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I. I N T R O D U C T I O N  

The study of the behaviour of small networks of neurones frequently requires the 
determination of measures of the strength of association between component neurones, an 
assessment of their timing relations, and the identification of which neurones may interact 
directly or are influenced by common inputs. 

In many of these studies the principal quantities available for analysis are the sequences of 
extracellularly recorded action potentials (neuronal spike trains). The subsequent analytical 
work is then based entirely on the relations between the times of occurrence of the action 
potentials recorded from different neurones. In these circumstances neuronal spike trains are 
frequently represented as the mathematical entity known as a stochastic point process. These 
processes are described by providing a probability law for a set of ordered times 

• . .  ~T_2<T_I <To<TI<T2< . . .  , 

to be thought of as the realized times of occurrence of the action potentials in a spike train. In 
many respects point processes are like ordinary time series, that is, the usual signals that 
occur in many dynamic analyses. There are, however, mathematically subtle differences 
between point processes and ordinary time series that must be taken into account when 
setting down definitions and in providing analysis techniques. Pertinent references to the 
point process literature include Cox and Isham (1980), Cox and Lewis (1968), Cox and Lewis 
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(1972), Daley and Vere-Jones (1988), and Lewis (1972a,b), whereas a comparison of 
ordinary time series and point processes may be found in Brillinger (1978). 

There are several approaches to measures of association between spike trains. Following 
on from the early work of Gerstein and Kiang (1960) and Griffith and Horn (1963) are those 
procedures based on cross-correlation methods, or functions derived from them, such as the 
CUSUM or the ratio of the peak of the estimated cross-intensity to its baseline. Examples of 
this approach, applied to a variety of preparations, may be found in Bryant et al. (1973), 
Ellaway and Murthy (1985a,b), Kirkwood and Sears (1982) and Toyama et al. (1981), and 
were originally reviewed by Moore et al. (1966), discussed extensively by Perkel et al. 
(1967a,b), and more recently reviewed by Kirkwood (1979) and Kirkwood and Sears (1980) 
with special reference to the mammalian central nervous system; further assessed by Aertsen 
and Gerstein (1985) and more recently extended by Melssen and Epping (1987), where 
additional references may also be found. 

Cox and Lewis (1972) and Lewis (1972a) indicate some of the difficulties, from a statistical 
point of view, of the above approach to measures of association between spike trains. 
Brillinger (1986) has also discussed the disadvantage of a cross-correlation based approach 
to measures of association, and has also pointed out that the cross-intensity function used as 
the basis for these time-domain measures of association is the point-process analogue of 
covariance, and consequently may be expected to have the same limitations. The 
disadvantages of the use ofcovariance as a measure of association are widely known and may 
be summarized as follows: (1) it is dimensional, its value depends on the units of 
measurement, and (2) it is not bounded, which means that although a zero covariance 
indicates the absence of a linear relationship, there is no value indicating a perfect linear 
relationship. 

Given the limitations of covariance-based measures of association in many situations, one 
usually turns to a regression type of analysis (Brillinger, 1986; Brillinger and Tukey, 1984), 
which in the frequency-domain leads naturally to measures of association based on the 
Fourier transforms of the processes (Brillinger, 1986). Regression analysis is associated with 
correlation rather than covariance, and the correlation coefficient has the advantages that it 
is both dimensionless and normative--zero indicating a lack of a linear relationship and the 
values + 1 indicating a perfect linear relationship. All the values of the correlation coefficient 
necessarily lie between - 1 and + 1, and its square can be interpreted as a measure of how 
well the linear regression accounts for the relation between two variables. One frequency- 
domain measure of association, analogous to correlation-squared, called the coherence, 
provides a normative measure of the strength of association on a scale from zero to one, with 
zero occurring in the case of independence and corresponding to the absence of a linear time- 
invadant relationship. Although there are some examples of coherence applied to model 
generated data (Stein et al., 1972) and illustrations of its applications in a system 
identification context (Brillinger, 1975a; Brillinger et al., 1976), or in relation to some aspects 
of motor control (e.g. Clark et al., 1981; Houk et al., 1987), the wide range of usefulness of the 
coherence for point processes seems in need of more exploration together with several related 
frequency-domain measures of association that have not been developed and discussed in 
relation to spike train analysis. 

The object of the present report, therefore, is firstly to provide an extensive development 
and description of the wide range of applicability of a Fourier approach to measures of 
association and related problems, and secondly, to compare time- and frequency-domain 
measures of association between spike trains with respect to different representations of 
features of a data set. Of particular interest is the question of whether the association between 
a pair of neurones is a consequence of a common input or of a direct connection, and the 
extended question of how the relation between a pair of neu" ones--their strength of 
association and relative timing--is influenced by the presence of several other inputs. We 
have selected examples which illustrate how some frequency-domain parameters provide 
alternatives to time-domain measures of association and allow one to set up simple statistical 
tests for comparing the difference in the strength of association between pairs of spike trains 
and for detecting synchronous activity. Frequency-domain measures of association between 
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spike trains are also shown to be easily applied to the analysis of interactions between several 
spike trains in a manner not possible by conventional time-domain methods. 

Preliminary studies of some of these problems have been presented elsewhere (Amjad et 
al., 1988; Rosenberg and Rigas, 1985). 

II. N O T A T I O N  AND S T O C H A S T I C  P O I N T  PROCE SS  P A R A M E T E R S  

A realization or a sample of a point process may be represented by a counting measure, 
denoted as 

N(t) = #{z j, 0 < zj_< t} (2.1) 

where #{ } indicates the number of events in the interval (0, t] and {~} the set of spike times 
in the sample. In defining point-process parameters it is convenient to introduce differential 
increments of the process N defined as 

dN(t) = N(t, t + dt] (2.2) 

and giving the number of events in a small interval (t, t + dt] of duration dt. 
It will be assumed (a) that the points of the process N do not occur simultaneously (the 

PrOceSS is orderly), (b) the parameters characterizing the process do not change with time 
(the process is stationary), and (c) the number of events occurring in intervals widely 
separated in time are essentially independent (the process is mixing). A full discussion of these 
assumptions may be found in Cox and Isham (1980), Cox and Lewis (1972) and Daley and 
Vere-Jones (1988). 

The mean intensity of the process N is defined as 

PN= lim Prob{N event in (t, t+h]}/h (2.3) 
h--,O 

and since the process is orderly PN may be interpreted via the relationship 

E{dN(t)} = Ps dt (2.4) 

where E{ } denotes the averaging operator or mathematical expectation of a random 
variable. 

In the case that one has a bivadate point process, [M(t), N(t)], the second-order cross- 
product density at lag u, P~;u(u), is defined as 

P~u(u)= lira Prob{Nevent  in ( t+u, t+u+h] and Meven t  in (t, t+h']}/hh' (2.5) 
h,h"-*O 

and may be interpreted through the relation 

E{dN(t + u) dn( t )}  = Ps~t(u) du dr. 

A conditional mean intensity is defined as 

m ~ ( u )  = - -  

and may be interpreted as 

t'xu(u) 

mNM(u ) = lim Prob{N event in (t + u, t + u + hl 
h--,0 

or in terms of expected values as 

(2.6) 

(2.7) 

given an M event at t}/h (2.8) 

P~u(u) du 
E{dN(t + u)/M event at time t} = (2.9) / 'u 
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-In the case that u ~0  the product density and conditional intensity may be obtained for 
each process alone from (2.5) and (2.7) by setting Mequal to N. The value of PsN(u) at u = 0 is 
defined to make the function continuous at that point. 

For many processes of interest, specifically those that are mixing, as u becomes large, 
increments of the process become independent, for example 

lira PNu(u)= P~Pu. (2.10) 

This phenomenon leads to the definition of cross-covariance density as 

q~CM( u ) = PNM(u) -- P~Ps~ (2. I I a) 

which tends to zero as [u[~c~, and has the interpretation. 

cov{dN(t + u), dM(t)} = q~u(U) du dr, (2.1 Ib) 

wher~ "cov" denotes covariance. 
Following Bartlett (1963), the cross-spectrum betw~n two point-pro~sses at frequency ~, 

f~u(~), is defined as 

f~(~) = ~ q~(u~ -~" du (2.12) 

whereas in the case of a sin~e pro~ss, tbe auto-s~trum, fNN(~), is defined as 

,, . 

f~(R) = ~ + ~ q~(u~ -'~" du. (2.13) 

The ad&tional te~ in (2.13) ~sponds to tbe inclusion of 6(u), the Dirac 6-function, in the 
definition of the auto-covarian~ density to handle the singula~ty in its behaviour at u = 0 
(Ba~lett, 1963), and takes the v~ue P~/2~ ~ause the var[dN(t)] = P~ dr. 

An inte~retafion of tbe ~int-pro~ss s~ctra defin~ by expressions (2.12) and (2.13) may 
~ obtained by conside~ng the empi~cal Fou~er transforms of tbe point-pro~ss data. 

~e empi~l Fou~er transfo~ ofa s~ple ofduration Tfrom process Nwith set of spike 
times {D~ is defined as 

d~(~)=l're-'~'dN(t) = Z exp{-iR~,} (2.14) 
Jo O<~d~T 

with a similar expression for tbe sampl~ pro~ss M. Tbe cross-s~ctrum, f~u(R), betwc~n 
presses N ~d M is then given by 

f~(~)=~ ~ E{d~(~)d~(~)~ ~0 (2.15) 

where the overbar . . . .  indicates complex conjugate. The auto-spectrum, fNN(~), is 
obtained by replacing M by N. For T large and 2 ~ 0 the empirical Fourier transform has 
zero mean (Brillinger, 1983), consequently, from expression (2.15) the cross-spectrum may 
be seen to have the same form as a covariance parameter, and the auto-spectrum as a 

variance parameter. Expression (2.15)also leads to a procedure for estimating point-process 
spectra, as will be seen later. 

III. THE COHERENCE AS A MEASURE OF ASSOCIATION 

One way to approach measures of association that leads directly to Fourier-based 
definitions is to consider the problem of predicting some function of one point process from a 
function of a second point process. For example, c~nsider the problem of predicting the 
general linear combination 
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S a(t) dN(t)= ~a(~)  (3.1) 
J 

of the N-process with spike times {¢j} by a linear combination, 
• 

Iz + ~ b(s) dM(s)=/~ + ~ b(~r~) (3.2) 

of the M-process with spike times {at}; a(t) and b(t) may be thought of as weighting 
functions. 

It can be shown, by elementary arguments, that the mean-squared error of prediction, 

E I ~ a('cj)--I~-~ b(¢7/~)i 2 (3.3) 
j ~ 

is minimized by the choice 

B(~)=a(~)~ (3.4) 

and that the minimum value achieved is 

I la( )l 2[ 1 -[RN~(A)I 2]fst~(~-) d)~ (3.5) 

where A(g) and B(g) denote the Fourier transforms of a(t) and b(t), res~ctively, and 

[fnM(A)[2 (3.6) 
IRsu(~)l 2 =fss(~)fuu(~)" 

[Rsu( )l z is called the coheren~ of pro~sses N and M at frequency ~. The coheren~ is 
symmetric in N and M. It may also ~ shown to ~ bound~ by 0 and 1, with ~ r o  
corresponding to the case where knowledge of the M-pro~ss is of no use in linearly 
predicting the N-pro~ss. IRsu(x)[  = 1  ves a :mean-~uared e~or of pr~iction equal to 
zero, and corresponds to ~ffect  linear prediction. Incidentally, tbe parameter 

S(g) = fsu(~) (3.7) 
f~u(~) 

of expression (3.4) is referred to as the transfer function, at frequency A, for the prediction. 
From expression (2.15) above and the definition of correlation, denoted by "corr", one can 

see that 

IRNu(g)[2= lim ¢orr{d~(A), d~(A)}[ 2. (3.8) 
T ~  

Expression (3.8) provides an alternative interpretation of the coherence as the magnitude- 
squared of the correlation between the empirical Fourier transforms of the processes N and 
M. 

In contrast to expression (3.8), the cross-correlation based approach to measures of 
association follows directly from a consideration of the correlation between events in one 
spike-train displaced in time with respect to those in a second train. If [M(t), N(t)] represents 
a stationary bivariate point process, we can write 

Corr{dN(t + u), dM(t)} 

to represent the correlation between the two processes, and it then follows from the earlier 
definitions of Section II that 

Corr{dN(t + u), dM(t)} = (Psa(u) du dr-  PNPa du dt)/(PNPa du dr) 1/2 

= x / ~  dt qsu(u)/x//PsPu. (3.9) 

Expression (3.9) may be seen to be the basis of the use of the cross-covariance as a measure 



6 J.R. Ros~r4ar,~G et al. 

of association between spike trains. An indication of. the non-normed character of this 
measure of association is provided by the occurrence of the term ~ dt in (3.9). 

As suggested by the development above, an alternative to the cross-covariance based 
approach to measures of association is to consider, following (3.8), the behaviour of the 
correlation between the empirical Fourier transforms of the processes. 

In order to be able to make inferences concerning population parameters it is necessary to 
estimate them using the data, and to have approximations to the sampling fluctuations of 
these estimates. As an estimate for the cross-spectrum, fNM(X), one can consider, for example, 

1 L 

fNM(2) = 2rtL'~ ,~, dNr(2' l) d~t()~, l) (3.10) 

where the ori~nal time period of observation, of duration LT, has been broken into L 
disjoint sections each of duration T (Bfillinger, 1975b). d~(A, l) denotes the empirical Fourier 
t ransfo~ of the events of process N for the/th SeCtion. The coherence, ]Rsu(~)[ 2, may ~ 
estimated by 

(3.11) 

and its statistical significan~ examined by referring its value to the point I - (I - a) ~/<r- ~) at 
each frequency ~, where L is the humor of disjoint sections averaged according to the 
pro~dure set out above, and ~ is the desired level of confidence. Values of ]RN~(~)~ ~ less than 
the level defined by I - (l - a) ~/~- ~) can be taken as providing evidence for a lack of a linear 
asso~ation ~tween the processes M and N at that frequency (Bfillinger, 1975b). 

The quantity RN~(R) =f~u(RV~uu(~)fN~(2)) ~/~, whose modulus squar~ is ~e coherent, 
is referred to as tbe coherency (Wiener, 1930). The phase-s~ctrum, defined as the argument 
of the coberency, is ~ven by 

eNd(R) = arg R~(~) = argf~(~) = arg S(2) (3.12) 

supposingfNN(~ ) andfu~(~) to ~ non-zero. As will ~ shown next, the phase-spectrum may 
~ used to assess the timing relations between pro~sses N and M. 

Suppose, for example, that [u~, ~] represent the spike times for the bivafiate pro~ss 
{M(t), N(t)}. The cross-spectrum ~tween N and M, as seen above, is given by 

1 

If process N is a lagged version of process M, with lag z, i.e. zj =% + z, then 

fNM(2) = lim ~ E( x e-u"J+°~(~ eu#k~ 
• ~ 2~:r k~ Ykk J 

= e - i~YMM( ~ ) 

so that 

(3.14) 

~bN~(2) = --2~. (3.15) 

Therefore, in the case of a pure delay, ~b(2) is proportional to 2, with ~, the delay, equal to the 
constant of proportionality. If ~ = 0, the two processes N and M would be synchronous, and 
one could expect the sample phase-spectrum to be close to zero. The application of 
expression (3.15) is valid in the large number of cases where the relation between two spike- 
trains can be assumed to be dominated by a delay, and where the fitted linear phase curve fits 
the estimated phase-spectrum quite well. If 2 #it and 0 < 2, tt < ~, then the 
cov{~(2), ~(tt)} -'0 (Brillinger, 1975b), and, therefore, the delay between processes Nand M 
may be well estimated as the slope of the least-squares line relating ~b(2) to 2, taking suitable 
note of the fact that the phase is only defined up to a multiple of 2~. 
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The phase-spectrum may be estimated from the estimated cross-spectrum between the two 
processes. If the sp°ctral estimation procedure set out above is followed, then an 
approximate 95% confidence interval for the phase at frequency 2 may be set as, 

~u(2)+ l.96I~ (IR~ lu(2)12-1)] 1/2 (3.16) 

where L is again the number of disjoint sections averaged. 

IV. EXAMPLES OF COHERENCE AND PHASE 

The examples to be presented in this section illustrate several ways in which the coherence 
provides useful additional information about interactions between spike trains beyond that 
given by the cross-intensity function. Although the coherence may be considered in some 
ideal sense as mathematically equivalent to the cross-intensity, that is only true for the 
population parameters. When one is working with data, however, they display features 
differently and the sample coherence may well represent important features of the data more 
clearly than the sample cross-intensity. The usefulness of both time- and frequency-domain 
representations of a data-set has already been illustrated for the auto-intensity compared 
with the auto-spectrum by Brillinger et al. (1976) and Rosenberg and Rigas (1985). 

The following examples are based on experiments in collaboration with M. H. Gladden on 
cat tenuissimus muscle spindles where the primary (Ia) and secondary (II) endings from the 
same spindle were isolated in dorsal root filaments following a modification of a procedure 
introduced by Bessou and Laporte (1963). Single static fusimotor axons (Ys) were isolated in 
cut ventral root filaments. Static fusimotor axons were stimulated separately or indepen- 
dently and concurrently with sequences of pulses derived from Geiger counters driven by 
separate radioactive sources. The length of the parent muscle containing the muscle spindle 
could be altered by a servo-controlled muscle stretcher. In our experiments random length 
changes were imposed on the parent muscle. The random length changes had a Gaussian 
distribution of amplitudes and a constant spectral density over the range 0-100 Hz. The 
responses of the Ia/rod II sensory endings were recorded simultaneously during stimulation 
of one or several fusimotor axons in the presence and absence of a concomitant random 
length change or in the presence of a length change alone. The preliminary physiological 
results of these experiments have been presented elsewhere (Halliday et al., 1988). 

Figure 1 illustrates the application of both cross-intensity (Fig. la, b) and coherence 
(Fig. lc, d) to the same data-set to provide a comparison of the effects that each of two static 
fusimotor axons has alone on the response of the same Ia sensory ending during concurrent 
and independent stimulation of both fusimotor axons with the parent muscle held at a fixed 
length. In this example the two cross-intensities (Fig. la, b) differ both in shape and in peak 
value. The ratio of PNu(u)/PNPu provides one possible time-domain measure of the strength 
of association between two point-processes (Brillinger, 1975a). Sears and Stagg (1976) used 
the maximum value of this ratio, referred to by them as the k-value, to assess the strength of 
association between two spike trains. For example, the cross-intensity represented in Fig. la 
has a k-value of 2.56, whereas the k-value for the cross-intensity represented in Fig. lb is 3.26. 
The coherences confirm this difference in the strength of association, but also allow a further 
characterization of the differences between the effects of the two fusimotor axons on the same 
Ia ending. The coherences (Fig. lc, d) suggest that 2Ys has a stronger effect on the Ia ending 
than ~ys at each frequency over a broad range of frequencies. 

The range of frequencies over which the the strength of coupling of the two fusimotor 
axons to the Ia ending differ can be made more precise by the introduction of a simple 
statistical test. Brillinger (1975b, chap. 8) demonstrated that for two bivariate processes, 
under the hypothesis that tR,~B(2) I = IRco(;t) I, for all values of 2, that {Tanh-IlR,~B(;t) I -- 
Tanh- IlRcD()~)I } will be, for T large, approximately normally distributed with zero mean 
and variance IlL, where L is the number of periodograms averaged in the computation of the 
components of [RAn(2)[ and [Rco(2) t. When [Ran(2) [ and IRco(2)[ are estimated from 
independent experiments one may plot the standardized difference of the moduli of the 
transformed coherencies and investigate the hypothesis that by referring 
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FIG. 1. Comparison of (a, b) the square-root of the estimated cross-intensity functions with (c, d) the 
estimated coherences of the response of a muscle spindle Ia sensory ending to concurrent and 
independent stimulation of two static fusimotor axons denoted as 1~', and 2~,. The fusimotor axons 
were stimulated for periods of 60 sec, with sequences of pulses having an exponential distribution of 
intervals. In (a, b) the horizontal dashed line is the asymptotic value of the square-root of the 
estimated cross-intensity function equal to the square-root of the mean rate of the Ia discharge. The 
horizontal solid lines represent an approximate 95% confidence interval for the value of the cross- 
intensity function for any specific value of the lag u under the assumption that the two processes are 
independent (Brillinger et al., 1976). In (e, d) the horizontal dashed line represents the upper level of 
the approximate 95% confidence interval for the coherence for any specific value of the frequency 2 

under the hypothesis that the two processes are independent (Brillinger, 1975b, chap. 8). 

the value of this difference for any given value of 2 to the value of a standardized normal 
variate at, say, the 5% level of significance. Figure 2 gives an example of the difference plot 
corresponding to the coherences illustrated in Fig. lc, d. Under the hypothesis of equal 
coherences an approximate 95% confidence interval is represented by the horizontal solid 
lines in Fig. 2. Points that lie outside this interval indicate frequencies where the difference 
between the strength of association of the pair of processes may plausibly be inferred to be 
non-zero. The difference plot (Fig. 2) suggests that the two coherences shown in Fig. lc, d 
exhibit a small but significant difference over the range from 0 to about 20 Hz. Over this 
range of frequencies 2~, is more strongly coupled to the Ia ending than 1~,. Above about 
20 Hz the difference between the two coherences is not significant. 

The covariance structure of the estimate for the cross-intensity does not allow this type of 
test to be constructed easily (Torres-Melo, 1974). Therefore, in addition to providing a 
normative measure of the strength of association between two processes (a property not 
possessed by the k-measure of the strength of association between two spike trains) the 
modulus of the coherency may be transformed and used to express the difference between the 
strengths of association between pairs of processes. 

The second example compares cross-intensities with coherences in describing the 
effects of independent stimulation of two fusimotor axons on the responses of the Ia and II 
endings from the same muscle spindle. Fusimotor stimulation occurred in the presence of a 
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FIG. 2. Graph of the difference of the tanh - 1 of the moduli of the coherencies corresponding to the 
estimated coherences shown in Fig. lc, d along with the approximate 95% confidence interval--solid 
horizontal lines--for the hypothesis that the two moduli are equal at any given frequency 2. Points 
lying outside this interval indicate frequencies where the difference between the strength of association 

of the pair of processes may plausibly be non-zero. 

randomly varying length change applied to the parent muscle containing the spindle. In this 
situation one would expect the structure of the cross-intensities to be different. The only 
apparent difference, however, is that in the presence of three inputs applied simultaneously to 
the muscle spindle the Ia ending discharges at a higher rate in response to the l~s ending 
(Fig. 3a) than the II ending discharges in response to the 2~s ending (Fig. 3b). The two 
coherence plots (Fig. 3c, d), on the other hand, demonstrate that the 1~ is not coupled to the 
Ia response, which is also obvious in Fig. 3a, but that 2~, exhibits a small but significant 
coupling to the II ending at low frequencies, which is not apparent from the estimated cross- 
intensity for the same case (Fig. 3b). 

The phase curve for the relationship between fusimotor input and the response of the II 
ending is taken as the argument of the estimated coherency corresponding to the coherence 
shown in Fig. 3d. The estimated phase is approximately linear over the range where the 
coherence for this relation is significant (Fig. 4). Above about 15 Hz the estimated phase 
curve oscillates erratically about the zero phase line, indicating the absence of coupling 
between the two processes (Jenkins and Watt, 1968). The slope of the linear phase curve gives 
an estimated delay of 29.8 msec, uncorrected for conduction delays, with a 95% confidence 
interval about the estimate equal to 29.8 ___ 2.18 msec. 

Figure 4 is a dramatic example of the use of a frequency-domain measure to estimate a 
time-domain parameter in a situation where the same parameter could not be estimated from 
the direct time-domain measurement. Even in cases more favourable to the use of the cross- 
intensity function for estimating the time delay, Fig. la, b, for example, its determination 
depends on the estimation of the time of occurrence of a single point, the peak of the cross- 
intensity curve, whereas the delay estimated from the phase curve takes into account more of 
the information in the data. In addition, one can use regression theory to estimate the 
standard error of the estimated delay. In situations where the coherence is not constant, 
weighted least-squares would have to be used (see Appendix). Therefore, even when the peak 
of the cross-intensity may be reasonably well-defined it is better to estimate delays from the 
phase curve, where one can also determine the standard error of the estimate. (For an 
estimate to be useful one needs an estimate of its uncertainty.) 

The next two examples illustrate, in a qualitative manner, how the coherence may be used 
to assess changes in the relation between two processes brought about by the addition of 
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FIG. 4. Estimated phase, &(~.), for the response of a muscle spindle II ending to stimulation of a static 
fusimotor axon. The coherence for the same relation is illustrated in Fig. 3d. The dashed line 
represents the linear regression line fitted to the phase curve over the range of frequencies where the 
coherence shown in Fig. 3d is significant. The slope of the linear phase curve gives an estimated delay 

of 29.9 msec with 95% confidence limits of 29.9 + 2.18 msec. 
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other processes. Figure 5 illustrates how the coupling between one static fusimotor axon and 
the Ia and II endings from the same muscle spindle is influenced by the presence of a second 
fusimotor input and a continuously varying length change imposed on the parent muscle. 
Figure 5a compared with Fig. 5b shows that lYs is coupled to both the Ia and II endings with 
approximately the same maximum strength, but that the coupling occurs over a slightly 
broader frequency range in the case of the l~s onto the Ia ending. The activation of a second 
static fusimotor axon, 2L (Fig. 5c, d), reduces, significantly, the strength of the coupling of 
l~s onto the Ia at all frequencies below about 40 Hz (Fig. 5b compared with Fig. 5d), whereas 
the presence of 2~s activity has only a very small effect on the 1~ to II coherence at frequencies 
less than about 5 Hz (Fig. 5a compared with Fig. 5c). The ~s to II coupling remains 
unchanged following the addition of the length input to the parent muscle along with the 
stimulation of 2~ (Fig. 5c compared with Fig. 5e), whereas under the same multiple input 
conditions ~s activity becomes completely uncoupled from the Ia response (Fig. 5d 
compared with Fig. 5f). In this example the addition of a length input causes only a very 
small increase in the mean rate of discharge of the II ending, but more than doubled the Ia 
rate, although the ~y, activity became uncoupled from that of the Ia ending (Fig. 5f). This 
example suggests that within the same muscle spindle the II ending is largely unaffected by 
the presence of a dynamic length change imposed on the spindle while remaining strongly 
coupled to the fusimotor input, whereas the Ia ending becomes uncoupled from ~s and 
responds to a combination of the dynamic length change and the 2~ input. This 
interpretation of the results set out in Fig. 5 is consistent with the known differences in the 
behaviour of Ia and II endings of the muscle spindle examined separately in response to 
dynamically imposed length changes (e.g. Matthews, 1981), with the additional information 
that the II ending, in the presence of dynamic length changes still responds primarily to the 
fusimotor imputs, and that the Ia ending responds to only one of the static fusimotor axons 
activated simultaneously with the length change, although it responds to both static 
fusimotor axons alone. These observations highlight the difficulty in making inferences 
about the behaviour of a complex system like the muscle spindle based on observations from 
single input single output experiments. 

Figure 6 illustrates how the coupling between two output processes, the Ia and II endings 
from the same spindle, depends on the input conditions imposed on the spindle. In the 
presence of the independent stimulation of two static fusimotor axons the Ia and II endings 
are coupled in the range from about 1-18 Hz (Fig. 6a), whereas in the presence of a 
dynamically changing length signal the Ia and II endings are coupled over the range of 
approximately 20-60 Hz (Fig. 6b). If all three inputs are present, two distinct regions of 
coupling between Ia and II occur--a low-frequency, fusimotor-dependent range of 
frequencies and a second distinctly different length-dependent range of higher frequencies 
(Fig. 6c). 

It is also of interest, in the light of recent work by Edgley and Jankowska (1987), to 
examine how the phase relation between Ia and II responses to fusimotor input becomes 
altered by changes in fusimotor input. In this example the delay estimated from the phase 
between Ia and II responses, computed in the presence of ~ (Fig. 7c) is 2.45 msec--a phase 
lead of Ia over I I ~ v e r  the range of frequencies where the coherence shows significant 
coupling between the Ia and II endings (Fig. 7a). This small difference in phase between the 
Ia and II responses at the level of input to the spinal cord, where their activity was recorded, 
occurred in spite of the large difference in their respective conduction velocities. On the other 
hand, in the presence of 2~ alone (Fig. 7d), there is a significantly larger phase lead of the Ia 
response over that of the II response over the range of frequencies where the Ia-II coherence 
is significant (Fig. 7b). This phase lead corresponds to a delay of 16.1 +2.9 msec which is 
substantially greater than one would expect on the basis of conduction velocity differences 
alone. The significance of this result has been discussed elsewhere (Halliday et al., 1988). 

V. THE COHERENCE AS A MEASURE OF PARTIAL ASSOCIATION 

The examples presented in Section IV indicate, in a qualitative manner, how the coherence 
and phase may be used to demonstrate the alterations that occur in the strength of 
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Fzo. 5. Estimated coherences between the responses of Ia and II sensory endings from the same muscle 
spindle (a, b) to stimulation of a single static fusimotor axon, (c, d) to stimulation of the same static 
fusimotor axon, and (e, f) in the presence of the stimulation of a second static fusimotor axon during 
the application of a random length change to the parent muscle. The fusimotor axons were stimulated 
independently for 60 sec at the same mean rate with sequences of pulses having an exponential 
distribution of intervals. The horizontal dashed lines in each panel indicate the upper level for the 
approximate 95% confidence interval for the coherence for any specific value of the frequency 2 under 

the hypothesis that the two processes are independent. 

association and timing relations between two processes brought about by the presence of 
other factors. The method used in Section IV to derive the coherence may be extended to 
allow the consideration of a broader class of questions than those discussed in that section, 
and which only examined changes in coherence and phase between two processes brought 
about by the direct activation of experimentally accessible inputs to the muscle spindle. 

It is not always possible, however, to add, remove or hold constant a process that is 
suspected ofinfluencing the relation between other processes. It may, however, be possible to 
record its activity. Suppose, for example, that three point processes, L, M, N are found to be 
pairwise associated; can it be inferred that the observed relation between some two, say M 
and N, is a consequence of a common input L, or that it is simply the result of a direct 
connection between M and N?. The partial coherence provides a means of answering this 
question. 

It was shown in Section III that the coherence, IRnM(A)[ 2, provides a measure of how well a 
linear combination of the N-process (3.1) could be predicted from a linear combination of the 
M-process (3.2). 
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the hypothesis that the two processes are independent. 

The partial coherence, ]Rs~t/L(2)] 2, provides a measure of how much this prediction is 
improved by M if a linear combination of the L-process, 

S c(r) dL(r) (5.1) 

is also included in predicting the linear combination of the N-process. 
Following the method of Section III, one now considers the problem of predicting 

S a(t) dN(t) (5.2) 

by the linear combination 

~+ I b(s) dM(s)+ ~" c(r) dZ(r) (5.3) 
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Fro. 7. The estimated coherence (a, b) and phase (c, d) between the responses of a Ia and II ending 
from the same muscle spindle during stimulation of two different static fusimotor axons as indicated. 
The fusimotor axons were stimulated for 60 see with sequences of pulses having an exponential 
distribution of intervals. The horizontal dashed lines in (a, b) indicate the upper level for the 
approximate 95% confidence interval for the coherence for any specific value of the frequency 2 under 

the hypothesis that the two processes are independent. 

where a(t), b(t) and c(t) are weighting functions as in Section III.  
In this example the minimum mean-squared error may b~ written as 

$ la(x)1211 -IRN. ML(2)I 2]/NS(2) d2 (5.4) 

where 

IR~. ~(X)I ~ = IR~¢X)I ~ + IR~,~(X)I 2tl --IR~(X)I ~3 (5.5) 

is ~ e  multiple coheren~  at frequency ~ of the p r e ~ s s  N on the pro~sses  M and L, which 
takes into a ~ o u n t  t he  fact that two pro~sses  are now ~ i n g  used to predict a third 
(B~ inge r ,  1975b; Jenkins and Watt ,  1968). 

IRsu/L(2)l 2 in (5.5) is called the pa~ial  coheren~  of processes N and M in the presence of 
p r o ~ s s  L. It may be explained as the relative improvement  of predicting N from M at 
frequency 2 ha~ng  already taken into account p r o ~ s s  L, and can ~ w6tten in t e ~ s  of 
ordinary coheren~s,  suppressing the dependencies on 2 for simpli~ty in writing, as 

Rsu  - Rs~ R~u 
~ / ~  = ~(~ - ~ , ~ ) ( ~  -~)~/~" ~.~) 

The partial cohcrcnc~ also has limits between 0 and 1, with 0 now corresponding to th~ 
situation where the rdat ion  ~ t w ~ n  N and M is cnt irdy accounted for by taking into 
a ~ o ~ t  their indi~dual  dc~ndencics  on p r o ~ s s  L. 

The Fourier t r a n s f e r s  of the functions a(.), b(.), and c(') abov~ satisfy the n o ~ a l  
~quations 

~ ( ~ ) f ~ ( ~ )  + c (~ ) f~ (~ )  = ~ (~) /~ (~)  (5.7a) 

~ ( ~ ) f ~ ( ~ )  + c (~ ) f~ (~ )  = ~ (~) /~(~) .  (~.Tb) 
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Suppressing the dependencies on 2, one has 

B , fNuA~.--f~fr.~ (5.s) 

The question of whether the L-process provides any improvement in p r~c t ing  the 
N-process from the M-process may now be fo~ula ted  as the question of whether B~0.  B 
may be shown to ~ a multiple oftbe partial coherency, RNU/L(~ ), as B(~) of (3.4) is a multiple 
of the ordinary coherency R~u(~ ). For variants of these "partial" quantities in the ca~ o f  
ordinary random variables see Kendall and Stuart (1961, chap. 27). 

One may define the partial phase as 

• NU/L(~) = arg{R~u/~(X)} = arg{fNU/L(~) }. (5.9) 

Expression (5.9) may ~ w~tten in t e ~ s  of tbe basic s~ctra  of the component p r e s s e s ,  
since 

M(X)fL (X) Gu/L(2) =f~(~) fLL(~) (5.10) 

where f~u/~(~) is defined as the partial ¢ross-s~¢trum between pro~sses N and M t~ ing  
into a¢eount pro~ss L (Ti¢k, 1963). Partial auto-spectra are defined by equating N and M in 
expression (5.10). 

If one considers the problem of predicting the contribution that the L-pro~ss makes to 
ea¢h of the processes M and N on the basis of a linear time-invafiant point-pro~ss m ~ e l  
(Bfillinger, 1975a), then the partial coherence may be written, suppressing the de~nden~es 
on  ~, as  

~R~/~ l~  ~i~  corr d ~ -  d ~ , d ~ - ~  

where fNL/fLL, fML/fLL may be thought of as regression coefficients giving the best linear 
predictors of d~ and d~ in terms of d[  for large T. The development of expression (5.11) leads 
to (5.6). The partial coherence may now be seen to be the correlation between the Fourier 
transforms of the N and M processes after removing the linear time-invariant contribution 
that process L makes to each of these processes. 

VI. EXAMPLES OF PARTIAL COHERENCE,  PARTIAL SPECTRA AND 
PARTIAL PHASE (ORDER-l )  

The following examples demonstrate several practical applications of partial coherence, 
partial spectra and partial phase, first to computer generated data and then to real data taken 
from experiments on mammalian muscle spindles. In the first example a simple neuronal 
network is simulated on an analog computer in which two model neurones, simulated by an 
"integrate to threshold and fire model" (e.g. Holden, 1976), have a common excitatory input, 
Nl(t ), in addition to another independent input. In the absence of the common input, the 
spike trains of the two neurones are independent, The common input to the model neurones 
is derived from the response of a Geiger counter driven by a radioactive source, and may 
therefore be considered as a realization of a Poisson process. In the presence of the shared 
input the discharge of each neurone, denoted by N2(t) and N3(t ), has two components--one 
dependent on the input process and the other independent of this process. These two 
components are themselves independent. The structure of the simulation corresponds to the 
assumptions (5.1-5.3) for the model of partial coherence. The sequence of input pulses to the 
model neurones and the corresponding output pulse sequences from each model neurone 
were recorded on FM tape and subsequently digitized to give computer files containing the 
ordered times of occurrence of events for each process. The ordinary pairwise coherences 
(Fig. 8a, b, c), computed according to expression (3.6), show that the three processes are 
pairwise coupled. The partial coherence between the outputs of the pair of model neurones 
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taking into account the input process, (Fig. 8d), demonstrates that the coupling between the 
discharge of the two neurones is due entirely to the presence of the common input. In the case 
of three processes, therefore, the partial coherence may be used to identify the presence of a 
common input (of one sort). 
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FIG. 8. An example of the application of partial coherence to spike trains derived from model neurones 
(see text for details of model structure) in response to a common random spike train. N 1 represents the 
input process common to both model neurones, whose output processes are denoted as N 2 and N 3 . 
(a, b, c) Estimated pairwise coherences, (d) estimated partial coherence between N 2 and N3 taking 
into account the contribution from process NI.  The horizontal dashed line indicates the upper level of 
the approximate 95% confidence interval for the partial coherence for any specific value of the 

frequency 2 under the assumption that the two processes are independent. 

A simple example of partial coherence, applied to real data, is taken from the case where 
the responses of a primary (Ia) and secondary (II) ending from the same muscle spindle are 
recorded during stimulation of a static fusimotor axon innervating the muscle spindle 
(Gladden et  al., unpublished observations). In the absence of fusimotor stimulation the 
discharge of the Ia and II endings were uncorrelated, whereas in the presence of fusimotor 
stimulation, as would be expected, they are strongly correlated (Fig. 9c) over the range of 
frequencies determined by the coupling of the fusimotor input to the Ia and II endings 
(Fig. 9a, b). Figure 9d, the partial coherence between the responses of the Ia and II endings 
taking into account the presence of the fusimotor input, shows that the coupling between 
these responses is due entirely to the presence of fusimotor stimulation. 

In some situations it is also useful to examine partial spectra as well as the partial 
coherences. Christakos et al. (1984), for example, presented some work in which they 
attempted to identify the contribution that different motor units make to the discharge of a 
single afferent from a muscle spindle. They attributed peaks at particular frequencies in the 
auto-spectrum of the Ia discharge to the effects of stimulating single motor units at these 
frequencies. 
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FIG. 9. (a)-(c) The estimated palrwise coherences between a fusimotor input and the responses of Ia 
and II sensory endings from the same muscle spindle. (d) The estimated partial coherence between the 
responses of the Ia and II endings taking into account the presence of the static fusimotor input. The 
static fusimotor axon was stimulated for 60 see with a sequence of pulses having an exponential 
distribution of intervals. The horizontal dashed line in each panel represents the upper level of an 
approximate 95% confidence interval for the eoherences for any specific value of the frequency 2 

under the assumption that the two processes are independent. 

The partial spectra allow studies of this kind to be extended to experiments where the 
activity of several motor units is recorded simultaneously with that of the discharge of a 
single muscle spindle afferent. It then becomes of interest to determine if any or all of these 
motor units affect the Ia discharge. Figure 10a is the auto-spectrum of the discharge of a 
single spontaneously active Ia afferent from a gastrocnemius muscle spindle recorded in 
continuity with the spinal cord and simultaneously with two motor units from the same 
muscle (Amjad et al., unpublished observations). The two motor units were firing almost 
synchronously at about 12 Hz. The peak in the Ia auto-spectrum (Fig. 10a) at this frequency 
suggests that one or both of these motor units influences the Ia discharge. The partial auto- 
spectrum taking into account the activity from one of the motor units (~1) (Fig. 10b) remains 
largely unchanged, and indicates that this motor unit does not significantly contribute to the 
Ia discharge. The partial auto-spectrum of the Ia discharge taking into account the activity of 
the other motor unit (~2) (Fig. 10c), however, shows a substantial reduction in the peak at 
12 Hz suggesting that this motor unit contributes significantly to the Ia discharge. The 
residual peak at 12 Hz in this partial auto-spectrum further suggests the possibility of the 
presence of other motor units whose activity influences the Ia discharge. 

This example is particularly interesting because the two motor units were themselves 
coupled, and the cross-intensity between either of them and the Ia discharge would indicate 
that both affect the Ia discharge. The auto-spectra of the two motor units, however, were 
different, and consequently the partial auto-spectra could be used to demonstrate that only 
one of the motor units was effective in modulating the Ia firing rate. This example illustrates a 
situation in which the use of cross-intensity alone may have been misleading. 

The partial coherence only gives information on how the strength of coupling between two 
processes may be influenced by the action of a third process, and the magnitude of the partial 

JPB 53:1-B 
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male. 

spectra allows the identification of contributions that one process may make to another. 
Neither of these measures provide information on how the timing relations between two 
processes may be altered by the activity e r a  third process. Controlled changes in the relative 
timing between two spike trains that converge onto the same neurone, however, can have a 
strong effect on regulating the output of this common neurone. The partial phase is a 
parameter  which provides a measure of the extent to which the timing between two spike 
trains is influenced by a third. 

An understanding of how partial phase works may be obtained by c~nsidering four spike- 
trains constructed in the following manner.  Let Nl(t) and N2(t) be two independent Poisson 
processes with the same mean rates. Process N3,(t) is formed as the superposition of Nl(t)  and 
N2(t), that is, N3(t)ffi N1 (t)÷ N~(t). Process N4(t) is the superposition of delayed versions of 
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processes N1 (t) and N2(t ), so that N4(t) = N~ (t + dl) + N2(t + d2), where dl and d 2 represent 
the delay times. Consider processes Nl(t ) and N2(t ) as inputs to, and processes N3(t) and 
N,(t) as outputs from a linear time-invariant point process system. 

By elementary manipulations one has 

f# 3 (2) = e-i~d,ft 1 (2) + c -lu2f22 (2) (6.1) 

f~l (2) = e-i~a,f~ 1(2) (6.2) 

f 4 2  (2)  = e - iAd2f22 (2) (6.3) 

f31 (2) =f l  1 (2) =f l  3(2) (6.4) 

and 

A2(2) ~f22(2) =f23(2) • (6.5) 

From expression (5.10) we can write the partial cross-spectrum, f43/I(2), i.e. the 
cross-spectrum between processes N#(0 and N3( 0 after having accounted for process N l (t), 
as 

f~'1(2)/~ 3 (2) (6.6) 
f~3.(2)=f,3(2) f11(2) 

Substituting expressions (6.1), (6.2) and (6.4) into (6.6) ~ves 

f~3/~ (2) = e - ~ f 2  2 (2) (6.7) 

from which it follows that the pa~ial phase, @~3/~(~), is 

~,3/~ (2) = arg{f~s/x (~)} = - 2d 2 . (6.8) 

Similarly, the pa~ial phase, @#3/2(2) is 

~43/2(2) = arg{f43/2(2)} = -- 2d~. (6.9) 

The pa~ial phases ~ven by (6.8) and (6.9) are the phases that one would e x a c t  ~ tween  
pro~sses N3(t ) and N#(t) if only one of the input pro~sses were present--refer to expression 
(6.1). 

The phase, ~43(2) is 

Substitution of the 
simplification, 

. - i flmf~3(2)~ 
(I),~(2) = arg{f~(2)} =mn ¢--~. (6.10) 

[Ref ,  t3(2)J 

real and imaginary parts of (6.1) into (6.10) gives, after some 

d p  
. . . .  1F (fll(A)/f22(2))(sin Adl)+sin 2d2"] 

't3(A) = tan L ~ J  (6.11) 

which further reduces to 

In the presence of both inputs, the derived delay between processes N,~(t) and N3(t) will be the 
average of the delays introduced into each of the processes N1 (t) and N2(t). Figure 11 shows, 
on the same graph, the derived phase and partial phases for data from the model described 
above with d l = 2 msec and d2 -- - 2 msec (dashed lines). The same parameters derived from 
the estimated auto- and cross-spectra are also plotted on the same graph (solid lines). The 
good agreement between the derived and estimated values of the three phase-curves provides 
a clear example of how one might interpret the partial phase. In this example, with both 
inputs present, the delay between processes N~(t) and N,~(t) is the average of the two delays, 
whereas mathematically removing the effect of one input results in a delay between processes 
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N3(t).and N4(t) equal to that which would be expected to occur in the presence of a single 
input, as can be seen from expression (6.1). 

The equivalence between mathematically removing the influence of one input and 
physically removing that same input can also be illustrated with an example from the muscle 
spindle data. This example takes advantage of the statistical properties of the estimated 
partial phase to set up a test for zero phase or synchrony between two processes. The 
estimated phase at any frequency is asymptotically normal with variance given from (3.16), 
and the covariance between estimates at different frequencies is asymptotically zero. One can 
then set approximate 95% confidence intervals for the hypothesis that the phase at each 
frequency is zero. Figure 12a, c illustrates the coherence and phase relations between the 
responses of a pair of Ia and II sensory endings from the same muscle spindle during 
independent stimulation of two static fusimotor axons. Figure 12e, which gives the graphical 
representation of the test for zero phase, suggests that with the exception of frequencies below 
about 4 Hz the phase is non-zero over the range where the coherence is significant (Fig. 12a). 
The slope oftbe phase curve is 6.28 + 0.26 msec. Iftbe effect on the phase relation between the 
Ia and II responses to the stimulation of a second static fusimotor axon, (17s), occurred 
independently of the effect of stimulating the first fusimotor axon (27s), then the partial 
coherence and partial phase, taking into account the effect of 27s, would be similar to the 
coherence and phase between the Ia and II responses during stimulation of the 17~ alone. In 
this example, the partial coherence between the Ia and II responses taking into account the 
presence of 27~ (Fig. 12b) is close to the coherence between the Ia and II endings in the 
presence of 1)'~ alone (Fig. 7a, c). The test for zero-phase (Fig. 12f) shows that the partial 
phase is not significantly different from zero up to about 4 Hz. The slope of this partial phase- 
curve over the range 0-4 Hz was found not to be significantly different from the slope of the 
phase curve in Fig. 7c, where only lYs alone was active. 

In this example, the effect of the mathematical removal of the influence of one input is seen 
to give results very close to the effects of having only the other input present. The real data 
satisfies the assumptions for the derivation of the partial cohercnces and phases, and 
consequently suggests for this particular example that the phase between the Ia and II 
responses changes additively with the activation of a second fusimotor axon. The fact that the 
successive recruitment of fusimotor axons to a muscle spindle results in graded changes in the 
phase between the Ia and II responses from the spindle, can be an important parameter in 
regulating the output from ncuroncs which receive inputs from both of these axons. 

VII. COHERENCE AS A MEASURE OF PARTIAL ASSOCIATION (ORDER-K) 

The measures presented in Section V for describing how the predictability of a linear 
combination of one process from a linear combination of a second process is improved by 
taking into account the contribution of a third process, may be extended to a consideration of 
how this prediction may be further improved by bringing into account any number of 
processes, say M~ . . . . .  M,_ ~. The coherence between the N-process and the M,-process 
taking into account M 1 . . . . .  M k, where k g r -  1, is referred to as the partial coherence of 
order-k, and is denoted a s  ]R~ln./n , . . . . .  Mk(~,)] 2. 

To facilitate this presentation we set out some additional notation for vector-valued and 
matrix-valued processes. M(t) represents an r-vector valued point process with component 
processes M 1 . . . . .  M,(t). Fnn(;c) is an r x r matrix of spectral densities, whose principle 
diagonal consists of the auto-spectra of the components of M(t), and the off-diagonal 
elements the cross-spectra between these components. FNn(2) is an r-vector with 
components, the cross,spectra between the N-process and each of the components of M(t). 

Following the procedure of Section V one now considers the question of predicting 

S a(t) dN(t) (7.1) 

by the linear combination 

~+ ~ b~(t)dM~(t). (7.2) 
j = !  
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FIG. 11. Derived (dashed lines) and estimated (solid lines) phase [~,~a(2)] and partial phases 
[O4~/~ (2), ~3/~(2)] for computer generated data. 

The resulting minimum mean-squared error is 

J" Ia(2)l 2U,~(2 ) -  F~,(2) F ~  (2) F~(2)]  d2 

o r  

where 

~ Ih(2) I ~E1 -]R~. ~(2) I2]fNN(2 ) 

(7.3a) 

B,~,(2 )F~,~,(2) = A (2)Fk~,(2) 

(7.3b) 

FN~(2 ) F ~  (2) F ~  (2) (7.4) 
IR~. ~,(2)1 ~ = f , , ( ~ )  

is called the multiple coherence at frequency 2 of the N-pro~ss with the processes 
M 1 . . . . .  M,. 

The multiple coherence of order-k may be written in terms of ordina~ coherences and 
lower order partial coheren~s as 

I~. ~ = IR.~J ~ + IR~/~I~E~-IR~I~3 + 

IR.~,~,~I ~Ea - I ~ 1  ~ E 1 -I~.~,1 ~3 + . .  + 

IR~ .~ . . . ~ ._  J ~E ~ - I R ~ I  ~ t ~ - I R ~ . ~ ,  I~ . . .  E ~ - IR~._  .~,... ~.-~1 ~ (7.5) 
suppressing the de~ndencies on 2. 

The partial coherences themselves may ~ expressed in terms of lower order coheren~s, 
suppressing the dependencies on 2, as 

]Rxn,/n~ n,_,]~ =]Rx~./~...1 R n~-~-Rxn~-~/~'"~ n'-~R~-~n'/~'"" n'-~12~ (7.6) 
• " t -I ~ . _ . ~ , . . .  ~._~1 ~ t~-I~._~. ,~ . . . .  ~_~1 ~ 

The Fourier t ransfo~s  of a(.), b~(.), bz(. ) . . . .  ,b,(.), denoted as A(2), Bx(2), 
B2(2) . . . . .  B,(2), res~ctively, satisfy the n o d a l  equation 

(7.7) 

where 

BNn(2 ) = I'B1(2), B2(2 ) . . . .  , B,(2)] (7.8) 
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FIG. 12. A comparison of (a) the coherence and (b) the phase of the response of Ia and II sensory 
endings from the same muscle spindle during independent stimulation of two static fusimotor axons 
with the (c) partial coherence and (d) partial phase taking into account the contribution of the activity 
of one of the fusimotor axons. (e, f) Graphical representation of the test for zero phase in (a) and (b), 
respectively. Points lying outside the the horizontal dashed lines in (e, f), indicating an approximate 
95% confidence interval, indicate frequencies where the phase difference is likely to be non-zero. The 
horizontal dashed lines in (a, b) represent the upper level of an approximate 95% confidence interval 
for the coherence for any specific value of the frequency A under the hypothesis that the two processes 

are independent. 

a n d  F~u(~)  is the  t r a n s p o s e  o f  F ~ u ( ~ ) ,  

F ~ ( ~ )  -- [f~!~' (~) 

Lf~,(~) 

and 

"'" f~'~'(~) 1 
• .. f~r"r(~) 

G~(,~) = EfN~,, (~), fN~,2(~) . . . . .  fN~,fl)]. 
E x p r e s s i o n  (7.7) m a y  a lso  be  wr i t t en  as 

(7.9) 

(7.10) 
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BN~(2 ) = A(2)F~(2)F~(2).  (7.11) 

These results simply extend the results presented earlier and may be further generalized to 
a pair of vector processes as follows. 

Let IN(t), M(t)] denote a stationary bivariatc point process, where N(t) and M(t) are 
respectively s- and r-vector valued processes. 

Consider the problem of predicting the vector of values 

from 

Let 

I 
S bl(s) dMl(s) ] 

• . 

L I b,(s) dM,(s)  

J LS e-'a'a.(t) dt 

(7.13) 

(7.14) 

The minimum mean-squared error achieved is 

S A (2)A '(~), EFNN(~) -- FNM(~.)F~s~(~)FMN(~.)] d2 (7.15) 

where ","  denotes Hadamard produ~. Expression (7.15) may also ~ w~tten ~ 

~ A(~)A'(~), {F~2(~)EI-F;~/2(~)FN~)F~(~)F~)F;~/2(~)]F~2(~)} d~ (7.16) 

where 

F~/2(R )FNu($ )F~(R )Fu~ )F~/2(~ ) (7.17) 

may ~ thought of as the general~ed multiple coheren~ ~tween vector-valued pro~sses 
N(t) and M(t). 

Further, the elements of the matrix 

FN~( ~ ) - FN~ ~ )F ~ F ~  ~ ) (7.18) 

from expression (7.15) are defined as the partial s~ctra ~tween components of N(t) after 
removing the contribution of M(t). The elements of (7.18) may be denoted aSfN,N~/u($) where 
i=j gives the partial auto-s~ctra and i~j the partial cross-s~ctra of the components N~, N~ 
of N(t) after removing the contribution of M(t). 

The partial coherence ~tween the ith and jth components of N(t) after removing the 
contribution from M(t) may be written in terms of the partial spectra as 

If",", (7.19) 
2 = F",~,/M(~)f",Nd~)" 

The partial phas¢ is written in t e ~ s  of the ~ntfies of (7.18) as 

• = (7.20) 

Expressions (7.18 ~(7.20) may also ~ evaluated fo~ k ~ r to obtain pa~ial s ~ t r a ,  pa~i~ 
coh~r¢n~s and pa~ial pha~s of order-k, for k components of M(t), by making the 
appropriate changes to f~u(~), ~ and f ~ ) .  O n ~  the basic auto- and cross-s~ctta have 
~ n  computed all the coherences and coherence-related parameters of ~ orders may ~ 
found by simple algebraic combinations of these s~ctra. 
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VIII. EXAMPLES OF PARTIAL COHERENCE AND PARTIAL PHASE 
(ORDER-I ,  2) 

The examples of this section describe further applications of partial coherence and partial 
phase of order-1 followed by their extensions to order-2, first to simulated data to allow a 
comparison between derived and estimated parameter values for processes that are simply 
related, and then to real data on muscle spindles where several inputs are under independent 
experimental control. 

The simulated data-set given in this section extends the example of partial coherence 
(Fig. 8) and of partial phase (Fig. 11) for the simulated data of Section VI to the case where 
one can examine how more than one spike train can influence both the strength of 
association and timing between two other trains. This example approaches more closely to 
real conditions where several spike trains from different sources act simultaneously on a 
group of neurones (e.g. Baldissera et al., 1981). 

The simulated data-set is constructed as follows. Let I, II, III, e 1, and e 2 represent five 
independent stochastic point processes with t~ o the time of occurrence of thej th event of the i th 
process for i = 1,2 . . . . .  5 andj = 1,2 . . . . .  These five processes are arranged according to the 
scheme set out below to form four processes which are assumed to be the observable 
processes. In the superimposed processes the I, II, III, 51 , and 52 components are not 
separately observable, i.e., particular spike times cannot be associated with particular 
component processes. The observable processes are taken to be 

N1 (t) = I 

N2(t)=II 

N 3 ( t ) = I + I I + I I I + 5  t 

N,(t) = (I +d~) + (II + d2)+ (III +d3)+52 

where dr, d 2 and d 3 are fixed time delays. Consider the problem of estimating the strength of 
association and the phase between processes N3(t ) and N,( t )  when the contributions from 
processes Na(t) and N2(t ) are taken into account first separately and then together. The 
analytic solution to this problem depends on the computation of a number of point-process 
spectra, and is a direct application of the expressions set out in Sections III, V and VII. 

The observed coherences and phases for the simulated data take on particularly clear and 
easily interpretable forms if the processes I, II and III are chosen to be independent Poisson 
processes with the same mean intensities, and the delays, dr, d 2 and d 3 are equally spaced, as 
well as small to avoid the biases that can occur in naive phase estimates for long delays 
(Brillinger and Tukey, 1984). Under these assumptions the derived parameters have 
particularly simple forms. The derived phase, for example, is 

~,,3 (2) = -- (. d l +  d 2 + 3 da) 2 (8.1) 

and the derived partial phases are 

¢,3/1 
~ ~ 

0 , 3 / 2 ( 2 ) = - ( ~ ) 2  (8.3, 

and 

04.3/~2(2) = -d32. (8.4) 

This special case is not only instructive in illustrating the usefulness of partial coherence 
and partial phase, but actually occurs in a number of real data cases where delays 
predominate and the input processes can be chosen to be realizations of Poisson processes 
(Halliday et al., 1988); 



The Fourier approach to the identification of functional coupling 25 

The estimated coherences and phases in the following examples are based entirely on the 
auto- and cross-spectra of the sets of spike times for the observable processes Nl(t), N2(t), 
N3(t ) and N,(t). The derived curves follow from the application of the appropriate 
expressions given in Sections III, V and VII. The derived and estimated coherence and phase 
between N3(t ) and N4(t ), in the presence of the observable processes N~(t) and N2(t ), are 
shown plotted on the same graph (Fig. 13a, b), and clearly illustrate the close agreement 
between derived and estimated values for both. In the presence of both N 1 (t) and N2(t) the 
coherence remains significant to approximately 65 Hz decreasing slowly from a peak value of 
approximately 0.52, while the linear phase curve indicates a system dominated by a delay of 
approximately 2 msec, with process N4(t) leading process N3(t ). 

If one takes into account the contribution of process N:(t) to the coherence and phase 
between N3(t ) and N,(t), illustrated in Fig. 13c, d, the peak value of the coherence is now 
about 0.4, but remains significant to about 100 Hz, in contrast to the ordinary coherence 
which was significant only to approximately 65 Hz. The change in phase is dramatic 
(Fig. 13d compared with Fig. 13b). Removing the linear contribution of process Nt(t) 
suggests that process N2(t ) alone synchronizes processes N3(t ) and N,t(t), whereas the main 
contribution of process N~(t) is to induce a phase shift between N3(t) and N4(t). 

Taking into account the linear contribution of N2(t ) to the coherence between N3(t ) and 
N4(t) produces quite different consequences. 

The partial phase (Fig. 13f) remains the same as the original phase (Fig. 13b), whereas the 
partial coherence (Fig. 13e) becomes strikingly periodic, although it does not reach the same 
peak value as the ordinary coherence (Fig. 13a). These results suggest that when both 
processes N~(t) and N2(t ) are present, process Nt(t) has a predominant effect on the 
coherence between N3(t ) and N4(t), whereas N2(t ) primarily affects the timing between N3(t ) 
and N,(t). It is far from clear how one could be led to such conclusions by time-domain 
analyses. 

The second-order partial coherence (Fig. 13g) is small but significant, whereas the second- 
order partial phase (Fig. 13h) indicates a phase lag of N,~(t) with respect to N3(t ). These two 
measures taken together suggest the presence of another source of coupling. This situation is 
most likely to occur when recording several processes simultaneously within the central 
nervous system. The phase dependence of output processes on input conditions was 
demonstrated for muscle spindle data in Section VI. 

Figure 14 is an illustration of the application of the second-order partial coherence to the 
responses of the Ia and II sensory endings from the same muscle spindle in the presence of an 
imposed dynamic length change with concurrent independent stimulation of two static 
fusimotor axons. The ordinary coherence (Fig. 14a) shows two distinct regions of coupling 
between the responses of the Ia and II endings in the presence of the three inputs. The first 
region covers the frequency range from 0 up to 17 Hz, whereas the second region occupies the 
range from about 30--60 Hz. The second-order partial coherence talcing into account the 
contribution of the activity of the two static fusimotor axons shows a significant reduction of 
the coherence in the low frequency range alone--the coherence in the higher range remains 
unchanged (Fig. 14b). This result suggests that the coupling in the 30-60 Hz range is entirely 
length dependent, whereas that in the lower range is not entirely accounted for by the linear 
contribution from the fusimotor input and, in addition, there may be a length contribution to 
the low-frequency coupling. The former supposition may be examined by considering a more 
complicated contribution of the fusimotor input to the Ia-II coupling than that provided by 
the linear prediction of the contribution of the fusimotor input as well as taking into account 
the contribution of the length input to the coherence at low frequencies. 

IX. CONCLUDING REMARKS 

We have extended, particularized and elaborated the applications of Fourier methods to 
the analysis of the interactions between spike trains by considering a broader range of 
questions than discussed by previous authors (e.g. Stein et ai., 1972), and by drawing upon 
many examples from both simulated and real data. Throughout the presentation we have 
implicitly stressed the necessity for having approximations to the statistical uncertainty of all 
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FIo. 13. Derived (unbroken curves) and estimated (a) coherence, (b) phase between computer 
generated processes N s and N,~, (c, d) partial coherences, (e, f) partial phases of order-l, (g) partial 
coherence and (h) partial phase of order-2 between computer generated processes Ns and N 4 taking 
into account the effects of processes N 1 and N 2 separately and together. The horizontal dashed line in 
the coherence plots represents the upper level of an approximate 95% confidence interval for the 
coherence for any specific value of the frequency ~ under the hypothesis that the two processes are 

independent. 

the estimates ofthe parameters defined and applied to the various data sets. The approximate 
sampling fluctuations of the data-based estimates allow one to set up statistical tests and to 
make inferences concerning the population parameters. 

In this paper we have dealt with two main issues: (1) the importance of alternative 
representations of the data, and (2) the use of Fourier-based measures that give rise to 
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FIG. 14. (a) Coherence between the responses of Ia and II sensory endings from the same muscle 
spindle in response to independent stimulation of two fusimotor axons during a random length 
change applied to the parent muscle. (b) Partial coherence of order-2 between the responses of the Ia 
and II endings taking into account the linear contribution from both static fusimotor axons. The 
horizontal dashed lines represent the upper level of an approximate 95% confidence interval for the 
coherence for any specific value of the frequency ~ under the hypothesis that the two processes are 

independent. 

techniques for analysing neuronal interactions that are not available within a cross-intensity 
based framework. Our concluding remarks relate to these two issues. 

It is sometimes assumed that time- and frequency-domain methods give equivalent 
representations of a data set, because they are mathematically equivalent and both contain 
the same information about the processes involved; and consequently, it is sufficient to use 
only one of these representations (Tukey, 1978; Koopmans, 1983). A further example to 
those presented in Section IV forcefully illustrates again that because of the finite amount of 
data mathematical equivalence does not imply equivalent representation (Tukey, 1978). The 
curves shown as solid lines in Fig. 15a, c, e are the estimated auto-intensities of the Ia 
responses from a muscle spindle under three different input conditions imposed on the 
spindle. These auto-intensities were computed directly from the times of occurrence of the 
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spikes of the Ia discharge. The shapes of the auto-intensities do not differ greatly, although in 
Fig. 14a the spindle was subjected to a randomly varying fusimotor input, whereas in 
Fig. 15c a random length change was imposed on the parent muscle, and in Fig. 15e both of 
these inputs were applied simultaneously. 
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FIG. 15. (a, c, e) The square-root of the estimated auto-intensity functions computed directly from the 
times of occurrence of the Ia spikes (solid lines) and from the Fourier transforms of the auto-spectra 
(dashed lines). (b, d, f) The estimated auto-spectra computed directly from the la spike times (solid 
lines) and from the Fourier transform of the auto-intensity function (dashed lines), during (a, b) 
random stimulation of a single static fusimotor axon, (c, d) in the presence of a randomly varying 
length change, and (e, f) with both fusimotor and length inputs present. The solid horizontal lines in 
(a, c, e) give an approximate 95% confidence interval for the auto-intensity function for any specific 
value of the lag u. The solid horizontal lines in (b, d, f) are an approximate 95% confidence interval 

for the auto.spectra for any specific value of the frequency L 

Under these different input conditions one would expect the auto-intensities to be quite 
different. The right-hand column of Fig, 15 represents the auto-spectra of the Ia discharge, 
also computed directly from the times of occurrences of the Ia spikes, for the same three input 
conditions. The shape of the auto-spectra are quite different for each of the different input 
conditions. The differences in shape of the auto-spectra in Fig. 15b, d, f led to the sug- 
gestion that, under certain conditions, the spectrum of the Ia discharge when both length 
and fusimotor inputs are present simultaneously is a linear combination of the effects 
produced by each input alone (Rosenberg and Rigas, 1985). That the representations of the 
data in Fig. 15a, c, e are mathematically equivalent to those in Fig. 15b, d, fis demonstrated 
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by the dot ted lines, which in Fig. 15a, c, e are the Fourier  t ransforms of  the corresponding 
member  of  the pair in Fig. 15b, d, f. in  addit ion,  the dot ted lines in Fig. 15b, d, f are the 
Fourier  t ransforms of  the corresponding member  of  the pair  in Fig. 15a, c, e, The extremely 
close fit between the measure computed  directly f rom the data  with that  derived from the 
Fourier  t ransform of either the auto-intensity or  the auto-spect rum indicates the 
mathemat ical  equivalence of  these different representations. The stalking differences between 
the appearance of  the representations of  the data  illustrates that  mathematical  equivalence 
does not  always lead to equivalent emphasis of  distinctive features of  the data.  In this 
example the Fourier  representat ion of  the data  happens to be more  usefu l  In general, it 
seems that  one should use bo th  time- and frequency-domain representations, particularly 
when faced with the problem of revealing the properties of  complex systems (Tukey, 1978). 

It is of  interest to note that  both  the f ramework for multiple spike train analysis proposed 
by Gerstein et al. (1985) and Gerstein and Aertsen (1985), and the Fourier-based methods  
presented in this paper  lead to analyses within the s tandard mathematical  statistical 
f ramework of  multivariate analysis. The former may  use cluster analysis to examine the 
dynamic  evolution of  neural assemblies along the lines suggested by Wright  (1977), whereas 
the latter draws mainly upon  regression analysis. 

In conclusion,  f requency-domain analyses based on coherence measures considerably 
extend the range of  tools available for the analysis of  spike trains and can lead to new insight 
and unders tanding of  the interactions between spike trains. 
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A P P E N D I X  

I n  n e u r a l  sys tems whose  d y n a m i c s  are  d o m i n a t e d  by  delays ,  the phase  re l a t ion  be tween  
i n p u t  a n d  o u t p u t  spike t ra ins ,  @(~), is g iven  as 

~,(,~) = - ~  (10.1) 

where  z is the  t ime  de lay  be tween  these processes.  The  de lay  m a y  be e s t ima ted  as the  s lope of  
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the least squares line fitted to the estimated phase curve. In most cases, however, the 
coherence between input and output processes is not constant, and consequently a weighted 
least squares procedure must be used to estimate the delay and its standard error. 

If we let Or(2~)-- O~ represent the estimated phase defined at 2~ = 2~ti/T, i = 1, 2 . . . . .  n, then 
a regression model through the origin of the following form may be set down 

O~ = r 2  i + ~i (10.2) 

where r = - 3 ,  and the ei are approximately normally distributed with mean zero and 
variance 0.~2, and covafiance 

cov{ei, ej} ~0  for i # j .  (10.3) 

From Section III we have that the variance 0"~ is 

1 1 

where L is the number of disjoint periodogram sections from records of duration T used in 
estimating the spectra required to estimate 0(2). 

The non-constant variance given by expression (10.4) suggests a weighted least squares 
estimate of r,  that may be obtained by minimizing 

1 ( 0 t  __ ~,~,i) 2 (10.5) 
20.  

(e.g. Wonnacott and Wonnacott, 1981). 
If we set 

0"2 
0./~ = w--~ (10.6) 

where w i is the weight for the ith value of the variance, then the weighted least squares 
estimate of fl is given by 

p = E Wl(1)l'~i 
~ w,2~ " (10.7) 

Expression (10.7) is an unbiased estimate of r,  and is approximatdy n o . a l l y  distributed 
with vadan~ 

0" 2 
Var(/~) = E ~~2~ 2" (10.8) 

An obvious estimate of 0"2 is given by 

~2 __ E W'(t~i--P'~i)2 00.9) 
n - 1  

A simple but plausible and common choi~ for the weights is to take the w~ as inversely 
proportional to the estimated variance given by 

1 
w~ ~ ~ (10.10) 

~ 

(e.g. Weis~rg, 1985). 
An approximate 95% confidence interval for the delay is then 

- • 00.1 

where ~ is given by (10.9). 


