Laboratory & Professional Skills:

Data Analysis

Laboratory & Professional skills for Bioscientists

Term 2: Data Analysis in R

Correlation and Regression

Summary of this week

- Situations where our explanatory variable is 'continuous' rather than categorical.
- Parametric and non-parametric correlation
 - Meaning
 - Assumptions
 - Carrying out, interpreting and Reporting
 - Tests of correlation coefficients
- Regression
 - Meaning and terminology
 - Carrying out, interpreting and Reporting
 - Assumptions
 - Assessment of fit (explanatory power)

Х

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain the principles of correlation and of regression (MLO 1)
- Apply (appropriately), interpret and evaluate the legitimacy of, both in R (MLO 2, 3 and 4)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3 and 4)

Correlation and Regression

Similar but different

- Similar
 - Linear
 - Two continuous/ordered variables
 - Illustrated with a scatter plot
- Different
 - Correlation is association; regression is prediction
 - In correlation axes can be switched; in regression axis cannot be switched
 - Do not put a line of best fit on a correlation graph;
 regression graph must have the regression line

Correlation and Regression

Similar but different

Length of Ulna (cm)

espiration

Manipulate/choose x, measure y

Correlation

- Linear association
- No cause and effect
- Axes could be swapped

Regression

- Linear relationship
- Cause and effect
- Axes cannot be swapped

Basics

- Pearson's (Pearson's Product Moment Correlation Coefficient)
- Parametric
- Sample correlation: r
- Reflects degree of linear association between two sampled variables: -1 to +1

Example of correlations

Positive: Highest scores on one axis associated with highest scores on other

Negative: Highest scores on one axis associated with lowest scores on other

Example of positive correlations

 $r \approx 1$

Highest scores on one axis associated with highest scores on other

Correlation but not linear

Cannot use Pearson's PMMC

Example

Wheat seeds: High quality visualization of the internal kernel structure by a soft X-ray technique and 7 measurements taken:

Area.

Perimeter.

Compactness

Length of kernel.

Width of kernel.

Asymmetry coefficient.

Length of kernel groove.

Example

		₹ Filter					Q,	
*	area ‡	perimeter =	compactness	kernal_length	kernel_width	asymmetry_coef	groove_length	
1	15.26	14.84	0.8710	5.763	3.312	2.2210	5.220	
2	14.88	14.57	0.8811	5.554	3.333	1.0180	4.956	
3	14.29	14.09	0.9050	5.291	3.337	2.6990	4.825	
4	13.84	13.94	0.8955	5.324	3.379	2.2590	4.805	
5	16.14	14.99	0.9034	5.658	3.562	1.3550	5.175	
6	14.38	14.21	0.8951	5.386	3.312	2.4620	4,956	
7	14.69	14.49	0.8799	5.563	3.259	3.5860	5.219	
8	14.11	14.10	0.8911	5,420	3.302	2.7000	5.000	
9	16.63	15.46	0.8747	6.053	3.465	2.0400	5.877	
10	16.44	15.25	0.8880	5.884	3.505	1.9690	5.533	
11	15.26	14.85	0.8696	5.714	3.242	4.5430	5.314	
12	14.03	14,16	0.8796	5.438	3.201	1.7170	5.001	
13	13.89	14.02	0.8880	5.439	3.199	3.9860	4.738	
14	13.78	14.06	0.8759	5.479	3.156	3.1360	4,872	
15	13.74	14.05	0.8744	5.482	3.114	2.9320	4.825	
16	14.59	14.28	0.8993	5,351	3.333	4.1850	4.781	
17	13.99	13.83	0.9183	5.119	3.383	5.2340	4.781	
18	15.69	14.75	0.9058	5.527	3.514	1.5990	5.046	

Two-way ANOVA example

Reading in and examining the structure of the data

```
library(readx1)
file <- "../data/seeds_dataset.xlsx"</pre>
seeds <- read_excel(file, sheet = "seeds_dataset")</pre>
glimpse(seeds)
Observations: 70
Variables: 7
$ area
                <dbl> 15.26, 14.88, 14.29, 13.84, 16.14, 14.38, 14.69, 14.11, 1...
$ perimeter
                <dbl> 14.84, 14.57, 14.09, 13.94, 14.99, 14.21, 14.49, 14.10, 1...
                 <dbl> 0.8710, 0.8811, 0.9050, 0.8955, 0.9034, 0.8951, 0.8799, 0...
$ compactness
$ kernal_length <dbl> 5.763, 5.554, 5.291, 5.324, 5.658, 5.386, 5.563, 5.420, 6...
$ kernel width
                 <dbl> 3.312, 3.333, 3.337, 3.379, 3.562, 3.312, 3.259, 3.302, 3...
$ asymmetry_coef <dbl> 2.2210, 1.0180, 2.6990, 2.2590, 1.3550, 2.4620, 3.5860, 2...
$ groove_length <dbl> 5.220, 4.956, 4.825, 4.805, 5.175, 4.956, 5.219, 5.000, 5...
```

Assumptions: "bivariate normal" Common sense

Plot your data

Plot your data: roughly

```
ggplot(data = seeds, aes(x = compactness, y = kernel_width)) +
  geom_point()
```


Check roughly linear

This looks ok

Plot your data

Not suitable for linear correlation

Running the test

Reporting the result

```
data: seeds$compactness and seeds$kernel_width
t = 7.3738, df = 68, p-value = 2.998e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.5117537    0.7794620
sample estimates:
        cor
    0.6665731
```

• There is a significant positive correlation (r = 0.67) between compactness and kernel width (t = 7.37; d.f. = 68, p < 0.001).

Understanding the test of significance

- The R output contains a test of whether r
 = 0
- uses $t = \frac{\text{statistic hypothesised value}}{\text{estimated SE of the statistic}}$
- For correlation: $t_{[d.f.]} = \frac{r}{s.e.}$
- Where standard error of r is $\sqrt{\frac{1-r^2}{N-2}}$
 - d.f. are N-2
- Sensitivity to sample size

- Prediction
- One variable causes the other
- Axes matter
- We will consider linear regression only best fitting straight line:

$$y = b_1 x + b_0$$

The terminology

Null hypothesis

Can be expressed as:

- $b_1 = 0$
- x cannot predict y
- Regression line doesn't explain variance in y

Assumptions

- Normality and homoscedascity of residuals
- y values are independent
- x is measured is chosen/set

Example

Brine Shrimp (*Artemia* salina) were put in water baths at 10C, 15C, 20C, 25C, 30C and their respiration rate measured (units)

Assumptions

- Normality and homoscedascity of residuals
- y values are independent
- x is measured is chosen/set

*	temperature	respiration
1	10	0.785
2	10	5.784
3	10	1.879
4	15	9.331
5	15	4,412
6	15	7.515
7	20	13.852
8	20	2.633
9	20	7.157
10	25	17.983
11	25	16.426
12	25	11.029
13	30	18.353
14	30	13.934
15	30	25,965

Plot your data

Plot your data: roughly

```
ggplot(data = shrimp, aes(x = temperature, y = respiration)) +
  geom_point()
```


Check roughly linear

This looks ok

Running the test

Understanding the output

Core statistical ideas – very extendable. You will see again next year

```
call:
lm(formula = respiration ~ temperature, data = shrimp)
                                                         b_0 and b_1
Residuals:
            10 Median
   Min
                           3Q
                                  Max
-7.8362 -2.6216 -0.3377 3.1854 7.2433
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                     y = 0.83x - 6.03
(Intercept) -6.0359
                       3.1560 -1.912 0.0781 .
temperature 0.8253 0.1488 5.547 9.43e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.074 on 13 degrees of freedom
Multiple R-squared: 0.703, Adjusted R-squared: 0.6801
F-statistic: 30.77 on 1 and 13 DF, p-value: 9.433e-05
```

Understanding the output

```
call:
lm(formula = respiration ~ temperature, data =
                                               Test: b_0 = 0
Residuals:
                                             Often not impt
   Min
            10 Median
                           3Q
                                 Max
-7.8362 -2.6216 -0.3377 3.1854 7.2433
                                                          Test: b_1 = 0
Coefficients:
                                                       Always of interest
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.0359 3.1560 -1.912
temperature 0.8253 0.1488 5.547 9.43e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.074 on 13 degrees of freedom
                                                           Test of 'model'
Multiple R-squared: 0.703, Adjusted R-squared: 0.680
F-statistic: 30.77 \1 and 13 DF, p-value: 9.433e-05
```

Multiple R-squared: Proportion of y explained by x

Same as $b_1 = 0$ in single regression

Reporting the results

Reporting the result: "significance, direction, magnitude"

The temperature explained a significant amount of the variation in respiration rate (ANOVA: F = 30.8; d.f. = 1, 13; p < 0.001). The regression line is: Respiration rate= 0.83 * temperature - 6.04

Reporting the results: figure

Checking Assumptions

Residuals are calculated for you already!

```
hist(mod$residuals)
shapiro.test(mod$residuals)

Shapiro-Wilk normality test

data: (mod$residuals)
W = 0.97969, p-value = 0.9673
plot(mod, which = 1)
```


Correlation and Regression

Summary of reporting

- Correlation association
 - quote r, its significance (p) and n
 - if scatterplot included do NOT show a fitted line
- Regression relationship
 - quote regression equation and test result (either ANOVA or t)
 - may also quote r^2 but not r
 - if scatterplot included do show a fitted line

13/01/2020

2. I will enjoy the data analysis part of the 17C module? (Multiple Choice)

	Responses		
	Percent	Count	
Definitely agree	6.96%	8	
Probably agree	13.91%	16	
Neutral	23.48%	27	
Probably disagree	32.17%	37	
Definitely disagree	23.48%	27	
Totals	100%	115	

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain the principles of correlation and of regression (MLO 1)
- Apply (appropriately), interpret and evaluate the legitimacy of, both in R (MLO 2, 3 and 4)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3 and 4)