
Chapter 18

Time and Frequency Domain Analysis of Spike Train 
and Time Series Data

David M. Halliday and Jay R. Rosenberg

■ Introduction

The concept of a spike triggered average will be familiar to many neurophysiologists.
The first application in neurophysiology by Mendell and Henneman (1968, 1971) was
used to examine the magnitude of monosynaptic excitatory postsynaptic potentials
(EPSP) from muscle spindle Ia afferents onto homonymous motoneurons, which pro-
vided a major piece of evidence in the development of the size principle for motoneuron
recruitment (see Henneman and Mendell, 1981). The technique has gained widespread
acceptance, and been widely used to investigate the strength of synaptic connections in
the mammalian central nervous system (e.g. Watt et al., 1976; Stauffer et al., 1976; Kirk-
wood and Sears, 1980; Cope et al., 1987), leading to new insights and an increased un-
derstanding of basic neurophysiological mechanisms.

The basic principle in the above studies is that averaging of an intracellular recording
from a motoneuron triggered by action potentials from a single intact afferent will re-
veal a waveform which is taken as an estimate of the postsynaptic potential (PSP) for
that input. Averaging is required due to the presence of unrelated activity within the cell,
which can be regarded as a noise component. Spike triggered averaging can detect weak
effects (Cope et al., 1987), averages involving 105 or more triggers are commonly used.

A similar procedure is often used to assess the coupling between two simultaneously
recorded sequences of action potentials. In this case it is the timing of spikes in one
spike train which is averaged with respect to the timing of spikes in a second spike train.
This leads to a histogram based measure, frequently referred to as the cross-correlation
histogram, which shows the relative timing of spikes in one spike train with respect to a
second spike train. First used by Griffith and Horn (1963) to study functional coupling
between cells in cat visual cortex, this method has subsequently been widely accepted
and used in other areas of neurophysiology (e.g. Sears and Stagg, 1976; Kirkwood and
Sears, 1978; Datta and Stephens, 1990).

Spike triggered averaging and cross-correlation histogram analysis can be consid-
ered as the detection of a correlation between two signals. Both are affected by the pres-
ence of noise, particularly when studying weak interactions. In most cases the signals
which are being studied contain noise, and can therefore be considered as stochastic
processes. The study of stochastic signals, and the detection of correlated activity in the
presence of noise are major research areas in engineering and statistics, an extensive lit-
erature exists on the related questions of characterizing stochastic signals, and the esti-
mation of correlated activity in the presence of noise (e.g. Brillinger and Tukey, 1984).
In this chapter we are concerned with the question: Given two stochastic signals (which
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can be either a sequence of spike times, or a sampled waveform) then how can these sig-
nals, and any correlation between them, be characterized? The mean and variance of a
regularly sampled waveform are useful measures which characterize the distribution of
amplitude values. Auto-spectra provide a more informative picture of the data, auto-
spectral estimates can be interpreted as statistical parameters related to the variance of
the signal at discrete frequencies. Similar comments apply to spike train data, which can
be treated as a sequence of point events, and the distribution of intervals between suc-
cessive spikes subjected to a similar analysis. The question of correlation between two
signals can be considered as an investigation of the joint distribution of two stochastic
processes, which leads to covariance analysis and cross-spectral analysis. These con-
cepts will be expanded upon in the following sections, the object of these introductory
remarks is to place the problem of assessing the correlation between neurophysiological
signals in the domain of engineering and statistics, which allows the extensive methods
which have been developed in these fields to be applied to the problem.

An important aspect of studying correlation in the presence of noise is the ability to
place some error bounds on parameter estimates. This is often missing in the applica-
tion of spike triggered averaging and cross-correlation techniques. The use of statistics
should form an essential part of any analysis, both for dealing with error and uncertain-
ty, and for testing hypotheses about the correlation structure between signals.

The object of this chapter is to present a framework within which the correlation be-
tween spike train data and/or sampled waveform data can be studied, where both time
domain and frequency domain measures are used in a complementary fashion to max-
imise the insight into and inferences from experimental data. In this framework, the
spike triggered average and cross-correlation histogram are closely related to cumulant
density functions, a time domain parameter estimated from an inverse Fourier trans-
form of a cross-spectrum. A key feature of the framework is the unified aspect for deal-
ing with both spike train, sampled waveform and mixed spike train/waveform data.
This is achieved using a Fourier based set of estimation procedures. In this context, a
key result is that the large sample statistical properties of the finite Fourier transform of
a stochastic signal are simpler than those of the process itself (Brillinger, 1974; 1983)
and are the same for both types of data (Brillinger, 1972).

We consider first the analysis of spike train data. Part 1 defines time domain param-
eters which can be used to assess the correlation between spike trains, describes estima-
tion procedures, based on the cross-correlation histogram, and Example 1 illustrates a
sample analysis of two motor unit spike trains. The majority of the chapter is then con-
cerned with a Fourier based framework for dealing with both spike train and waveform
data. Part 2 discusses the Fourier transform of both data types, and defines and gives
procedures for estimating second order spectra. Part 3 defines parameters which can be
used to characterize the correlation between pairs of signals, application of these to dif-
ferent data sets is illustrated in Examples 7–10. Part 4 discusses how to extend the
framework to deal with the interactions between several simultaneously recorded sig-
nals. Part 5 describes an approach for summarizing the correlation structure between
several independent pairs of signals. Part 6 outlines an alternative approach to the anal-
ysis of spike train data, based on maximum likelihood methods. In the Concluding Re-
marks we discuss the limitations of the techniques presented.

In this chapter, the statistical presentation is kept to a minimum, with only the basic
definitions and estimation procedures presented. The techniques, however, are present-
ed in sufficient detail to allow the interested reader to undertake the analyses them-
selves. This chapter summarizes several years of interdisciplinary work, further details
can be found in the references cited below, and in the following publications and refer-
ences cited therein (Rosenberg et al., 1982, 1989, 1998; Halliday et al., 1992, 1995a; Am-
jad et al., 1997).
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PART 1: Time Domain Analysis of Neuronal Spike Train Data

Stochastic Point Process Parameters for Time Domain Analysis of 
Neuronal Spike Train Data - Definitions

In this section we define a number of time domain parameters, estimates of which can
be used to characterize interactions between spike trains. Estimation procedures and
the setting of confidence limits are described in the next section.

In dealing with neuronal spike train data, the quantities normally available for anal-
ysis are the times of occurrence of each spike. The duration of action potentials is short
compared with the spacing between, thus the sequences of spike times are normally
considered as a series of point events. In addition, the interval between events is not de-
terministic but contains random fluctuations. We can therefore consider neuronal spike
trains (or any other sequence of events which meet these requirements) as realizations
of stochastic point processes. A stochastic point process may be defined formally as a
random non-negative integer-valued measure (Brillinger 1978). In practice this repre-
sents the ordered times of occurrence of spikes (or events) in terms of a multiple of the
sampling interval, dt, which should be chosen sufficiently small such that at most one
event occurs in any interval. A point process which satisfies this condition is known as
orderly.

We further assume that the point process data is weakly stationary, i.e. parameters
which characterize the data do not change with time, and that widely spaced differential
increments are effectively independent. This latter is known as a mixing condition. Dis-
cussion of these assumptions can be found in Cox and Isham (1980), Cox and Lewis
(1972) and Daley and Vere-Jones (1988), and in relation to neuronal spike trains in Con-
way et al. (1993). The assumption of orderliness is important, since it allows certain
point process parameters to be interpreted in terms of expected values or as probabili-
ties (Cox and Lewis, 1972; Srinivasan, 1974; Brillinger, 1975), which provides a useful
guide to the interpretation of these parameters.

For a point process, denoted by N1, the counting variate N1(t) counts the number of
events in the interval (0,t]. An important elementary function of point processes is the
differential increment. The differential increment for process N1 is denoted by dN1(t),
and defined as dN1(t)= N1(t, t + dt]. It can be considered as a counting variate, which
counts the number of events in a small interval of duration dt starting at time t. For an
orderly point process, dN1(t) will take on the value 0 or 1 depending on the occurrence
of a spike in the sampling interval dt.

Two simultaneously recorded spike trains can be considered as a realization of a bi-
variate point process. Let (N0, N1) be such a realization of a stationary bivariate point
process with differential increments at time t given by 

. Stationarity of (N0, N1) implies that the distribution of the differential incre-
ments in the intervals (t, t+dt] and (t+τ, t+τ+dt] is independent of τ. The following
point process parameters may be defined in terms of the differential increments (Brill-
inger 1975, 1976; Rosenberg et al., 1982, 1989, Conway et al., 1993).

The mean intensity, P1, of the point process N1 is defined as

(1)

where E{ } denotes the averaging operator or mathematical expectation of a random
variable. The assumption of orderliness allows expression (1) to be interpreted in a
probabilistic manner as

(2)

d ,dN t N t N t dt0 1 01 6 1 6< A 1<= + ,
N t dt1 +1 A

E N t P dtd 1 11 6< A =

Prob event  inN t t dt1 , +1< A
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The mean intensity, P0, of the point process N0 is defined in a similar manner. The
second order cross-product density at lag u, P10(u), between the two point processes N0
and N1 is defined as

(3)

This expression can be interpreted as

(4)

The second order product-density functions, P00(u) and P11(u), are defined as in (3) by
equating N0 and N1. A conditional mean intensity can be defined as

(5)

which can be interpreted as a conditional probability as

(6)

From the mixing condition, the differential increments dN1(t+u) and dN0(t) become in-
dependent as u becomes large. Therefore we can write

(7)

This leads to the definition of the second order cross-covariance function, also called the
second order cumulant density function, q10(u), as

(8)

The two auto-covariance functions, q00(u) and q11(u), are defined similarly. This func-
tion will tend to zero as , and has the interpretation

(9)

where cov{ } denotes covariance. In the case of the individual processes we must write

(10)

where δ(•) is a Dirac delta function which has to be included to take into account the be-
havior of the covariance density at u=0.

Estimation Procedures and Confidence Limits for Time Domain Point Process Parameters

The mean intensity, P1, for a sample of duration R of the point process N1 can be esti-
mated as

(11)

For example, if N1 is a sample spike train of 60seconds duration with a sampling interval
of 1 millisecond, containing 500 events, then R=60,000 and = 500/60000. To distin-
guish between a parameter and its estimate, we use the notation  to denote an esti-
mate of the parameter P1.

Estimates of the second order product densities defined above can be constructed by
the following procedure. If we denote the set of spike times for N0 as {ri ; i=1,… N0(R)}
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and the set of spike times for N1 as {sj ; j=1,… N1(R)}, we can construct a counting var-
iate  such that (Griffith and Horn, 1963; Cox 1965)

(12)

where #{A} indicates the number of events in set A. The variate  counts the
number of occurrences of N1 events falling in a bin of width b, whose midpoint is u time
units away from an N0 event. In the neurophysiological literature, the variate  is
often called the cross-correlation histogram. The expected value of this variate is (Cox
1965; Cox and Lewis, 1972)

(13)

This equation illustrates the relationship between the cross-correlation histogram and
the second order product density, and leads to the following approximately unbiased es-
timates for P10(u) and m10(u)

(14)

(15)

where  denotes an estimate of . The cumulant density, , can be es-
timated using equation (8) as

(16)

The large sample properties of the above estimates of P10(u) and m10(u) are considered
in Brillinger (1976), where it is shown that the estimates (14) and (15) of the product
density and cross-intensity are approximately Poisson random variables, which can be
approximated by the two normal distributions N{P10(u), P10(u)/b R} and N{m10(u),
m10(u)/b P1}, respectively. N{A, B} refers to a normal distribution with mean A and var-
iance B. In both cases, the variance of the estimate depends on the value of the parame-
ter being estimated. In such cases it is usual to apply a variance stabilising transform
(Kendall and Stuart, 1966; Jenkins and Watts, 1968). Brillinger (1976) proposes a square
root transformation giving

(17)

(18)

These parameter estimates have constant variance, which allows us to set confidence
limits to test the hypothesis of independent (uncorrelated) spike trains. These confi-
dence limits can be set in the following manner. Given an estimate  of a parameter z,
which is approximately normally distributed with variance , then 95% confi-
dence limits can be set at . The asymptotic values for and

 for large u can be estimated using equations (7) and (5), and indicate the ex-
pected values for two independent spike trains.  Therefore we have the following asymp-
totic distribution and 95% confidence limits for 
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Estimated values lying inside the upper and lower confidence limits can be interpreted
as evidence of uncorrelated spike trains.

The asymptotic distribution of the estimated cumulant density, , is discussed
in Rigas (1983), and can be approximated by

(21)

where f11(λ) and f00(λ) are the auto-spectra of processes N1 and N0, respectively. The
auto-spectra of spike train data will be discussed below, however, under the assump-
tions of Poisson spike trains the variance in (21) can be approximated by . For
two independent spike trains, an asymptotic value and upper and lower confidence lim-
it for the estimate of  given in (16) can be set at

(22)

It is worth pointing out that once the cross-correlation histogram, , has been ob-
tained, the product density, cross-intensity and cumulant density can be estimated very
easily, and confidence limits which depend only on the quantities b, R, N0(R) and N1(R),
and not on the characteristics of the spike trains (other than the mean rates), can easily
be determined.

Results

Example 1: Time Domain Point Process Parameter Estimates

We illustrate the application of the above point process parameters with a sample anal-
ysis of a pair of motor unit spike trains, recorded from the middle finger portion of the
extensor digitorum communis (EDC) muscle of a normal healthy subject during a
maintained postural contraction. The two spike trains contain 1293 and 919 spikes, the
record duration is 100seconds, sampled at 1ms intervals. The first order statistics are
N0(R) = 1293, N1(R) = 919, R = 100,000, = 0.01293, = 0.00919, and in addition

= 0.0109 and = 0.096. Shown in Fig.1 are estimates of (A) the cross-cor-
relation histogram, , (B) the square root of the product density, , (C) the
square root of the cross-intensity function, , and (D) the cumulant density
function, . All parameters have a bin width b=1.0, giving estimates with the same
resolution as the sampled spike trains (1ms). The relationship between the cross-corre-
lation histogram and the other three parameter estimates, made explicit by equations
(13) to (16), is clearly demonstrated in this figure. The three parameter estimates all
have the same basic shape determined from the cross-correlation histogram. The main
difference is in the asymptotic value of the three estimates, which reflect the different
probability descriptions given in equations (4), (6) and (9). The asymptotic values and
upper and lower confidence limits are 0.0109±0.0031 for , 0.096±0.027 for

, and 0±6.7×10-5 for . The main feature is the large peak at lag u=+5ms,
which exceeds the upper confidence limit in all three parameter estimates, indicating
correlated motor unit activity. Also present in the cross-correlation histogram in Fig.1A
are smaller oscillatory features on either side of the central peak, these features are often
referred to as sidebands and taken to reflect the presence of common rhythmic inputs
to the two motoneurons whose motor unit activity is being studied (Moore et al., 1970).
The confidence limits in the three parameter estimates indicate that these features are
only of marginal significance at the 5% level. These features will be further discussed
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below, with respect to frequency domain analysis, which is illustrated in Fig.3. For un-
correlated spike trains, the three parameter estimates, , , and ,
will fluctuate about their respective asymptotic values, the expected range of fluctua-
tions can be estimated from the upper and lower confidence limits. Any significant de-
parture outside these values, as in the peak at u=+5ms in Fig.1, can be taken to indicate
a significant dependency between the spike trains at that particular lag value. Figure1
illustrates the advantages of including confidence limits by focusing quickly on signifi-
cant features in parameter estimates. The two parameter estimates  and

contain information about firing rates in their asymptotic distributions relat-
ed to the probability descriptions in previous section. However, unless this is of specific
interest, the presence of a statistically significant correlation can be inferred from any
of the three estimates. In such situations, only one of the parameter estimates needs to
be constructed, and the use of cumulant density estimates has the added advantage of
being easily incorporated into the unified Fourier based framework presented below for
dealing with spike train and/or time series data.
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Fig. 1. Time domain analysis of the correlation between two motor unit spike trains. Estimates of
(A) Cross-correlation histogram, , which has the units of counts, (B) square root of the
product density, ×102, (C) square root of the cross-intensity function, ×101,
and (D) cumulant density function, ×104. Estimates have a bin width of b=1.0, and N0(R)=
1293, N1(R)=919, R=100,000. The dashed horizontal lines in B, C and D are the estimated asymp-
totic values, the solid horizontal lines are the estimated upper and lower 95% confidence limits
under the assumption of independence.
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Part 2: Frequency Domain Analysis

The Finite Fourier Transform of Point Process and Time Series Data

All frequency domain analyses described below are based on parameter estimates
formed from arithmetic combinations of finite Fourier transforms. The finite Fourier
transform is therefore central to this analysis. This section defines and discusses how to
estimate the finite Fourier transform of spike train and regularly sampled waveform da-
ta. Spike trains are assumed to be realizations of stochastic point processes, and wave-
form data are assumed to be realizations of time series. Point process data are assumed
to meet the assumptions of orderliness discussed above, and time series data are as-
sumed to be zero mean. Both types of data are further assumed to satisfy the two con-
ditions of weak stationarity and a mixing condition. Weak stationarity implies that pa-
rameters which characterize a stretch of data do not change with time. The mixing con-
dition implies that point process differential increments and/or time series sample val-
ues which are widely separated in time are independent. These assumptions are dis-
cussed in Halliday et al. (1995a). Both time series and point process data can be consid-
ered as belonging to the class of stationary interval functions considered in Brillinger
(1972). The finite Fourier transform of a segment of point process N1 containing T dif-
ferential increments is defined as (Brillinger, 1972; Rosenberg et al., 1989)

(23)

The integral in equation (23) can be thought of in a heuristic sense as comparing the pe-
riodicities of the sinusoids and cosinusoids of the complex Fourier exponential with the
spacing between the spikes of process N1, which allows information about periodic
components in the spike train to be extracted. Modern spectral analysis methods invar-
iably use a fast Fourier transform (FFT) algorithm to compute the finite Fourier trans-
form of a sequence of data, at an equispaced set of Fourier frequencies. This requires
equally spaced samples as input, which is achieved through the use of the differential
increments to represent the point process N1 in (23). Therefore, to estimate the quantity

, using an FFT of length T we can approximate the integral in equation (23) by
a discrete summation as (Brillinger, 1972; Rosenberg et al., 1982, 1989, Halliday et al.,
1992)

(24)

where τn are the times of occurrence of the N1 events in the interval (0,T]. Since the point
process is assumed orderly, the differential increments will have the value 0 or 1. The use
of differential increments in equation (24) is therefore equivalent to representing the
point process N1 as a regularly sampled 0–1 time series. The Fourier frequencies, λj, are
given by , for j=0,…T/2. This defines a range for λj of (0, π), where π corre-
sponds to the Nyquist frequency (cf. Chapter 45). The Fourier frequencies can be ex-
pressed in Hz as , where T is the number of points in the finite Fourier transform,
and ∆t the sampling interval (seconds). The quantity  represents the fundamental
Fourier frequency in cycles/s, i.e. the lowest frequency which can be resolved of 1 com-
plete cycle of duration T, and represents the minimum spectral resolution of any param-
eters formed from .

In a similar fashion to (23), the Fourier transform of a segment of length T from a
time series, x, is written as (Brillinger 1972, 1974)
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(25)

Since x(t) is a regularly sampled waveform, the sampled values can be readily evaluated
by an FFT algorithm

(26)

where xt are the sample values of x(t) at time t. The Fourier frequencies, λj, are defined
as for (24). Equation (26) performs a Fourier decomposition of the segment of x(t) into
constituent frequency components, which highlights distinct periodic components in
the data (Brillinger, 1983).

Efficient FFT routines can be found in Bloomfield (1976, Chapter 4), Sorensen et al.
(1987), and in the compendium of numerical methods by Press et al. (1989) which are
available in a number of programming languages.

Definition and Estimation of Second Order Spectra

In this section we discuss the construction of estimates of second order spectra based
on complex products of the finite Fourier transforms of point process and time series
data discussed above. Following Halliday et al. (1995a) we use the term hybrid to char-
acterize a parameter that depends on a time series and a point process. The auto-spec-
trum of time series x is denoted by fxx(λ), and of point process N1 by f11(λ). The hybrid
cross-spectrum between the two processes is denoted by fx1(λ). The asymptotic distri-
bution of the finite Fourier transform for a broad variety of stationary processes, called
“stationary interval functions” which include stationary time series and stationary
point process data, is discussed in Brillinger (1972), where it is shown that for ,
the asymptotic distribution of  and  is a complex normal. In the case of a
times series x, this leads to consideration of the following statistic as an estimate of the
auto-spectrum

(27)

This quantity, which is often referred to as the periodogram, , was first proposed
by Schuster (1898) to search for hidden periodicities in a series, x. The periodogram is
not a consistent estimate of the spectrum fxx(λ), and requires further smoothing. One
method to achieve this is averaging periodograms based on disjoint sections of data.
Such an approach leads to

(28)

as an estimate of the auto-spectrum of series x, at the Fourier frequencies λj defined
above. Using this procedure involves splitting the complete record of R samples into L
non-overlapping disjoint sections of length T, the quantity  refers to the finite
Fourier transform of the lth segment (l=1,…,L). An estimate of the auto-spectrum of the
point process N1, , is obtained by replacing  with  in equation
(28). Using this approach, the hybrid cross-spectrum between N1 and x,  can be
estimated as

(29)
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Cross-spectra between two time series and between two point processes can be estimat-
ed in a similar manner by substitution of the appropriate finite Fourier transforms into
equation (29). The approach of smoothing periodograms is a widely used method of
spectral estimation (Bartlett, 1948; Brillinger 1972; 1981; Rosenberg et al., 1989; Halli-
day et al., 1995a).

For large T and λ≠0, the estimated cross-spectrum  may be seen to have the
same form as a complex covariance parameter, , and
can be interpreted as the covariance between the components of processes N1 and x at
each Fourier frequency λj. The estimated auto-spectra,  and , have the
same form as a variance parameter which provides a measure of the variance (or power)
at each Fourier frequency λj of the process x (Tukey, 1961). Other methods of estimating
spectra of spike train data are discussed in Halliday et al. (1992).

Second order spectra can also be defined in terms of the Fourier transform of the ap-
propriate auto- or cross-covariance (cumulant density) functions. For example, the
spectrum of x can be defined as (Jenkins and Watts, 1968; Brillinger, 1981)

(30)

where qxx(u) is the auto-covariance or cumulant density of process x. In the point proc-
ess case the expression becomes (Bartlett, 1963)

(31)

where the additional term arises from the inclusion of the Dirac delta function in the
definition of the auto-covariance (10). For u large q11(u) will tend to zero, which gives
the asymptotic distribution of f11(λ) as . This approximation is used
above in the derivation of (22) from (21) with respect to the estimation of the variance
of point process cumulant density functions. For the hybrid cross-spectrum, fx1(λ), the
appropriate expression is

(32)

Other cross-spectra can be defined in a similar fashion. Equations (30) to (32) show the
close relationship between cumulant density (covariance) functions and spectra. These
relationships also show that it is possible to estimate spectra indirectly through the Fou-
rier transform of covariance functions. Such an approach formed the basis of the first
major practical digital time series analysis (Blackman and Tukey, 1958), before the ad-
vent of the FFT. Modern methods of spectral estimation generally use direct procedures
based on FFT algorithms to estimate the finite Fourier transforms, as described above.

For estimates of the auto-spectrum, , obtained via (28), it can be shown that
the variance can be approximated by  (Brillinger 1972, 1981;
Bloomfield, 1976), where L is the number of disjoint sections used to estimate the spec-
trum. This expression contains the value of the actual spectrum at a particular frequen-
cy and will therefore change with changing frequency. The appropriate variance stabil-
ising transform is the natural log, giving . It is customary practice
to plot spectra on a log10 scale, thus

(33)

with a resulting estimate and 95% confidence limits at frequency λ of

(34)
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An alternative method of indicating the confidence limit, which is independent of the
value of the spectrum, is to plot a scale bar of magnitude  as a guide to inter-
pret any distinct features in the estimated spectrum. In the point process case, where the
spectra have an asymptotic value, the three lines

(35)

can be used as a guide to interpret features in the estimate of .

Results: Auto-Spectra

In Fig.2 are shown examples of auto-spectral estimates of both point process and time
series signals. All these estimates have been constructed from data sampled at 1ms (∆t
= 10–3 s), and a segment length of 1024 points (T=1024) in the finite Fourier transforms
(24) and (26), giving a spectral resolution of 0.977Hz.

Example 2: Motor Unit Spectrum

Figures 2A and 2B are from the same data set as analysed in Fig.1. This data consists of
two individual motor unit discharges recorded from the middle finger portion of the
(EDC) muscle in a human subject, and the tremor recorded simultaneously from the
distal phalanx of the finger using an accelerometer, while the subject maintained the un-
restrained middle finger extended in a horizontal position (see Conway et al., 1995b and
Halliday et al., 1995a, for further details of the experimental protocol). The duration of
the data set is 100seconds (R=105), giving L=97 for this data set. The spike train whose
spectral estimate is illustrated in Fig2A, N0, has 1293 spikes (N0(R)=1293), a mean rate
of 12.9 spikes/s, and the coefficient of variation (c.o.v.) is 0.17. For the tremor signal the
mean RMS value is 6.91 cm/s2. The dominant feature of the log plot of the motor unit
spectrum is the large peak around 13Hz, corresponding to the mean rate of firing, illus-
trating that the mean firing rate is the dominant rhythmic component in this motor unit
discharge. There is a less well-defined peak centered around 26Hz, this frequency
matches the expected first harmonic of the spectral peak corresponding to the mean
discharge rate. At higher frequencies the estimate lies almost entirely inside the expect-
ed upper and lower 95% confidence intervals shown as the solid horizontal lines. These
intervals are constructed under the assumption of a random (Poisson) spike train, and
at higher frequencies this motor unit discharge behaves as a random spike train. This
behavior is a consequence of the mixing condition discussed above, where differential
increments widely separated in time tend to become independent (a characteristic of
Poisson spike trains). At lower frequencies, however, the spectrum of this spike train ex-
hibits significant departure from that expected for a Poisson spike train. For spike trains
whose dominant spectral component reflects the mean firing rate, the appearance of
harmonic components in their spectral estimates is related to the c.o.v. A more regular
discharge generally has a spectral estimate which contains more harmonic components.

Example 3: Tremor Spectrum

The log plot of the estimated tremor spectrum, , in Fig.2B has a peak around
21Hz, this is the dominant component of physiological tremor recorded from the unre-
strained finger, and is due in part to the natural resonance of the extended finger. For a
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more detailed discussion of the spectrum of physiological tremor see Stiles and Randall,
(1967) and Halliday et al. (1995a). There is another smaller peak around 28Hz. The con-
fidence interval for the spectral estimate can be used as a guide to help establish if this
smaller peak is significant. The confidence interval is shown as the solid vertical line in
the top right of Fig.2B, of magnitude 0.173dB. This is the same as the spacing between
the upper and lower confidence limits (solid lines) in Fig.2A, estimated from the same
number of segments (see equations (34) and (35) above). Comparison of the local fluc-
tuation around 28Hz with the scale bar suggests that this localised peak in the spectrum

Fig. 2. Examples of spectral estimates. Log plots of estimated power spectra for (A) motor unit
spike train during position holding of the extended middle finger, and (B) simultaneous tremor
acceleration signal, (C) Ia afferent spike train, (D) Magnetoencephalogram recorded over the sen-
sorimotor cortex, (E) rectified surface EMG from wrist extensors during maintained wrist exten-
sion, and (F) simultaneous EEG recorded over the sensorimotor cortex. Dashed horizontal lines
in (A, C) represent the asymptotic value of each estimate, solid horizontal lines give the estimated
upper and lower 95% confidence limits, based on the assumption of a Poisson spike train. Solid
vertical lines at the top right in (B, D, E, F) give the estimated magnitude of a 95% confidence in-
terval for each spectral estimate. For all data the sampling interval ∆t=1ms, and for all estimates
T=1024 points. 
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does reflect a distinct rhythmic component as opposed to chance fluctuations in the
spectral estimate, which we would expect to be of a magnitude smaller than this scale
bar. The correlation between the single motor unit discharge in Fig.2A and this tremor
signal is examined below in Fig.4.

Example 4: Ia Afferent Spectrum

In Fig.2C is shown another point-process spectral estimate, this is for a single Ia afferent
discharge recorded using the microneurography technique (Vallbo and Hagbarth, 1968)
from a human subject during low force voluntary isometric contraction of the fourth
finger portion of the EDC muscle (for further details see Halliday et al., 1995b). The data
is 89seconds in duration (R=89,000; L=86), and contains 553 spikes. The mean rate is
6.2 spikes/s, and the c.o.v. is 0.21. The log plot of this spectral estimate contains a clear
peak around 6Hz, reflecting the mean firing rate of the Ia.

Example 5: MEG Spectrum

The spectral estimate in Fig.2D is for human cortical activity, in this case recorded as
the magnetoencephalogram (MEG; cf. Chapter 37) over the sensorimotor cortex during
a maintained contraction of a contralateral intrinsic hand muscle (for details, see Con-
way et al., 1995a). This spectral estimate, which is for a record of 110seconds (R=
110,000; L=107), has most power present at lower frequencies, with decreasing power at
higher frequencies. Comparison of local fluctuations in this estimate with the 95% con-
fidence interval (top right) indicates distinct rhythmic components centered about 18
and 42Hz, the latter is particularly distinct. The functional significance of these
rhythms is discussed in Conway et al. (1995a). 

Example 6: EMG and EEG Spectra

The two spectral estimates illustrated in Fig.2E and F are for a simultaneously recorded
surface electromyogram (EMG; cf. Chapter 26) from the wrist extensors and a bipolar
electroencephalogram (EEG; cf. Chapter 35) from over the contralateral sensorimotor
cortex in a human subject during maintained wrist extension (for details see Halliday et
al., 1998). These spectra are estimated from a total of 138seconds of data. The log plot
of the EMG spectrum is for the rectified surface EMG signal, and exhibits a broad peak
from around 10 to 40Hz. The reason for analysing rectified EMG is discussed in Exam-
ple 9 (in connection with Fig.5). The EEG spectral estimate has a concentration of pow-
er at low frequencies (the decrease at the lowest frequencies reflects the high-pass filter-
ing of 3Hz associated with the instrumentation), and a clearly defined peak centered
around 22Hz. The 95% confidence intervals have the same magnitude for both esti-
mates. The correlation between these two signals is examined below in Fig.5. It is inter-
esting to compare this EEG spectral estimate to the MEG spectral estimate (Fig.2D), re-
corded from a similar location in a different subject (see discussion in Halliday et al.,
1998).

The above six spectral estimates illustrate analysis of a broad range of signal types,
which are typical of those encountered in neurophysiological experiments. The next
part discusses how the correlation between pairs of such signals can be investigated.
The starting point for these analyses are estimates of the auto-spectra of individual sig-
nals, and cross-spectra between pairs of signals.
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Part 3: Correlation Between Signals

Within the present framework the dependence between two signals can be character-
ized by parameters which assess the correlation between the signals. In the frequency
domain it is customary to consider the magnitude squared of the correlation between
the Fourier transforms of the two signals under consideration. For the bivariate point
processes (N0, N1) this leads to (Brillinger 1975; Rosenberg et al., 1989)

(36)

as a measure of the correlation between processes N0 and N1. This quantity is called the
coherence function (Wiener, 1930), denoted by , estimates of which provide a
measure of the strength of correlation between N0 and N1 as a function of frequency.
The definition of the correlation  between the Fourier transforms
of the two point processes N0 and N1 in terms of variance and covariance, given by the

expression: ,

leads to the alternative definition for the coherence function between point processes
N0 and N1 as

(37)

Coherence functions provide a normative measure of linear association between two
processes on a scale from 0 to 1, with 0 occurring in the case of independent processes
(Brillinger, 1975; Rosenberg et al., 1989). Expression (37) leads to an estimation proce-
dure by substitution of the appropriate spectral estimates to give

(38)

where  denotes an estimate of . A similar procedure can be used to es-
timate the coherence between a time series x and point process N1

(39)

and the coherence between two time series x and y, , can be estimated in a sim-
ilar manner. Estimates of the necessary second order spectra can be constructed using
the method of disjoint sections outlined above in Part 2. Coherence estimates obtained
in this way all have the same large sample properties for any combination of point proc-
ess and/or time series data (Halliday, 1995a). A confidence interval at the 100α% point
which is based on the assumption of independence, i.e. =0, is given by the value

, where L is the number of disjoint sections used to estimate the second
order spectra (Bloomfield, 1976; Brillinger, 1981). Therefore an upper 95% confidence
limit can be set at the constant level

(40)

and estimated values of coherence below this level can be taken as evidence for a lack of
correlation between the two processes at a particular frequency. The setting of confi-
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dence limits about the estimated values of coherence when significant correlation is
present is discussed in Halliday et al. (1995a).

Coherence estimates assess the magnitude of correlation between two signals in the
frequency domain. Information relating to timing can be obtained by examining the
phase difference between the two signals. For point process N1 time and series x, the
phase spectrum, , is defined as the argument of the cross-spectrum

(41)

This function can be estimated by direct substitution of the estimated cross-spectrum,
equation (29) as

(42)

Phase spectra between other combinations of point-process and/or time series data can
be defined and estimated in similar fashion. Phase estimates are only valid when there
is significant correlation between the two signals. In practice  can be used to
indicate the regions where  has a valid interpretation. Phase estimates can be in-
terpreted as the phase difference between harmonics of N1 and x at frequency λ. The
arctan function can be used to obtain the argument of the cross-spectrum, resulting in
a phase estimate over the range  radians. However, the signs of the real and
imaginary parts of  can be used to determine in which quadrant the arctangent
falls, so extending the range to  radians. 

Phase estimates can often be interpreted according to different theoretical models. A
useful model is the phase curve for two signals which are correlated with a fixed time
delay, where the theoretical phase curve is a straight line, passing through the origin (0
radians at 0 frequency) with slope equal to the delay, and a positive slope for a phase
lead, and negative slope for a phase lag (see Jenkins and Watts, 1968). In situations
where there is significant correlation over a wide range of frequencies and a delay be-
tween two signals, it is reasonable to extend the phase estimate outside the range

 radians, which avoids discontinuities in phase estimates. Such a phase estimate
is often referred to as an unconstrained phase estimate. The representation of phase es-
timates is discussed in Brillinger (1981). Different theoretical phase curves for other
forms of correlation structure are discussed in Jenkins and Watts (1968). Details for the
construction of confidence limits about estimated phase values can be found in Halliday
et al. (1995a). In situations where the correlation structure between two signals is dom-
inated by a delay it is possible to estimate this delay from the phase curve, such an ap-
proach, based on weighted least squares regression, is described in the Appendix in
Rosenberg et al. (1989). This method has the advantage of providing an estimate of the
standard error for the estimated delay.

As discussed above, correlation analysis in neurophysiology has traditionally been
performed in the time domain. We next discuss how correlation between point-process
and/or time series data can be characterized as a function of time. Within the present
Fourier based analytical, the correlation between two signals as a function of time can
be estimated using cumulant density functions. These can be defined in terms of the in-
verse Fourier transform of the cross-spectrum (Jenkins and Watts, 1968; Brillinger, 1974).
The second order hybrid cumulant density function between processes N1 and x, 
is defined as

(43)

This expression and equation (32) illustrate the equivalence between time and frequen-
cy domain analysis, cumulant densities and spectra form a Fourier transform pair, cf.
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(30) and (32). The above hybrid cumulant can be estimated by the following expression

(44)

where λj=2πj/T are the Fourier frequencies, and b is the desired time domain bin width
(b≥1.0), a value of b=1.0 results in a time domain estimate with the same temporal res-
olution as the sampling rate of the two signals. Equation (44) can be implemented using
a real valued inverse FFT algorithm (e.g. Sorensen et al., 1987). The point process cumu-
lant density function  and the time series cumulant density function  can
be defined and estimated in terms of the appropriate cross-spectra,  and ,
respectively, using equations (43) and (44). 

Cumulant density functions can be interpreted as statistical parameters which pro-
vide a measure of linear dependence between two signals (Brillinger, 1972; Rosenblatt,
1983; Mendel, 1991). If the two signals are independent, the value of the cumulant is ze-
ro. Cumulant densities can assume either positive or negative values. Unlike coherence
estimates, they are not bounded measure of association, therefore there is no upper lim-
it indicating a perfect linear relationship. In the case of hybrid data,  has an inter-
pretation similar to a spike triggered average (Rigas, 1983; Halliday et al., 1995a). The
relationship between the point-process cumulant density and the cross-correlation his-
togram was discussed in Part 1. It is possible to define and estimate cumulant density
functions directly in the time domain, however, estimation via the frequency domain
using equation (44) provides a unified framework for dealing with different data types,
and is necessary for the construction of confidence limits for cumulant density esti-
mates.

The variance of the hybrid cumulant density estimate (44) based on the assumption
of independent processes can be approximated by (Rigas, 1983)

(45)

where R is the record length, and b is the bin width of the estimate used in equation (44).
This expression can be estimated using a discrete summation and substituting esti-
mates of the spectra  and  giving

(46)

where λj=2πj/T, R is the record length, b the bin width, and T is the segment length used
in the estimation of the finite Fourier transforms (24) and (26). Under the assumption
of independent processes, the asymptotic value and upper and lower 95% confidence
limits for the estimated cumulant (44) are given by

(47)

Values of the estimated cumulant  lying inside the upper and lower 95% confi-
dence limits can be taken as evidence of no linear correlation between point process N1
and time series x at a particular value of lag u. Equations (45) to (47) are valid for cu-
mulant density estimates constructed from other combinations of time series and/or
point process data. For the point process cumulant density , the assumption of
Poisson spike trains allows the asymptotic values of the two point process spectra
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, and  to be used to approximate the values of
the spectra in (47), resulting in the simplified expression (22). This simplification allows
confidence intervals for point process cumulants to be estimated without having to es-
timate the spectra. For the stochastic spike train discharges encountered in neurophys-
iological experiments this approximation results in estimated confidence intervals
which plotted on a graph are almost indistinguishable from those obtained by integra-
tion of the spectra.

Equation (43) defines cumulant densities in terms of the inverse Fourier transform
of the cross-spectrum, which leads to the estimation procedure in equation (44). It is
also possible to define and estimate cumulant densities directly in the time domain. In
the case of point process data this was done in Part 1. The interpretation of cumulant
densities does not, in general, depend on the method of estimation.

For point process data, the derivation of cumulant densities directly in the time do-
main in terms of the correlation between differential increments is discussed in Brill-
inger (1975) and Rosenberg et al. (1989). For two point processes N0 and N1 the corre-
lation between differential increments of the two point processes leads to the expression

(48)

The term relating to the sampling interval in the differential increments, , illus-
trates the unbounded nature of cumulant density estimates. Other point process time
domain measures of association, based on product density functions, are given in Brill-
inger (1975).

In the case of hybrid data, the spike triggered average between point process N1 and
time series x, which we denote by , can be estimated as (Rosenberg et al., 1982;
Rigas, 1983)

(49)

where R is the record length and τi are the times of the events in process N1, (i=
1,…,N1(R)). This estimate of the spike triggered average can be used to estimate the hy-
brid cumulant  as (Rosenberg et al., 1982; Rigas, 1983)

(50)

where  is the estimated mean rate of process N1, see (11), and  is the mean of proc-
ess x. This equation illustrates the close relationship between the spike triggered aver-
age and the hybrid cumulant density; indeed, for a zero mean time series (which is a
usual assumption for time series analysis) the two parameters are the same.

For zero mean time series data, x(t) and y(t), the cumulant density can be estimated
for small lag u, as the cross-covariance function (Parzen, 1961; Bloomfield, 1976; Brill-
inger, 1981)

(51)

The use of a Fourier based estimation framework has advantages over the more tradi-
tional approach of estimating time domain parameters directly in the time domain.
Firstly it provides a unified estimation procedure, both for constructing parameter es-
timates and for constructing confidence intervals. Equations (44) and (46) are valid for
any pairwise combination of point process and/or time series data, thus the same soft-
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ware routines can be used for all data types. The same is not true for direct time estima-
tion in the time domain, as illustrated by the differences in equations (12) for point
process data, (49) for hybrid data and (51) for time series data. As mentioned above the
method of estimation does not affect the interpretation of parameter estimates. Cumu-
lant densities can be interpreted as statistical parameters which provide a measure of
dependence between point process and/or time series data. In the case of point process
data the cumulant density is closely related to the more traditionally used cross-corre-
lation histogram, and for a zero mean time series, the hybrid cumulant density is the
same as the more traditionally used spike triggered average. The present report presents
these parameters in the context of a unified Fourier based framework which can assess
the correlation between signals in both the time domain and frequency domain – an ap-
proach which can offer extra insight into complex neural systems. The time and fre-
quency domain parameters should be viewed as complementary to each other. Equa-
tions (32) and (43) illustrate the mathematical equivalence of cumulant density func-
tions and second order spectra (via the Fourier transform). However, mathematical
equivalence does not necessarily result in equivalence of representation, a point often
made in the writings of J.W. Tukey (Tukey, 1980; see also Fig15, Rosenberg et al., 1989),
and illustrated below in Fig.3. Therefore both time and frequency domain parameters
should routinely be used for data analysis.

The above Fourier based methods all involve an assumption of linearity, extension of
these methods to higher-order analyses is described in Halliday et al. (1995a).

Results : Time and Frequency Domain Correlation Analyses

In this section we illustrate application of the parameters defined above to characterize
the correlation between pairs of signals. This is done for four data sets which illustrate
the analysis of different combinations of data: point process data, hybrid data (point
process and time series) and time series data. 

Example 7:  Motor Unit – Motor Unit Coherence and Phase

The first example considers the same motor unit pair whose time domain analysis is il-
lustrated in Fig. 1. The estimated cumulant density for this data set is illustrated in
Fig.1D, this is the direct time domain estimate, based on equation (16). The Fourier
based estimate (equation (44), b=1.0, T=1024, L=97) is graphically indistinguishable
from this. The upper and lower 95% confidence intervals in Fig. 1D are based on the
simplified expression (22) and have the values ±6.76×10–5, those estimated by integra-
tion of the cumulant (47) have the values ±6.73×10–5. For the type of spike trains illus-
trated in this report, the simplified estimate for point process cumulant density confi-
dence intervals provides almost identical values to those obtained by integration of the
spectra. The simplified expression (22) will be useful for spike trains whose spectra only
deviate from the asymptotic value for Poisson spike trains over a limited range of fre-
quencies compared with the Nyquist frequency (500Hz for this data). The estimated co-
herence, , and phase,  (T=1024), for this data are shown in Fig.3. The co-
herence between the two motor units, N0 and N1, has two distinct bands, from 1–6 Hz
and 20–30Hz. These frequency bands do not coincide with the peak in the spectrum of
motor unit 0 (fig 2A) or motor unit 1 (not shown), thus we can conclude that the motor
unit firing rate does not contribute to the coherence between this pair of motor units.
The coherence estimate reflects periodic components present in the common inputs
which are responsible for the synchronized motor unit firing (see Farmer et al., 1993 for

$ ( )R10
2λ $F10 λ1 6



18 Time and Frequency Domain Analysis of Spike Train and Time Series Data 521

further discussion). The peak in the cumulant density estimate (Fig.1D) indicates syn-
chronized motor unit activity, the small sidebands which occur at around 40ms on ei-
ther side of the central peak further suggest a periodic component around 25Hz is
present, as indicated by the coherence estimate. However, comparison of Figs. 1D and
3A illustrates that different parameters can emphasize different features of the data –
the cumulant estimate has sidebands which are only marginally significant, whereas the
coherence estimate has a clear peak around 20–30Hz – and argues in favor of both time
and frequency domain analysis. The phase estimate is shown in Fig.3B (solid lines),
plotted in radians over the two regions where there is significant correlation between
the motor units, estimated by inspection of the coherence estimate as 1–6Hz and 18–
32Hz. In the time domain, the two motor units have a correlation structure which is
dominated by a delay, as indicated by the peak at +5ms in the cumulant (Fig.1D). The
phase estimate between the two motor units also reflects this delay, and the regression
method described in the Appendix in Rosenberg et al. (1989) was used to estimate the
slope of the phase curve in each section. These give delays of 15.5±3.6ms for the delay
in the 1–6Hz section, and 7.3±1.2ms in the 18–32Hz section. The delay in the 18–32Hz
region corresponds with the latency estimated from the time to the peak in the cumu-
lant, whereas the delay in the lower frequency range is longer. The cumulant estimate in
Fig.1D does have a smaller peak centered around +13ms, which is consistent with the
delay estimated from the phase over 1–6Hz. To summarize, this example has examined
the correlation between a pair of motor unit discharges, which exhibit a tendency for
correlated firing dominated by a delay between the firing times and involving two dis-
tinct rhythmic components. The central peak in the cumulant density indicates syn-
chronized firing, the maximum occurs at a latency of +5ms, and small sidebands cen-
tered around 40ms on either side suggest the presence of a rhythmicity around 25Hz in
the correlation. The frequency domain analysis reveals that the dominant component in
the motor unit firing is the rhythmic component associated with the mean firing rate,
that the motor units are coupled over two frequency bands, 1–6 and 18–32Hz which do
not correspond with the firing rate, and that different delays are associated with the cou-
pling in each frequency band.

Fig. 3. Frequency domain analysis of motor unit correlation. Estimate of (A) coherence, ,
and (B) phase, , between same motor unit data illustrated in Fig.1. The horizontal dashed
line in (A) gives the estimated upper 95% confidence limit based on the assumption of independ-
ence. The phase estimate in (B) is plotted where the coherence (A) is significant. The dotted lines
through each section of the phase estimate are the theoretical phase curves for delays of 15.5ms
in the 1–6Hz section, and 7.3ms in the 18–32Hz section (see text for details).
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Example 8: Motor Unit – Tremor Coherence, Phase and Cumulant

The second example considers hybrid data, and examines the relationship between one
of the motor unit discharges from the previous example and a simultaneously recorded
tremor signal. The spectrum of the tremor signal is discussed above in Section 2.2, and
is shown in Fig.2B. Figure4 illustrates the estimated coherence, , phase,

 (T=1024), and cumulant density,  (b=1.0), between the motor unit, N0,
and the tremor, x. The coherence estimate (Fig.4A) has significant values over a broad
range of frequencies, with evidence of two distinct bands which have maximum values
around 6Hz and 22Hz. These correspond to the same frequency bands as the motor unit
correlation, however, the magnitude of this coherence estimate is greater than that be-
tween the two motor units (see Conway et al., 1995b for further discussion). The phase
estimate, Fig.4B, in this example plotted in unrestrained form (see Part 3), has values
which are constantly decreasing, however, the slope is not constant over the broad fre-
quency range where the coherence is significant. Thus the pure delay model is not ap-
propriate to explain this phase curve. The dominant feature in the hybrid cumulant den-

Fig. 4. Correlation between a single motor unit and a tremor acceleration signal. Estimate of (A)
coherence, , (B) phase, , and (C) cumulant density, ×104, between one of
the motor units illustrated in Figs. 1, 3 and a simultaneously recorded tremor acceleration signal.
The horizontal dashed line in (A) gives the estimated upper 95% confidence limit based on the
assumption of independence. The phase estimate in (B) is plotted in unrestrained form. The hor-
izontal lines in (C) are the asymptotic value (dashed line at zero) and estimated upper and lower
95% confidence limits, based on the assumption of independence. The motor unit spectrum is il-
lustrated in Fig.2A, the tremor spectrum is shown in Fig.2B.
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sity estimate (Fig.4C) is the large peak just after time zero, with a maximum around +17
ms. As discussed above, this cumulant can be interpreted as a spike triggered average,
and provides an estimate of the acceleration response to motor unit impulses. It has a
general form like a damped oscillation. A regression analysis on the part of the phase
curve where the slope does pass through zero, from 11Hz to 47Hz, gives a delay of
17.9±0.7ms, which matches well the peak value in the cumulant. An alternative interpre-
tation of a similar data set, based on linear systems analysis, is described in Halliday et
al. (1995a).

Example 9: EMG - EEG Correlation

The third example studies the correlation between two time series, namely the EEG and
surface EMG signals whose auto-spectra are illustrated in Fig.2E and 2F (see Part 1 and
Halliday et al., 1998 for a description of the experimental protocol). Figure5 illustrates
the coherence, , phase,  (T=1024) and cumulant density,  (b=
1.0), estimates between the EEG signal, x, and rectified surface EMG signal, y. The jus-
tification for using rectified surface EMG (without any smoothing) is that it reduces the
components in the finite Fourier transform (26) which are due to the shape of individual
muscle action potentials, while retaining information related to their spacing. This is
further discussed in Halliday et al. (1995a). 

In constructing the coherence and phase estimates shown in Fig.5, the auto- and
cross-spectral estimates have been further smoothed using a Hanning filter. This in-
volves a weighted average of adjacent values in the frequency domain. If we denote the
cross-spectral estimate between x and y with Hanning as , at frequency λj, this
is obtained from the original estimate, based on (29),  as

(52)

This procedure applies a moving average with weights 1/4, 1/2, 1/4 to obtain the
smoothed spectral estimates, which are then used to form coherence and phase esti-
mates as described in Part 2. The use of smoothing invalidates the expressions for con-
fidence limits given above. Confidence limits indicate the expected degree of variability
in spectral estimates, any additional smoothing will reduce the variability, resulting in
smaller confidence limits. Hanning can be considered as a specific case of a generalised
weighting scheme which can be written as

where T is the segment length in the finite Fourier transform, and wk; k= 0, ±1, ±2,…,
±m are the weights. It is customary for the weights to satisfy the condition: .
The correction to the variance of the spectral estimate is given by the factor (Brillinger,
1981)

(53)

The variance of the log transform of the auto-spectral estimate constructed from L dis-
joint sections with Hanning is then given by 
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For Hanning , which results in 95% confidence intervals for auto-spectral
estimates of . For coherence estimates the correction for further smoothing
results in the expression 

(54)

for the upper 95% confidence limit based on the assumption of independent processes.
The process of applying Hanning to spectral estimates based on (29) results in reduced
variability, however, this is achieved at a cost of increased spectral bandwidth, fine
structure in spectra is smoothed out by Hanning. Although the spectra are defined at
the same Fourier frequencies, , the effective spectral bandwidth of param-
eter estimates will be increased by the additional smoothing. In the present situation
where weak correlation exists over a range of frequencies, application of Hanning re-
sults in smoother coherence and phase estimates, which better define the correlation

Fig. 5. Correlation between EEG and EMG during a maintained contraction. Estimate of (A) coher-
ence, , (B) phase, , and (C) cumulant density, ×104, between a bipolar EEG
recorded over the sensorimotor cortex and a surface EMG from the wrist portion of the extensor
digitorum muscle. Surface EMG was full wave rectified (without time constant) before processing.
Coherence and phase estimates are further smoothed with a Hanning window before plotting.
The horizontal dashed line in (A) gives the estimated upper 95% confidence limit based on the
assumption of independence. The phase estimate in (B) has two sections, plotted where the co-
herence estimate is significant, 8–12Hz and 16–40Hz. The horizontal lines in (C) are the asymp-
totic value (dashed line at zero) and estimated upper and lower 95% confidence limits, based on
the assumption of independence. The EMG spectrum is illustrated in Fig.2E, the EEG spectrum
is shown in Fig.2F.
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18 Time and Frequency Domain Analysis of Spike Train and Time Series Data 525

structure between EEG and EMG. The cumulant density is estimated from the original
cross-spectral estimate, , without the use of Hanning.

The coherence estimate (Fig.5A) is significant over the range 15 to 40Hz, with a
smaller peak at 10 Hz. The maximum value of the coherence is around 0.08, which indi-
cates weak coupling. The phase curve has two distinct sections, plotted where the co-
herence is significant, from 8 to 12Hz and from 16 to 40Hz. The cumulant has an oscil-
latory structure, with three clear positive peaks separate by 40ms. This corresponds to
a frequency of 25Hz, agreeing with the coherence estimate. The cumulant has a promi-
nent dip around time zero (minimum at +2ms), this can be interpreted as indicating
synchronous activity between the two signals. The negative value of the cumulant
around time zero indicates the signals are out of phase. The phase curve (Fig.5B) fluc-
tuates around ±π radians, providing further evidence in favor of this interpretation.
However, the phase section from 20 to 28Hz has a constant slope that passes through the
origin when extrapolated. A weighted regression analysis (see Appendix in Rosenberg
et al., 1989) on this section gives a phase lead of 18.5±0.35ms. In the estimate ,
the EEG, x, is the reference signal, this leads to an alternative interpretation of EMG
leading EEG by around 18.5ms over the frequency range 20–28Hz. This latency matches
the peak in the cumulant at −19ms. This latter interpretation only explains the timing
relationship between EEG and EMG over part of the frequency range at which they are
correlated. A more detailed discussion of the coupling between cortical activity and mo-
tor unit firing in humans can be found in Conway et al. (1995a) and Halliday et al.
(1998). This example illustrates the problems associated with interpretation of a com-
plex correlation structure between two signals.

Example 10: EMG - EMG Correlation

The fourth example considers the interaction between two surface EMGs recorded from
different muscles. The study of activation and control of co-contracting muscle groups
involved in a common motor task is often referred to as the study of muscle synergy (for
a review see Hepp-Raymond et al. 1996). One mechanism thought to be responsible for
such muscle synergy is the presence of shared drive to the different motoneuron pools
(Gibbs et al. 1995). This process can be studied experimentally by examining the cross-
correlation between EMG signals recorded from the different muscles. The presence of
a peak around time zero in the cross-correlation histogram is taken to reflect the pres-
ence of a common excitatory drive to both motoneuron pools (Gibbs et al. 1995). This
example considers the question of muscle synergy in terms of common frequency com-
ponents present in surface EMG records recorded from Abductor Digiti Minimi (ADM)
and the Extensor Digitorum muscle during a postural task involving maintained wrist
extension with fingers spread apart (Conway et al. 1998). The analysis of the two surface
EMG signals is illustrated in Fig.6, the data consists of four 61second records combined
to give a total of 264seconds of data (R=264,000; T=1024; L=256). Both EMG signals
were full wave rectified, without any time constant, before analysis. The log plots of the
two spectral estimates,  and , are shown in Fig.6A and 6B. The ADM spec-
trum (Fig.6A) has a broad peak from 12 to 25Hz, the wrist extensor EMG spectrum is
dominated by a sharp peak at 10Hz. The coherence estimate (Fig.6C) exhibits signifi-
cant correlation in the range 18–26Hz, with maximum values around 23Hz. The phase
estimate (Fig.6D) over this frequency range exhibits a phase lead, with constant slope,
for which the weighted regression scheme (Rosenberg et al., 1989) gives a time lead of
8.5±0.98ms. The estimated cumulant (Fig.6E) has a peak centered about −10ms, and
additional peaks around 45ms on either side of this central peak. Both coherence and
cumulant density estimates indicate a rhythmic correlation structure between the two
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EMG signals during the maintained contraction, suggesting that muscle synergy is in
part generated by common rhythmic synaptic drive to different motor pools (Conway
et al., 1998). Gibbs et al. (1995) studied correlation between EMG signals by applying a
constant threshold to each EMG signal, and using a cross-correlation histogram analy-
sis to characterize the correlation between the two sequences of spike trains generated
by this thresholding of the EMG signals. This approach requires the choice of a suitable
threshold. The analysis in Fig.6 illustrates an alternative approach, which treats the rec-
tified surface EMGs as time series.

Fig. 6. Correlation between two different EMG signals during a maintained postural task. Log plot
of estimated power spectra of surface EMG recorded from (A) abductor digiti minimi (ADM), and
(B) wrist portion of the extensor digitorum (ED) muscle. Estimated (C) coherence, , (D)
phase, , and (E) cumulant density, ×104, between the two EMG signals. Surface
EMGs were full wave rectified (without time constant) before processing. Solid vertical lines at the
top right in (A, B) give the estimated magnitude of a 95% confidence interval for these spectral
estimates. The horizontal dashed line in (C) gives the estimated upper 95% confidence limit based
on the assumption of independence. The dotted line through the phase estimate is the theoretical
phase curve for a time lead of 8.5ms. The horizontal lines in (E) are the asymptotic value (dashed
line at zero) and estimated upper and lower 95% confidence limits, based on the assumption of
independence.
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Part 4: Multivariate Analysis

The above methods can be extended to examine the correlation structure between sev-
eral simultaneously recorded signals. This is called a multivariate analysis, and is equiv-
alent tomultivariate regression analysis, except that parameters are estimated at each
frequency of interest.

Two related questions which can be addressed by such analysis are 1) whether the
correlation between two signals results from the common (linear) influence of a third
signal, and 2) whether a third signal is capable of predicting the correlation between two
signals. Both these questions can be addressed by estimating the partial coherence, par-
tial phase and partial cumulant density which characterize the correlation between the
two original signals after removing the common linear effects of the third (predictor)
signal from each. This multivariate analysis can be performed on any combination of
point process and/or time series data (Halliday et al., 1995a).

Partial Spectra

The starting point for the multivariate analysis are the estimates of second order spectra
described in Part 2, with the requirement of three simultaneously recorded signals and
spectral estimates which have been estimated with the same segment length, T. For ex-
ample, to estimate the partial correlation between point process N0 and time series x,
with time series y as predictor, we start by defining partial spectra, estimates of which
are then used to construct estimates of the other partial parameters. The partial cross-
spectrum between N0 and x, with y as predictor, is defined as (Brillinger, 1981)

(55)

The partial auto-spectra, , is defined as 

(56)

The other partial auto-spectrum, , is defined in a similar manner. These partial
spectra can be used to estimate the first order partial coherence between N0 and x, with
y as predictor, denoted by , as

(57)

This equation has a similar form to that for the ordinary coherence function, (37). The
corresponding first order partial phase is defined as

(58)

This function provides information about the timing relation of any residual coupling
between N0 and x after the removal of the common effects of process y. Partial coher-
ence functions, like ordinary coherence functions, are bounded measures of associa-
tion, with values between 0 and 1 (Brillinger, 1975, 1981; Rosenberg et al., 1989; Halliday
et al., 1995a).
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The above partial parameters can be estimated by substitution of estimates of the ap-
propriate spectra, for example, the first order partial cross-spectrum in (55) can be es-
timated by:

(59)

with the necessary second order spectra obtained from (29). The partial coherence and
phase can then be estimated using direct substitution as in Part 2. The setting of confi-
dence limits for estimates of the partial coherence (57), based on the assumption of in-
dependence, is similar to that for ordinary coherence functions, with a correction for
the number of predictors used. For the case of 1 predictor, as in (57), the upper 95%
confidence limit is estimated as the constant value  (Halliday et al.,
1995a). The setting of confidence limits about the estimated partial coherence involves
the same procedures as ordinary coherence estimates, see Halliday et al. (1995a) for de-
tails.

The most convenient manner to estimate partial cumulant density functions is to use
the inverse Fourier transform of the appropriate partial cross-spectrum. For the above
three processes, this is denoted as , which can be estimated as

(60)

where λj=2πj/T are the Fourier frequencies, and b the bin width (b≥1.0). Expression (60)
is similar to (44). This function provides a measure of any residual dependency between
processes N0 and x, as a function of time, after removal of any common linear influence
of process y. Expressions (45) to (47) can be used to determine a confidence limit for this
estimate, under the assumptions of independence (see discussion in Halliday et al.,
1995a). Equation (22) can be used for partial cumulant density estimates which involve
the correlation between two point processes.

An alternative definition of the first order partial coherence, , as the mag-
nitude squared of the correlation between the finite Fourier transforms of N0 and x, af-
ter removal of the effects of process y from each, may be written (suppressing the de-
pendencies on λ) as (Brillinger, 1975, 1981; Rosenberg et al., 1989; Halliday et al., 1995a)

(61)

Expansion of this expression in a similar manner to (36) leads to equation (57). The two
terms  and  represent the regression coefficients which give the op-
timum linear prediction of  and , respectively, in terms of . Estimates of

 test the hypothesis that the coupling between N0 and x can be predicted by
process y, in which case the parameter will have the value zero.

The partial coherence defined in (57) and (61) is a first order partial coherence,
which examines the correlation between two signals after removing the common effects
of a single predictor. This framework can be extended to define and estimate partial co-
herence functions of any order. Full details, including estimation procedures and the
setting of confidence limits can be found in Halliday et al. (1995a).
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Results

Example 11: Partial Coherence and Cumulant

As an example of partial parameters we consider the motor unit correlation in Fig.1,
with the inclusion of the simultaneous recording of finger tremor. The hypothesis we
wish to test is whether the tremor signal is a useful predictor of motor unit synchroni-
zation. This represents a multivariate analysis of the correlation between motor units N0
and N1 with the tremor, x, as predictor, leading to consideration of the partial coherence

. The spectrum of one motor unit and the tremor are shown in Fig.2A and 2B.
The correlation between the two motor units is illustrated in Fig.3, and between one
motor unit and the tremor in Fig. 4. Shown in Fig.7 are the partial coherence estimate

 and partial cumulant density estimate . The partial coherence esti-
mate (Fig. 7A), when compared with the ordinary coherence estimate (Fig.3A), has al-
most no significant features, apart from peaks at 1Hz and 24Hz, indicating that the
above hypothesis (that physiological tremor can predict motor unit correlation) is
largely correct. The partial cumulant (Fig.7B) has a greatly reduced central peak com-
pared to the ordinary cumulant (Fig.1D) and no clear sidebands. The partial phase es-
timate is not illustrated since it is only valid at 1Hz and 24Hz. This example illustrates
the usefulness of a multivariate framework in testing hypotheses relating to the depend-
ency between different signals, since we can now state conclusively that, for this data set,
physiological tremor is a good predictor of motor unit synchronization.

Multiple Coherence

A second question which can be answered within a multivariate framework is the as-
sessment of the dependence of one signal upon two or more different signals. Such a
question leads to consideration of multiple coherence functions. For example, the mul-
tiple coherence function which assesses the strength of dependence of a time series x on
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Fig. 7. Partial correlation analysis. Estimated (A) partial coherence, , and (B) partial cu-
mulant density, ×104, between two motor units using a tremor signal as predictor. The
horizontal dashed line in (A) gives the estimated upper 95% confidence limit based on the as-
sumption of independence. The horizontal lines in (B) are the asymptotic value (dashed line at
zero) and estimated upper and lower 95% confidence limits, based on the assumption of inde-
pendence. The partial coherence should be compared with the ordinary coherence estimate in
Fig.3A, and the partial cumulant estimate should be compared with the ordinary cumulant esti-
mate in Fig.1D for the same motor unit pair.
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two point processes N0 and N1 is denoted by . This can be defined in terms of
ordinary coherence and partial coherence functions between the three signals as

(62)

This function can be estimated by substituting estimates of coherence and partial co-
herence functions into the above equation. An example of the application of multiple
coherence analysis can be found in Halliday et al. (1995a). Multiple coherence functions,
like other coherence functions, are bounded measures of association with values be-
tween 0 and 1. They can also be defined for more than two predictors, the derivation and
estimation procedures for such higher order multiple coherence functions is given in
Halliday et al. (1995a), along with procedures for the setting of a confidence limit, based
on the assumption of independence.

Comments

Multivariate parameters greatly extend the range of questions which can be addressed.
In many experimental protocols designed to examine the relationship between two var-
iables, it may not be possible (or desirable) to control other variables which influence
the relationship between the two variables. In such cases, and where it is possible to
record the other variables, partial parameters can be used to characterize the interde-
pendence between all the variables, and to distinguish common effects from a direct re-
lationship.

The derivation and estimation of partial parameters directly in the time domain de-
pends on the types of data and requires more complex procedures. However, the Fourier
based framework allows partial cumulant estimates to be constructed using identical
methods to those for construction of ordinary cumulant density functions (see equa-
tions (44) and (60)). Partial cumulant density estimates can be compared with the orig-
inal cumulant to provide a description of any residual coupling as a function of time.

Partial coherence estimates can only be interpreted conclusively when the partial co-
herence estimate exhibits a complete reduction of the coupling present in the ordinary
coherence estimate (as in Fig.7). Care should be exercised in the interpretation of a par-
tial coherence estimate which exhibits only a part reduction in magnitude when com-
pared with the original ordinary coherence estimate. A part reduction in magnitude can
have several explanations:
– the predictor signal can only predict part of the correlation, other (unobserved) ef-

fects could exert a common influence on the two signals,
– there could be a direct causal relationship between the two signals which is inde-

pendent of the effects of the predictor signal, or
– the predictor could influence the two variables in a non-linear manner (see Appendix

in Rosenberg et al., 1998).

Rosenberg et al. (1989, 1998) discuss in detail the use of partial parameters to identify
patterns of neuronal connectivity.

Part 5: Extended Coherence Analysis – Pooled Spectra and Pooled Coherence

The previous section dealt with a description of the correlation between many simulta-
neously observed signals, or dependent data. This section deals with independent data,
and describes a technique which can be used to characterize a number of independent
coherence estimates, the aim of which is to obtain a single measure of correlation which
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is representative of the correlation between signals across a number of independent
pairs of signals. The derivation below is valid for point process and/or time series data
which satisfy the assumptions of weak stationarity, and the mixing condition discussed
above. It is further assumed that all the original coherence estimates have been obtained
from independent data sets, for example from repeat trials, or from observations across
a number of subjects.

In the following definition it is assumed we are considering k independent pairs of
processes, with each pair denoted by (ai , bi : i=1,…,k), and that Li is the number of disjoint
sections used to estimate the second order spectra for the ith pair of processes. The proc-
esses a and b can represent any combination of point process and/or time series data. The
pooled coherence estimate which summarizes the correlation across the k pairs of process-
es is obtained by a weighted average of the individual spectra as (Amjad et al., 1997)

(63)

In equation (63)  denotes an estimate of the second order spectrum , es-
timated from Li disjoint sections, according to (29). The above derivation requires that
all second order spectral estimates have been estimated with the same number of points
in the finite Fourier transforms (24) and (26). Pooled coherence estimates, like ordinary
coherence estimates, have values between 0 and 1. The upper 95% confidence limit for
the estimate (63), based on the assumption of independence between the k pairs of proc-
esses, is (Amjad et al., 1997)

(64)

where ΣLi is the total number of segments in the pooled coherence estimate. Estimated
values of pooled coherence below this level at a particular frequency, λ, can be interpret-
ed as evidence that, on average, no coupling occurs between the k pairs (ai, bi) at that
frequency.

It is also possible to use the individual terms in expression (63) to obtain estimates of
pooled spectra, which requires a correction factor of 

to obtain the correct value for the two pooled auto-spectral estimates and the pooled cross-
spectral estimate. Thus, the complex valued pooled cross-spectrum can be estimated as

(65)

This can be used to obtain a pooled phase estimate, and a pooled cumulant density esti-
mate (via an inverse Fourier transform) using methods similar to those described in
Part 3. Pooled cumulant density functions provide a single time domain measure of as-
sociation which can be used to summarize the correlation between many different pairs
of processes. For further details see Amjad et al. (1997) and Halliday et al. (1995a).
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Example 12: Pooled Coherence, Phase and Cumulant

Figure8 illustrates an example of the application of pooled coherence to a large data set
consisting of 190 individual records of motor unit pairs recorded from the third finger
portion of EDC in a total of 13 healthy adult subjects during maintained postural con-
tractions (see Conway et al., 1995b, Halliday et al., 1995a for details of experimental pro-
tocol). The average record duration is 89seconds, range: 20 to 180 seconds. The pooled
coherence, pooled phase and pooled cumulant estimates are shown in Fig.8, construct-
ed from a total of 16,384 segments (T=1024), equivalent to 279.6minutes of data. Before
estimating the pooled parameters, the original motor unit data underwent a temporal
alignment procedure, such that the peak in individual cumulant density estimates al-
ways occurred at time zero, see Amjad et al. (1997) for further discussion of this proce-
dure. The interpretation of these parameter estimates is similar to the ordinary coher-
ence, phase, and cumulant density estimates shown previously, except that now we are
dealing with the population behavior. The coherence estimate has two clearly defined
bands, a low frequency band from 1–10Hz, and a higher frequency band centered
around 25Hz. The magnitude of the estimate is very small, with maxima of 0.035 and

Fig. 8. Extended coherence analysis. Estimate of (A) pooled coherence, , (B) pooled
phase, , and (C) pooled cumulant density, ×104, for a population consisting of 190
separate records from motor unit pairs in EDC. The horizontal dashed line in (A) gives the esti-
mated upper 95% confidence limit based on the assumption of independence. The horizontal
lines in (C) are the asymptotic value (dashed line at zero) and estimated upper and lower 95% con-
fidence limits, based on the assumption of independence.
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0.016 in these frequency bands. The large quantity of data used to construct this esti-
mate results in greatly reduced standard errors, which allows the weak coupling present
to be more accurately specified than is possible for a single example. The estimated
pooled phase is constant at zero radians, this reflects the results of the temporal align-
ment process. The estimated pooled cumulant has a clearly defined time course, with
the central peak and sidebands well defined.

Comments

Pooled coherence analysis is useful to summarize a large data set, as in the above exam-
ple. The more traditional approach is to select and present a “typical” example from the
data set. However, the presentation of selected examples from a larger data set can often
lead to misleading conclusions, by emphasizing features not typical of the population as
a whole (see discussion in Fetz, 1992).

The framework for pooled coherence in Amjad et al. (1997) also includes a statistical
test to determine if the coherence estimates in the pooled estimate can be considered to
have the same magnitude at each frequency. This test provides a rigorous means of ex-
amining task-dependency in a set of coherence estimates. Amjad et al. (1997) illustrate
the application of this test to investigate the relationship between a single motor unit
and physiological tremor during altered inertial loading. In situations where the test for
equal coherence estimates is violated, as in the above data (not shown), pooled coher-
ence can still provide a single representative measure which summarizes the coherence
structure within a larger data set.

Part 6: A Maximum Likelihood Approach to Neuronal Interactions

The Fourier based methods described in the previous sections provide a framework for
analysis of spike train and/or time series data. However, they are non-parametric meth-
ods, since they do not provide estimates of parameters which have a direct neurophysi-
ological interpretation. In this section we describe an alternative parametric time do-
main approach to analysis of neuronal interactions based on a conceptual neuron model
which describes the relationship between input and output spike trains. Parameters of
the model are estimated in the time domain using likelihood methods. Such an ap-
proach is commonly used in statistics to provide a model based description of data.
Brillinger (1988a,b) describes a maximum likelihood approach to the analysis of neuro-
nal interactions based on an “integrate to threshold and fire” model (cf. Chapter 21).
This is a threshold based model which incorporates the linear summation of effects due
to pre-synaptic input spikes with a recovery process, which, among other things, repre-
sents intrinsic properties of the neuron after firing an output spike. When the additive
effects of the summation and recovery processes exceed threshold, the neuron will fire
an action potential. An expression for the probability or likelihood of the observed out-
put spike train is constructed in terms of a threshold-crossing probability. The argu-
ments of this probability function depend on summation, recovery, and threshold func-
tions. Maximum likelihood is used to estimate the parameters characterizing these
functions. Breeze et al. (1994) and Emhemmed (1995) give several examples of the ap-
plication of maximum likelihood to both model generated and experimental data.

The first step in the likelihood method is the construction of a probability model for
the output spike train. We assume orderly spike train data (see Part 1), which allows
spike trains to be represented as a 0–1 time series, and a standard binomial probability
model to be set up for the output spike train, except that the probability of a spike oc-
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curring at time t is not constant, but will depend on t. If we let Nt denote a spike train
and ∆ a small time interval, then at time t

(66)

for . If Ht represents the history (or times of occurrence of spikes)
of Nt up to and including t, then the conditional probability of a spike occurring at time
t may be written as 

(67)

and the likelihood, , of observing a particular spike train N t is given as (Brill-
inger 1988a,b; Emhemmed, 1995)

(68)

where  represents the set of parameters to be estimated.
Using likelihood procedures requires a model for Pt in terms of parameters that are

thought to influence Nt. Following Brillinger (1988a,b) we construct a model which con-
sists of a summation function, which describes the effects of individual input spikes, a
recovery function, which accounts for refractoriness and spontaneous firing, and a ran-
dom threshold function. When the combined action of the summation and recovery
functions exceeds threshold, the neuron discharges an action potential and is reset to a
resting level. If we denote the summation function as a(u), the effects of an input spike
train, , can be modelled as a linear summation over the time of occurrence of all
input spikes since the last output spike as 

(69)

where  denotes the time elapsed since the previous output spike. This equation is a
linear summation of au over the times of occurrence of spikes, Mt, during the interval,

, since the last output spike. This approach may be extended to include non-linear
terms (Brillinger, 1988b), continuous (time series) inputs (Brillinger, 1988b), or a com-
bination of time series and spike train inputs (Emhemmed, 1995).

The recovery function is modelled as a polynomial of the time elapsed since the last
output spike, which can be written as 

(70)

where γt is the time since the last output spike, and θv, v=1,…k, are the parameters to be
estimated. The recovery function on its own can be used to model the spontaneous dis-
charge of a neuron.

The threshold is assumed to be either constant, , or to decay exponentially from a
constant value following an output spike, which requires two extra parameters: a mag-
nitude µ, and a time constant λ. It includes a noise term, ε(t), to account for contribu-
tions from unobserved inputs which also influence the neuron. The threshold can be
written as

(71)

An output spike will occur when the value of the summation function and the recovery
function exceed threshold.
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A linear function which compares the sum of the summation and recovery functions
with the threshold function, referred to as the linear predictor, and denoted by , can
now be constructed by combining (69), (70) and (71) to give

(72)

A natural way to meet the requirement that the probability model for the occurrence of
a spike remains between zero and one is to apply a transformation to Zt. The function
used to transform Zt is referred to as a link function (McCullagh and Nelder, 1992). Brill-
inger (1988ab) proposes the standard cumulative normal, , as a link function, other
suitable link functions are discussed in (Emhemmed, 1995). Using the standard cumu-
lative normal the conditional probability, , becomes

(73)

and the corresponding likelihood function (68) is

(74)

The set of parameters to be estimated is . Maximum likelihood
estimates these parameters to maximise the value of the likelihood function. This pro-
cedure may be carried out using the statistical package GENSTAT, which also provides
standard errors for all of the estimated parameters. Emhemmed (1995) describes set-
ting up a GENSTAT program for this analysis. An alternative implementation using the
statistical package GLIM to investigate the relationship between three interconnected
neurons is described in Brillinger (1988a).

An important aspect is assessing the goodness of fit of the likelihood model based on
the binomial distribution. Brillinger (1988a,b) discusses a procedure for assessing the
goodness of fit by comparing the estimated probability of occurrence of a spike in the
modelled spike train with the theoretical probability. This procedure is based on a visual
comparison between the estimated probability of occurrence of a spike in the modelled
spike train with the theoretical probability when both are plotted against selected values
of the linear predictor, Zt.

Results

We illustrate the application of the likelihood method with two examples, based on anal-
ysis of data derived from a conductance based neuron model (Getting, 1989, Halliday,
1995), where transmembrane ionic currents are assumed to flow through channels with
a linear instantaneous current voltage relationship obeying Ohm’s law (Hille, 1984). The
present simulations are based on point neuron models, where the intracellular mem-
brane potential for each cell is given by the equation (Getting, 1989)

(75)

where Vm represents the membrane potential at time t and Cm is the cell capacitance.
Ileak(Vm) is the passive leakage current, Ij

syn(Vm,t) is the current due to the jth pre-syn-
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aptic spike, with the summation over the total number of pre-synaptic spikes, denoted
by n. The afterhyperpolarization (AHP) current due to the ith post-synaptic spike is
Ii

ahp(Vm,t), with the summation over the total number of post-synaptic spikes, denoted
by k. Iext(t) is a time dependent external current applied to the cell which is used to sim-
ulate a population of unobserved inputs responsible for spontaneous background fir-
ing. In practice this is achieved by using a non-zero mean normal distribution to simu-
late synaptic noise (Lüscher, 1990).

The cell leakage current is estimated as Ileak(Vm) = (Vm – Vr)/Rm, where Rm is the cell
input resistance. The synaptic current due to a single pre-synaptic spike at time t=0 is
estimated as Isyn(Vm,t) = gsyn(t) (Vm – Vsyn), where gsyn(t) is a time dependent conduct-
ance change associated with the opening of ionic channels following neurotransmitter
release, and Vsyn is the equilibrium potential for this ionic current. The AHP current
due to a single post-synaptic spike at time t=0 is estimated as Iahp(Vm,t) = gahp(t) (Vm –
Vahp), where gahp(t) is a time dependent conductance change, and Vahp is the equilibri-
um potential. Expressions for gsyn(t) and gahp(t) are given below. Each pre-synaptic in-
put spike activates one extra term in the summation over n in equation 75, which lasts
for the duration of the gsyn(t) for that input. Similarly, each post-synaptic spike activates
one extra term in the summation over k in equation 75, which lasts for the duration of
the gahp(t) for that cell.

The voltage Vm is compared with a threshold voltage, Vth, at each time step to deter-
mine if an action potential has occurred. A time varying threshold is incorporated into
the simulation, this allows point neuron simulations to duplicate a wide range of repet-
itive firing characteristics (Getting, 1989). The threshold is specified by three variables,
the asymptotic level, , the level to which the threshold is elevated after each output
spike, , and the decay time constant with which the threshold decays to the asymptot-
ic level, .

The selection of simulation parameters is done in the same order, and at each stage
parameters are selected so that the behavior of the simulation matches experimental ob-
servations for the type of cell being simulated. First passive parameters are selected,
then cell membrane/input resistance, Rm, and time constant τm, are chosen, where τm =
Rm Cm. This determines the cell capacitance, Cm. The cell resting potential, Vr, and
threshold parameters, ,  and , are chosen. These determine the rheobase cur-
rent required for repetitive firing of the cell. The time course of the AHP can be adjusted
under constant current stimulus by altering the conductance function gahp(t). The char-
acteristics of a single excitatory post synaptic potential (EPSP), or a single inhibitory
post synaptic potential (IPSP) from rest can be adjusted by altering the conductance
gsyn(t), and the equilibrium potential Vsyn. The resulting EPSP or IPSP can be charac-
terized by rise time, half width and magnitude. EPSP and IPSP conductances are mod-
elled by an alpha function: gsyn(t) =A (t/τa) exp(–t/τa), (Rall, 1967) requiring the choice
of a scaling factor, A, and a time constant, τa. Once these have been determined, the fir-
ing rates for pre-synaptic inputs have to be chosen. Selecting an appropriate mean firing
rate for the input, along with any applied external current, Iext(t), determines the mean
output firing rate of the simulation, and can be adjusted to give the desired output rate
for each cell.

Example 13: Motoneuron

The first example is based on a class of cells which have been widely studied, namely
motoneurons. The first simulated data set was derived from a simulation using passive
parameters within the range of values quoted in Rall (1977) for experimental studies on
spinal motoneurons, with Rm=5 MΩ, τm=5ms, Cm= 1µF, and a resting potential of Vr=

θ
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τ θ
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–70mV. The AHP conductance used a simplified version of the three-term model pro-
posed by Baldissera and Gustafsson (1974) for observed AHP time courses in cat lumbar
motoneurons, based on an exponential conductance function gahp(t) = A exp(–t/τa),
with τa=14ms, and A=1.0e–08, with Vahp=–75mV. The threshold parameters were θ∞=
–65mV, θ0=–55mV, and τθ=20ms. In this example, no synaptic noise was applied, the
output discharge was entirely due to the single pre-synaptic input, which was activated
by a random, or Poisson, spike train with a mean firing rate of 50 spikes/s. The EPSP
conductance values were τa=2ms, and A=1.1e–08, with Vsyn=0.0mV. The EPSP parame-
ters for a single conductance activated from rest are a rise time (10%–90%) of Tr=3.1ms,
a half width of Thw=9.8ms, and a magnitude of 10.62mV. These values are outside the
upper limits of 2.1ms, 7.7ms and 0.54 mV reported for the same parameters measured
using spike triggered averaging of single fibre Ia connections to cat spinal motoneurons
(Cope et al., 1987), but were necessary, however, to obtain repetitive firing with only a
single pre-synaptic input. The EPSP magnitude and duration during repetitive firing
are reduced due to the shunting action of the large AHP conductance. The simulation
was used to generate 60seconds of data at 1ms sampling intervals with these parame-
ters, in total 2416 output spikes were obtained, a mean rate of 40.3 spikes/s.

Illustrated in Fig.9A is the estimated cumulant density, , see equation (16), be-
tween the input and output spike trains. This estimate suggests individual inputs have
an excitatory effect on the output discharge, the duration of which is about 4ms. There
is a subsequent dip in the estimated cumulant which is outside the lower 95% confi-
dence limit, however, this feature can be interpreted to reflect the mapping to the cumu-
lant density of structure in the auto-correlation of the output discharge (Moore et al.,
1970). In contrast, the likelihood approach separates out these two effects. The estimat-
ed summation function, Fig.9C, which we denote by , has significant values for lags
up to 7ms, suggesting that the duration of the excitatory effect for a single input lasts
about 7ms. The recovery function used a third order polynomial, k=3 in equation (70),
however, using a threshold with an exponential term results in values of θ2 and θ3 which
were not significant, and can be neglected, resulting in a first order recovery function
with constant slope. The difference between the estimated recovery and threshold func-
tions (Fig.9E) indicates that the probability of an output spike is small up to about 15ms
after an output spike, after which they converge more rapidly, indicating an increase in
firing probability. The features of the summation, recovery, and threshold function cor-
respond well with the structure of the simulated motoneuron, in which the half width of
a single excitatory postsynaptic potential was 9.8ms, and the mean rate of the output
spike train was 40 spikes/s.

Example 14: Invertebrate Neuron

In the second example the simulated neuron is based on studies of small networks re-
sponsible for rhythmic pattern generation in invertebrates (Getting, 1989). The simula-
tion was set up with parameters Rm=12.5 MΩ, τm=50ms, giving Cm=4µF, and a resting
potential of Vr=–60mV. The threshold parameters were θ∞=–45mV, θ0=–35mV, and
τθ=10ms. Synaptic noise was simulated by an applied Iext(t) with a mean value of 2.9nA,
and a standard deviation of 1.7nA. In this example an inhibitory input was applied, with
conductance parameters of τa=1ms, A=2.2e–07, and Vsyn=–80.0mV. The IPSP parame-
ters for a single conductance activated from rest were Tr=5.7ms, Thw=39.9ms, and a
magnitude of −1.0mV. The input firing rate was set at 50 spikes/s with a random dis-
charge, and in 60seconds the simulation produced 1400 output spikes, 23.3 spikes/s. The
estimated cumulant density, Fig.9B, suggests an inhibitory effect lasting about 8ms fol-
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lowing each input spike, whereas the summation function (Fig.9D) suggests that the in-
hibitory effect lasts for more than 30ms, which corresponds more closely with the 40ms
half width of a single inhibitory post synaptic potential. This example uses a constant
threshold in the likelihood model, the recovery function is fixed at zero for lags up to

Fig. 9. (A) Estimated cumulant density, ×104, between a random excitatory spike train input
and the output discharge for a simulated neurone. (C) Estimated summation function, , and
(E) estimated threshold function (upper traces) and recovery function (lower traces) for the same
data set as in (A). (B) Estimated cumulant density, ×104, between a random inhibitory spike
train input and the output discharge for a simulated neurone. (D) Estimated summation function,

, and (F) estimated threshold function (upper traces) and recovery function (lower traces)
for the same data set as in (B). Horizontal lines in (A, B) indicate the asymptotic value (dashed
line at zero) and estimated upper and lower 95% confidence limits, based on the assumption of
independence. Dotted lines in (C, D) indicate ±1.96 standard error limits plotted around zero.
Dotted lines in (E, F) represent ±1.96 standard error limits for threshold and recovery function
estimates.
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25ms, which is the minimum interspike interval for the output discharge, after this the
recovery function, modelled by a third order polynomial, rises quickly, indicating a rap-
id increase in the probability of firing. In the output discharge there are only 43 intervals
which exceed 60ms.

Comments

These two examples illustrate the application of likelihood methods to describe the in-
put/output relationship for neuronal data. The estimated parameters have a direct neu-
rophysiological interpretation, the summation function matches closely the time course
of individual EPSP and IPSP functions. The estimated recovery and threshold functions
give insight into intrinsic properties and refractory behavior after firing. This is in con-
trast to the non-parametric cross-correlation based estimates where effects due to sin-
gle inputs and intrinsic effects contribute to the time course of the estimated cumulant
density. It is worth pointing out that in both these examples random (Poisson) input se-
quences were used in an attempt to minimise this effect.

The likelihood analysis is based on an “integrate to threshold and fire” model which
incorporates a random threshold, and where output spike times are determined by a
threshold-crossing process. An important assumption in likelihood analysis is that the
underlying model is valid. In this context, the biophysically motivated conductance
based model (Getting, 1989) used to generate the data for the two examples is similar in
form to the conceptual likelihood model. This suggests that the likelihood model will be
useful to investigate a variety of neuronal spike train data. Examples of the application
to experimental data are given in Brillinger (1988a,b) and Emhemmed (1995). The like-
lihood method is flexible, and allows for arbitrary numbers of neurons and neuronal
mechanisms, which can be incorporated by the addition of extra terms in the linear pre-
dictor, equation (72).

Likelihood analysis is computationally more intensive that the Fourier based meth-
ods presented above. However, if the aim of an analysis is to obtain estimates of param-
eters of models which underlie neuronal processes, the likelihood approach may be
more appropriate. An initial analysis using Fourier based techniques can provide guid-
ance in the types of model which should be considered.

Concluding Remarks

In this chapter we have presented a framework for the analysis of neurophysiological da-
ta, which includes both time and frequency domain parameters. The framework relies
on Fourier based estimation methods, which provides a unified framework for the anal-
ysis of both data types encountered in neuroscience (spike train and/or waveform data).
Time domain parameters are closely related to the more traditionally used cross-corre-
lation histogram and spike triggered averaging methodologies. Two extensions of the
Fourier based framework have also been described, which extend the range of questions
which can be addressed. A multivariate framework which can deal with the relationship
between several simultaneously recorded signals was described in Part 4. The extended
coherence analysis described in Part 5 can be used to summarize the correlation struc-
ture within a large number of data sets, and to explore questions of task dependency.
Both these extensions use Fourier estimation methods, however, equivalent time domain
parameters can be obtained by an inverse Fourier transform. In Part 3we stress the com-
plementary nature of time and frequency domain parameters for characterizing the cor-
relation structure between neural signals. Part 6 outlines an alternative parametric time
domain model based approach to characterizing neuronal spike train data.
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Throughout the chapter we have stressed the importance of using confidence limits
on parameter estimates. In most cases the expressions are easy to compute. The use of
confidence limits are an essential part of any statistical analysis, both for dealing with
uncertainty in parameter estimates, and for testing hypothesis. Their use is illustrated
in the examples presented in this chapter, for example in distinguishing between dis-
tinct rhythmic components and chance fluctuations in spectral estimates (see Fig.2),
and in testing the hypothesis that the estimated correlation between two signals exceeds
that expected by chance (Figs. 1, 3, 4, 5, 6, 8). The duration of the individual data sets in
these examples ranges from 89,000 points to 264,000 points. The inferences which can
be made from analysis of these data are a result, in part, of the large numbers of points
in these data sets. Analysis of data sets which consist of a few thousand points, or less,
without the use of confidence limits may lead to misinterpretation of parameter esti-
mates, particularly in situations involving weak correlation, since the uncertainty in pa-
rameter estimates may have a similar order of magnitude as the parameter being esti-
mated. In addition, over-interpretation of apparent fine details in parameter estimates
may also give misleading results without careful use of confidence limits for parameter
estimates. The setting of confidence limits about estimated values of coherence is de-
scribed in Halliday et al. (1995a, Section VI). For time domain parameter estimates the
sampling distribution for parameter estimates is more complex, and are only valid un-
der the restricted condition of independent processes (see Amjad et al. 1997). In apply-
ing these techniques, it is important to distinguish between a parameter and its esti-
mate, all parameter estimates have error and uncertainty, partly due to the problem of
estimation associated with finite quantities of data. The use of raw cross-correlation his-
tograms and raw spike triggered averages should therefore be avoided if possible. It
seems appropriate to quote from one of the first studies to apply the cross-correlation
technique to spike train data (Griffith and Horn, 1963): “… it is essential to have some
idea of what deviations may be regarded as significant …”. 

The above comments are not intended to discourage the potential user. Interpreta-
tion of parameter estimates cannot be done according to a set of pre-defined rules. Con-
fidence limits only provide a guide to interpretation, the user should also be guided by
their knowledge of the system under study. Nonetheless, these techniques do provide a
comprehensive framework for analysis of neurophysiological data (and other types of
signals which meet the assumptions of weak stationarity, mixing condition, and order-
liness for point process data). The multivariate methods in Part 4 are particularly suited
to take advantage of experimental developments involving multi-electrode recording
techniques (cf. Chapter 17). Correlation analysis has underpinned many developments
in neuroscience, and can continue to contribute to many studies which address ques-
tions related to tracing signal pathways, to the relationship between cortical activity,
electromyographic activity and motor output, to studying the relationship between dis-
tant neural groups, and to issues related to information processing in neural circuits,
and other dynamic aspects of neural behavior. The experimental data presented in this
chapter are all from normal subjects, we conclude by commenting that these methods
are equally applicable to clinical studies.

Analysis Software

A software archive is available to perform some of the above analyses. Details of this ar-
chive can be obtained by sending an e-mail request to: gpaa34@udcf.gla.ac.uk.
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