The Technology of Tracking and Tagging Insects

Dr David Chesmore
Biological Systems Laboratory

Audio Engineering Group
Department of Electronics
University of York
Overview

- Insect tags
 - Active vs passive
- Tracking insects
 - Tracking methods
 - Limitations
- Tagging insects
 - Types of tag
 - Limitations
- Future directions
Overview of Techniques

Technology

Tracking

Radio

Radar

RFID

Optical

Combined

Other
Passive vs Active Tags

• Passive tag
 • Tag does not require power
 • Power obtained from energy from the reader
 • Limits reading distance

• Active tag
 • Tag has own power source
 • Larger reading distance
 • Heavier and larger due to power supply (battery)
 • Can be more complex (signal processing, memory storage, calculations, security, etc)
Tag Tradeoffs

• Weight
 • Guidelines state less than 10% of body weight
 • May have to be lower if flying insect

• Detection distance
 • Distance is a function of frequency and antenna size
 • Many tags have read distances less than 50cm
Radio Tags 1

• Three basic forms:
 • “beepers”
 • “coded tags” – can also include sensor information (e.g. temperature)
 • “smart” tags
Radio Tags 2

- Tags need individual frequency – limitation on number
- Coded tags can share the same frequency
- Weight is as low as 0.36g (Lotek)
- Can integrate GPS but much heavier ~10g
 - Need to be retrieved in order to download data
 - Position fix changes battery life
 - E.g. 1 fix per day = 180 days
 - 1 fix per second = 2.5 hours
 - Need to consider memory size
Smart Radio Tags

- Uses microcontroller and signal processing
 - Can store data for periods, contains memory
 - Data downloaded at intervals
 - More complex radio communications - bidirectional
- Example – ear temperature tag for pigs
 - Stores tympanal membrane temperature
 - Up to 32 sensors operating at the same time
 - Up to 30m range indoors
Pig Ear Tag

- Weighs 2.16g (battery is 15% of total weight)
- Lasts 2 weeks on 1 battery
- Stores up to 256 temperature values
- 7 year old technology
 - Can now store 1000’s of readings
- Problem is time taken to transmit data
Scanning Radar

• Provides location, distance
 • Can also provide velocity (Doppler) and estimate of size of object

Distance $D = \frac{cT}{2}$
where $c = 3 \times 10^8$ ms$^{-1}$
and $T =$ time of flight of pulse

Received signal = $fn \left(\frac{P\sigma}{D^4} \right)$

Insect has radar cross-section σ

Location via alt, az

Mayfly Hatching on Radar
Radar Cross-section

• Amount of energy scattered by body depends on:
 • Orientation wrt the radar
 • Wavelength of RF signal wrt body size
 • Make up of body (fat, water, etc)
• Flying insect will impose wing beat frequency on signal
Scanning Radar
Application and Limitations

- Good for large scale monitoring, e.g. swarms of locust
- Entomological Radar is vertical-looking (VLR) which is static and provides information on migration, e.g. aphids, moths (Rothamsted)

- Limitations
 - Minimum distance due to time of flight of pulse and processing speed
 - Can detect small insects close and large insects at a distance

Audio Engineering Group
Department of Electronics
University of York
VLR

http://www.pems.adfa.edu.au/~s9104004/trews/ww_re_ph.htm#nriqx

Audio Engineering Group
Department of Electronics
University of York

From Chapman et al (2002)
Harmonic Radar

• This uses a non-linear device to re-radiate RF energy at twice the frequency
 • E.g. 917MHz radar signal will be radiated as 1845MHz
 • Needs separate transmitter and receiver – can be $10k-50k for static system
• Tag can be very small
 • Tag used for butterflies (Cant et al., 2005) was 12mg in weight (8% of weight of A. urticae)
Harmonic Radar

Incoming RF at f Hz

\[\text{Antenna length } L = \frac{\lambda}{2} \]

\[\text{diode} \]

Outgoing RF at 2f Hz

\[\text{Antenna length } L = \frac{\lambda}{4} \]

Tag on *A. urticae*

Audio Engineering Group
Department of Electronics
University of York

Cant et al, (2005)
Harmonic Radar
Applications and Limitations

• Low weight tags good for flying insects (butterflies, flies, bees)
• Static radar allows tracking in 3-d up to 1km
• Hand-held allows for location up to 20m (used for ground beetles)

• Limitations
 • Cannot track if insect is in clutter (e.g. behind a hedge)
 • Cannot identify individuals if more than 1 is tagged
RFID Tags

• Tags characterised into passive and active

• Passive tags use inductive coupling to provide power to tag from a reader

• Simplest is 1-bit transponder which indicates whether the tag is present or not
 • Used in shop security systems
 • Size is around 50x50mm
 • Reader antenna more than 1m²
1-bit EAS Transponders

1-bit Electronic Article Surveillance

- RF
- Microwave
- Frequency divider
- Electromagnetic
- Acoustomagnetic

Audio Engineering Group
Department of Electronics
University of York
1-bit Transponder Operation

http://RFID-handbook.com

Audio Engineering Group
Department of Electronics
University of York
Inductive Coupling

EM Backscatter

http://RFID-handbook.com
Passive Integrated Transponder (PIT) Tags

- Loligo PIT tags
 - 0.09g
 - 12x2.12mm
 - Operates at 134.2kHz

- Lower frequencies can be read at up to 1m and through soil, wood, etc

Audio Engineering Group
Department of Electronics
University of York

www.loligosystems.com
RFID Tags

• Several manufacturers
• Hitachi Mu
 • 0.05x0.05x0.001 mm
 • RF is 2.45GHz
 • Read distance only cm

• BUT antenna is:
 • 54mm long
 • 1.5mm wide
 • 0.22mm thick

http://www.hitachi-eu.com/mu/
Hitachi Mu Chip

From Hitachi Mu Data sheet

Reader

Antenna

Tag-It HF-I Transponder

Read distance only cm
Optical and Hybrid Tags

- Optical tags use light to power the tag (e.g. laser) and light to transmit data (e.g. LED)
 - Read distance is very small
- Hybrid tags use optical energy for power and RF for transmission
 - p-Chip from PharmaSeq
 - Very small and can be implanted under skin due to IR laser penetration of skin.
Other Tracking Methods

• **Passive acoustic**
 - 2-d and 3-d tracking of animals using their own sounds (including ultrasound)
 - Can be used underwater

• **Sonar**
 - Similar to radar but underwater

• **Lidar (light radar)**
 - Same as radar but uses laser
 - Much higher spatial resolution due to shorter wavelength
 - Mainly used for tracking airborne pollution
Other Tagging Methods

• Barcodes
 • Have been used for bees
 • Complex codes such as 2-d
 • Problems with physical size & reading
 • Problems with dirt

• Reflective and luminescent tags
 • Simple but operate in dark
 • Have been used for bats, Orthoptera
Future Directions

- Looking at tradeoffs: weight, distance
- Decrease in weight
 - Smaller power supply:
 - Piezoelectric (vibration)
 - Paper batteries, other new technologies
 - Higher frequency RF – smaller antenna BUT shorter distance
- Greater distances can only be achieved with active tags (power transfer ability inversely proportional to distance)