear influence on the output dis-
charge of both cells over this range of frequencies. Inputs that are weakly
correlated at a single frequency induce correlation between the output
discharges only at the frequency of correlation. The strength of temporal
correlation required is sufficiently weak that analysis of a sample pair of
input spike trains could fail to reveal the presence of correlated input.
Weak temporal correlation between inputs is therefore a major determi-
nant of the transmission to the output discharge of frequencies present
in the spike discharges of presynaptic inputs, and therefore of neural
bandwidth.

1 Introduction

Mammalian central nervous system neurones have extensive dendritic trees
(Mel, 1994). The combined effects of large-scale synaptic input to such struc-
tures actin several ways, which contribute directly and indirectly to the out-
put discharge of the cell. Bernander, Douglas, Martin, and Koch (1991) and
Rapp, Yarom, and Segev (1992) demonstrated that large-scale synaptic activ-
ity can alter the integrative properties of a cell by acting to reduce the input
resistance and time constant. Bernander et al. (1991) further demonstrated
that large-scale background synaptic activity results in an increased sensi-
tivity to highly synchronized inputs. Murthy and Fetz (1994) and Bernan-
der, Koch, and Usher (1994) showed that highly synchronized inputs can
modulate the mean firing rate of a cell. Dendrites are known to act as low-
pass filters (Rinzel & Rall, 1974), which in terms of populations of synaptic
inputs results in a filtering out of higher-frequency components present in
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input spike trains (Farmer, Bremner, Halliday, Rosenberg, & Stephens, 1993;
Halliday, 1995).

This study examines the response of cells to different strengths of tem-
poral correlations within subpopulations of the total synaptic input. Par-
ticular attention is given to an important aspect of neuronal systems: the
widespread presence of noise at all levels (Holden, 1976), which results in
the random fluctuations in membrane potential observed in intracellular
recordings (Calvin & Stevens, 1968) and the stochastic nature of both in-
terspike intervals and the temporal correlation between spike trains. This
study includes weak stochastic temporal correlation between presynaptic
inputs, in contrast to the highly synchronized form of temporal correlation
used in the above studies, where all synchronized inputs always fire to-
gether within a narrow time window. The aim is to match natural patterns
of correlation more closely (Singer, 1993; Gray, 1994).

We consider first the effects of uncorrelated inputs, where a large percent-
age of common inputs are required before the two cells exhibit significant
correlation. In contrast, for inputs with weak temporal correlation, a small
percentage (5-10%) of the total synaptic input can exert a clear influence on
the output discharge at frequencies where the inputs are correlated. Prelim-
inary results are presented in Halliday (1998b).

2 Model Description and Parameters

The model is based on a class of cells with extensive dendrites whose mor-
phology and electrophysiology have been widely studied (Cullheim, Flesh-
man, Glenn, & Burke, 1987; Fleshman, Segev, & Burke, 1988; Rall et al., 1992):
spinal motoneurones. Based on these studies, the membrane resistivity, R,
is 11, 00052 - cm?, the ctyoplasmic resistivity, R;, is 702 - cm, and the mem-
brane capacitance, Cy,, is 1.0uF/cm?. Each cell has a spherical soma of50u
m diameter with 12 tapered dendrites, 4 each of three types: short, medium,
and long. A uniform taper of 0.5 m per 100 m length is used for dendrite
diameters in the distal direction. For each dendrite type, the initial diame-
ters at the soma are 5, 7.5, and 10pum; the physical lengths are 766, 1258, and
1904 m; the electrotonic lengths are L = 0.7, 1.0, and 1.5; and the total mem-
brane areas are 8100, 18,500 and 33, 500um?, respectively. Each dendrite is
modeled as a sequence of connected cylinders, of fixed electrotonic length
of 0.1 unit; the complete cell model has 129 compartments, representing a
total membrane area of 248200um?2, with 97% of this area in the 12 den-
drites. The input resistance of the complete model neurone (including soma
and tapered dendrites) to hyperpolarizing current injected at the soma is
4.92MQ, and the time constant is 9.7 msec. The compartmental model pro-
vides a model of current flow in dendrites accurate to second order in both
space and time (Segev, Fleshman, & Burke, 1989; Mascagni, 1989).

Action potential generation and afterhyperpolarization (AHP) currents
are based on the model of Baldissera and Gustafsson (1974). This incorpo-
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rates a threshold-crossing mechanism in conjunction with a time-dependent
potassium conductance to represent AHP currents. The three-term model
for potassium conductances proposed by Baldissera and Gustafsson is re-
duced to its single dominant term of an exponential function with a time
constant of 14 msec. At the low firing rates used in this study, it is not neces-
sary to include the faster-acting conductances. Output spikes are generated
when the membrane potential at the soma exceeds the fixed threshold of
—55mV, and the AHP conductance is activated after each output spike. This
conductance produces a rapid hyperpolarization of the membrane poten-
tial toward the reversal potential of —75 mV. With constant injected current
sufficient to induce an output firing rate of 12 spikes/sec, the membrane po-
tential at the soma following each output spike decreases by approximately
12 mV.

Individual excitatory synaptic inputs use a time-dependent conductance
change, specified by an alpha function: gg,(t) = Gst/ te~t/T (Jack, Noble,
& Tsien, 1975), with the time constant for this conductance change set at
7 = 2¢ — 04 sec (Segev, Fleshman, & Burke, 1990), and scaling factor G, =
1.19¢ — 08, giving a peak conductance change of 4.38 nS at ¢t = 0.2 msec.
The membrane resting potential is —70 mV, and the reversal potential for
excitatory postsynaptic potentials (EPSPs) is —10 mV. When activated at the
soma from rest, this conductance generates an EPSP with peak magnitude
100 V at t = 0.525 msec, and a rise time (10% to 90%) and half-width of
0.275 msec, 2.475 msec. The EPSP parameters at the soma when activated
in the most distal compartment of the short dendrite (L = 0.7) are 52.84 V
at t = 2.00 msec, and 0.900, 7.05 msec. When activated in the most distal
compartment of the medium dendrite (L = 1.0), the EPSP parameters are
4041 V att = 3.08 msec, and 1.35, 9.35 msec. Activation in the most distal
compartment of the long dendrite (L = 1.5) gives EPSP parameters at the
soma of 27.1u V at t = 4.75 msec, and a rise time and half-width of 2.08,
11.38 msec.

Presynaptic inputs are spatially distributed uniformly by membrane area
over the soma and dendrites. The level of excitation necessary to induce
a constant firing rate of around 12 spikes/sec in the model cell is 31,872
EPSPs/sec. This can be achieved by 996 uniformly distributed inputs firing
randomly at 32 spikes/sec. In this configuration the soma receives 32 inputs,
and each dendrite type (short, medium, and long) receives 33, 74, and 134
synaptic inputs each, distributed by area over the surface of the dendrite. In
the examples below, where periodic inputs form part of the total synaptic
input, the mean rate and number of inputs are adjusted in tandem to provide
the same number of EPSPs/sec acting on each compartment of the model.

3 Data Analysis and Inference of Neural Bandwidth

The simulations consist of two cells in which a percentage of the total synap-
tic input is common to both cells. The cells therefore exhibit a tendency for
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correlated discharge, which we use to estimate the range of frequencies in
the common input spike trains that are transmitted to the output discharge
of the cells. The data analysis methods are those set out in Rosenberg, Am-
jad, Breeze, Brillinger, and Halliday (1989) and Halliday et al. (1995) for
frequency domain analysis of stochastic neuronal data. We use estimates of
coherence functions and cumulant density functions to characterize the cor-
relation between the output discharges. Cumulant density functions pro-
vide a measure of correlation between spike trains as a function of time;
coherence functions provide a measure of correlation as a function of fre-
quency. The cumulant density function, at lag u, between two spike trains
(1, 2), denoted by g12 (1), can be defined and estimated as the inverse Fourier
transform of the cross spectrum:

qr2(u) = fra(R)e* da,

where fi2(A) is the cross spectrum between (1, 2) at frequency A. The cor-
responding coherence function, [R12(1)|?, can be defined and estimated as
the magnitude of the cross spectrum squared normalized by the product of
the two auto spectrum:

[ fr2(A)[?
Fpo(W))P? = L2271
FM= 2 o

For further details including estimation procedures and the setting of con-
fidence limits, see Halliday et al. (1995).

For two identical neurones acted on by a single common input, the es-
timated coherence between the output discharges is proportional to the
product of the input spectrum with the squared magnitude of the transfer
function (defined as the ratio of the cross spectrum and input spectrum)
for this single input (Rosenberg, Halliday, Breeze, & Conway, 1998). Using
random, or Poisson, common spike train inputs allows the bandwidth of
the cell input-output transfer function to be inferred from the estimated
coherence between the output discharges of the two cells. We use a simi-
lar approach in this study, except that we are dealing with a population of
common inputs to the two cells. This method has the advantage of being
independent of the number of inputs applied to the cell; the application
and interpretation is the same for 1 or 1000 common inputs. The estimation
of a multivariate transfer function for a cell with several hundred inputs
is not practical. In addition, the two-cell method will also be useful when
nonlinear mechanisms are involved in synaptic transmission. Our concern
is with the presence of common frequency components in the two output
discharges; since the common inputs have the same effect on both cells, the
two-cell model will also be useful when linear and nonlinear transforma-
tions of input signals occur.

Some of the simulations use presynaptic input spike trains that are pe-
riodic. We interpret a distinct peak in the estimated coherence between the
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Figure 1: Synchronized discharge in the two-cell model induced by 50% com-
mon inputs with Poisson discharges. (a) Cumulant density estimate. Dashed and
solid horizontal lines are expected value and upper and lower 95% confidence
limits, respectively, based on assumption of independence. (b) Coherence esti-
mate. Dashed horizontal line is upper 95% confidence limit based on assumption
of independence. Results estimated from 400 seconds of data.

two output discharges at the frequency of the periodicity to indicate that
this frequency is within the bandwidth of the cell for that particular input
configuration. This inference uses an important property of a Fourier-based
analytical framework: that distinct frequencies persist within a (linear) sys-
tem (Brillinger, 1974), and can be detected as a periodic correlation between
an input and an output, or between two outputs.

Inferring the properties of common inputs to neurones from the esti-
mated correlation between their output discharges is a well-established ap-
proach in both modeling of neural systems (Perkel, Gerstein, & Moore, 1967;
Moore, Segundo, Perkel, & Levitan, 1970; Rosenberg et al., 1998) and neu-
rophysiology (Farmer et al., 1993).

4 Results

4.1 Uncorrelated Inputs. With both cells acted on by 996 inputs, each
activated by a Poisson spike train of rate 32 spikes/sec, and no common
inputs, both cells fire with a mean rate of around 12 spikes/sec, and, as
expected, their output discharges are uncorrelated. When 50% of the inputs
are applied commonly, the cells share 15,936 EPSPs/sec, and their output
discharges exhibit a tendency for synchronous discharge. This results in a
peak at time zero in the time domain correlation, (see Figure 1a) estimated
as a cumulant density function (Halliday et al., 1995). In the frequency do-
main, significant correlation is present at frequencies up to around 50 Hz
in the estimated coherence (see Figure 1b). Therefore the bandwidth of this
configuration, which reflects the ability of 50% of the synaptic inputs acti-
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Figure 2: Response of two-cell model to different percentages of common Pois-
son inputs. Estimated coherence between output discharges for (a) 10%, (b) 20%,
(c) 40%, and (d) 80% common Poisson inputs applied uniformly over entire
dendritic tree. Dashed horizontal lines are confidence limits as described for
Figure 1. Results estimated from 800 seconds of data for each configuration.

vated by random spike trains to influence the output discharge, is around
50 Hz.

In Figure 2 are shown coherence estimates between the output discharges
when each cell receives the same number of EPSPs/sec as above, except that
the percentage of common EPSPs/secis varied from 10% to 80%. These com-
mon inputs are activated by Poisson spike trains, their location is distributed
uniformly by area over the cell body and dendrites, and they have the same
location in both cells. The coherence estimate with 10% common inputs (see
Figure 2a) has no significant features; therefore, the combined effect of 10%
of the total synaptic input is insufficient to exert any influence on the timing
of output spikes. The configuration with 80% common input (see Figure 2d)
has a coherence estimate with significant values up to frequencies in excess
of 200 Hz. The bandwidth of this configuration is therefore above 200 Hz.
The bandwidth of the neurone therefore depends on the percentage of the
total synaptic input that is considered to provide the input. Coherence es-
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Figure 3: Response of two-cell model to different percentages of common un-
correlated periodic 25 spikes/sec inputs. Estimated coherence between output
discharges for (a) 10%, (b) 20%, (c) 40%, and (d) 8% common inputs applied uni-
formly over entire dendritic tree. Dashed horizontal lines are confidence limits
as described for Figure 1. Results estimated from 800 seconds of data for each
configuration.

timates provide a normative measure of association on a scale from 0 to 1
(Rosenberg et al., 1989; Halliday et al., 1995). The peak coherence between
the two output discharges with 80% common synaptic input is 0.15. Thus,
even with 80% common synaptic input to the two cells, the discharge of one
cell can predict a maximum of 15% of the variability in the discharge of the
companion cell.

The above configurations using Poisson spike trains are equivalent to
probing a continuous system with a white noise signal; both types of sig-
nal have a flat spectral estimate. Many neural systems have pathways that
carry periodic spike trains. In addition, there has been recent interest in
the role of rhythmic neuronal activity in neural integration (Singer, 1993;
Gray, 1994). This raises the question of whether the bandwidths inferred
from the coherence estimates in Figure 2 are valid for spike train inputs
that contain distinct periodicities. This is explored in Figure 3, which shows
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coherence estimates, with the common inputs activated by periodic spike
trains with a mean rate of 25 spikes/sec and a coefficient of variation (COV)
of 0.1. As above, in determining the number of inputs, the total number
of EPSPs/sec acting on each compartment remained fixed. For example,
the soma of each cell receives 1024 EPSPs/sec, which with 10% common
synaptic input consists of 4 periodic inputs firing at 25 spikes/sec com-
mon to both cells and 37 random inputs firing at 25 spikes/sec applied
independently to each cell. Figure 3 demonstrates that the behavior of the
simulation in response to a varying percentage of common periodic inputs
is similar to that for random inputs. With only 10% of the inputs firing at
25 spikes/sec there is no significant coherence at 25 Hz (see Figure 3a). An
increasing percentage of inputs firing at 25 spikes/sec results in an increase
in the magnitude of the coherence estimate at 25 Hz, and also an increase
in the range of frequencies present, seen as peaks at harmonics of the 25 Hz
input.

4.2 Correlated Inputs. The simulations suggest that populations of
synaptic inputs activated by uncorrelated spike trains that constitute less
than 20% of the total synaptic input to a cell are unlikely to exert any influ-
ence on the timing of output spikes. Next we explore the response to input
spike trains that are themselves correlated. Each spike train is generated
using an integrate-and-fire encoder, and the resulting correlation within
each population of common inputs is both weak and stochastic in nature
(Halliday, 1998a). These integrate-and-fire encoders are much simpler than
the detailed conductance-based compartmental neurone model. They are
used to generate correlated spike trains and are not intended to represent
presynaptic circuitry acting on motoneurones.

First we examine the response of the paired motoneurone model to a
population of common inputs with the same firing rate (32 spikes/sec) and
COV (1.0) as the Poisson inputs used in Figures 1 and 2, except they are
weakly correlated over a broad range of frequencies. These inputs are gen-
erated using the spike generators described in Halliday (1998a), with the
temporal correlation generated by a single Poisson spike train of rate 32
spikes/sec as common input to all spike generators. The resulting strength
of correlation between sample pairs of spike trains is broadband and weak.
Due to this weak temporal correlation, analysis of a sample pair of spike
trains of duration 100 seconds can fail to reveal any significant correlation
between inputs (Halliday, 1998a). However, combined analysis of 20 sam-
ple pairs of 100 seconds duration using the technique of pooled coherence
(Amjad, Halliday, Rosenberg, & Conway, 1997; Halliday, 1998a) reveals cor-
relation within the population of inputs up to 100 Hz, with a maximum
estimated coherence of 0.013. Figure 4a shows the coherence estimate be-
tween the two output discharges, with 10% common input supplied by 100
of these correlated inputs distributed uniformly by area as before. This es-
timate is similar to that obtained with 60% common Poisson inputs (not
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Figure 4: Response of two-cell model to populations of inputs with weak tempo-
ral correlation. Estimated coherence between output discharges for (a) 10% com-
mon correlated broadband inputs and (b) 5% common correlated periodic inputs
at 10 spikes/sec and 5% common correlated periodic inputs at 25 spikes/sec
applied uniformly over entire dendritic tree. Dashed horizontal lines are con-
fidence limits as described for Figure 1. Results estimated from 800 seconds of
data in (a) and 400 seconds of data in (b).

shown; cf. Figures 2c and 2d). Weakly correlated inputs exert a significantly
stronger influence on the output discharge of the cell than uncorrelated
inputs. The configuration with 10% weakly correlated inputs has a band-
width in excess of 100 Hz, in contrast to the configuration with 10% un-
correlated inputs, which has no significant effect on the timing of output
spikes.

Next we examine the effects of applying two sets of common periodic
spike trains, with each set assigned 5% of the total number of EPSPs/sec act-
ing on the cells, and consisting of 160 inputs firing at 10/sec with COV 0.1,
and 64 inputs firing at 25 spikes/sec, with COV 0.1. These spike trains
have a similar strength of correlation as the broadband inputs above, ex-
cept the correlation is at the firing frequency in each set of 10 Hz and 25
Hz, respectively (Halliday, 1998a). The coherence estimate between the two
output discharges has clear peaks at 10 Hz and 25 Hz. Thus, the output
discharge supports both periodicities present in the two populations of
weakly correlated common inputs. The 5% of inputs at 25/sec induce a
peak coherence similar to that in Figure 3c for 40% common uncorrelated 25
spikes/sec inputs. A small percentage of weakly correlated periodic inputs
are able to exert an influence on the timing of output spikes whose rela-
tive magnitude is far in excess of the percentage of input EPSPs involved.
Weak stochastic correlation between inputs (which may not be detected)
is converted into stronger correlation between outputs. A small change in
the temporal correlation structure of a subset of the total synaptic input,
without any alteration in mean firing rate, can alter the bandwidth of the
cells.
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5 Discussion

The main finding of this study is the dynamic nature of the cell bandwidth,
which for a fixed level of synaptic excitation (EPSPs/sec), exhibits system-
atic changes in response to changes in the numbers of presynaptic inputs
considered to provide the input signal and their temporal correlation char-
acteristics. For uncorrelated inputs, neural bandwidth is determined by the
percentage of the total synaptic input that is considered to provide the in-
put signal. Populations that constitute less than 10% of the total synaptic
input have no significant influence on the output discharge (see Figures 2a
and 3a). In contrast, weak temporal correlation within 5-10% of the total
synaptic input has considerable influence on the timing of output spikes
(see Figure 4). Correlation between the output discharges occurs at the fre-
quencies at which inputs are correlated. Weak temporal correlation between
inputs is converted into stronger correlation between outputs.

The question of neural bandwidth has been previously addressed. Farmer
etal. (1993) used a similar two-cell simulation of a point neurone model and
found that EPSPs with longer rise times and half-widths acted to filter out
higher-frequency components. Based on a two-cell model with 96.5% of the
total inputs common to both cells, they concluded that the bandwidth of
their point neurone model was in excess of 250 Hz. Using a two-cell model of
a motoneurone plus single attached dendrite with 75% of the total synaptic
input common to both cells, Halliday (1995) concluded that a distal input
location could result in a bandwidth of around 50 Hz. The findings of this
study are consistent with these previous results and show that these dif-
ferent estimates of the cell bandwidth result from the different percentages
of common inputs applied. The classical view of the input-output relation-
ship for motoneurones is that over a wide range of discharge rates, the
steady-state discharge rate is determined by a simple linear relation that
is proportional to the effective synaptic current input to the cell (Binder,
Heckman, & Powers, 1993). This study is concerned with spatial temporal
interactions on a millisecond timescale, which for large-scale synaptic input
results in membrane potential fluctuations (Calvin & Stevens, 1968). It is the
random nature of these fluctuations, and the interactions between the pop-
ulations of common and independent inputs, that produces the modulation
of neural bandwidth for the same level of average excitation.

Two previous studies of the effects of input synchrony have concen-
trated on variations in mean firing rate (Murthy & Fetz, 1994; Bernander et
al., 1994). Both sets of authors found that increased synchronization led to a
decrease in output firing rate. The proposed mechanism was an ”overcrowd-
ing” effect where excess depolarizing input above that required to fire the
cell was effectively wasted during the refractory period. For the present sim-
ulations the average output firing rate was 12.32 spikes/sec for the Poisson
input configurations (see Figures 1 and 2), 12.37 spikes/sec for the weakly
correlated broadband inputs (see Figure 4a), and 12.16 spikes/sec for the
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weakly correlated periodic inputs (see Figure 4a). This study differs from
these in the use of weak, stochastic correlated inputs. Generation of spike
trains using integrate-and-fire encoders results in patterns of correlation
that mimic more realistically natural patterns of correlation, rather than the
highly synchronized inputs used by Murthy and Fetz (1994) and Bernander
atal. (1994), where all correlated inputs fire synchronously with probability
1 in a narrow time window.

Bernanderetal. (1991) and Rapp etal. (1992) found thatlarge-scale synap-
tic activity can alter the basic characteristics of a cell, resulting in a reduction
in cell input resistance and time constant. The present model exhibits sim-
ilar behavior; when excited by 31,872 EPSPs/sec, the input resistance is
3.8 M2, the time constant is 6.45 msec, and the average membrane poten-
tial is —55.1 mV. This compares with 4.9 M, 9.7 msec and —70mV with no
synaptic inputs.

Bernander et al. (1991) concluded that large-scale background synaptic
activity also resulted in increased sensitivity to synchronized inputs, which
they demonstrated by contrasting the cell response to 150 inputs that were
either exactly synchronized every 25 msec or distributed throughout time.
There are two differences in the methods of this study. Bernander et al.
(1991) and Rapp et al. (1992) replaced individual background synaptic con-
ductances with a time-averaged constant calculated to provide the same
average level of excitation to each compartment. This study is concerned
with the stochastic nature of neuronal spike trains and therefore models the
time course of each individual synaptic input in full for all synaptic inputs to
both cells. In the absence of any other synaptic inputs, a constant background
conductance will result in a constant value of membrane potential, which
will not exhibit the random fluctuations observed in intracellular recordings
(Calvin & Stevens, 1968; see Bernander et al., 1991, Figure 1c). This will bias
the response of the model in favor of any synaptic inputs that are applied,
since these will be the only source of membrane potential fluctuations and
the cell will always respond with an increased depolarization to excitatory
inputs. This is in contrast to this model, where the synaptic inputs that pro-
vide the input signal interact and compete with the background synaptic
inputs on a millisecond timescale. Theoretical studies have indicated that
the addition of noise to a system can result in an improved signal-to-noise
ratio, particularly for periodic signals in the presence of noise (Wiesenfeld
& Moss, 1995; Bezrukov & Vodyanoy, 1997). In such a case it is important
to model the stochastic nature of all inputs to the cell; indeed in the light
of this work on stochastic resonance, the presence of stochastic background
synaptic activity may contribute to the extreme sensitivity of the cell to other
temporally correlated synaptic inputs. The second difference between this
study and that of Bernander et al. (1991) is in the form of correlated inputs.
Bernander et al. (1991) used precisely synchronized inputs, in contrast to
the weak, stochastic temporal correlation used in our populations of inputs.
This temporal correlation is sufficiently weak that examination of a sample



704 David M. Halliday

pair of spike trains selected from the population may fail to reveal the pres-
ence of any correlation (Halliday, 1998a). Despite the presence of large-scale
background activity, the model cell is able to detect the presence of weak,
stochastic temporal correlation in a small fraction of the total input, without
any change in the overall level of excitation (EPSPs/sec). This high selec-
tivity to small changes in the temporal characteristics of subpopulations of
the total synaptic input suggests that weak, stochastic temporal correlation
between presynaptic inputs is a major determinant of neural bandwidth.

The results of this study are also relevant to studies considering the rela-
tive merits of rate coding, coincidence detection, and temporal integration
as mechanisms involved in neural coding (Shadlen & Newsome, 1994, 1995,
1998; Softky, 1995; Konig, Engel, & Singer, 1996), which have led to the view
that temporal integration, where many PSPs contribute to the generation of
each output spike, will not preserve temporal coding in input spike trains
(Shadlen & Newsome, 1994; Konig et al.,, 1996). In the simulations here,
around 2666 EPSPs contribute to each spike; therefore temporal integration
would appear to be the dominant mode of operation. The presence of weak
stochastic temporal correlation in 5-10% of the total synaptic input allows
these inputs to exert a strong influence on the timing of output spikes, al-
lowing the temporal coding in the inputs to be transmitted to the output
discharges. This result is not consistent with the suggestion that temporal
information will not propagate through neurones whose mode of opera-
tion is temporal integration. An alternative mode of operation proposed
for neurones is coincidence detection (Abeles, 1982; Softky, 1994; Konig et
al., 1996). It is not clear that this is an appropriate mechanism to describe
the present simulations, where weakly correlated inputs are distributed
over the extensive dendritic tree, with propagation delays of up to 5 ms
for distal inputs to arrive at the somatic spike generation site. In addition,
the weak and stochastic nature of the correlation structure in the common
inputs does not produce reliable coincidences in the input spike trains (Hal-
liday, 1998a), but a diffuse temporal correlation distributed across all the
spike trains in each population. We therefore suggest that the mode of op-
eration of the present neurones is temporal integration with correlation
detection.

The results also demonstrate that correlation between neurones does not
require any alteration in output firing rates (deCharms & Merzenich, 1996;
Riehle, Griin, Diesmann, & Aertsen, 1997). Weak correlation between in-
puts results in stronger correlation between outputs; reciprocal connections
in networks of neurones may provide a means of sustaining these oscilla-
tions. In such networks, conduction delays are an important factor (Koénig
& Schillen, 1991); however, in the present data, dendritic conduction delays
of up to 5 ms do not affect the ability of the neurone to detect temporal
correlation between inputs. One unresolved issue in cortical signaling is the
variability exhibited in neuronal discharges, which have a COV ~1.0 (Softky
& Koch, 1993; Shadlen & Newsome, 1994, 1998). In this study the neurones
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have a regular output discharge. However, all inputs in the example in Fig-
ure 4a. have a COV ~1.0, yet the cell is sensitive to weak stochastic tempo-
ral correlation between inputs distributed over the dendritic tree. Further
simulation studies are necessary to ascertain if weak stochastic temporal
correlation in populations of inputs contributes to the variability in cortical
neurone discharges.
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