
Laboratory & Professional skills for 
Bioscientists

Term 2: Data Analysis in R
Correlation and Regression
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Summary of this week

• Situations where our explanatory variable 
is ‘continuous’ rather than categorical.

• Parametric and non-parametric 
correlation
– Meaning
– Assumptions
– Carrying out, interpreting and Reporting
– Tests of correlation coefficients

• Regression
– Meaning and terminology
– Carrying out, interpreting and Reporting
– Assumptions
– Assessment of fit (explanatory power)
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Learning objectives for the week

By actively following the lecture and practical 
and carrying out the independent study the 
successful student will be able to:
• Explain the principles of correlation and of 

regression (MLO 1)
• Apply (appropriately), interpret and evaluate 

the legitimacy of, both in R (MLO 2, 3 and 4)
• Summarise and illustrate with appropriate R 

figures test results scientifically (MLO 3 and 4)
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Correlation and Regression 

Similar but different
• Similar

– Linear
– Two continuous/ordered variables
– Illustrated with a scatter plot

• Different
– Correlation is association; regression is prediction
– In correlation axes can be switched; in regression 

axis cannot be switched
– Do not put a line of best fit on a correlation graph; 

regression graph must have the regression line



Correlation
• Linear association
• No cause and effect
• Axes could be 

swapped
Regression
• Linear relationship
• Cause and effect
• Axes cannot be 

swapped
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Correlation and Regression 

Similar but different

Manipulate/choose x, measure y
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• Pearson’s (Pearson’s Product Moment 
Correlation Coefficient) 

• Parametric
• Sample correlation: r
• Reflects degree of linear association 

between two sampled variables: -1 to 
+1 
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Correlation

Basics
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Positive: Highest scores on one 
axis associated with highest 
scores on other

r ≈ 1

Correlation

Example of correlations

Negative: Highest scores on one 
axis associated with lowest 
scores on other

r ≈ -1
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Highest scores on one axis associated with highest scores on other

r ≈ 1

Correlation

Example of positive correlations
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r ≈ 0

Correlation

Correlation but not linear

Cannot use Pearson’s PMMC



Wheat seeds: High quality visualization of the internal kernel 
structure by a soft X-ray technique and 7 measurements 
taken:

Area.
Perimeter.
Compactness
Length of kernel.
Width of kernel.
Asymmetry coefficient.
Length of kernel groove.
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Correlation

Example
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Correlation

Example



library(readxl)

file <- "../data/seeds_dataset.xlsx"

seeds <- read_excel(file, sheet = "seeds_dataset")

glimpse(seeds)

Observations: 70

Variables: 7

$ area           <dbl> 15.26, 14.88, 14.29, 13.84, 16.14, 14.38, 14.69, 14.11, 1...

$ perimeter      <dbl> 14.84, 14.57, 14.09, 13.94, 14.99, 14.21, 14.49, 14.10, 1...

$ compactness    <dbl> 0.8710, 0.8811, 0.9050, 0.8955, 0.9034, 0.8951, 0.8799, 0...

$ kernal_length <dbl> 5.763, 5.554, 5.291, 5.324, 5.658, 5.386, 5.563, 5.420, 6...

$ kernel_width <dbl> 3.312, 3.333, 3.337, 3.379, 3.562, 3.312, 3.259, 3.302, 3...

$ asymmetry_coef <dbl> 2.2210, 1.0180, 2.6990, 2.2590, 1.3550, 2.4620, 3.5860, 2...

$ groove_length <dbl> 5.220, 4.956, 4.825, 4.805, 5.175, 4.956, 5.219, 5.000, 5...

Assumptions: “bivariate normal” 
Common sense 12

Two-way ANOVA example 

Reading in and examining the 
structure of the data



13

Correlation

Plot your data

Check roughly 
linear

This looks ok

Plot your data: roughly  
ggplot(data = seeds, aes(x = compactness, y = kernel_width)) +

geom_point()



Not suitable for linear 
correlation
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Correlation

Plot your data



cor.test(seeds$compactness, seeds$kernel_width)

Pearson's product-moment correlation

data:  seeds$compactness and seeds$kernel_width

t = 7.3738, df = 68, p-value = 2.998e-10

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5117537 0.7794620

sample estimates:

cor

0.6665731 

15Correlation coefficient, r

Gives type of 
correlation

t-test of whether r is 
different from zero

Correlation

Running the test



• There is a significant positive correlation (r = 
0.67) between compactness and kernel width 
(t = 7.37; d.f. = 68, p < 0.001).
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Correlation

Reporting the result

data:  seeds$compactness and seeds$kernel_width

t = 7.3738, df = 68, p-value = 2.998e-10

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5117537 0.7794620

sample estimates:

cor

0.6665731 



• The R output contains a test of whether r 
= 0

• uses t

• For correlation: 

• Where standard error of r is 
– d.f. are N-2

• Sensitivity to sample size

  
statistic  theof SE estimated

 valueedhypothesis - statistic
  t
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Correlation

Understanding the test of significance
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• Prediction
• One variable causes the other
• Axes matter
• We will consider linear regression only

best fitting straight line:

Regression
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Regression

The terminology
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Can be expressed as:
• b1 = 0 
• x cannot predict y
• Regression line doesn’t explain 

variance in y

Regression

Null hypothesis

Assumptions
• Normality and homoscedascity of residuals
• y values are independent
• x is measured is chosen/set
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Regression

Example
Brine Shrimp (Artemia
salina) were put in water 
baths at 10C, 15C, 20C, 
25C, 30C and their 
respiration rate measured 
(units)

Assumptions
• Normality and homoscedascity

of residuals
• y values are independent
• x is measured is chosen/set
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Correlation

Plot your data

Check roughly 
linear

This looks ok

Plot your data: roughly
ggplot(data = shrimp, aes(x = temperature, y = respiration)) +

geom_point()



mod <- lm(data = shrimp, 

respiration ~ temperature)

summary(mod)
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Regression

Running the test



Call:

lm(formula = respiration ~ temperature, data = shrimp)

Residuals:

Min      1Q  Median      3Q     Max 

-7.8362 -2.6216 -0.3377  3.1854  7.2433 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -6.0359     3.1560  -1.912   0.0781 .  

temperature   0.8253     0.1488   5.547 9.43e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.074 on 13 degrees of freedom

Multiple R-squared:  0.703, Adjusted R-squared:  0.6801 

F-statistic: 30.77 on 1 and 13 DF,  p-value: 9.433e-05

b0 and b1
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Regression

Understanding the output
Core statistical ideas – very extendable. You will see again next year



Call:

lm(formula = respiration ~ temperature, data = shrimp)

Residuals:

Min      1Q  Median      3Q     Max 

-7.8362 -2.6216 -0.3377  3.1854  7.2433 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -6.0359     3.1560  -1.912   0.0781 .  

temperature   0.8253     0.1488   5.547 9.43e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.074 on 13 degrees of freedom

Multiple R-squared:  0.703, Adjusted R-squared:  0.6801 

F-statistic: 30.77 on 1 and 13 DF,  p-value: 9.433e-05

Test: b0 = 0
Often not impt
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Test: b1 = 0
Always of interest 

Test of ‘model’
Same as b1 = 0

in single 
regression Multiple R-squared: Proportion of y explained by x

Regression

Understanding the output



Reporting the result: “significance, direction, magnitude”

The temperature explained a significant amount of the variation in 
respiration rate (ANOVA: F = 30.8; d.f. = 1, 13; p < 0.001). The 
regression line is: Respiration rate= 0.83 * temperature - 6.04 
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Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -6.0359     3.1560  -1.912   0.0781 .  

temperature   0.8253     0.1488   5.547 9.43e-05 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1

Residual standard error: 4.074 on 13 degrees of freedom

Multiple R-squared:  0.703, Adjusted R-squared:  0.6801 

F-statistic: 30.77 on 1 and 13 DF,  p-value: 9.433e-05

Regression

Reporting the results
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Regression

Reporting the results: figure



Residuals are calculated for 
you already!
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hist(mod$residuals)

shapiro.test(mod$residuals)

Shapiro-Wilk normality test

data:  (mod$residuals)

W = 0.97969, p-value = 0.9673

plot(mod, which = 1)

Histogram of residuals should 
be normally distributed

Spread of residuals should 
be similar in each group

Regression

Checking Assumptions



• Correlation  - association
– quote r, its significance (p) and n
– if scatterplot included do NOT show a fitted line

• Regression - relationship
– quote regression equation and test result (either 

ANOVA or t)
– may also quote r2 but not r
– if scatterplot included do show a fitted line
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Correlation and Regression 

Summary of reporting
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Learning objectives for the week

By actively following the lecture and practical 
and carrying out the independent study the 
successful student will be able to: 
• Explain the principles of correlation and of 

regression (MLO 1)
• Apply (appropriately), interpret and evaluate 

the legitimacy of, both in R (MLO 2, 3 and 4)
• Summarise and illustrate with appropriate R 

figures test results scientifically (MLO 3 and 4)
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