
Introduction to Q&C and 
linear models revisited
58I Lab and Prof Skills II Quantitative and 

Computational skills
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Lecture Overview

Introduction to Q&C skills strand

● Q&C skills strand in 58I
● Data Skills in degree program - roadmap

Linear models revisited

● Stage 1 - revision, brief!
● Linear models - what are they?
● Revisiting regression, t-tests and ANOVA as linear models
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Learning Objectives for 58I
1. To be able to generate a testable hypothesis.
2. To design and conduct experiments to test this hypothesis, with appropriate controls.
3. To have practical experience of a range of techniques relevant to the discipline.
4. To work effectively within a team.
5. To be able to write a scientific report based on practical work.
6. To communicate scientific information and ideas in the form of a variety of media to a variety of 

audiences.
7. To use appropriate graphical methods to produce data figures with appropriately detailed legends.
8. To use relevant statistical or other analytical methods to analyse data.
9. To research scientific literature in a given area, and write an extended and well-structured account.

Assessment of Q&C:  Express competency in Experimental Design and 
Bioscience Techniques (and elsewhere). There is no additional assessment.
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Topics covered in 58I Q&C

Impossible to cover everything you might ever need!

Chosen topics are: foundational, follow stage 1 well, widely applicable (in 
this module and beyond), transferable conceptually:

● Generalised Linear Models: 
● Non-linear Models (non-linear regression)

Methods which are very specific to the Experimental Design / Bioscience 
Technique taken are covered in that option. Talk to your project leader.
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Data Skills are reproducible actions with data
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Reproducibly

Tidy                                                                                                                                                                                                       

Import

Transform

Explore                                                                                                                                                                                                     

Model

Report

Simulate                                                                                                                                                                                                      

Based on Wickham, H. & Grolemund, G. (2016) 
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Reproducibly

ROADMAP: Stage 1

Tidy                                                                                                                                                                                                       

Import

Transform

Explore                                                                                                                                                                                                     

Model

ReportFrom files - all but 
unusually complex 
.txt, .xlsx, .csv, .sav, 
.dta

Relative paths 
Separators
…..and more

Everything scripted
Code commenting
Organisation of analysis

What ‘tidy’ data are 
but little tidying. 

Changing variable 
names and types
Factor levels
Wide to long 
reshaping

Simple plots: 
histograms
Normality testing
Summary stats

Fundamental 
concepts in 
hypothesis testing
CI, Linear models 
(t-tests, ANOVA, 
regression), 
correlation

Multiple comparison

Selection: 
Assumptions
Model fit: not really

“significance, direction, 
magnitude”
Figures: legends, saving 
Not fully reproducibly

ranking, 
logging

Introductory

Simulate                                                                                                                                                                                                      

Abstraction
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Reproducibly

Stage 2

Tidy                                                                                                                                                                                                       

Import

Transform

Explore                                                                                                                                                                                                     

Model

Report

Inevitably

Explicitly:
Stage 1 tests in LM framework 
(increased conceptual 
complexity)
More LM
GLM - Binomial and Poisson
Odds ratios
Deviance measures of fit
More on Multiple comparisons
Non-linear regression

Depending on options:
Mixed models
FDR
GWAS
bootstrapping

Multi panel figures
Complex domain specific 
figures

Introductory

Intermediate

Simulate                                                                                                                                                                                                      

Depending on options:
Abstraction
Running and interpreting 
particular models

Depending on options:
Proportions
Z score standardisation
Coefficient of variation
Log to base 2
Subtraction of noise/background
Scaling/reversing experimental steps
PCR Relative quantification
RPKM quantification
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Reproducibly: scriptingReproducibly: protocol, lab book

The rationale for scripting analysis

Explanatory 
variables

Choose / set / manipulate

Experiments
(tests of ideas)

Response 
variables

measure

Experimental design

Analyse
Visualise

Interpret and report
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Why R? 
It’s a good choice but not the only option.

● R caters to “users who do not see themselves as programmers, but then 
allows them to slide gradually into programming”

● Community, active, relatively diverse
● Language designed for data analysis and visualisation so makes those easy
● Open source, Free, 
● Reproducibility - R markdown, R’s “killer feature”



Stage 1 Revision: experiments and analysis
Something we measure

Some things we control, 
choose or set

Relationship
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Response variable

Dependent variable
The ‘y’ s

Predictor variables

Independent variable(s)
The ‘x’ s

Can be explained by

function(y ~ x)
function(y ~ x

1
 * x

2
)



Stage 1 Revision: experiments and analysis
Something we measure

Some things we control, 
choose or set

Relationship

Linear
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Response variable

Normally distributed

Predictor variables

Continuous: regression
Categories: t-test, ANOVA

Can be explained by

function(y ~ x)
function(y ~ x

1
 * x

2
)



Contact time: 1 lecture + 4 workshops
Lecture 1 : Linear models revisited (ER)

Workshop 1: Linear Models (ER)
T-tests, ANOVA and regression are used when we have a continuous response variable. We revisit 
these using a linear modelling framework. This means using a single function `lm()` rather than three 
different ones and enhancing our understanding of the concepts underlying the tests.

Workshop 2: Generalised Linear Models for Poisson distributed data (ER)

Workshop 3: Generalised Linear Models for Binomially distributed data (ER)

Workshop 4: Non-linear regression and dynamics (JWP)
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Lecture Overview

Introduction to Q&C skills strand

● Q&C skills strand in 58I ✔
● Data Skills in degree program - roadmap ✔

Linear models revisited

● Stage 1 - revision, brief! ✔
● Linear models - what are they? ←
● Revisiting regression, t-tests and ANOVA as linear models
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Learning objectives

By actively following this lecture and undertaking the exercises in 
workshop 1 the successful student will be able to:

● Explain the the link between t-tests, ANOVA and regression
● Appropriately apply linear models using lm()
● Interpret the results using summary() and anova() and relate them to 

the outputs of t.test() and aov()
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What are linear models?
Something you have already met!

Equation to explain, with a linear relationship, one response variable with one or 
more explanatory variables: y = ax1 + bx2 +....
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Procedure Response Explanatory R Stage 1 examples

Single linear 
regression

Continuous 1 Continuous y ~ x mand ~ jh
mass ~ day

Two-sample 
t-test

Continuous 1 categorical (2 levels) y ~ x adiponectin ~ treatment
time ~ status

One-way 
ANOVA

Continuous 1 categorical (2 or more levels) y ~ x myoglobin ~ species

Two-way 
ANOVA

Continuous 2 categorical (2 or more levels 
each)

y ~ x1*x2 para ~ season * species
diameter ~ agent * species



Key points
T-tests, ANOVA and regression are fundamentally the same, collectively called  
‘general linear models’. They can be carried out in R with lm()

There are other linear models too

The concept can be extended to ‘generalised linear models’ for different types of 
response. Generalised linear models are carried out in R with glm()

The output of lm() looks more complex, at first, than the outputs of t.test() and 
aov()

The output of glm() is like that for lm(). So we will revisit regression, t-tests and 
ANOVA using lm() to help you understand the output.
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Revisiting: Regression - this is exactly as last year!
Concentration of juvenile  
hormone (JH) and mandible 
length in stag beetles 
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mod <- lm(data = stag, mand ~ jh)



Revisiting: Regression - this is exactly as last year!

18

summary(mod)
Call:
lm(formula = mand ~ jh, data = stag)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.38604 -0.20281 -0.09751  0.15034  0.60690 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.419338   0.139429   3.008  0.00941 **
jh          0.032294   0.007919   4.078  0.00113 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.292 on 14 degrees of freedom
Multiple R-squared:  0.5429, Adjusted R-squared:  0.5103 
F-statistic: 16.63 on 1 and 14 DF,  p-value: 0.00113
 

mod <- lm(data = stag, mand ~ jh)



summary(mod)
Call:
lm(formula = mand ~ jh, data = stag)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.38604 -0.20281 -0.09751  0.15034  0.60690 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.419338   0.139429   3.008  0.00941 **
jh          0.032294   0.007919   4.078  0.00113 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.292 on 14 degrees of freedom
Multiple R-squared:  0.5429, Adjusted R-squared:  0.5103 
F-statistic: 16.63 on 1 and 14 DF,  p-value: 0.00113
 

Revisiting: Regression - this is exactly as last year!
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Intercept

Slope

Test of intercept
Test of slope

% of variation in y explained by x 
“model fit”

Test of model 

mand = 0.42 + 0.03*jh mod <- lm(data = stag, mand ~ jh)



summary(mod)
Call:
lm(formula = mand ~ jh, data = stag)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.38604 -0.20281 -0.09751  0.15034  0.60690 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.419338   0.139429   3.008  0.00941 **
jh          0.032294   0.007919   4.078  0.00113 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.292 on 14 degrees of freedom
Multiple R-squared:  0.5429, Adjusted R-squared:  0.5103 
F-statistic: 16.63 on 1 and 14 DF,  p-value: 0.00113
 

Revisiting: Regression - this is exactly as last year!

20

Intercept

   
Slope

mod <- lm(data = stag, mand ~ jh)

0.42
1

0.03



summary(mod)
Call:
lm(formula = mand ~ jh, data = stag)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.38604 -0.20281 -0.09751  0.15034  0.60690 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.419338   0.139429   3.008  0.00941 **
jh          0.032294   0.007919   4.078  0.00113 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.292 on 14 degrees of freedom
Multiple R-squared:  0.5429, Adjusted R-squared:  0.5103 
F-statistic: 16.63 on 1 and 14 DF,  p-value: 0.00113
 

Revisiting: Regression - this is exactly as last year!
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mod <- lm(data = stag, mand ~ jh) P value for slope of 
single variable
=
P value of whole 
model

This will not be 
true for more for
i) one-way anova 
with more than 2 
gps
ii) two-way anova
iii) other linear 
models

When only one continuous 
variable after the ~

….



Revisiting: two-sample t-test using t.test()
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t.test(mass ~ sex, data = chaff, var.equal = T)

Two Sample t-test
data:  mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.167734 -0.422266
sample estimates:
mean in group females   mean in group males 
               20.480                22.275

t.test(y ~ x, data = mydata, var.equal = T)

t.test(adiponectin ~ treatment, data = adip, var.equal = T)
    
       Two Sample t-test
data:  adiponectin by treatment
t = -3.2728, df = 28, p-value = 0.00283
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.1910762 -0.7342571
sample estimates:
  mean in group control mean in group nicotinic 
               5.546000                7.508667

Example 1 from 17C. 
Is there a significant difference 
between the masses of male 
and female chaffinches?

Example 2 from 08C. 
Does treatment with Nicotinic 
acid affect adiponectin secretion 
compared to control treatment?



Revisiting: two-sample t-test using t.test()
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t.test(mass ~ sex, data = chaff, paired = F, var.equal = T)

Two Sample t-test
data:  mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.167734 -0.422266
sample estimates:
mean in group females   mean in group males 
               20.480                22.275

t.test(y ~ x, data = mydata, var.equal = T)

The means are significantly 
different

Alternative way to state:
● Sex has a significant effect on 

mass



t.test(mass ~ sex, data = chaff, paired = F, var.equal = T)

Two Sample t-test
data:  mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.167734 -0.422266
sample estimates:
mean in group females   mean in group males 
               20.480                22.275

mod <- lm(mass ~ sex, data = chaff)
summary(mod)
Call:
lm(formula = mass ~ sex, data = chaff)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2750 -1.7000 -0.3775  1.6200  4.1250 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  20.4800     0.4795  42.712   <2e-16 ***
sexmales      1.7950     0.6781   2.647   0.0118 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.144 on 38 degrees of freedom
Multiple R-squared:  0.1557, Adjusted R-squared:  0.1335 
F-statistic: 7.007 on 1 and 38 DF,  p-value: 0.01175

Revisiting: Comparing t.test() with lm()
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Using lm()

Using t.test

Difference is 
significant 

Output of lm() to do a t-test looks the 
same as the output of lm() to do a 
regression.
Mathematically the same thing!



t.test(mass ~ sex, data = chaff, paired = F, var.equal = T)

Two Sample t-test
data:  mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.167734 -0.422266
sample estimates:
mean in group females   mean in group males 
               20.480                22.275

mod <- lm(mass ~ sex, data = chaff)
summary(mod)
Call:
lm(formula = mass ~ sex, data = chaff)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2750 -1.7000 -0.3775  1.6200  4.1250 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  20.4800     0.4795  42.712   <2e-16 ***
sexmales      1.7950     0.6781   2.647   0.0118 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.144 on 38 degrees of freedom
Multiple R-squared:  0.1557, Adjusted R-squared:  0.1335 
F-statistic: 7.007 on 1 and 38 DF,  p-value: 0.01175

Revisiting: Comparing t.test() with lm()
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Using lm()

Female mean sig diff 
from 0. Not important

Using t.test

Intercept is mean of ‘lowest’ level of factor

I.e., equivalent to x = 0 in regression



t.test(mass ~ sex, data = chaff, paired = F, var.equal = T)

Two Sample t-test
data:  mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.167734 -0.422266
sample estimates:
mean in group females   mean in group males 
               20.480                22.275

mod <- lm(mass ~ sex, data = chaff)
summary(mod)
Call:
lm(formula = mass ~ sex, data = chaff)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2750 -1.7000 -0.3775  1.6200  4.1250 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  20.4800     0.4795  42.712   <2e-16 ***
sexmales      1.7950     0.6781   2.647   0.0118 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.144 on 38 degrees of freedom
Multiple R-squared:  0.1557, Adjusted R-squared:  0.1335 
F-statistic: 7.007 on 1 and 38 DF,  p-value: 0.01175

Revisiting: Comparing t.test() with lm()
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Using lm()

Using t.test

Difference between intercept 
and next level (i.e., the slope)

I.e., Changing x by 1 unit 
makes y go up by the value of 
slope

Difference is 
significant 



Why use lm()?
Extendable! These are particular cases but a linear models include any number of 
continuous and categorical explanatory variables. 
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Procedure Response Explanatory R Stage 1 examples

Single linear 
regression

Continuous 1 Continuous y ~ x mand ~ jh
mass ~ day

Two-sample 
t-test

Continuous 1 categorical (2 levels) y ~ x adiponectin ~ treatment
time ~ status

One-way 
ANOVA

Continuous 1 categorical (2 or more levels) y ~ x myoglobin ~ species

Two-way 
ANOVA

Continuous 2 categorical (2 or more levels 
each)

y ~ x1*x2 para ~ season * species
diameter ~ agent * species



Why use lm()?
For example...
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Procedure Response Explanatory R Stage 1 examples

Single linear 
regression

Continuous 1 Continuous y ~ x mand ~ jh
mass ~ day

Two-sample 
t-test

Continuous 1 categorical (2 levels) y ~ x adiponectin ~ treatment
time ~ status

One-way 
ANOVA

Continuous 1 categorical (2 or more levels) y ~ x myoglobin ~ species

Two-way 
ANOVA

Continuous 2 categorical (2 or more levels 
each)

y ~ x1*x2 para ~ season * species
diameter ~ agent * species

Continuous 1 categorical and 1 continuous y ~ x1*x2



Revisiting: One-way ANOVA
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mod <- aov(y ~ x, data = mydata)
summary(mod)

modc <- aov(diameter ~ medium, data = culture)
summary(modc)
            Df Sum Sq Mean Sq F value  Pr(>F)   
medium       2 10.495  5.2473  6.1129 0.00646 **
Residuals   27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Revisiting: One-way ANOVA

30

modc <- aov(diameter ~ medium, data = culture)
summary(modc)
            Df Sum Sq Mean Sq F value  Pr(>F)   
medium       2 10.495  5.2473  6.1129 0.00646 **
Residuals   27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Using lm()

Using aov()

modl <- lm(diameter ~ medium, data = culture)
summary(modl)
lm(formula = diameter ~ medium, data = culture)

Residuals:
   Min     1Q Median     3Q    Max 
-1.541 -0.700 -0.080  0.424  1.949 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     10.0700     0.2930  34.370  < 2e-16 ***
mediumwith sugar                 0.1700     0.4143   0.410  0.68483    
mediumwith sugar + amino acids   1.3310     0.4143   3.212  0.00339 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9265 on 27 degrees of freedom
Multiple R-squared:  0.3117, Adjusted R-squared:  0.2607 
F-statistic: 6.113 on 2 and 27 DF,  p-value: 0.00646



Revisiting: One-way ANOVA

31

modc <- aov(diameter ~ medium, data = culture)
summary(modc)
            Df Sum Sq Mean Sq F value  Pr(>F)   
medium       2 10.495  5.2473  6.1129 0.00646 **
Residuals   27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Using lm()

Using aov()

modl <- lm(diameter ~ medium, data = culture)
summary(modl)
lm(formula = diameter ~ medium, data = culture)

Residuals:
   Min     1Q Median     3Q    Max 
-1.541 -0.700 -0.080  0.424  1.949 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     10.0700     0.2930  34.370  < 2e-16 ***
mediumwith sugar                 0.1700     0.4143   0.410  0.68483    
mediumwith sugar + amino acids   1.3310     0.4143   3.212  0.00339 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9265 on 27 degrees of freedom
Multiple R-squared:  0.3117, Adjusted R-squared:  0.2607 
F-statistic: 6.113 on 2 and 27 DF,  p-value: 0.00646

Intercept is mean of ‘lowest’ level of factor

I.e., equivalent to x = 0 in regression

Control mean sig diff 
from 0. Not important



Revisiting: One-way ANOVA

32

modc <- aov(diameter ~ medium, data = culture)
summary(modc)
            Df Sum Sq Mean Sq F value  Pr(>F)   
medium       2 10.495  5.2473  6.1129 0.00646 **
Residuals   27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Using lm()

Using aov()

modl <- lm(diameter ~ medium, data = culture)
summary(modl)
lm(formula = diameter ~ medium, data = culture)

Residuals:
   Min     1Q Median     3Q    Max 
-1.541 -0.700 -0.080  0.424  1.949 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     10.0700     0.2930  34.370  < 2e-16 ***
mediumwith sugar                 0.1700     0.4143   0.410  0.68483    
mediumwith sugar + amino acids   1.3310     0.4143   3.212  0.00339 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9265 on 27 degrees of freedom
Multiple R-squared:  0.3117, Adjusted R-squared:  0.2607 
F-statistic: 6.113 on 2 and 27 DF,  p-value: 0.00646

Difference between intercept and next 
level



Revisiting: One-way ANOVA

33

modc <- aov(diameter ~ medium, data = culture)
summary(modc)
            Df Sum Sq Mean Sq F value  Pr(>F)   
medium       2 10.495  5.2473  6.1129 0.00646 **
Residuals   27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Using lm()

Using aov()

modl <- lm(diameter ~ medium, data = culture)
summary(modl)
lm(formula = diameter ~ medium, data = culture)

Residuals:
   Min     1Q Median     3Q    Max 
-1.541 -0.700 -0.080  0.424  1.949 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     10.0700     0.2930  34.370  < 2e-16 ***
mediumwith sugar                 0.1700     0.4143   0.410  0.68483    
mediumwith sugar + amino acids   1.3310     0.4143   3.212  0.00339 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9265 on 27 degrees of freedom
Multiple R-squared:  0.3117, Adjusted R-squared:  0.2607 
F-statistic: 6.113 on 2 and 27 DF,  p-value: 0.00646

Difference between intercept and third 
level



Usual steps in applying lm()

34

modl <- lm(diameter ~ medium, data = culture)
summary(modl)
lm(formula = diameter ~ medium, data = culture)

Residuals:
   Min     1Q Median     3Q    Max 
-1.541 -0.700 -0.080  0.424  1.949 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     10.0700     0.2930  34.370  < 2e-16 ***
mediumwith sugar                 0.1700     0.4143   0.410  0.68483    
mediumwith sugar + amino acids   1.3310     0.4143   3.212  0.00339 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9265 on 27 degrees of freedom
Multiple R-squared:  0.3117, Adjusted R-squared:  0.2607 
F-statistic: 6.113 on 2 and 27 DF,  p-value: 0.00646

lm()

summary(mod1) - ‘estimates’ and 
direction of effects

+’ve bigger than intercept

-’ve smaller than intercept



Usual steps in applying lm()

35

anova(mod1)

Analysis of Variance Table

Response: diameter
          Df Sum Sq Mean Sq F value  Pr(>F)   
medium     2 10.495  5.2473  6.1129 0.00646 **
Residuals 27 23.177  0.8584                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

anova(mod1) 

Test of the ‘explanatory power’ of 
the model

For reference: it’s also how to 
compare models



Usual steps in applying lm()
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library(lsmeans)
post <- lsmeans(mod1, ~ medium)
pairs(post)

 contrast                              estimate    SE df t.ratio p.value
 control - with sugar                     -0.17 0.414 27 -0.410  0.9117 
 control - with sugar + amino acids       -1.33 0.414 27 -3.212  0.0092 
 with sugar - with sugar + amino acids    -1.16 0.414 27 -2.802  0.0244 

P value adjustment: tukey method for comparing a family of 3 estimates 

Post hoc - which means 
differ

Use lsmeans() and 
pairs() from package 
lsmeans



Assumptions - exactly as stage 1
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shapiro.test(mod1$residuals)

Shapiro-Wilk normality test

data:  mod1$residuals
W = 0.96423, p-value = 0.3953

plot(mod1)

These look fine



Key points
T-tests, ANOVA and regression are fundamentally the same, collectively called  
‘general linear models’. Other general linear models are possible. They can be 
carried out in R with lm()

The concept can be extended to ‘generalised linear models’ for different types of 
response. Generalised linear models are carried out in R with glm()

The output of lm() looks more complex, at first, than the outputs of t.test() and 
aov()

The output of glm() is like that for lm(). So we will revisit regression, t-tests and 
ANOVA using lm() to help you understand the output 
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