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Abstract. A smooth d-dimensional projective variety X can always be em-

bedded into 2d + 1-dimensional space. In contrast, a singular variety may
require an arbitrary large ambient space. If we relax our requirement and

ask only that the map is injective, then any d-dimensional projective variety

can be mapped injectively to 2d + 1-dimensional projective space. A natural
question then arises: what is the minimal m such that a projective variety

can be mapped injectively to m-dimensional projective space? In this paper

we investigate this question for normal toric varieties, with our most complete
results being for Segre-Veronese varieties. In particular, we find that in most

cases the optimal m can be reached by performing linear projections from the

defining embedding.

1. Introduction

It is well known that a smooth d-dimensional projective or affine variety can
always be embedded into P2d+1. This story is different for singular varieties, in-
cluding affine cones over smooth projective varieties. For example, the affine cone
over the nth Veronese embedding of P1 cannot be embedded in Am for m < n+ 1.
In some situations, one may be willing to lose some information and be satisfied
with an injective morphism X → Pm or X → Am.

Question 1.1. What is the minimal m such that a projective (affine) variety
X can be mapped injectively into projective space (respectively, affine space) of
dimension m?

The bound 2d+ 1 holds in general in this setting by the same linear projection
argument that yields an embedding of a smooth projective variety into P2d+1.

Namely, if X ⊆ PN and p is a point in PN \ X which does not lie on any
secant to X, that is on any line which intersects X in at least two points, then the
projection from p to a hyperplane will be injective on X. One can then repeat this
argument until the set of points on secant lines fills the ambient space. The bound
2d+ 1 is simply the expected dimension of the secant variety, which is the Zariski
closure of the set of points on secant lines. In the affine case, one simply uses the
same argument on a projectivization; see [12, Section 5.1] for a similar argument
in a special case and [16, Theorem 5.3] for a different argument in a more general
context.

Naturally, an absolute lower bound is given by the dimension of X. This ab-
solute lower bound is sometimes attained even when X is not itself Pd or Ad, at
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least in positive characteristic [9, Example 3.1]. But this is a rare occurence. In
characteristic zero, for normal varieties, it does not happen unless X is isomorphic
to Pm or Am, see [11, Corollary 4.6].

In this paper we focus on toric varieties and the affine cones over them. Our most
complete results are for Segre-Veronese varieties, a construction simultaneously
generalizing Veronese varieties (r = 1) and Segre varieties (each ai = 1). For the
affine cone over a Segre-Veronese variety we obtain:

Theorem 1.2. Let Y be the affine cone over the Segre-Veronese variety X which
is the image of the closed embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle

O(a1, . . . , ar). If s is minimal such that Y can be mapped injectively to As, then

(1) s = 2
∑r
i=1 ni − 2r + 1, if at least one ai is not 1 or a power of char k;

(2) s = 2(n1 + n2)− 4, if r = 2 and a1, a2 are either 1 or a power of char k;
(3) 2

∑r
i=2 ni − 2r + 4 ≤ s ≤ 2

∑r
i=1 ni − 2r + 1 in the remaining cases.

If s′ is minimal such that X can be mapped injectively to Ps′ . Then s′ = s − 1 in
cases 1 and 2, and s′ satisfies the same inequalities as s− 1 in case 3.

As a consequence of our lower bounds and linear projection arguments, we obtain
in Corollary 5.5 a new proof of the nondegeneracy of the secant variety of Segre-
Veronese varieties (see [1, Theorem 4.2]).

To obtain the sharper upper bounds given above, we need to determine if the set
of points belonging to secants is closed, since projection from a point in the secant
variety which does not lie on any secant will be injective on X. This is well-known
for Veronese and Segre varieties, and we complete the picture for Segre-Veronese
varieties:

Proposition 4.7. Let X be the Segre-Veronese variety which is the image of the
closed embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle O(a1, . . . , ar). If r > 2

or r = 2 and (a1, a2) 6= (1, 1), then the set of secant lines to X does not fill the
secant variety of X.

Lower bounds are obtained via completely different techniques, better suited to
the affine case. If Y is an affine algebraic variety, having an injective morphism
Y → Am corresponds to having a separating set E = {f1, . . . , fm} ⊆ k[Y ]. The
notion of separating set is usually defined relatively to a larger ring of functions
R ⊃ k[Y ] and in a much more general contexts, for ring of functions on a set,
see [18, Definition 1.1]. This variant comes up in many different contexts under
different names (see for example the introduction of [23]).

For the affine cone Y over a Segre-Veronese variety, we have a surjective map
Ad → Y where d =

∑r
i=1 ni, dual to the inclusion map of the ring of regular

functions on Y into a polynomial ring in d variables. A consequence is that the
morphism Y → Am is injective if and only if the natural inclusion of the reduced
fiber products

Ad ×Y Ad ⊆ Ad ×Am Ad

is an isomorphism. As Ad ×Am Ad is the zero set in A2d of

(fi ⊗ 1− 1⊗ fi | i = 1, . . . ,m)

it follows that the arithmetic rank of the defining ideal of Ad ×Y Ad, that is the
minimal number of generators up to radical, is a lower bound for the minimal m
such that Y can be mapped injectively to Am (cf [10, Section 3]). Our arguments
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exploit the fact that the affine cone over a Segre-Veronese variety is isomorphic to
V//G := Spec(k[V ]G), where V is a representation of an algebraic group G and
k[V ]G := {f ∈ k[V ] | f(u) = f(σ · u), for all u ∈ V, σ ∈ G}. Accordingly, most of
this paper will be written from that point of view.

If we assume G is reductive (and so the quotient morphism V → V//G is surjec-
tive), then having an injective morphism Spec(k[V ]G) =: V//G→ Am corresponds
to having a separating set in the sense of [6, Section 2.3.2], that is, a set E of
invariants such that whenever two points of V can be separated by some invariant,
they can be separated by an element of E.

In this setting, the fibre product V ×V//G V is called the separating variety and
denoted by SV,G. The key observation of [10, Section 3] is that the minimal size of
a separating set is bounded below by the arithmetic rank of the defining ideal of
SV,G. For representations of finite groups the arithmetic rank of the defining ideal
of the separating variety ends up being meaningful in terms of the geometry of the
representation (see [10]). As in [10], we use the nonvanishing of local cohomology
modules to find lower bounds for the arithmetic rank of the defining ideal of the
separating variety. For Segre varieties with two factors, this is not conclusive in
positive characteristic, and so instead we must use étale cohomology. Following [10],
the general strategy is to decompose the separating variety as a union of simpler
objects. The difficulty is, unlike for representations of finite groups, the separating
variety is not simply an arrangement of linear subspaces.

Linear projections are often sufficient to reach the minimal m such that a pro-
jective variety can be mapped injectively to Pm. In the case of toric varieties, the
image will often no longer be toric. A natural question is the following:

Question 1.3. What is the minimal m such that a projective toric variety is
mapped injectively to Pm so that the image is also a toric variety? Equivalently,
what is the minimal size of a monomial separating set for the affine cone over a
toric variety?

In this paper we address this question for normal affine toric varieties. These
include the affine cones over Segre-Veronese varieties. The normality assumption
ensures that the ring can be identified with the ring of invariants of a representation
of an algebraic torus, which provides extra structure. Indeed, the rings of invariants
for representations of tori are determined by the combinatorics and convex geometry
of the weights. In Proposition 6.9, we determine the answer to Question 1.3 for
Segre-Veronese varieties; as a consequence, in Corollary 6.10 we give a bound on
the sparsity of a separating set for the associated torus action.

In general, the minimal size of a monomial separating set is much larger than
the minimal size of a separating set, but it is often still smaller than the size of
a minimal generating set for the ring of invariants. Inspired by [8], we show the
following.

Theorem 6.7. Let V be a n dimensional representation of a torus T of rank r 6 n.
The invariants involving at most 2r + 1 variables form a separating set.

The remainder of the paper is organized as follows. In Section 2 we describe
the combinatorial set-up and notation we need in order to discuss linear repre-
sentations of tori, including giving an explicit link between representations of tori
and Segre-Veronese varieties. In Section 3 we first give some general results about
the decomposition of the separating variety for representation of tori, before giving
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more explicit results in the case of Segre-Veronese varieties. Section 4 focuses on
upper bounds on the size of separatating sets and Section 5 on the lower bounds.
Finally, in Section 6 we consider monomial separating sets. As well as the results
mentioned above, we give a combinatorial characterization of monomial separating
sets for representations of tori.

2. Set up and Notation

We work over an algebraically closed field k of arbitrary characteristic. The
characteristic will sometimes make a difference. We consider a n-dimensional rep-
resentation V of a torus T of rank r. Without loss of generality we can assume
this is given by the weights m1, . . . ,mn ∈ Zr. That is, with respect to the basis
{e1, . . . , en} of V , the action of T on V is given by t 7→ diag(t−m1 , . . . , t−mn), where
t denotes the element (t1, . . . , tr) of T . Let A be the matrix whose columns are the
mi’s. We will assume throughout that A has full rank r ≤ n.

We will write k[x] to denote k[x1, . . . , xn] = k[V ], where {x1, . . . , xn} is the basis
of the 1-forms of k[V ] dual to the basis {e1, . . . , en} of V . In terms of the basis
{x1, . . . , xn}, the representation of T takes the form t 7→ diag(tm1 , . . . , tmn).

The ring of invariants k[V ]
T

is the monomial algebra given by the semigroup
L := kerZA ∩ Nn, that is

k[V ]
T

= spank{xα | α ∈ L}.
The field of rational invariants is similarly given by kerZA:

k(V )T = spank{xβ | β ∈ kerZA}.
For a natural number a ∈ N, we write [a] to denote the set {1, . . . , a}. For I ⊆ [n],
we set VI = spank{ei | i ∈ I},

kerZAI := {β ∈ kerZA | βj = 0 for j /∈ I} ,
and LI = kerZAI ∩ L.

For u ∈ V , we define supp(u) : {i ∈ [n] | ui 6= 0} and similarly for β ∈ Zn,
supp(β) := {i ∈ [n] | βi 6= 0}. For I ⊆ {1, . . . , n}, we define the weight set of I to
be wt(I) := {mi | i ∈ I}, and for u ∈ V and α ∈ Zn, we write wt(u) := wt(supp(u))
and wt(α) := wt(supp(α)). Further, we will write conv(I), respectively conv◦(I), to
denote the convex hull of wt(I), respectively the relative interior of the convex hull
of wt(I), which is the interior of wt(I) with respect to the usual metric topology
on the linear span of wt(I) ⊆ Rn.

2.1. Segre-Veronese varieties. We will pay particular attention to the affine
cones over Segre-Veronese varieties.

A Segre-Veronese variety is the image of the closed embedding
r∏
i=1

Pni−1 ↪→ PN for N = 1 +

r∏
i=1

(
ni + ai − 1

ai

)
given by the line bundle O(a1, . . . , ar) for some tuple (a1, . . . , ar) ∈ Nr. Its ring of
homogeneous coordinates is

S = k
[
M1 · · ·Mr

∣∣ Mi is a monomial of degree ai in the variables xi1, . . . , xini
]
.

This construction simultaneously generalizes Veronese varieties (r = 1) and Segre
varieties (every ai = 1).
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If every ai is coprime to the characteristic of k, the homogeneous coordinate ring
S of the Segre-Veronese is the ring of invariants of the polynomial ring

R = k[xi` | 1 6 i 6 r, 1 6 ` 6 ni] ,

under the linear action of a diagonalizable group, given as the product of a torus
T of rank r − 1 acting with weights

mi` =

{
ei i = 1, . . . , r − 1

−
∑r−1
i=1 ei i = r

,

and a product of cyclotomic groups µa1 ×· · ·×µar =: H, where the i-th factor acts
on xi` by scalar multiplication. That is, the ring of homogeneous coordinates of
nonmodular Segre-Veronese varieties can be identified with the ring of invariants
RG = k[W ]G, where G = T ×H acts on the (

∑r
i=1 ni)-dimensional k-vector space

as described above.
The ring S can also be obtained over any field, up to isomorphism, as the ring

of invariants of a torus. Precisely, set

S′ = k
[
x0M1 · · ·Mr

∣∣Mi is a monomial of degree ai in the variables xi1, . . . , xini
]
,

and R′ = k[x0, xi` | 1 6 i 6 r, 1 6 ` 6 ni]. Then S′ is the ring of invariants of R′

under the action of a rank r torus with weights m0 = −
∑r
i=1 aiei and mi` = ei. As

both groups are reductive, the isomorphism S ∼= S′ ensures that finding separating
sets in S and S′ is exactly the same, and so any bound established for one holds for
the other. This follows from the following key fact: if G is reductive, E ⊆ k[V ]G

is a separating set if and only if the morphism V//G→ Spec(k[E]) induced by the
inclusion k[E] ⊆ k[V ]G is injective (cf [9, Theorem 2.2]).

In the following lemma, we set s(a1, . . . , ar) to be the smallest cardinality of a
separating set for a representation of a torus with ring of invariants isomorphic
to the homogeneous coordinate ring of the Segre-Veronese variety X, where X is
the image of the closed embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle

O(a1, . . . , ar).

Lemma 2.1. Let k be a field of positive characteristic p, and fix a1, . . . , an. Write
each ai = a′ip

ei so that gcd(a′i, p) = 1. Then s(a1, . . . , ar) = s(a′1, . . . , a
′
r).

Proof. We will show that s(a1, . . . , at) = s(a1, . . . , at−1, pat), and the claim follows.
Let R1 be the ring of functions on the affine cone over the Segre-Veronese variety

given by the line bundle O(a1, ..., at), R2 be the ring of functions on the affine cone
over the Segre-Veronese variety given by the line bundle O(a1, . . . , at−1, pat), and
R3 be the image of R1 under the map which sends set of variables (xt,1, . . . , xt,nt)
to their pth powers. Note that R3 is isomorphic to R1.

Suppose that {g1, . . . , gs} ⊂ R1 form a separating set in R1,. Then their images
{g′′1 , . . . , g′′s } under the map giving the isomorphism R1

∼= R3 form a separating set
for R2. Indeed, it will be a separating set for R3 (applying the isomorphism), and
the morphism Spec(R2)→ Spec(R3) induced by the inclusion R2 ⊆ R3 is injective.
It follows that an upper bound on the minimal size of separating sets for R1 is also
an upper bound for R2.

Since (R2)q ⊆ R3, taking a separating set for R2 and taking qth powers produces
a separating set for R3 of the same cardinality. Then, applying the isomorphism
R1
∼= R3, we get a separating set for R1 of the same size. Therefore, the minimal

size of a separating set in R1 is a lower bound for the minimal size of a separating
set in R2, completing the proof of the claim. �
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3. The separating variety

In this section we describe the separating variety for representations of tori. The
separating variety SV,G is a closed subvariety of V × V that encodes which points
can be separated by invariants. Namely,

SV,G := {(u, v) ∈ V × V | f(u) = f(v), ∀f ∈ k[V ]G} .

It deserves its name because it characterizes separating sets. Indeed, E ⊆ k[V ]G is
a separating set if and only if

VV×V (f ⊗ 1− 1⊗ f | f ∈ E) = SV,G
(see [17, Section 2]). In particular, the defining ideal for the separating variety is
the radical of the separating ideal

IV,G := (f ⊗ 1− 1⊗ f | f ∈ k[V ]G) .

Of course, the separating variety always contains the graph of the action

ΓV,G := {(u, σ · u) | u ∈ V, σ ∈ G} ,

and its Zariski closure ΓV,G.
Let V be a linear representation of an algebraic group G. Let π : V → V//G be

the morphism corresponding to the inclusion k[V ]G ⊆ k[V ]. The nullcone NV is

defined as NV := π−1(π(0)). It coincides with the set VV (f | f ∈ k[V ]
G
+) of common

zeroes in V of all nonconstant homogeneous invariants. Naturally, the product
NV,G ×NV,G is always contained in the separating variety. For a representation of
a torus, the nullcone can be described in terms of the geometry of the weights of
the action:

Lemma 3.1 (see for example [26, Proposition 4.4]). Let V be a representation of a
torus T . The nullcone is an arrangement of linear subspaces and its decomposition
as irreducibles is as follows:

NV,T =
⋃

I maximal s. t.
0 /∈ conv(wt(I))

VI .

We obtain a first coarse decomposition of the separating variety:

Proposition 3.2. Let V be a representation of a torus of rank r and suppose the
matrix of weights has rank r. Then the separating variety can be written as

SV,T = ΓV,T
⋃

(NV,T ×NV,T )
⋃
K,I,J

ΓVK ,T ⊕ (VI × VJ) ,

where the second union ranges over all K with 0 ∈ conv◦(wt(K)) and all I, J ⊆
{1, . . . , n} \K such that 0 /∈ conv◦(wt(K ∪ I)) and 0 /∈ conv◦(wt(K ∪ J)).

Proof. We first show the inclusion “⊇”. By the discussion above, ΓV,T and NV,T ×
NV,T are both contained in the separating variety. It remains to show that for each
choice of K, I, J , the set ΓVK ,T ⊕ (VI × VJ) is contained in the separating variety.
Let (u1, u2) be an arbitrary point of ΓVK ,T ⊕ (VI × VJ). By definition we can
write (u1, u2) = (v1, v2) + (w1, w2), where (v1, v2) ∈ ΓVK ,T and (w1, w2) ∈ VI × VJ .
Take α ∈ kerZA ∩ Nn. As 0 is not in the interior of the convex hull of wt(K ∪ I)
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and wt(K ∪ J), it follows that either supp(α) ⊆ K or supp(α) 6⊆ K ∪ I and
supp(α) 6⊆ K ∪ J . If supp(α) ⊆ K, then

xα(u1) = xα(v1) = xα(v2) = xα(u2) ,

and if supp(α) 6⊆ K ∪ I and supp(α) 6⊆ K ∪ J , then

xα(u1) = 0 = xα(u2) .

In both cases (u1, u2) ∈ SV,T as desired.
We now prove the reverse inclusion “⊆”. Take (u1, u2) ∈ SV,T . As T is a

reductive group, this is equivalent to Tu1 ∩ Tu2 6= ∅ (follows from [20, Corollary
3.5.2]). Without loss of generality we have z ∈ Tu1 ∩ Tu2, where Tz = Tz is the
unique closed orbit in Tu1 and Tu2. If Tu1 = Tz, we have

(u1, u2) ∈ Tu2 × {u2} ⊆ ΓV,T .

Similarly, if Tu2 = Tz, then (u1, u2) ∈ ΓV,T . We now suppose that Tz 6= Tu1, Tu2.
If z = 0, then (u, v) ∈ NV,T × NV,T , so we suppose z 6= 0. Then, since the
orbit of z is closed, 0 is in the interior of the convex hull of wt(z) (see Lemma 3.3
below). By the extended Hilbert-Mumford criterion [21, Theorem C], there exist 1-
dimensional subtori S1, S2 ⊆ T such that the intersections S1u1∩Tz and S2u2∩Tz
are nonempty; that is, there exist t1, t2 ∈ T such that t1 ·z ∈ S1u1 and t2 ·z ∈ S2u2.
If t1 · z ∈ S1u1, then Tu1 = Tz, and this case is done. Similarly, t2 · z ∈ S2u2 is also
done. So we now suppose that t1 · z /∈ S1u1 and t2 · z /∈ S2u2. The 1-dimensional
subtori S1, S2 correspond to a choice of δ1, δ2 ∈ Zr. We then have

S1u1 = {(sδ1·m1u1,1, . . . , s
δ1·mnu1,n) | s ∈ k∗)} ,

and
S2u2 = {(sδ2·m1u2,1, . . . , s

δ2·mnu2,n) | s ∈ k∗)} .
Without loss of generality, our assumption that t1 · z /∈ S1u1 and t2 · z /∈ S2u2

implies that t1 · z and t2 · z are seen to belong to the orbit closures by letting s
tends to zero in the above. It then follows that

δ1 ·mi > 0,∀i ∈ supp(u1) \ supp(z) ,

δ2 ·mi > 0,∀i ∈ supp(u2) \ supp(z) ,

δ1 ·mi = δ1 ·mi = 0,∀i ∈ supp(z) ,

and so we have u1 = t1 · z +w1 and u2 = t2 · z +w2, where w1, w2 ∈ NV,T and the
intersection of their support with the support of z is empty. Our assumptions that
Tz is the unique closed orbit in Tu1 and Tu2 and it is not equal to Tu1 or Tu2

implies that the orbits Tu1 and Tu2 are not closed. As a consequence, 0 is not in
the interior of the convex hull of wt(u1) or wt(u2). Writing

v1 := t1 · z, v2 := t2 · z, and K := supp z, I := supp(u1) \K, J := supp(u2) \K ,

we have 0 ∈ conv◦(wt(K)), 0 /∈ conv◦(wt(K∪I)), conv◦(wt(K∪J)), and (u1, u2) =
(v1, v2) + (w1, w2) with (v1, v2) ∈ ΓVK ,T and (w1, w2) ∈ VI × VJ . This completes
the proof. �

The following is stated without proof in the characteristic zero case in [22, 6.15].
We expect that it is already known, but include a proof for lack of an appropriate
reference.

Lemma 3.3 (cf. [22, 6.15]). The orbit of z is closed if and only if 0 ∈ conv◦(wt(z)).
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Proof. By the extended Hilbert-Mumford criterion [21, Theorem C], it suffices to
verify that any for any one parameter subgroup λ of T , the limit of λz is contained
in Tz. Thus, Tz is closed if and only if there does not exist δ ∈ Zr such that for
all i ∈ supp δ, we have δ ·mi > 0. By the hyperplane separation theorem applied
to the convex sets U = int(conv{mi}) and V = {0}, it follows that a real vector δ
satisfying the above exists if and only if 0 ∈ conv◦(wt(z)). If a real such δ exists,
it may be perturbed slightly in any direction except one parallel to a subspace
generated by a set of mi that contain 0 in its convex hull. However, the coordinates
in such a subspace are necessarily rational. �

Corollary 3.4. Let V be a representation of a torus of rank r and suppose the ma-
trix of weights has rank r. Suppose that 0 ∈ conv◦(wt(I)) implies that spanRwt(I) =
Rr. Then the separating variety can be written as

SV,T = ΓV,T
⋃
NV,T ×NV,T .

Proof. Suppose 0 ∈ conv◦(wt(K)). The assumption that wt(K) spans Rr implies
that 0 is in the interior of the convex hull of wt(I) for any set containing K.
Hence the third possible contribution in the statement of Proposition 3.2 does not
occur. �

The following lemma gives a step towards establishing which irreducible compo-
nents of NV,T ×NV,T are contained in ΓV,T .

Lemma 3.5. Let VI × VJ be an irreducible component of NV,T ×NV,T .

(1) If I ∩ J = ∅, then VI × VJ ∈ ΓV,T .

(2) If kerZAI∩J 6= {0}, then (u, v) /∈ ΓV,T .

Proof. (1): As I and J are disjoint, the maximality of I implies that for each j ∈ J
there is an invariant with exponent vector α ∈ Nn with j ∈ supp(α) ⊆ I∪{j}. Hence
αjmj +

∑
i∈I αimi = 0. Using the Hilbert-Mumford criteria [21, Theorem C], one

can see that supposing VI is a component of the null cone implies that I is maximal
among subsets K of {1, . . . , n} such that there exist δ ∈ Zr satisfying δ ·mi > 0 for
all i ∈ I. It follows that

δ ·mj = −1/αj
∑
i∈I

αi(δ ·mi) < 0.

The r-tuple δ corresponds to a 1-parameter subgroup of T , where the induced action
of t ∈ k∗ and on a vector w ∈ V is given by t · w := (tδ·m1w1, . . . , t

δ·mnwn). For
each t ∈ k∗,

(1) (u+ t−1 · v, t · (u+ t−1 · v)) = (u+ t−1 · v, t · u+ v)

belongs to the graph. Note that δ ·mi > 0 for i ∈ I and δ ·mj < 0 for i ∈ J imply
that (1) is also well defined for t = 0. It follows that (u+t−1 ·v, t ·u+v)|t=0 = (u, v)
must belong to the Zariski closure of the graph ΓV,T .

(2): If kerZAI∩J 6= {0}, then there is a rational invariant with support contained
in supp(u) ∩ supp(v), with exponent vector β ∈ Zn. Fix i0 ∈ supp(β). Without
loss of generality we may assume that i0 ∈ supp(β+). Note that since A does not
have zero columns, β ∈ kerZAI∩J implies that | supp(β)| ≥ 2. Define
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ui =

{
1 i ∈ supp(β)
0 otherwise

vi =

{
1 i ∈ supp(β) \ {i0}
0 otherwise

.

Then (u, v) ∈ VI × VJ and

(xβ
+

⊗ xβ
−
− xβ

−
⊗ xβ

+

)(u, v) = xβ
+

(u)xβ
−

(v)− xβ
−

(u)xβ
+

(v) = 1 6= 0.

That is (u, v) /∈ ΓV,T and so VI × VJ 6⊆ ΓV,T . �

3.1. The separating variety for the affine cone over Segre-Veronese va-
rieties. In this subsection we consider the case of non-modular Segre-Veronese
varieties, that is such that ai ∈ k∗ for each i = 1, . . . , r, which suffices to determine
the minimal size of separating sets in general by Lemma 2.1 .

Proposition 3.6 (Nonmodular Segre-Veronese). Consider the nonmodular Segre-
Veronese variety which is the image of the closed embedding

∏r
i=1 Pni−1 ↪→ PN

given by the line bundle O(a1, . . . , ar) and whose ring of homogeneous coordinates
is identified with the ring of invariants k[W ]G as described in Section 2.1.

(1) The separating variety SW,G decomposes as follows:

SW,G =
⋃
σ∈H

(1, σ)(SW,T ) .

(2) For σ, τ ∈ H, if (1, σ)(SW,T ) and (1, τ)(SW,T ) are distinct, then their in-
tersection is NW,T ×NW,T .

(3) For r = 1, SW,T = W ×W .
(4) For r = 2, the decomposition of the separating variety SW,T as a union of

irreducibles is

SW,T = ΓW,T ∪W1̂ ×W1̂ ∪W2̂ ×W2̂,

where Wk̂ = span{wi,j | i 6= k}. Furthermore, ΓW,T is cut out by the ideal
of 2× 2 minors

I2

(
x1,1 ⊗ 1 · · · x1,n1

⊗ 1 1⊗ x2,1 · · · 1⊗ x2,n2

1⊗ x1,1 · · · 1⊗ x1,n1
x2,1 ⊗ 1 · · · x2,n2

⊗ 1

)
.

(5) For r ≥ 3, the decomposition of the separating variety as a union of irre-
ducibles is

SW,T = ΓW,T ∪
r⋃

k,`=1

Wk̂ ×Wˆ̀.

Proof. As G is abelian, T E G with G/T ∼= H and k[W ]G = (k[W ]T )H . That is,
the quotient πG : W → W//G factors through the quotients πT : W → W//T and
πTH : W//T → (W//T )//H ∼= W//G. By definition of the separating variety, we have

SW,G = {(u, v) ∈W ×W | πG(u) = πG(v)}
= {(u, v) ∈W ×W | πTH(πT (u)) = πTH(πT (v))} .
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As H is a finite group, it follows that

SW,G = {(u, v) ∈W ×W | ∃σ ∈ G, πT (u) = σ · πT (v) = πT (σ · v)}
= {(u, v) ∈W ×W | ∃σ ∈ G, (u, σ · v) ∈ SW,T }
= {(u, v) ∈W ×W | ∃σ ∈ G, (u, v) ∈ (1, σ−1(SW,T )}

=
⋃
σ∈H

(1, σ)(SW,T ) .

Lemma 3.8 implies that (1, σ)(SW,T ) = (1, τ)(SW,T ) if and only if σ−1τ acts
trivially on W//T , since

(1, σ)(SW,T ) = (1, τ)(SW,T ) if and only if (1, 1)(SW,T ) = (1, σ−1τ)(SW,T ) .

So, if (1, σ)(SW,T ) and (1, τ)(SW,T ) are distinct, then σ−1τ acts nontrivially on
W//T . TheH-action onW//T extends naturally to the representation ρ : H → GL(V ),
where V has basis {ej1,...,jr | ji ∈ [ni]}, πT (0) coincides with the origin in V and
ρ(γ)(ej1,...,jr ) =

∏r
i=1 ζ

mi
ai ej1,...,jr for each γ = (ζm1

a1 , . . . , ζ
m1
a1 ) ∈ H. Hence σ−1τ

acts nontrivially on W//T if and only if it acts nontrivially on V , but then V σ
−1τ

is simply the origin. It then follows that (W//T )σ
−1τ = πT (0).

An element of this intersection (1, σ)(SW,T ) ∩ (1, τ)(SW,T ) will be of the form
(u, σ · v) = (u′, τ · v′) for some (u, v), (u′, v′) ∈ SW,T . We will have u = u′ and
v = σ−1τ · v′, and so

πT (v′) = πT (u′) = πT (u) = πT (v) = πT (σ−1τ · v′) = σ−1τ · πT (v′) ;

that is,

πT (u) = πT (v) = πT (v′) ∈ (W//T )σ
−1τ = {πT (0)} .

As
πT (σ · v) = σ · πT (v) = σ · πT (0) = πT (0) ,

we conclude that (1, σ)(SW,T ) ∩ (1, τ)(SW,T ) = NW,T ×NW,T as desired.
Statement 3 is clear since there are no nonconstant invariants. So suppose r ≥ 2.

Observe that 0 is not in any proper subset of the weights. In particular, the
conditions of Corollary 3.4 are met and so

SW,T = ΓW,T
⋃
NW,T ×NW,T .

Furthermore, by Lemma 3.1, we have

NW,T =

r⋃
k=1

Wk̂.

It remains to establish which products Wk̂ ×Wˆ̀ are in ΓW,T . We first consider the
case r = 2. In this case the intersection of the two components is the origin. Hence,
by Lemma 1, the decomposition of the separating variety is as in statement 4. The
ideal given in this same statement is exactly the toric ideal of the Lawrence lifting
of the matrix of weights A,

Λ(A) :=

(
A 0
I I

)
,

where I denotes the n×n identity matrix. Thus is it is prime and has height n− 1
(see [24, Chapter 7, page 55]). It is easy to see that this ideal vanishes on the
graph, and so its zero set in W ×W contains the closure of the graph. As T is
connected and A has rank 1, the closure of the graph is itself an irreducible variety
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of dimension n+ 1. It follows that the toric ideal associated to Λ(A) is the defining
ideal of ΓW,T .

Let us now consider the case r ≥ 3. First note that in this case, the intersection
of two irreducible component of the nullcone will contain the weight space of at
least one weight. Let K be the support of this intersection. As the weight space
of each weight has dimension at least 2, it follows that kerAK 6= {0}, and so by
Lemma 2, the product Wk̂×Wˆ̀ is never contained in ΓW,T , and the decomposition
is as stated.

�

Lemma 3.7. We have NW,T =
⋃r
k=1Wk̂, where Wk̂ = span{wi,j | i 6= k}.

Proof. Follows directly from Lemma 3.1 since in this case zero is not in the convex
hull of any proper subset of wt([n]). Indeed, any proper subset of the r+ 1 distinct
weights are linearly independant. �

Lemma 3.8. (1, 1)(SW,T ) = (1, σ)(SW,T ) if and only if σ acts trivially on W//T .

Proof. Suppose (1, 1)(SW,T ) = (1, σ)(SW,T ). Then for any (u, v) ∈ SW,T there
exists (u′, v′) ∈ SW,T such that (u, v) = (u′, σ · v′). It follows that

πT (u) = πT (v) = πT (σ · v′) = σ · πT (v′) = σ · πT (u′) = σ · πT (u) ,

and so πT (u) = σπT (u). As we can choose u arbitrarily and πT is surjective (since
T is a reductive group, see for example [6, Lemma 2.3.1]), it follows that σ acts
trivially on W//T .

On the other hand, suppose σ acts trivially on W//T , then of course so does σ−1.
For any (u, v) ∈ SW,T , we will have (u, v) = (u, σ · (σ−1 · v)) ∈ (1, σ)(SW,T ), since

πT (u) = πT (v) = σ−1 · πT (v) = πT (σ−1 · v) .

�

4. Upper bounds on the size of separating sets

One can find an upper bound on the size of separating sets, given some knowledge
of the secant variety of the embedding. In this section, for a projective variety
X ⊆ Pn, we define the secant set of X to be

σ(X) =
⋃

x,x′∈X,x 6=x′
〈x, x′〉 ⊆ Pn,

where 〈 〉 denotes linear span. The secant variety of X is the closure Sec(X) = σ(X)
of the secant set of X.

If p ∈ Pn, we write πp for projection from p onto a hyperplane.

Lemma 4.1. Let X ⊆ Pn be a projective variety, and p /∈ Sec(X). If σ(X) is not
closed, then σ(πp(X)) is not closed.

Proof. Without loss of generality, suppose that p = [0 : · · · : 0 : 1] /∈ Sec(X). Then
projection from p induces a well defined morphism Sec(X) → Pn−1 that sends a
point [x1 : · · · : xn : xn+1] to [x1 : · · · : xn].

Suppose that σ(πp(X)) is closed, and σ(X) is not. Then, by the valuative
criterion for properness (see, e.g. [14, Theorem 4.7]), there exists a punctured
formal curve λt, t 6= 0 in σ(X) that does not admit a limit in σ(X) and such that
γt = πp(λt) admits a limit in σ(πp(X)).
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Choose curves at, bt ⊂ An+1 and ut, vt ⊂ A1 such that [at], [bt] ⊂ X for t 6= 0 and
[utat + vtbt] = λt. (Since the secant variety is parametrized by (X ×X) \∆× A2,
this is possible locally.) For a point in x ∈ An+1 write x′ for the projection onto
the first n coordinates and x′′ for the last coordinate. Since γt converges, after
possibly rescaling, we have that uta

′
t + vtb

′
t converges and uta

′′
t + vtb

′′
t has a pole.

Dividing through by the latter, we see that the limit of λt is p, contradicting that
p /∈ Sec(X). �

Lemma 4.2. Let A be a graded k-algebra generated in a single degree, and let
X = projA. If p /∈ σ(X), then πp induces a bijective map of SpecA onto its image.

Proof. We choose coordinates so that p = [0 : · · · : 0 : 1]. We lift the map πp
to πp,aff : An+1 → An as (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn). Now, the fiber over

πp,aff|−1
SpecA(0) is just 0 since otherwise [0 : · · · : 0 : 1]) would have to be in X,

a contradiction. Suppose there are two points in SpecA that are mapped to the
same point. The only possibility for this is if they are of the form (a1, . . . , an, b)
and (a1, . . . , an, b

′) ∈ SpecA. But this forces [0 : · · · : 0 : 1] ∈ σ(X), again a
contradiction. �

Corollary 4.3. Let R be a subalgebra of a standard graded polynomial ring. Sup-
pose that there is a separating set for R consisting of homogeneous polynomials of
the same degree and let A ⊆ R be the subalgebra it generates. Let X = projA.
Any set of dim Sec(X)+1 generic linear combinations of the original separating set
will be a separating set. If, in addition, the secant set of X does not fill its secant
variety, then there exists a separating set of size dim Sec(X).

Proof. If Y ⊆ Pn is a projective variety such that dim Sec(Y ) < n, then a generic
point satisfies p /∈ Sec(Y ), and the restriction of πp to Y induces a homeomorphism
onto the image. By Lemma 4.2, this extends to a homeomorphism on the level of
Spec. Each such projection decreases the dimension of the ambiant space by one,
and the codimension of the secant variety by at most one. Applying this repeatedly
to projections of X, one obtains the first statement.

By Lemma 4.1, if σ(X) 6= Sec(X), this inequality is preserved by the projections
πp above. Then, by Lemma 4.2, one may project again to obtain an homeomorphism
on Spec, and decrease the dimension of the ambiant space by one more. �

Corollary 4.4. Let V be a n-dimensional representation of a torus of rank r. Then
there exists a separating set of size at most 2n− 2r.

Proof. In this situation, it may not be possible to choose monomials of the same
degree as generators for the ring of invariants. Let f1, . . . , ft be a set of monomial

generators for k[V ]
T

of degree d1, . . . , dn. Let x0 be an additional variable. Set

d := max{di | i = 1, . . . t} and Fi := xd−di0 so that each Fi has degree d. Note that

A := k[F1, . . . , Ft] is isomorphic to k[V ]
T

. In particular, it has the same dimension
n − r, and so X := projA has dimension n − r − 1 and its secant variety has
dimension at most 2n− 2r − 1. Applying Corollary 4.3 it follows that there exists

an injective morphism Spec(A) → A2n−2r. As A ∼= k[V ]
T

, it follows that there
exist an injective morphism V//T → A2n−2r, that is, there exists a separating set
of size 2n− 2r. �

Remark 4.5. The first statement of Corollary 4.3 may also be justified as follows.
Recall that the analytic spread of an ideal I in a graded ring (R,m,k) is the smallest
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size of a generating set for a minimal reduction of an ideal; if the residue field of the
ring is infinite then a generic linear combination of the minimal generators generates
a minimal reduction. This number also coincides with the dimension of the special
fiber ring R[It] ⊗ k. If I is generated in a single degree d, the special fiber ring is
a subalgebra of R generated by minimal generators of I. See [25, Chapter 5] for a
thorough treatment of analytic spread.

We claim that the special fiber ring of IV,G is the coordinate ring of Sec(proj(RG)).
Indeed, this secant variety is the projectivization of the set of points of the form(

af1(v) + a′f1(v′) , . . . , aft(v) + a′ft(v
′)
)

=
(
f1(v/ d

√
a)− f1(v′/ d

√
−a′) , . . . , ft(v/ d

√
a)− ft(v′/ d

√
−a′)

)
where a, a′ ∈ k, v, v′ ∈ V, and f1, . . . , ft are minimal generators for RG, and hence
its coordinate ring is isomorphic to k[f1 ⊗ 1− 1⊗ f1, . . . , ft ⊗ 1− 1⊗ ft].

Consequently, the analytic spread of IV,G is s = dim Sec(proj(RG)) + 1. For a
generic s× t matrix of scalars A, we have that [f1⊗1−1⊗f1, . . . , ft⊗1−1⊗ft] ·A
generates a minimal reduction J of IV,G, and hence agrees with IV,G up to radical.
But then, setting [f1, . . . , ft] · A = [g1, . . . , gs], we have that J = (g1 ⊗ 1 − 1 ⊗
g1, . . . , gs ⊗ 1− 1⊗ gs). Thus, (g1, . . . , gs) is a separating set for G.

Example 4.6 (Veronese varieties). We consider a Veronese variety which is the
image of the closed embedding Pn1−1 ↪→ PN given by the line bundle O(a1) and we
suppose that a1 is not 1 or a power of char k. As discussed in Section 2.1, its ring of
homogeneous coordinates is equal to the ring of invariants of the cyclotomic group
µa1 acting diagonally. The secant variety of this Veronese variety has dimension
2(n − 1) when d = 2 and 2(n − 1) + 1 otherwise (classical). Hence Corollary 4.3
implies that the minimal size of a separating set for the affine cone is at most 2n−1
when d = 2 and 2n, otherwise. On the other hand, for all d, one can construct a
separating set of size 2n − 1 (see [12, Proposition 5.2.2]) and this is the minimal
size of a separating set (follows from [10, Theorem 3.4]). Note that the invariants
forming this separating set are linear combinations of monomials from the minimal
generating set given above, that is, they come from a (non-generic) linear projection
of the Veronese variety. It follows that for d > 2, the set of points belonging to
secant lines does not fill out the secant variety (this is already well known). /

With an eye towards the last part of Corollary 4.3, we study when the set
of secant lines fills the secant variety of a Segre-Veronese variety. The following
proposition is well-known in the case of Segre varieties; it translates to the fact
that closest rank 2 approximation of a tensor is an ill-posed problem.

Proposition 4.7. Let X be the Segre-Veronese variety which is the image of the
closed embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle O(a1, . . . , ar). If r > 2

or r = 2 and (a1, a2) 6= (1, 1), then the set of secant lines to X does not fill the
secant variety of X.

Proof. We will write vectors in tensor notation. First, let r > 2. Set

w = φa4(1, 0, . . . , 0)⊗ · · · ⊗ φar (1, 0, . . . , 0) ,

and

vλ = λ · φa1(1, λ−1, 0, . . . , 0)⊗ φa2(1, λ−1, 0, . . . , 0)⊗ φa3(1, λ−1, 0, . . . , 0)⊗ w
−λ · φa1(1, 0, . . . , 0)⊗ φa2(1, 0, . . . , 0)⊗ φa3(1, 0, . . . , 0)⊗ w
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for λ ∈ k, and

v∞ = φa1(1, 0, . . . , 0)⊗ φa2(1, 0, . . . , 0)⊗ φa3(0, 1, 0, . . . , 0)⊗ w
+φa1(1, 0, . . . , 0)⊗ φa2(0, 1, 0, . . . , 0)⊗ φa3(1, 0, . . . , 0)⊗ w
+φa1(0, 1, 0 . . . , 0)⊗ φa2(1, 0, . . . , 0)⊗ φa3(1, 0, . . . , 0)⊗ w .

Performing multilinear expansion and canceling terms, one sees that {vλ | λ ∈
k} ∪ {v∞} forms a locally closed subset in PN . Clearly, {vλ | λ ∈ k} is contained
in the set of secant lines to X, but v∞ is a rank 3 tensor, see e.g., [5], and hence is
not contained in the secant set, but is in the secant variety. Now let r = 2. Set

vλ = λ · φa1(1, λ−1, 0, . . . , 0)⊗ φa2(1, λ−1, 0, . . . , 0)

−λ · φa1(1, 0, . . . , 0)⊗ φa2(1, 0, . . . , 0)

for λ ∈ k, and

v∞ = ea1−1,1,0,...,0 ⊗ ea2,0,...,0 + ea1,0,...,0 ⊗ ea2−1,1,0,...,0 ,

where eα is the basis vector in the coordinate corresponding to the monomial with
exponent α under the Veronese map. One again verifies that {vλ | λ ∈ k} ∪ {v∞}
is locally closed. It remains to show that v∞ does not lie on a secant line. In the
case that a1 = 2, a2 = 1, this condition can be verified in Macaulay2 by writing a
system of equations this vector to be expressed as the sum of two elements in X
and seeing that the ideal it generates is the trivial ideal. In the case of larger ai, one
sees that the coordinates corresponding to the O(2, 1) case give the same system
of equations multiplied by a uniform scalar, and hence again have no solution. �

Proposition 4.8. [Upper bounds on the size of separating sets for the affine cone
over Segre-Veroneses] We consider the Segre-Veronese variety which is the image
of the closed embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle O(a1, . . . , ar).

Then the minimal size of a separating set for the affine cone is bounded above by

(1) 2(n1 + n2)− 4, if r = 2 and a1, a2 are either 1 or a power of char k.
(2) 2

∑r
i=1 ni − 2r + 1, in all other cases.

Moreover, in case (1) the separating set satisfying the bound can be obtained by
taking generic linear combinations of a generating invariant monomials.

Proof. In case (1), we may assume that (a1, a2) = (1, 1) by Lemma 2.1. Then the
secant variety is the space of rank 3 matrices, which has the dimension indicated.
In general, and hence in case (2), the dimension of the secant variety is bounded
above by 2(

∑
(ni − 1)) + 1, and is not closed by Proposition 4.7, so the bound

follows by Corollary 4.3. �

Example 4.9. In the case of a Segre product with two factors and n1 = 3, the set

x1,1x2,1, x1,1x2,2, x1,2x2,1, x1,2x2,n2 , x1,3x2,n2−1, x1,3x2,n2 ,

ui := x1,1x2,i+1 − x1,2x2,i, vi := x1,2x2,i − x1,3x2,i−1, i = 2, . . . , n2 − 1

is a separating set. Indeed, by induction on n2 it suffices to show that the values of
x1,1x2,3, x1,2x2,2, and x1,3x2,1 can be recovered from those of x1,1x2,1, x1,1x2,2, x1,2x2,1, u2,
and v2. If x1,1x2,1 6= 0, then one has x1,2x2,2 =

x1,1x2,2·x1,2x2,1

x1,1x2,1
. If x1,1x2,1 =

0 and x1,2x2,1 6= 0, then x1,1 = 0, so x1,3x2,1 = 0, from which x1,2x2,2 and
x2,1x2,3 can be obtained. The case x1,1x2,1 = 0 and x1,1x2,2 6= 0 is similar. Fi-
nally, if x1,1x2,1 = x1,2x2,1 = x1,1x2,2 = 0, then at most one of x1,1x2,3, x1,2x2,2,
and x1,3x2,1 is nonzero. If one of these is nonzero, then the two of u2, v2, and
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x1,3x2,1 − x1,1x2,3 = −u2 − v2 containing that monomial are equal to it (up to
sign), while if all three monomials are zero, these three binomials are zero. Thus,
one can determine which of x1,1x2,3, x1,2x2,2, and x1,3x2,1 is nonzero, and the value,
from the values of u2 and v2. /

5. Lower bounds on the size of separating sets

In this section, we focus on the affine cones over Segre-Veronese varieties. We
will give lower bounds for the sizes of separating sets. In most cases, these lower
bounds agree with the upper bounds in the previous section, thus giving the precise
cardinality of a minimal separating set. Our technique is based on the following
observation and relies on the use of local cohomology ([15] provides a good refer-
ence).

Lemma 5.1. [10, Section 3] Let G act linearly on V . Then the minimal size of a
separating set for G is bounded below by the maximum i such that Hi

I(SV,G)(k[V 2])
is nonzero.

We will require two elementary lemmas on local cohomology. The second Lemma
below, while well-known to experts, is proved here for lack of an appropriate refer-
ence.

Lemma 5.2. (see, e.g., [15, Theorem 9.6]) Let I and J be ideals in a noetherian
ring A. Then

cd(I, A) > cd(I(A/J), A/J) ,

where cd denotes the cohomological dimension, the greatest nonvanishing index of
the local cohomology.

Lemma 5.3. Let A and B be k-algebras, where k is a field. Let a ⊂ A and b ⊂ B be
ideals. Set C = A⊗kB and c = aC+bC. Then Hk

c (C) ∼=
⊕

i+j=k Hi
a(A)⊗k Hj

b(B).
In particular, the cohomological dimension of c is the sum of the cohomological
dimensions of a and of b.

Proof. Let a = (f1, . . . , fs) and b = (g1, . . . , gt). One computes Hk
c (C) via the Čech

complex {f1, . . . , fs, g1, . . . , gt} on C, which we denote Č({f, g}, C). One verifies
that we have an isomorphism of complexes

Č({f, g}, C) = Tot
(
Č({f}, A)⊗k Č({g}, B)

)
.

As this is a tensor product of free modules (over k), the Kunneth formula yields an
isomorphism

H•(Č({f, g}, C)) = Tot
(
H•Č({f}, A)⊗k H

•Č({g}, B)
)
.

As the Čech complexes Č({f}, A) and Č({g}, B) compute Hi
a(A) and Hj

b(B), the
Lemma is established. �

We obtain the first main result of the section.

Theorem 5.4. Let X be the Segre-Veronese variety corresponding to the bundle
O(a1, . . . , an). If at least one ai is not 1 or pe, where p = char(k), then the minimal
size of a separating set for the affine cone over X is at least 2

∑r
i=1 ni − 2r + 1.



16 EMILIE DUFRESNE AND JACK JEFFRIES

Proof. By lemma 2.1 we may assume that ai ∈ k∗ for all i = 1, . . . , r. We will show
that the cohomological dimension of I(SW,G) is equal to s = 2

∑r
i=1 ni − 2r + 1.

By Proposition 3.6, we can decompose SW,G as a union of components isomorphic
(via an automorphism of W ) to SW,T . By Lemma 3.8, and the assumption on the
the ai’s, there are at least two such components, and again by Proposition 3.6,
the intersection of any pair of distinct components is NW,G ×NW,G; note that this
implies that the intersection of any union of components with another component
is NW,G × NW,G. Label the ideals of the distinct components as a1, . . . , at, N =
I(NW,G×NW,G), and bi = a1∩· · ·∩ai, so that SW,G = bt. There is a Mayer-Vietoris
long exact sequence:

· · · −→ Hi
N (k[V 2]) −→Hi

bj (k[V 2])⊕Hi
aj+1

(k[V 2]) −→ Hi
bj+1

(k[V 2])

−→Hi+1
N (k[V 2]) −→ Hi+1

bj
(k[V 2])⊕Hi+1

aj+1
(k[V 2]) −→ · · ·

By Proposition 4.8, there exists a separating set of size s for the T -invariants. By
Lemma 5.1, the cohomological dimension of ai is bounded above by s. By induction
on i, using that the cohomological dimension ofN is s+1 from Lemma 5.6, it follows
that Hs

I(SW,G)(k[V 2]) is nonzero. �

Corollary 5.5 ([1, Theorem 4.2]). For X as above, the secant variety of X is not
defective.

Proof. Suppose the secant variety is defective, i.e., dim Sec(X) < 2 dim(X) + 1 =
2(
∑r
i=1(ni − 1)) + 1. Then, by Proposition 4.7 and Corollary 4.3, there exists a

separating set of size less than 2(
∑r
i=1(ni − 1)) + 1 = 2

∑r
i=1 ni − 2r + 1, which

contradicts Theorem 5.4. �

Lemma 5.6. Let Y be the affine cone over the nonmodular Segre-Veronese vari-
ety

∏r
i=1 Pni−1 ↪→ PN given by the line bundle O(a1, . . . , ar). The cohomological

dimension of I(NW,G ×NW,G) is 2
∑r
i=1 ni − 2r + 2.

Proof. By Lemma 5.3, it is equivalent to compute the cohomological dimension of
I(NW,G). We have that

I(NW,G) =(
M1 · · ·Mr

∣∣ Mi is a monomial of degree ai in the variables xi1, . . . , xini
)
,

whose radical is

(x1,j1 · · ·xr,jr | ji ∈ [ni] ) =

r∏
i=1

(xi,1 . . . , xi,ni) .

Note that this coincides with the defining ideal for the nullcone of the action of the
torus T (see Proposition 3.6).

Set ai = (xi,1, . . . , xi,ni). We apply the Mayer-Vietoris spectral sequence of [2].
Since each A ⊆ {1, . . . , r} yields a distinct ideal aA =

∑
i∈A ai, the intersection

poset of the subspace arrangement defined by J is the full Boolean poset. Thus,
the associated simplicial complex of each interval in the poset is a homology sphere
of dimension #A− 2, where, by convention, the (−1)-sphere is the empty set. Set
nA =

∑
i∈A ni = ht(aA). By [2, Corollary 1.3], there is a filtration of the local

cohomology with support in J such that the associated graded module satisfies

gr
(

Hq
J(k[V ])

) ∼= ⊕
∅6=A⊆{1,...,r}

HnA
aA (k[V ])⊗k H̃nA−q−1(S#A−2,k) .



MAPPING TORIC VARIETIES INTO LOW DIMENSIONAL SPACES 17

Thus, the cohomological dimension of I(NV,G) is

max
{
nA −#A+ 1 | ∅ 6= A ⊆ [r]

}
=

r∑
i=1

ni − r + 1 ,

and hence the cohomological dimension of I(NV,G×NV,G) is twice this number, as
claimed. �

For Segre varieties with at least three factors, we obtain a lower bound, but we
do not expect this bound to be sharp in general.

Proposition 5.7. Let X be the Segre variety which is the image of the closed
embedding

∏r
i=1 Pni−1 ↪→ PN given by the line bundle O(1, . . . , 1), with r > 2.

Suppose, without loss of generality that n1 6 n2 6 · · · 6 nr. The size of a separating
set for the affine cone over X is at least 2

(∑r
i=2 ni

)
− 2r + 4.

Proof. As X is nonmodular and the ai’s are all 1, its ring of homogeneous coordi-
nates coincides with the ring of invariants of an action of a torus of rank r − 1 as
discussed in Section 2.1. The following ideal cuts out the corresponding separating
variety:

I =
(
M1 · · ·Mr ⊗ 1− 1⊗M1 · · ·Mr

∣∣ Mi is one of the variables xi1, . . . , xini
)
.

By Lemma 5.2, the cohomological dimension of I is bounded below by the
cohomological dimension of the ideal we obtain via the linear specialization to
x1,1 ⊗ 1 = x1,2 ⊗ 1 = 1⊗ x1,1 = 1 and 1⊗ x1,1 = 0. This ideal is(

M2 · · ·Mr ⊗ 1, 1⊗M2 · · ·Mr

∣∣ Mi is one of the variables xi1, . . . , xini
)
.

This ideal coincides with I(NW,T ′ × NW,T ′) for the action T ′ on W defining the
Segre embedding of

∏r
i=2 Pni−1 ↪→ PN . Applying Lemma 5.6, we obtain the bound

in the statement. �

The proof above works for general Segre-Veronese varieties. We have restricted
the statement in the proposition above, because in all other cases we can obtain a
more precise result. The only remaining case is that of Segre products with two
factors. In this case, local cohomology groups fail to provide a sufficient obstruc-
tion in positive characteristic, but we may argue along similar lines using étale
cohomology. We refer the reader to [19] for the facts from étale cohomology used
below.

Fix Λ = Z/qZ, where q 6= chark is a prime.

Proposition 5.8. If Y is a d-dimensional variety that is covered by k affines, then
Hi

ét(Y,Λ) = 0 for all i ≥ d + k. In particular, if Z is a closed subset of Ad and

Hd+k−1
ét (Ad \ Z,Λ) 6= 0, then Z cannot be defined by fewer than k equations.

We will use the following result.

Proposition 5.9 (Bruns-Schwanzl [3]). Let M be a 2×s matrix of indeterminates
in the polynomial ring A. Set Z = V (I2(M)) ⊂ A2s. Then H4s−4

ét (A2s \ Z,Λ) ∼= Λ,
and the higher étale cohomology groups vanish.

Theorem 5.10. For the affine cone over the Segre embedding of Pn1−1 × Pn2−1,
any separating set has size at least 2n1 + 2n2 − 4.



18 EMILIE DUFRESNE AND JACK JEFFRIES

Proof. By the long exact sequence

· · · → Hr
ét(A2s,Λ)→ Hr

ét(A2s \ Z,Λ)→ Hr+1
ét,Z(A2s,Λ)→ Hr+1

ét (A2s,Λ)→ · · ·

it follows that H4s−3
ét,Z (A2s,Λ) ∼= Λ and the higher such groups vanish. Then, the

Gysin isomorphism yields H2s−1
ét (Z,Λ) ∼= Λ, with the higher ones vanishing. An-

other application of the Gysin isomorphism yields H4s+2t−3
ét,Z×{0}(A

2s × At,Λ) ∼= Λ,

where 0 is the origin in At. Applying the sequence above, we obtain

H4s+2t−4
ét ((A2s × At) \ (Z × {0}),Λ) ∼= Λ

and the higher groups vanish.
By Proposition 3.6, part 4 the seprating variety decomposes as

SW,T = ΓW,T ∪W1̂ ×W1̂ ∪W2̂ ×W2̂,

Write W,X, Y to denote ΓW,T ,W1̂,W2̂, respectively, A = A2(m+n), and S for the
separating variety W∪X∪Y . For all sequences below, we consider étale cohomology
with coefficients in Λ.

We obtain one Mayer-Vietoris sequence:

· · · → Hi
ét(A\{0})→ Hi

ét(A\X)⊕Hi
ét(A\Y )→ Hi

ét(A\(X∪Y ))→ Hi+1
ét (A\{0})→ · · ·

from which we conclude that

Hi
ét(A \X)⊕Hi

ét(A \ Y ) ∼= Hi
ét(A \ (X ∪ Y ))

by the natural inclusion maps for i < 4n1 + 4n2 − 1.
From the Mayer-Vietoris sequence:

· · · → Hi
ét(A \ {0})→Hi

ét(A \ (W ∩X))⊕Hi
ét(A \ (W ∩ Y ))

→ Hi
ét(A \ (W ∩ (X ∪ Y )))→ Hi+1

ét (A \ {0})→ · · ·

we conclude

Hi
ét(A \ (W ∩X))⊕Hi

ét(A \ (W ∩ Y )) ∼= Hi
ét(A \ (W ∩ (X ∪ Y )))

for i < 4n1 + 4n2 − 1.
We consider one more Mayer-Vietoris sequence:

· · · → Hi
ét(A \ (W ∩ (X∪Y )))→ Hi

ét(A \W )⊕Hi
ét(A \ (X ∪ Y ))

→ Hi
ét(A \ S)→ Hi+1

ét (A \ (W ∩ (X ∪ Y )))→ · · ·

which, assuming n1 > 3, applying the consequences of the long exact sequences
above also reads

· · · → Hi
ét(A \ (W ∩X))⊕Hi

ét(A \ (W ∩ Y ))→ Hi
ét(A \W )

→ Hi
ét(A \ S)→ Hi+1

ét (A \ (W ∩X))⊕Hi+1
ét (A \ (W ∩ Y ))→ · · ·

for 4n2 < i < 4n2 + 4n2 − 1. In particular, for t = 4n2 + 4n2 − 3,

· · · → Ht−1
ét (A \ S)→ Ht

ét(A \ (W ∩X))⊕Ht
ét(A \ (W ∩ Y ))→ Ht

ét(A \W )→ · · ·

which computes as

· · · → Ht−1
ét (A \ S)→ Λ× Λ→ Λ→ · · ·

Thus, H4n1+4n2−4
ét (A \ S) 6= 0. The theorem then follows from Proposition 5.8. �
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Proof of Theorem 1.2. Recall that we can reduce to the case of nonmodular Segre-
Veronese varieties by Lemma 2.1. The upper bounds are given by Proposition 4.8
and the lower bounds are given by Theorem 5.4 for case 1, Proposition 5.7 for case
3, and Theorem 5.10 for case 2. In cases 1 and 2 the upper and lower bounds
coincide. �

Remark 5.11. In the cases of Theorem 1.2 where the size of a minimal separating
set is not exactly identified, namely, when the invariant ring is a Segre variety up to
inseparable closure with at least three factors, we do not know whether local/étale
cohomological bounds on the separating variety can be improved. In particular, we
do not know whether they agree with the upper bounds provided by secant geometry
techniques. However, in these cases in positive characteristic, local cohomological
dimension is not a sharp lower bound in general. For a concrete example, one can
compute that the projective dimension of k[V 2]/IV,G is 6 for the Segre embedding
of P1×P1×P1 over F2, and hence the cohomological dimension is at most 6; equality
holds due to Proposition 5.7. As in the proof of Theorem 5.10, étale bounds may
be sharper here.

6. Monomial separating sets

The focus of this section is on the invariants of representations of tori and their
monomial separating sets. We include as a special case those representations whose
ring of invariants is isomorphic to the ring of homogeneous coordinates on Segre-
Veronese varieties.

6.1. Combinatorial characterization of monomial separating subalgebras.
A monomial subalgebra of the invariant ring will be given by a subsemigroup S ⊆ L.
For I ⊆ {1, . . . , n}, set SI = LI ∩ S.

Proposition 6.1. Suppose k has positive characteristic p. The subsemigroup
S ⊆ L gives a separating algebra if and only if there exist m ≥ 1 such that pmL ⊆ S.

Proof. Suppose there exist m ≥ 1 such that pmL ⊆ S. Take u, v ∈ V and suppose
they are separated by some invariant. Without loss of generality we may assume
they are separated by xα with α ∈ L. By our assumption, pmα = γ ∈ S. Then xγ

separates u and v. Indeed, otherwise we have

(xα(u))p
m

= xγ(u) = xγ(v) = (xα(v))p
m

,

and so xα(u) = xα(v), a contradiction.
Now suppose S gives a separating algebra A. As this algebra is a graded sub-

algebra, it follows that the extension A ⊆ k[x]T is finite and k[x]T is the purely
inseparable closure of A in k[x] (see [7, Remark 3] or [13, Theorem 6]). Hence, for
any xα ∈ k[x]T , there exist mα ∈ N such that (xα)p

mα ∈ A. The finiteness of the
extension ensures that there exists a natural number m such that (xα)p

m ∈ A. It
follows that pmL ⊆ S. �

Lemma 6.2. Suppose that for all I ⊆ [n], LI ⊆ ZSI , and for all α ∈ L, αi 6= 0
implies that there exist γ ∈ S such that i ∈ supp(γ) and supp(γ) ⊆ supp(α). Then
S gives a separating algebra.

Proof. Take u, v ∈ V and suppose they are separated by some invariant, without
loss of generality, suppose they are separated by xα with α ∈ L. Suppose first that
xα(u) = 0 6= xα(v). As xα(u) = 0, there exists i ∈ supp(α) such that ui = 0. By
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our assumption, there exist γ ∈ S such that i ∈ supp(γ) and supp(γ) ⊆ supp(α).
Then as vj 6= 0 for all j ∈ supp(α), we have xγ(u) = 0 6= xγ(v).

Suppose now that both xα(u) and xα(v) are non-zero. Then ui and vi are
non-zero for all i ∈ supp(α). By our assumption, there exist γ, γ′ ∈ S such that

α = γ − γ′. Then one of xγ or xγ
′

must separate u and v. Indeed, otherwise we
have

xα(u) =
xγ(u)

xγ′(u)
=

xγ(v)

xγ′(v)
= xα(v),

a contradiction. �

Proposition 6.3. Suppose k has characteristic zero. Then the following are equiv-
alent:

(1) S gives a separating algebra.
(2) For all I ⊆ [n], LI ⊆ ZSI , and for all α ∈ L, αi 6= 0 implies that there

exist γ ∈ S such that i ∈ supp(γ) and supp(γ) ⊆ supp(α).
(3) For any prime number p there exist m ≥ 1 such that pmL ⊆ S.
(4) There exist prime numbers p, q and an m ≥ 1 such that pmL ⊆ S and

qmL ⊆ S.

Proof. (1)⇒ (2): Suppose that S gives a separating algebra. As T is reductive,
the restriction of any separating set to a T -stable subspace gives a separating set
[6, Theorem 2.3.16]. Hence for any subset I ⊆ [n], SI must give a separating
algebra in k[VI ]

T . As we assume k has characteristic zero, the field of fractions of
separating algebra given by SI coincides with the field of fractions of the invariant
ring [6, Proposition 2.3.10], that is ZS = ZL ⊇ L. Now take α ∈ L and suppose
i0 ∈ supp(α). Consider the points u, v ∈ V defined as

ui =

{
1 i ∈ supp(α)
0 otherwise

vi =

{
1 i ∈ supp(α) \ {i0}
0 otherwise

.

Then u, v ∈ VI and xα(u) = 1 6= 0 = xα(v). As SI gives a separating algebra, there
exist γ ∈ SI such that xγ(u) 6= xγ(v). It follows that io ∈ supp(γ), since otherwise
xγ(u) = 1 = xγ(v), a contradiction.

(2)⇒ (3): The integer matrix A gives a representation of the torus of rank r over
any field. Condition (2) does not involve the base field at all. Thus, if (2) holds,
we can think of it as olding over a field of any characteristic p. Then by Lemma
6.2, S gives a separating algebra over any field, and by Proposition 6.1, it follows
that for any prime p there exists m ∈ N such that pmL ⊆ S.

(3)⇒ (4): Immediate.
(4)⇒ (1): Take u, v ∈ V and suppose they are separated by some invariant,

without loss of generality we may assume they are separated by xα with α ∈ L.
By our assumption, pmα = γ1 ∈ S and qmα = γ2 ∈ S. If xα(u) = 0 6= xα(v), then
xγ1(u) = (xα(u))p

m

= 0 6= (xα(u))q
m

= xγ2(u). So we may suppose both xα(u) and
xα(v) are non-zero. One of xγ1 or xγ2 must separate u and v. Indeed, otherwise
xα(u)/xα(v) is both a pm-th and a qm-th root of unity, that is, xα(u)/xα(v) = 1,
a contradiction.

�
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6.2. Invariants with small support separate. We apply the results of the pre-
vious section to give a bound, for a torus action T , on the number r such that there
exists a separating set consisting of elements that each involve at most r variables.
In [8], Domokos and Szabó define invariants of algebraic groups to bound this num-
ber for actions of algebraic groups on product varieties; in fact, one may ask this
question for any subring of a polynomial ring, so that one has a well-defined notion
of the number of variables an element involves.

W do not believe that the following two results are new, but we have not seen
the exact statement of Theorem 6.5 in the literature.

Lemma 6.4. Let k be a field, n > m and let {vI | I ⊆ [n], |I| = m} be a collection
of nonzero vectors in kn such that the projection of vI onto the coordinate subspace
kI is zero. Then dim(k〈vI〉) > m+ 1.

Proof. We proceed by induction on m. The case m = 0 is trivial, as there exists a
nonzero vector by hypothesis. For the inductive step, assume without loss of gener-
ality that the first coordinate of v[m] is nonzero. By the inductive hypothesis, there
are n linearly independent vectors {w1, . . . , wm} in {vI | I ⊆ [n], |I| = m, 1 ∈ I},
since omitting the first coordinate produces a set of vectors satisfying the statement
of the lemma. As the vectors {w1, . . . , wm} all have first coordinate zero, the set of
vectors {w1, . . . , wm, v[m]} is linearly independent. �

Theorem 6.5. Let A be a surjective r × n matrix with n > r. Then the lattice
kerZ(A) ⊂ Zn is generated by elements with at most r + 1 nonzero entries.

Proof. For a subset I ⊆ [n], |I| = r + 1, let AI be the matrix obtained from A by
taking only the columns whose indices lie in I. Let KI ⊆ ZI ⊆ Zn be the kernel of
AI , and K be the kernel of A. By definition, Z〈KI〉 ⊆ K; we will show that these
lattices agree upon tensoring with Q and Fp for each prime p. Note that for each
such I, KI contains a nonzero vector. Moreover, K + I contains a vector that is
nonzero mod p for each prime p: if pvI ∈ KI , then vI ∈ KI as well. Thus, for any
k = Q,Fp, Z〈KI〉⊗k ⊆ K⊗k, and Z〈KI〉⊗k satisfies the hypotheses of Lemma 6.4
with m = n− (r + 1), so that its dimension is at least n− r. As the sequence

0→ K → Zn A→ Zr → 0

is split, we have that the dimension of K ⊗ k is n − r. Thus, Z〈KI〉 ⊗ k = K ⊗ k
for all such k, so Z〈KI〉 = K as required. �

Corollary 6.6. Let V be a n dimensional representation of a torus T of rank r ≤ n.
The rational invariants k(V )T are generated by rational invariants each involving
at most r + 1 variables.

Theorem 6.7. Let V be a n dimensional representation of a torus T of rank r 6 n.
The invariants involving at most 2r + 1 variables form a separating set.

Proof. Let S ⊆ L be the subsemigroup generated by all elements with support of
size at most 2r + 1. We will show that S satisfies the conditions of Lemma 6.2.

First we show that for all α ∈ L with αi 6= 0, there exist γ ∈ S such that
i ∈ supp(γ) and supp(γ) ⊆ supp(α). Take α ∈ L, and suppose αi0 6= 0. If
| supp(α)| 6 2r + 1, then α ∈ S, so there is nothing to do. So we suppose that
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| supp(α)| > 2r + 1. We can rewrite the equation 0 =
∑n
i=1 αimi as

−αi0mi0 =
∑

i∈supp(α)\{i0}

(
αi∑

i∈supp(α)\{i0} αi

)
mi ,

and so −αi0mi0 is in the convex hull of {mi | i ∈ supp(α)\{i0}}. By Carathéodory’s
Theorem [4] there is a subset K ⊆ supp(α) \ {i0} of size |K| 6 r + 1 such that
−αi0mi0 is in the convex hull of {mk | k ∈ K}. Hence, we have an equation

−αi0mi0 =
∑
k∈K

δkmk,

where δk ≥ 0 and
∑
k∈K δk = 1. Multiplying by a sufficiently large natural number,

we find
∑
i∈K∪{i0} γimi = 0 with γi ∈ N. Define γ ∈ Nn as follows:

γi =

 γi0 if i = i0
γk if i ∈ K
0 otherwise

Then γi0 6= 0 and γ has support K ∪ {i0} ⊆ supp(α) of size at most r+ 2 6 2r+ 1
so that γ ∈ S as required.

Now we show that for all I ⊆ [n] we have LI ⊆ ZSI . Fix I ⊆ [n]. If LI = 0, we
are done, so suppose LI 6= 0. Take α ∈ LI . Set I ′ = supp(α). By Corollary 6.6, we
can write α as a Z-linear combination of elements of kerZAI′ with support of size
at most r + 1. It will suffice to show that any β ∈ kerZAI′ with | suppβ| ≤ r + 1
can be written β = γ − γ′ with γ, γ′ ∈ LI′ having support of size at most 2r + 1.

Take β = β+ − β− ∈ kerZAI′ with β+, β− ∈ Nn with disjoint support and
| supp(β)| 6 r + 1. Set J+ = supp(β+) and J− = supp(β−). Note that we have
|J+|+ |J−| 6 r + 1 and without loss of generality, both J+ and J− are nonempty,
and so max {|J+|, |J−|} 6 r. As α has full support I ′, 0 is an interior point of the
convex hull of the weight vectors {mi | i ∈ I ′}, that is, there exists an equation of
the form

(2)
∑
i∈J−

λimi +
∑
j /∈J−

λjmj = 0 ,

with λi > 0 and
∑
i∈I′ λi = 1.

Set

m′ = −

(
1∑

j /∈J− λj

)(∑
i∈J−

λimi

)
and λ′i =

(
1∑

j /∈J− λj

)
λi .

Then Equation (2) can be rewritten as

m′ =
∑
i/∈J−

λ′imi .

Note that λ′i > 0 and
∑
i/∈J− λ

′
i = 1, so that m′ is an interior point of the convex hull

of {mi | i /∈ J−}. As J+ is nonempty and disjoint from J−, there exist j0 ∈ J+\J−.
By Watson’s Carathéodory Theorem [4], there exists a subset K ⊆ I ′ with |K| 6 r
and K ∩J− = ∅ such that m′ is in the convex hull of {mj0}∪{mk | k ∈ K}, that is,
there are nonnegative rational numbers µj0 , µk such that

∑
k∈K∪{j0} µk = 1 and

(3) m′ = µj0mj0 +
∑
k∈K

µkmk .
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Substituting m′ for its value and reorganizing, we then get an equation(
1∑

j /∈J− λj

) ∑
i∈J−

(
λi∑

j /∈J− λj

)
mi + µj0mj0 +

∑
k∈K

µkmk = 0 .

It follows that there is γ ∈ LI with support J− ∪ {j0} ⊆ supp(γ) ⊆ J− ∪ {j0} ∪K.
Note that | supp(γ)| ≤ |J−| + 1 + |K| ≤ r + r + 1 = 2r + 1. We may assume
γ − β− ∈ Nn, multiplying γ by a large natural number if needed, and so β + γLI
with support

supp(β + γ) ⊆ supp(β) ∪ supp(γ) ⊆ J ∪ (J− ∪ {j0} ∪K) = J ∪K .

It follows that | supp(β + γ)| ≤ |J |+ |K| ≤ r + 1 + r = 2r + 1. Thus, we can write
β = (β + γ) − γ as a difference of elements of LI , with support of size at most
2r + 1. �

Example 6.8 (The bound given by Theorem 6.7 is sharp). We consider the 2r + 1
dimensional representation of the torus of rank r given by the matrix of weights:

A :=

 I

5
...
5

−6I

 .

As A is already in reduced echelon form,

kerZA =
〈
v0 =

(
− 5

r∑
j=1

ej , 1, 0
)
, vi =

(
6ei, 0, ei

) ∣∣ i ∈ [r]
〉
,

as a Z-module and so L = kerZA ∩ Nn is generated as a semigroup by{
v0 +

r∑
j=1

vj =
( r∑
j=1

ej , 1,

r∑
j=1

ej

)
, 7v0 + 6

r∑
j=1

vj =
( r∑
j=1

ej , 7, 6

r∑
j=1

ej

)
,

6v0 + 5

r∑
j=1

vj =
(

0, 6, 5

r∑
j=1

ej

)
, vi = (6ei, 0, ei)

∣∣∣ i ∈ [r]

}
.

Indeed, an arbitrary element of L will be of the form

α = a0

(
− 5

r∑
j=1

ej , 1, 0
)

+

r∑
i=1

ai(6ei, 0, ei) =
( r∑
j=1

(−5a0 + 6aj)ej , a0,

r∑
j=1

ajej

)
,

where ai > 0 for each i = 0, . . . , r and −5a0 + 6aj > 0 for each j = 1, . . . , r since all
entries of α must be nonnegative. In particular, for each i = 1, . . . , r, we will have

ai − 6da0/6e+ bao/6c > 0, if 6|(a0 − 1), and

ai − 4da0/6e − bao/6c > 0, otherwise.

Then we can write

α =
⌊a0

6

⌋6v0 + 5

r∑
j=1

vj

+
(⌈a0

6

⌉
−
⌊a0

6

⌋)7v0 + 6

r∑
j=1

vj


+

r∑
i=1

(
ai − 6

⌈a0

6

⌉
+
⌊ao

6

⌋)
vi ,
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if 6|(ao − 1), and otherwise

α =
⌊a0

6

⌋6v0 + 5

r∑
j=1

vj

+
(⌈a0

6

⌉
−
⌊a0

6

⌋)v0 +

r∑
j=1

vj


+

r∑
i=1

(
ai − 4

⌈a0

6

⌉
−
⌊ao

6

⌋)
vi ,

proving our claim.
Let S ⊆ L be the subsemigroup generated by all elements of L with support of

size strictly less than 2r+ 1. Our next claim is that this subsemigroup is generated
by {

6v0 + 5

r∑
j=1

vj , vi
∣∣ i ∈ [r]

}
.

Suppose γ ∈ L has support of size strictly less than 2r + 1, that is, it has at least
one zero entry. As it belongs to L we can write

γ = g1

(
v0 +

r∑
j=1

vj

)
+ g2

(
7v0 + 6

r∑
j=1

vj

)
+ g3

(
6v0 + 5

r∑
j=1

vj

)
+

r∑
i=1

aivi ,

where gi, aj are nonnegative integers. Hence, as γ is equal to

(g1+g2+6a1, . . . , g1+g2+6ar, g1+7g2+6g3, g1+6g2+5g3+a1, . . . , g1+6g2+5g3+ar) ,

we must have g1 = g2 = 0 since otherwise γ has full support.
Our final claim is that S does not give a separating algebra. Indeed, the first

r+ 1 entries of any element of S are divisible by 6, so for any prime p and positive
integer m,

pm
(
v0 +

r∑
j=1

vj

)
= (pm, . . . , pm, pm, pm, . . . , pm)

does not belong to S. Hence by Proposition 6.3, S does not give a separating
subalgebra. /

6.3. Minimal Size of monomial separating sets for Segre-Veroneses. In
this section, we study the minimal size of a monomial separating set for the affine
cone over a Segre-Veronese variety. We consider the representation of a torus of rank
r whose ring of invariants is isomorphic to the ring of homogeneous coordinates on
Segre-Veronese variety which is the image of the closed embedding

∏r
i=1 Pni−1 ↪→

PN given by the line bundle O(a1, . . . , ar) as described in Section 2.1. Set I := {i |
ai = 1 or a pure power of chark}. As in Section 2.1, the ring of invariants is given
by:

S = k
[
x0M1 · · ·Mr

∣∣Mi is a monomial of degree ai in the variables xi,1, . . . , xi,ni
]
.

Proposition 6.9. (1) The monomial invariants with support of size at most
r + 2 form a separating set.

(2) The minimal size of a monomial separating set is(
r∏

h=1

nh

)(
1 +

1

2

∑
i/∈I

(ni − 1)

)
.
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Proof. As the torus is a reductive group by [6, Theorem 2.3.16], the restriction
of any separating set to a subrepresentation must yield a separating set. As the
restriction of an invariant monomial will be either zero or the same monomial, a
monomial separating set must contain separating sets for any subrepresentation.

Let V be a (r + 1)-dimensional subrepresentation. As any proper subset of the
set of weights is linearly independant, a (r + 1)-dimensional subrepresentation has
no nonconstant invariants unless its matrix of weights is of the form

A :=

 I

−a1

...
−ar

 ,

where I is the r × r identity matrix. As A is in row reduced echelon form over Z,
kerZA is generated by α := (a1, . . . , ar, 1) as a Z-module. As α has positive entries,
it must also generate kerZA ∩Nr+1 as a semigroup. That is, the ring of invariants
is generated by exactly 1 monomial, and we get one such monomial for each of the
(r+ 1)-dimensional subrepresentations with nonconstant invariants, of which there
are

∏r
i=1 ni.

Let U be a (r + 2)-dimensional subrepresentation. By the same argument as
before, its set of weights is the full set of weights, but one weight is repeated. For
simplicity we suppose the repeated weight is e1 so that the matrix of weights is

B :=

 I

−a1 1
−a2 0

...
...

−ar 0

 .

As B is in reduced echelon form, its Z-kernel is generated by α1 := (a1, . . . , ar, 1, 0)
and β := (−1, 0, . . . , 0, 0, 1) as a Z-module. It follows that α1,

α2 := α1 + a1β = (0, a2, . . . , ar, 1, a1) ,

and

α3 := α1 + (a1 − 1)β = (1, a2, . . . , ar, 1, a1 − 1)

also generate kerZB as a Z-module.
We will use Lemma 6.2 to show that the {α1, α2, α3} give a separating set. To

establish the first condition it suffices to note that α1 and α2 give a generator for
the ring of invariants of the (r + 1)-dimensional subrepresentation with support
{1, . . . , r+1} and {2, . . . , r+2}, respectively. To establish the second condition, we
remark that α′ ∈ kerZB ∩ Nr+2 will have support {1, . . . , r + 1}, {2, . . . , r + 2} or
[r+ 2], and so we can take γ equal to α1, α2, α3, respectively. Note that if a1 = 1,
then α3 = α1 and so our (r + 2)-dimensional representation does not require any
new invariants beyond those needed for the (r+1)-dimensional subrepresentations.
If a1 = pk, where p = chark. Then

pk(1, . . . , ar, 1, a1 − 1) = a1(1, . . . , ar, 1, a1 − 1)

= (a1, . . . , ar, 1, 0) + (a1 − 1)(0, a2, . . . , ar, 1, a1)

belongs to the semigroup generated by (a1, . . . , ar, 1, 0) and (0, a2, . . . , ar, 1, a1) and
so by Proposition 6.1 it follows that (a1, . . . , ar, 1, 0) and (0, a2, . . . , ar, 1, a1) give
a separating set. Again, our (r + 2)-dimensional representation does not require
any new invariants. But if a1 is not 1 or a pure power of chark, α1 and α2 do
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not give a separating set. Indeed, let ζ be a primitive m-th root of unity with
a1/m a pure power of chark and set u1 = (1, 1, . . . , 1) and u2 = (ζ, 1, . . . , 1). Then
α1(u1) = α2(u1) = α1(u2) = α2(u1) = 1 but α3(u1) = 1 6= ζ = α3(u2). Therefore
we will require an extra monomial. Although this monomial need not be α3, it
will have full support. Therefore each r + 2-dimensional subrepresentation with
nonconstant invariants and repeated weight i0 /∈ I will necessitate at least one
extra distinct monomial invariant. There are

∑
i0 /∈I

(
ni
2

)∏
i 6=i0 ni different such

subrepresentations. It follows the minimal size of a separating set will be at least∏r
i=1 ni +

∑
i0 /∈I

(
ni
2

)∏
i6=i0 ni, which simplifies to the formula in Statement (2).

We will use Lemma 6.2 to show Statement (1). Denote by S the semigroup
corresponding to the monomial algebra generated by all monomial invariants de-
pending on at most r + 2 variables and set L to be the semigroup giving all
monomial invariants. The first step is to show that for any subrepresentation V ,
Lsupp(V ) ⊆ ZLsupp(V ). If | supp(V )| ≤ r + 2, then the statement is trivially true.
Suppose | supp(V )| > r+2. By Corollary 6.6, it follows that the rational invariants
on V are generated by the rational invariants with support of size at most r + 1,
and so in particular by the rational invariants with support of size at most r + 2.
Our argument of the previous paragraph shows that for any (r + 2)-dimensional
subrepresentation, the invariant monomials generate the field of rational invariants,
therefore, the invariants monomials with support of size at most r + 2 generated
the rational invariants on V as desired. Now take α be the exponent vector of a
nonconstant invariant. As any proper subset of the set of distinct weights is lin-
early independent, wt(α) = {m0,m1, . . . ,mr}. Hence, if αi0,ji0 6= 0, we know that

α0 6= 0 and for all i ∈ [r] \ {io}, there is ji ∈ [ni] such that αi,ji 6= 0. Define

γ ∈ N1+
∑r
i=1 ni as γ0 = 1, γi0,jio = ai0 , γi,ji = ai for all other i ∈ [n], with the

remaining entries zero. By construction γi0,jio 6= 0 and γ has support of size r + 2
contained in the support of α. We have now established that S satisfies the two
conditions of Lemma 6.2 and so the monomial invariants with support of size at
most r + 2 form a separating set, proving Statement (1).

A consequence of Statement 1) is that to have a monomial separating set for
the full representation is suffices to have a set of monomials which restricts to a
separating set for each (r + 2)-dimensional subrepresentation. Our argument in
the first two paragraphs of the proof give a construction for such of separating set
which has size equal to the formula in Statement (2), completing the proof. �

Corollary 6.10. The elements in a separating set must contain at least(
r∏

h=1

nh

)(
1 +

1

2

∑
i/∈I

(ni − 1)

)
monomials between them altogether.

Proof. As the ring of invariants is generated by monomials, the set of monomials
contained in the elements of any separating set must form a monomial separating
set. The previous proposition applies to this set. �
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