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Single-Trial Multiwavelet Coherence in Application
to Neurophysiological Time Series

John-Stuart Brittain, David M. Halliday*, Bernard A. Conway, and Jens Bo Nielsen

Abstract—A method of single-trial coherence analysis is pre-
sented, through the application of continuous multiwavelets.
Multiwavelets allow the construction of spectra and bivariate sta-
tistics such as coherence within single trials. Spectral estimates are
made consistent through optimal time-frequency localization and
smoothing. The use of multiwavelets is considered along with an
alternative single-trial method prevalent in the literature, with the
focus being on statistical, interpretive and computational aspects.
The multiwavelet approach is shown to possess many desirable
properties, including optimal conditioning, statistical descriptions
and computational efficiency. The methods are then applied to
bivariate surrogate and neurophysiological data for calibration
and comparative study. Neurophysiological data were recorded
intracellularly from two spinal motoneurones innervating the pos-
terior biceps muscle during fictive locomotion in the decerebrated
cat.

Index Terms—Coherence, fictive locomotion, motor studies,
multiwavelet, time-frequency analysis.

I. INTRODUCTION

MANY signals recorded from neurophysiological systems
have proved well suited to coherence analysis [1]–[6].

Coherence provides a normative measure of association be-
tween processes in the frequency domain. Within motor studies
coherence has provided an intuitive measure of common
synaptic input to motor pools [2], [4], [6].

In constructing estimates of bivariate statistics, such as co-
herence, knowledge of both auto-spectra and cross-spectra are
required. A common problem in Fourier (and wavelet) analysis
has been the insufficient number of degrees of freedom to es-
timate both of these quantities within single trials [7]. In order
to estimate coherence it is first necessary to create consistent
spectral representations through the smoothing of periodogram
ordinates via ensemble averaging, or by smoothing in one or
both of the time/frequency domains. An example of single-trial
smoothing is Welch’s time-averaging over short, modified peri-
odograms [8].
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Traditional trial-averaging methods have proved extremely
insightful over the years, most notably as a mean measure for
common synaptic input to motoneurones [2], [4], [9] and cor-
tico-cortical activity [1]. Trial averaging does not by its very na-
ture provide information on trial-varying parameters. Features
which are not aligned in each trial or which are inconsistent be-
tween trials will be suppressed.

Experimental protocols are often heavily influenced by
the analysis methods available. Subsequently, experiments
are often designed to allow statistically reliable results to be
generated, usually through repeat trials. This places severe
restrictions on experimental protocols. Single trial analysis
opens up the prospect of developing more complex protocols,
allowing a wide range of dynamic and inter-related actions to
be considered through more natural kinematics.

Analysis of the frequency content of electrophysiological
signals has long been of interest to scientists and clinicians. For
example in electroencephalography (EEG) the composite time
varying signal is often described in relation to the amplitude
of signal within different frequency bands termed theta (4–8
Hz), alpha (9–12 Hz), beta (13–30 Hz) and gamma ( 30
Hz). It is now common to examine the synchronization be-
tween EEG sites using coherence analysis (for example [1]).
These frequency bands broaden at higher oscillation rates and
may be considered well suited to a variable time-frequency
decomposition [10], such as provided by wavelet analysis.
Although [10] showed that wavelet and Fourier techniques
may be considered equivalent under certain conditions, one
clear distinction is that the Fourier transform [as computed by
the fast Fourier transform (FFT)] naturally decomposes using
a fixed bandwidth, while the wavelet transform decomposes
using a frequency-dependent bandwidth.

Given a frequency banding scheme that appears logarithmic
in nature, such as seems prevalent in many electrophysiological
signals, the short-time Fourier transform (STFT) may be consid-
ered inappropriate and inaccurate as it imposes a fixed response
interval onto the analysis—all frequencies bands are analysed
using a fixed length time-window [11]. The wavelet transform
implements a time-window that varies with the frequency band
under consideration and is, thus, much better suited to signals
which possess variable bandwidth parameters [11].

In the wavelet literature, the squared magnitude of the
wavelet transform is often referred to as the wavelet power
spectrum. Drawing comparisons with Fourier analysis it is
apparent that such a quantity is in fact analogous to the peri-
odogram [12]. In order to generate a reliable estimate of the
spectrum it is necessary to smooth this “wavelet-periodogram”
either by ensemble averaging or locally in the time/frequency
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plane. Wavelet methods have already proved suitable for en-
semble-averaging, where relative time dependence may be
examined across trials [13], [14].

Single-trial wavelet coherence was considered in [11],
where it was not immediately apparent how the smoothing
process should be performed. Since the paper’s publication
several methods have been proposed which include explicit
smoothing via a scale-dependent 2-D smoothing operator [15],
smoothing in one or both of the time/frequency domains [12]
and a time-averaging method based on Welch’s overlapping
segments [16].

We now introduce a method of determining bivariate
time-dependent statistics within single trials, via multiwavelet
analysis. Multiwavelet analysis is based on concepts at the
heart of Thomson’s multitaper method [17], extended to the
affine time-scale plane. The foundations for multiwavelet anal-
ysis have been developed in recent years (most notably [18]),
finding application in a number of disciplines [19]–[21]. A
multiwavelet framework for the practical estimation of bivariate
time-dependent statistics within single trials is now presented.

Existing methods for the estimation of single-trial wavelet co-
herence [11], [12], [16] all make use of some form of explicit
scale-dependent smoothing over the wavelet periodogram. Mul-
tiwavelet methods make use of implicit smoothing through the
application of several orthogonal wavelet functions. This ap-
proach has important practical advantages with regards to com-
putation and the subsequent interpretation of results (see Section
IV).

Due to the similar approach employed by the three explicit
smoothing methods described above, only one will be discussed
further as part of a comparative study with multiwavelets. We
make use of the method described in [15] due to its intuitive
construction and precedence in the current literature [15], [22],
[23].

In this paper, the method of multiwavelet analysis is consid-
ered within a bivariate spectral framework. Multiwavelets are
then compared with an alternative single-trial wavelet coher-
ence approach. Comparison is made between the fundamental
methodologies, statistical descriptions, interpretation of results
and computational aspects. Both methods are then applied to
surrogate and neurophysiological time series to highlight the po-
tential advantages offered by a multiwavelet approach.

II. METHODS

Given a time series , the continuous wavelet transform of
that series may be defined as [11], [24]

(1)

where we make use of two parameters, scale and location
. is taken to be the wavelet function, bounded by cer-

tain criteria. Briefly, wavelet functions must be of finite energy,
must hold under the admissibility condition and for complex
wavelets, their Fourier transforms should be real and vanish for
negative frequencies (for details see [24] and [25]).

A discretized version of the time series , where
is the sampling interval, allows the CWT to be written in dis-

crete-time form for practical implementation (see, for example,
[11])

(2)

with location parameter now taking integer values.
The convolution in the above equation may be more effi-

ciently computed through application of the FFT algorithm (See
[11] for details). We relate scale-location space to the more usual
time-frequency space by defining the relation ,
where represents time offset in seconds and represents fre-
quency in Hz. Time may be related to location via .
Taking a reference frequency to be the frequency at which the
amplitude spectrum of the wavelet function is at a maximum, we
can relate scale and frequency via . This mapping im-
plicitly reverses the ordering of parameters. Making these sub-
stitutions, we may now consider the wavelet transform as an
operator in time and frequency .

Using time-frequency representation, a first approximation
to the wavelet cross spectrum (the cross-wavelet-periodogram)
between two processes and may be constructed as

. We will have occasion to
write for the auto-spectra of , and
will refer to as the wavelet cross-spectrum between
processes and . Analogous to Fourier analysis, wavelets
do not provide enough degrees of freedom to estimate auto-
and cross-spectral values simultaneously. To alleviate this
problem the wavelet-periodograms must undergo some form of
smoothing to make them consistent and, thus, be considered
estimates of the wavelet spectrum [12].

We now define some bivariate statistics. For complex-valued
wavelet functions, the wavelet cross-spectrum will also be com-
plex, pertaining to a representation in polar form,

. The value of is taken to be the time-localized
phase between processes and . Phase may be determined as
the argument of the cross-spectra, . Coher-
ence provides a real valued normative measure of association
between processes [26]. The definition of coherence may be
extended for use within a time-frequency framework by con-
structing estimates at each point in time-frequency space using
the associated localized spectra

(3)

The lack of sufficient degrees-of-freedom in both Fourier and
wavelet analysis means that coherence constructed from un-
smoothed periodogram estimates will be identically equal to 1.
Smoothing the spectral estimates will allow coherence to vary
in the range [0,1], with a bias related to the degree of smoothing
performed [10].

An important issue in wavelet analysis is the existence of
the cone-of-influence (COI), defined to encapsulate the region
of a wavelet transform affected by boundary conditions. As
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the wavelet transform produces a variable time-frequency
decomposition, the COI expands at lower frequencies, and
for the lowest frequency components will impinge upon all
transformed points. In this paper, we take the definition outlined
in [11] for identifying the COI region. This is given at each
frequency by the -folding time1 such that the wavelet power
for a discontinuity at the edge drops by a factor .

A. Smoothing Filter

It was suggested in [15] that single trial wavelet coherence
could be estimated through spectral smoothing via a scale-de-
pendent smoothing operator. The specified operator utilized the
‘natural’ width of the wavelet in time and its decorrelation width
in scale. This shape was described as the best compromise solu-
tion, providing the minimum amount of smoothing necessary to
include two independent points in time and scale. Wavelet co-
herence has been applied using this approach in [15], [22], and
[23].

In application of the explicit spectral smoothing approach, we
make use of the Morlet function in the wavelet transform (fol-
lowing [15], [22], and [23]). The Morlet is defined in the time
domain as , with Fourier transform
[11]

(4)

where is the Heaviside step function. The Morlet wavelet
may be described as a Gaussian windowed complex exponen-
tial. The Gaussian envelope localizes the wavelet in time-fre-
quency space, while the complex exponential provides an oscil-
latory signal, appropriate for the detection of frequency compo-
nents. The complex nature of the Morlet allows the estimation
of phase characteristics in multivariate analysis. Strong analo-
gies have been drawn between the Morlet at a given frequency
and the Gaussian windowed STFT [10].

All subsequent transforms performed within the explicit
spectral smoothing framework make use of the Morlet wavelet.
The central frequency of the wavelet is commonly taken
to be between 0.8 and 1 [25]. The figures in this paper were
generated using angular frequency , corresponding to

.
The smoothing operator employed in coherence estimation

may be considered a scale-dependent 2-D filter. Such a filter
may be evaluated through application of two independent
linear filters, one smoothing in time while the other
smooths in scale . The smoothing of the wavelet
cross-spectrum may be expressed as

(5)

with smoothing of the autospectra by appropriate substitution.
Time smoothing is accomplished by defining the time-do-

main filter to be the wavelet envelope and normalizing to
unit energy. Scale smoothing is accomplished by taking the
frequency-domain filter to be a boxcar function of width pro-

1The time interval required for an exponential function to change by a factor
e .

portional to the scale-decorrelation length of the wavelet.
The scale-decorrelation length is described and determined
empirically in [11] for a number of wavelet functions, being
given the value in the case of the Morlet. Stretching
of the filters was also considered briefly in [15] as a means to
generate smoother coherence estimates while still containing
the same qualitative information. Smoother estimates are desir-
able as they provide lower 95% confidence limits and suppress
short-lived phenomena. With this in mind we introduce time
and scale localization parameters and which modulate
the width of the filter in time and scale. The two smoothing
operators are, therefore, defined as

(6)

(7)

with the relation . The constants and normalise
the filters to unit energy and are calculated numerically. is
the box-car function.

The -folding time used for COI determination in the case
of the Morlet is provided analytically in [11] as . The ad-
ditional smoothing performed on the wavelet spectra will how-
ever result in a more invasive COI. This estimate must, there-
fore, be considered a liberal boundary when applied to smoothed
wavelet spectra.

B. Multiwavelets

Multiwavelets originate from the principles underlying
Thomson’s multitaper method ([17], [27]). Multitaper methods
involve the estimation of spectra from a single-trial by aver-
aging together periodogram estimates. Each periodogram is
determined from the same data sequence but utilizing different
orthogonal data tapers. The resultant spectral estimate may be
considered more reliable, possessing reduced bias and variance
properties. For stationary analysis Thomson chose as tapers the
set of discrete prolate spheroidal sequences (DPSS), being the
most frequency-concentrated of all orthogonal, time-limited
windows. By specifying alternative optimality conditions,
different sequences of orthogonal tapers may be produced. For
example, by optimally concentrating explicitly in two dimen-
sions (time-frequency space) the Hermite functions result [20].
These arguments have been extended to affine time-scale space
in [20] and [18]. The resultant tapers turn out to be the class
of generalized Morse wavelets and their application may be
considered a wavelet transform.

Before defining the class of generalized Morse wavelets it is
essential to briefly summarise their construction and the desir-
able properties that ensue. For a more detailed explanation the
reader is referred to [18].

We begin by specifying a localization operator in time-fre-
quency space, , which operates over domain ,
characterized by [18], [28], [29]

(8)
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where

(9)

and denotes the gamma function while .
Restrictions are placed on the choice of parameters such that

and . Parameter specifies the concen-
tration region in time-frequency space.

The area of domain provides a measure of localiza-
tion that will prove useful in the construction of multiwavelet
spectra. We denote this area , a unitless measure
given analytically in (10) [18].

(10)

It was shown in [18] that for a localization operator in
affine time-scale space, there exists a complete orthonormal
basis such that . The eigenfunc-
tions that result form the class of generalized Morse wavelets.
Each eigenvalue has support for two eigenfunctions,
and , which correspond to analytic and anti-analytic
wavelets respectively. A definition for the analytic wavelet in
the frequency domain is provided in [18] as

(11)
where , is again the Heaviside step function and

. is the Laguerre
polynomial, defined by

(12)

The anti-analytic wavelet (which finds a use in complex
signal analysis) is defined in [18], but may also be given in
terms of the analytic wavelet as . In
this paper, we concern ourselves with real-valued time-series
and so require only one of these wavelet functions. Olhede and
Walden [18] show that in the construction of wavelet spectra
for real-valued signals, the analytic wavelet is sufficient. It
was shown in [18] that the analytic wavelet spectrum makes
implicit use of both analytic and anti-analytic wavelets. This
does not hold for the more general class of complex signals,
where explicit use of the two wavelet functions is required.

The eigenfunctions (generalized Morse wavelets) are
ordered by descending eigenvalues. The wavelet trans-
form of a time series using the th-order eigenfunc-
tion is denoted . A corresponding auto-spec-
trum estimate, referred to as the th-order eigenspectra
is denoted . The com-
plex-valued cross-eigenspectra is similarly defined as

.
An expression for the th-order eigenvalue is provided in [18]

as where is
the incomplete beta function. It was also shown in [18] that
the square of the positive eigenvalues provides a ratio between

Fig. 1. Wavelet spectra of individual Morse wavelets (� = 5,  = 2). Left to
right, spectra correspond to wavelet orders k = 0; . . . ; 4 and finally the mean
spectrum. Morse wavelets centerd on frequency f = 10 Hz (scale a = f =f ).

the energy contained within the restrictive domain of time-fre-
quency space (after transformation using an equivalent eigen-
function) and the energy of the original signal. Given a concen-
tration region we may determine the energy ratio for each
Morse wavelet within that region. The value of may be de-
termined from the parameter triplet and (10). In a
multiwavelet analysis this triplet will determine the number of
eigenspectra, , forming the final conditioned estimate. The ap-
proach adopted here is to include all wavelets which possess

energy concentration ratios within the specified re-
gion. For example, by choosing with ( , ,
and ), Morse wavelets result with energy concen-
tration ratios {1.00, 1.00, 0.99, 0.98, 0.96}. Unlike the Slepian
sequences utilized in multitaper analysis, Morse wavelets may
possess very broad transition bands between energy concentra-
tion ratios close to unity and those close to zero. Additionally, as
minimum-bias adaptive weighting schemes do not yet exist for
multiwavelet methods, we restrict our choice of eigenspectra to
those which posses high energy concentrations within the spec-
ified region.

The wavelet spectra of some generalized Morse wavelets, cor-
responding to orders 0 through 4, are illustrated for the case
( , ) in Fig. 1. Also included in this figure is the
mean of the five individual spectra. The wavelet spectra in Fig. 1
have been generated using the zeroth-order Morse wavelet with
( , ).

By transforming a time series with a set of orthogonal
wavelets, we provide a means to smooth the spectral estimate
by averaging over the eigenspectra. We, thus, define a
conditioned cross-spectral estimate as

(13)

where represent the weights for the eigenspectra and
. These weights are a normalization of a related

set , such that . The eigen-
functions are, therefore, weighted based on their energy con-
centrations within the localization region [18]. Auto-spectral
estimates are defined by appropriate substitution of processes.

The local wavelet spectrum has been shown to follow the
mean Fourier spectrum and subsequently be distributed
[11]. In a multiwavelet analysis the eigenspectra provide
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independent estimates of the underlying (assumed locally
stationary) spectrum. Taking the mean of the eigenspectra
would result in a conditioned spectral estimate distributed as

, possessing variance . By making
use of a weighting scheme the resultant spectral estimate will
possess variance [30]. This moti-
vates the definition of an equivalent number of eigenspectra
forming the conditioned estimate (14), a quantity that will
prove useful in the setting of confidence limits [2]

(14)

To relate scale and frequency in multiwavelet spectra, we
must take account of the multiple orthogonal wavelet functions
utilized in our estimate. For a multiwavelet analysis using
eigenfunctions, we determine the reference frequency simi-
larly to [19]

(15)

In this paper, edge effects are characterized by the COI which
may be determined numerically at each frequency by applying
the previously stated COI definition. Other methods have been
considered to account for edge-effects, for example [19].

III. APPLICATION

In this section, multiwavelets are explored further by
analysing surrogate data. The two methods for estimating
bivariate parameters are then applied to neurophysiological
data for comparative study.

The multiwavelet framework provides a mechanism for the
extraction of time-dependent coherence between processes.
In order to extract information from coherence estimates,
significance testing must be performed. Monte Carlo simu-
lations were undertaken in order to determine bias, variance
and 95% confidence levels for coherence generated by explicit
2-D-smoothing and multiwavelet methods. Both methods were
applied to 2-channel Gaussian white noise data of duration 30 s
sampled at 1 kHz (in correspondence with neurophysiological
data to be further explored). A total of 1000 simulations were
analysed per method. Only points outside of the COI were
considered during the simulations. Note that due to an invasive
COI, fewer points will be included at the lower frequencies. The
results are illustrated in Fig. 2. The bias, variance and 95% con-
fidence limits may be considered flat across the vast majority
of frequencies specified within the simulation range. For the
parameter sets chosen, the two methods provide similar levels
of confidence in the resulting coherence estimates. Despite pos-
sessing similar statistics the two methods cannot be considered
equivalent. This is because the time-frequency shapes utilized
in spectral smoothing are fundamentally different.

All forms of explicit scale-smoothing on wavelet spectra, by
their very nature induce edge effects encountered at the lowest
and highest frequencies. This results from an overrun of the

Fig. 2. Monte Carlo derived statistics for wavelet coherence generated using a
2-D scale-dependent filter with localization parameters (� = 580, � = 3)
and a multiwavelet analysis using generalized Morse wavelets with parameter
triplet (� = 5,  = 2, A = 24). The three statistics (top to bottom for both
figures) are 95% confidence limit, bias and variance. The intermittent vertical
bars delineate the f point for the multiwavelet case and an estimated equiv-
alent measure f̂ for the smoothing filter. Simulations were conducted on
2-channel Gaussian white noise data of length 30 s sampled at 1 kHz. The fre-
quency range of the simulation was 0.25! 500 Hz generated at a resolution of
20 scales/octave. Simulations were averaged across 1000 trials.

transform area by the 2-D filter, occurring in both time and fre-
quency domains. In order to minimise edge effects, it is recom-
mended that wavelet transforms are calculated beyond the spe-
cific frequency range of interest. Multiwavelet analysis makes
use of implicit time-frequency smoothing by applying a number
of orthogonal wavelets to the time series. The result is that no
low-frequency edge effects can be observed in the Monte Carlo
simulations. High-frequency artefacts occur in both methods
due to smoothing which extends beyond the Nyquist frequency.
For the set of parameters illustrated, coherence statistics are flat
between 0.5 Hz and 250 Hz (multiwavelet statistics also ap-
pear flat below and substantially above this range).

High-frequency overrun, where the wavelet transform ex-
tends beyond the Nyquist frequency, is an issue with serious
practical implications as illustrated by the change in coherence
statistics shown in Fig. 2. The issue was addressed in the context
of multiwavelets in [28], where a maximum analysis frequency
was determined below which high-frequency overrun has a
negligible effect. The maximum analysis frequency is taken to
be in accordance with [28]. The upper
frequency is determined by visual examination of the condi-
tioned Fourier spectrum for eigenfunctions at scale .
Taking ( , ) and we determine .
This provides a maximum plot frequency ,
displayed as an intermittent vertical bar on the right of Fig. 2.
Examination of Fig. 2 shows that the maximum plot frequency
provides a reasonable marker by which to delineate edge-af-
fected frequencies from those which are unaffected.

The same point cannot be derived for the scale-depen-
dent filter method due to dissimilarities in spectral construction.
For practical consideration however, an approximate point
may be determined by visual examination of the Monte Carlo
simulations. This point is depicted as an intermittent vertical bar
in Fig. 2, where we determine .

The orthogonality inherent within multitaper methods leads
to approximately uncorrelated eigenspectra. By extending this
argument to multiwavelet methods we may approximate the
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Fig. 3. Numerical COI illustrated as a black parabola on three multiwavelet
transforms of a quadratic chirp signal. Multiwavelet analysis based on the gen-
eralized Morse wavelet with parameters (� = 5,  = 2). Left to right, A =

8,16,24 (contributing K = 1,3,5 eigenspectra) which has a progressive affect
on the COI.

confidence limit for coherence based on the null hy-
pothesis of independence as [2], [6], [26]

(16)

The 95% confidence limit is, therefore, determined by set-
ting in the above equation. The confidence limit
is seen to depend entirely on the choice of , the equivalent
number of eigenfunctions utilized in the estimation of condi-
tioned spectra. The coherence bias between two uncorrelated
processes is approximately . These approximations have
been compared with Monte Carlo simulations for a variety of
multiwavelet parameter sets , where in each case the
simulation results followed the analytic value closely for fre-
quencies below . All Morse parameter sets used within this
paper have been compared with simulation results to confirm
statistical significance.

Surrogate data provides a means to evaluate analysis methods
on data with known statistical properties. The analysis methods
are, therefore, further considered by evaluating a quadratic
chirp signal contaminated by independent identically dis-
tributed (i.i.d.) Gaussian white noise . Realizations of the
chirp signal (17) were generated for univariate and bivariate
processes of duration 1-s sampled at 1 kHz. The signals
possessed a signal-to-noise ratio of 2.8 dB, reflecting the
inherently noisy nature of time series recorded from the nervous
system. Chirp statistics for data of length may be considered
symmetrical about a point in time . The frequency of the chirp
signal around the point of symmetry is given by , extending
in quadratic form to at . For the simulated data used
in this study , and

(17)
Three multiwavelet spectra were generated for a 1-s real-

izations of single-channel quadratic chirp signal, illustrated in
Fig. 3. All three spectra were generated using Morse wavelets
with ( , ). Ordered from left to right the domain
areas are ,16,24 respectively. By taking the energy con-
centration cutoff only 1 eigenspectrum contributes to
the domain, with contributing 3 eigenspectra
and contributing 5 eigenspectra.

Fig. 4. Multiwavelet auto-spectra, coherence and phase for two identical
quadratic chirp signals corrupted by independent Gaussian white noise. Multi-
wavelet transform performed using generalized Morse wavelets with parameter
set (� = 5,  = 2, A = 24). The COI is displayed as a black parabola. The
95% confidence limit for coherence is displayed as a black contour taking a
value of �0.53.

Fig. 3 demonstrates several important practical aspects of
multiwavelet analysis. First, increasing domain area leads
to broader spectral smoothing which can substantially reduce
the effects of background noise. This is evidenced by a reduc-
tion in spectral variability and power around the chirp signal.
Such reductions must however be tempered by an associated
loss of localization within the time-frequency plane. The ef-
fects of smoothing can also be seen on the chirp itself in the
form of spectral spreading. A second point to note is the posi-
tion of the (numerically determined) COI. As increases there
is a progressive encroachment of the COI onto the spectral es-
timate. This has important ramifications that restrict the region
of wavelet spectra that may be interpreted in terms of the under-
lying physical process. The problem is especially prevalent if we
are interested in very low-frequency content. From the figure we
see that increasing from 8 to 24 moves the lowest point out-
side of the COI from 2 Hz to 5.5 Hz.

A bivariate multiwavelet analysis was then applied to a
2-channel quadratic chirp signal, the channels consisting of
a common chirp corrupted by i.i.d. Gaussian white noise
sequences ( , ). The multiwavelet analysis was
performed using the Morse parameter set ( , ,

). The COI in the analysis of a 1-s segment of data was
numerically determined to encroach on all data points below

5.5 Hz. The analysis was, therefore, performed within the
frequency range [5.5, 250]Hz. Fig. 4 depicts the data from a
two channel quadratic chirp process presented with associated
multiwavelet auto-spectra, coherence and phase.

Features from the time-frequency representations of Fig. 4
may be related to the original signals in a time-dependent
manner. By presenting wavelet auto-spectra below their re-
spective data channels a direct correspondence may be drawn
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Fig. 5. Scale-dependent 2-D-smoothing analysis of two neurophysiological
time series. Series taken from microelectrode recordings made during fictive
locomotion in the cat. Both intracellular recordings are taken from motoneu-
rones innervating the posterior bicep (Pb) muscle. Figures correspond (top to
bottom) to: raw and filtered time series for ch.1, auto-spectra for filtered ch.1,
raw and filtered time series for ch.2, auto-spectra for filtered ch.2, coherence
between filtered channels 1 and 2. The 95% confidence limit for coherence is
displayed as a black contour taking a value of �0.53.

between features in the spectra and behaviour in the signals.
Also presented are multiwavelet coherence and phase which
illustrate bivariate statistics as developed in Section II. The
coherence statistic highlights the shape of the quadratic chirp
signal in time-frequency space as common between the two
channels (achieving values close to 1). Other regions are dis-
similar in time-frequency space and so achieve values close to
0. The phase diagram appears to show zero phase between the
two chirps with random fluctuations elsewhere.

In order to illustrate the application of single trial wavelet co-
herence to neurophysiological data, we chose to examine simul-
taneous recordings of membrane potential fluctuations observed
in a pair of spinal motoneurones during a period of fictive loco-
motion in a reduced animal preparation (further details can be
obtained from [2]). In this preparation, the locomotor drive is
generated by activity arising in interneuronal networks within
the lumbar spinal cord whose organization and properties are
largely unknown [31] but are often referred to as locomotor pat-
tern generators. The recordings consist of a pair of motoneu-
rones innervating the posterior bicep (pb) muscle which in this
preparation is active predominantly during the flexion phase of
the step cycle. The 2-channel recordings were made over a pe-
riod of 300 s sampled at 10 kHz.

Spectra and coherence estimates of the intracellular record-
ings were generated for disjoint segments of length 30 s
after downsampling to 1 kHz. For explicit 2-D-smoothing the
wavelet transform was performed within the frequency range

Fig. 6. Multiwavelet analysis of the same two neurophysiological time series as
utilized in the scale-dependent 2-D-smoothing analysis. Figures correspond (top
to bottom) to: raw and filtered time series for ch.1, auto-spectra for filtered ch.1,
raw and filtered time series for ch.2, auto-spectra for filtered ch.2, coherence
between filtered channels 1 and 2. The 95% confidence limit for coherence is
displayed as a black contour taking a value of �0.53.

[0.25, 500]Hz at 20 scales/octave. Smoothing was then per-
formed within the range [0.5, 250]Hz, thus allowing relatively
flat confidence limits to be maintained within the interval.
Concentration parameters ( , ) were used in the
analysis. A multiwavelet analysis was also performed within
the frequency range [0.5, 250]Hz, using the parameter doublet
( and ) with area . For illustrative purposes,
only results from the mid-section of the first segment are pre-
sented (10 20 s; see Figs. 5 and 6). By focusing on a reduced
time-frequency region boundary effects are also minimized to
the extent that the COI does not appear in either figure.

Figs. 5 and 6 show the same analysis using explicit
2-D-soothing and multiwavelet methods. As before, spectra
and coherence may be related to the data in a time-dependent
manner. The top plot in each figure depicts the raw motoneu-
rone recording for channel 1 and its filtered equivalent. The
data are filtered (high-pass moving-average, cutoff 4 Hz) as it is
the timing of common presynaptic inputs to the motoneurones
that are of particular interest and where any low-frequency
(dc-coupled) components would saturate the analysis. These
common synaptic inputs are of particular interest as they
reflect the anatomical divergence of key interneurones in the
locomotor generating networks whose physiological properties
can be indirectly studied through a time and frequency anal-
ysis. Filtering suppresses the leakage phenomena associated
with a broad activity envelope, permitting the examination of
frequencies components within the range of interest (4 Hz and
above). The raw data are presented to highlight the evolution
of the locomotor drive potential. The third plot in both figures
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depict the raw and filtered data for channel 2. Below each of
the time series representations are their equivalent wavelet
auto-spectra. It can be seen from either figure that a high power
concentration occurs during periods of increased locomotor
drive, even in the filtered representation of the data. A distinct
feature of wavelet-based analysis is that discontinuities in time,
such as the spiking events evident in channel 2, are isolated and
progressively time-localized as the analysis moves to higher
frequencies. Time-dependent single-trial coherence is depicted
in the bottom plot of each figure.

In application to intracellular motoneurone data, coherence
provides an intuitive spectral representation of common presy-
naptic drive to the motoneurones. High levels of coherence in-
dicate strong coupling, either recurrent or driven by a common
source. Coherence also provides a measure of the strength of
such coupling, proving invaluable in the determination of neural
connectivity. The multiwavelet approach to coherence estima-
tion provides an optimal method of time-frequency localization.
Such methods allow the examination of synaptic coupling prop-
erties between motoneurones within individual epochs. Tradi-
tional ensemble methods will suppress features which are in-
consistent or mis-aligned between trials. Single-trial estimation
has the potential to quantify such trial-to-trial variability.

The coherence estimates of Figs. 5 and 6 clearly show there
is a complex and dynamic relationship between the two sig-
nals. The two signals appear to become uncoupled at frequen-
cies above 8 Hz during periods of increased locomotor drive.
During the quiescent periods the signals are correlated over a
wide frequency range, although this correlation is also inter-
rupted by short periods where the signals again become uncor-
related. This analysis may provide information about dynamic
changes to common presynaptic inputs to the two motoneurones
during periods of fictive locomotion.

IV. DISCUSSION

Calibration and comparative studies have shown that multi-
wavelet methods are suitable for the detection of time varying
frequency components within time series. Both spectra and
coherence generated by explicit time-frequency smoothing and
multiwavelet methods show marked similarities. Examining
Figs. 5 and 6 it is evident that similar spectral features are
being extracted from the data in a time-dependent manner. The
choice of wavelet and smoothing functions has a visual impact
on the resultant analysis, most notable in the wavelet spectra.

A fundamental difference between the two methods outlined
is in the shape of the smoothing operation. For the explicit
2-D smoothing approach, the wavelet periodograms have al-
ready been transformed using the Morlet wavelet and, thus, a
high level of correlation exists between neighboring points in
time and frequency. These points are then smoothed using a
scale-dependent 2-D filter. By contrast multiwavelet methods
extract time-frequency localized spectra directly from the data
using orthogonal data tapers (see Fig. 1). These eigenspectra
are then combined in a weighted average to produce an estimate
of the underlying spectrum. While confidence limits for the two
methods have been kept comparable within this report, it should
be noted that due to the inherent differences in methodology

the resultant figures, while similar in some aspects, cannot be
considered equivalent.

Multiwavelets possess many desirable properties. The con-
struction of the class of generalized Morse wavelets utilises
an optimality condition. Thus, unlike the explicit smoothing
methods, we may state that multiwavelet analysis is optimally
concentrated within an area of time-frequency space. Despite a
construction which restricts the choice of wavelet class to that of
the Morse wavelets, a wide range of wavelet functions can still
result through the tuning of parameter sets. The ( , ) param-
eters control the shape of time-frequency localization. For ex-
ample, the non-generalized Morse wavelets, defined to be those
where ( , ), localize within a narrow time-support
band, but provide very poor frequency localization. The choice
of ( , ) allows a more balanced localization space for
the chosen dataset. Additionally, the choice of , the domain
area used in the construction of the conditioned spectral esti-
mates, provides a localization/variance tradeoff. Larger choices
of result in the inclusion of more orthogonal terms (or eigen-
spectra) which produce more consistent spectral estimates, but
with broader time-frequency localization properties.

The tuning of parameters and also provides a means to re-
duce confidence limits. Increasing , for example, will produce
eigenfunctions which more tightly localize within the specified
area . This is demonstrated by an increase in their respective
energy concentration ratios . An increase in concen-
tration ratios leads to a greater number of eigenspectra forming
the conditioned spectral estimates. This subsequently leads to a
reduction in confidence limits, characterized by an increase in

. Any reduction in confidence limits must however be tem-
pered by an associated distortion in the time-frequency region.
While is held constant for increasing , the reference fre-
quency will vary producing a wavelet transform at the new
set of scales . The COI will also be affected by this
change. Of particular interest in the spinal motoneurone anal-
ysis are frequencies within the alpha range. With parameters
( , , ), confidence limits for coherence
(based on the null hypothesis of independence) were 0.53.
By setting , confidence limits were reduced to 0.21
(utilizing eigenspectra). Due to the rescaling of the
wavelet transform (induced by a change in ) the time-localiza-
tion became too broad for meaningful feature extraction within
the alpha range. This approach may prove more productive in
examining higher frequency ranges such as the beta and gamma
bands.

Approximate statistics for the bias and confidence limits of
coherence have been stated analytically, valid for regions where
high-frequency overrun is not significant. Statistics for methods
based on explicit spectral smoothing will always depend on the
underlying wavelet transform parameters. This issue was dis-
cussed in [23] where 95% significance levels were shown to
depend largely on the choice of analysis resolution (scales per
octave). Since multiwavelets perform implicit smoothing across
frequencies such undesirable dependencies are avoided.

The implicit approach to time-frequency smoothing em-
ployed by multiwavelets provide computationally desirable
properties. By making use of the implicit smoothing property
it is possible to generate multiwavelet spectra at individual
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scales/frequencies. This is in contrast to explicit smoothing
methods which require the calculation of a complete wavelet
transform extending significantly beyond the frequency range
of interest in order to generate statistically reliable and con-
sistent spectral estimates. For cross-spectra, two wavelet
transforms must be combined before smoothing with what is
in effect a scale-dependent 2-D filter. On all but the shortest
of data segments this will prove computationally expensive
and slow. Multiwavelets provide a means to create memory
efficient transforms, thus, potentially opening up the method to
much larger datasets.

The neurophysiological analysis highlights that different cou-
pling mechanisms appear to operate within the different phases
of the locomotor cycle. This information can be exploited in fu-
ture experiments aimed at the identification and study of the in-
terneuronal populations that participate in generating locomotor
behaviour.

The analysis framework described here also lends itself to the
study of motor function in people with motor disabilities (such
as spinal cord injury, stroke or movement disorders), where the
long recording periods traditionally required for neurophysio-
logical analysis are impractical due to the subjects limited ca-
pacity to perform tasks over prolonged periods. The ability to
study either neuronal activity (local field potentials, EEG, etc.),
muscle activation patterns (EMG) and/or movement kinematics
over short periods and generate statistically significant informa-
tion will provide useful insights into the pathophysiologies that
lead to motor disability, and may well lead to methods for as-
sessing the success of rehabilitation or other novel therapeutic
interventions.
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