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Abstract. The study of separating invariants is a recent trend in invariant

theory. For a finite group acting linearly on a vector space, a separating set

is a set of invariants whose elements separate the orbits of G. In some ways,
separating sets often exhibit better behavior than generating sets for the ring

of invariants. We investigate the least possible cardinality of a separating set

for a given G-action. Our main result is a lower bound that generalizes the
classical result of Serre that if the ring of invariants is polynomial then the

group action must be generated by pseudoreflections. We find these bounds

to be sharp in a wide range of examples.

1. Introduction

For an action of an algebraic group on an affine variety, a separating set is
a collection of invariants which, as functions on V , distinguish any two points
that can be distinguished by some invariant. While using invariants as a tool to
distinguish orbits of a group action on a variety is a classical endeavor, this approach
to invariant theory has enjoyed a resurgence of interest in its modern form, initiated
by work of Derksen and Kemper [2, 12].

Throughout this paper, we focus on the case of a finite group G acting linearly on
a d-dimensional vector space V over the field k. This action induces a contragredient
action of the group G on the polynomial ring k[V ] := Sym(V ∗); if k is infinite, k[V ]
can be identified with the ring of regular functions on V . We consider the ring of
invariants k[V ]G := {f ∈ k[V ] | ∀g ∈ G, g ·f = f}. We will assume throughout that
k is algebraically closed. While the results of our paper have analogous statements
over general fields (see Remark 2.3), the exposition is cleaner with the assumption
that k is algebraically closed. In this setting, a separating set is a set E ⊂ k[V ]G

such that if, for v, w ∈ V , the orbits G · v and G · w are distinct, then there is
an h ∈ E with h(v) 6= h(w); that is, a separating set is a set of invariants which
separates orbits.

While the ring of invariants (or a generating set) forms a separating set, there
often exist smaller and/or otherwise better-behaved separating sets — especially in
the modular case, where |G| is not invertible in k. For example, there always exist
separating sets consisting of elements of degree at most |G| ([2, Corollary 3.9.14]),
and polarizations of separating sets yield separating sets for vector invariants ([3,
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Theorem 1.4]). The main question we consider in this paper is: What is the least
cardinality of a separating set?

Some general bounds are known. It follows from [2, Proposition 2.3.10] that the
algebra generated by a separating set, i.e., a separating algebra, has dimension d,
thus any separating set has at least d elements. On the other hand, a secant variety
argument (see [5, Proposition 5.1.1]) shows that there always exists a separating
set of size 2d+ 1.

Since any separating algebra has dimension d, the existence of a separating set
of size d is equivalent to the existence of a polynomial separating algebra. The
question of whether the ring of invariants is polynomial is very classical, and two
of the cornerstone results of invariant theory largely answer this question: The
Shephard-Todd Theorem (see [2, p. 104]) says that if |G| is invertible in k (the
non-modular case), then k[V ]G is a polynomial ring if and only if the action of G
is generated by pseudoreflections — elements that fix a hyperplane in V . In this
case, one calls G a reflection group. A theorem of Serre (see [2, Proposition 3.7.8])
states that, with no hypothesis on |G|, if k[V ]G is a polynomial ring, then G acts as
a rigid reflection group: every isotropy subgroup is a reflection group. The problem
of classifying which actions have polynomial invariant rings in the modular case
remains an important open question.

In [4, Theorem 1.1], the first author extends Serre’s result by showing that if
there exists a polynomial separating algebra, then G is a reflection group. As a
corollary, in the non-modular case, there exists a polynomial separating algebra if
and only if G is a reflection group. The existence of a separating set of size d is
thus related to whether G is a reflection group. Further, in [4, Theorem 1.3], the
first author shows that if there is a graded separating algebra that is a complete
intersection, then the action of G is generated by bireflections — elements that
fix a codimension two subspace in V . Consequently, if there is a separating set
consisting of d + 1 homogeneous invariants (whence the algebra it generates is a
graded hypersurface and hence a complete intersection), then the action of G is
generated by bireflections.

In the present paper, we apply techniques of local cohomology to strengthen and
extend these bounds. After reviewing some preliminary notions in Section 2, in
Section 3, we obtain our main result:

Theorem. If there exists a separating set of size d+r−1, then every isotropy sub-
group GU is generated by r-reflections. In particular, G is generated by r-reflections.

Setting r = 1, we obtain the following strengthening of [4, Theorem 1.1]: If there
exists a separating set of size d, then G is a rigid reflection group. Our approach
utilizes Àlvarez, Garćıa, and Zarzuela’s computation of local cohomology with sup-
port in a subspace arrangement in [1]. Their formula is a local cohomology analogue
of the celebrated Goresky-MacPherson Formula for the singular cohomology of the
complement of a real subspace arrangement (see, e.g., [18, Theorem 1.3.8]); in this
way, one can consider our results a link between the Goresky-MacPherson Formula
and the Shephard-Todd Theorem.

In Section 4, we focus on rigid reflection groups. Applying techniques from poset
homology, we show that the cohomological obstructions to small separating sets
utilized in Section 3 vanish for all integers greater than d. While there are rigid
reflection groups for which the ring of invariants is not polynomial, some of the
counterexamples have been proved to have a polynomial separating algebra, e.g. [4,
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Example 3.1]. We pose the conjecture that there exists a polynomial separating
algebra if and only if G is a rigid reflection group.

In Section 5, we construct a variety of examples of separating sets for which the
lower bound from the main theorem is realized: that is, we construct separating
sets of the minimal possible cardinality. While we do not have a specific algorithm
by which we create such sets, we are able to use an idea from the first author’s
thesis [5, Section 5.2] (the “triangle trick”) effectively in a wide range of cases.

2. Preliminaries

2.1. r-Reflections. For any subset U of V , we define its isotropy subgroup GU as
follows:

GU := {σ ∈ G | σ · u = u, ∀u ∈ U} .

An element σ ∈ G is called an r-reflection if its fixed subspace V σ has codi-
mension r. In particular, a 1-reflection is a pseudoreflection, and a 2-reflection is a
bireflection. We say that G is an r-reflection group if it is generated by elements
whose fixed space has codimension at most r.

A linear subspaceW ⊂ V is an r-reflecting subspace if and only ifW has codimen-
sion r in V and its isotropy subgroup GW is non-trivial. An r-reflecting subspace
will be called minimal if it is not the intersection of r′-reflecting subspaces with
r′ < r. A group is called a rigid r-reflection group if every minimal reflecting sub-
space has codimension at most r. This is equivalent to requiring that every isotropy
subgroup is an r-reflection group. We will say that G is a (rigid) (< r)-reflection
group if there exists an r′ < r such that G is a (rigid) r′-reflection group. For r = 1
we will say (rigid) reflection group instead of (rigid) 1-reflection group.

In the non-modular case, it follows from the Shephard-Todd Theorem and Serre’s
Theorem that every reflection group is a rigid reflection group. For r > 1, the
condition of being a rigid r-reflection group is stronger than that of being an r-
reflection group. For a concrete example, let V be a (2n + 1)-dimensional vector
space over C with basis u1, . . . , un, v1, . . . , vn, w and let G := C2 × C2 = 〈α, β〉 act
on V by

α(ui) = −ui β(ui) = ui for i = 1, . . . , n ,

α(vi) = vi β(vi) = −vi for i = 1, . . . , n ,

α(w) = −w β(w) = −w .

Here G is generated by (n+ 1)-reflections, but 〈αβ〉 is an isotropy subgroup gener-
ated by a (2n)-reflection, thus G is not a rigid (<2n)-reflection group.

2.2. The Separating Variety. The separating variety SV,G is a closed subvariety
of the product V × V that completely determines the equivalence relation induced
by k[V ]G on V . More precisely, we have

SV : = {(u, v) ∈ V × V | f(u) = f(v), for all f ∈ k[V ]G}
= VV×V (f ⊗ 1− 1⊗ f | f ∈ k[V ]G) .

A separating set can then be characterized as a subset E ⊂ k[V ]G that cuts out
the separating variety in V×V , that is, such that VV×V (f⊗1−1⊗f | f ∈ E) = SV,G.
In ideal-theoretic terms,
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Proposition 2.1. [12, Corollary 2.6] A set of invariants {f1, . . . , ft} is a separating
set for G acting on V if and only if√

(f1 ⊗ 1− 1⊗ f1, . . . , ft ⊗ 1− 1⊗ ft) =
√

(h⊗ 1− 1⊗ h | h ∈ k[V ]G) =: ISV,G
.

For actions of finite groups, the invariants actually separate orbits (see, for ex-
ample, [3, Lemma 2.1]) and so the separating variety coincides with the graph of
the action

ΓV,G := {(v, σ · v) | v ∈ V, σ ∈ G} .
This provides significant geometric insight into SV,G:

Lemma 2.2 (c.f. [4, Proposition 3.1]). Let G be a finite group acting linearly on
V .

(a) The separating variety has an irreducible decomposition of the form

SV,G =
⋃
σ∈G

(1⊗ σ)(V )

with each (1⊗ σ)(V ) a linear subspace isomorphic to V .

(b) If σ, τ ∈ G, then (1⊗ σ)(V ) ∩ (1⊗ τ)(V ) = (1 ⊗ τ)(V τ
−1σ), which has di-

mension equal to that of the subspace fixed by τ−1σ in V . Every non-empty
intersection of components (1⊗σ)(V ) with σ ∈ G is of the form (1⊗ γ)(V H),
where H ≤ G is an isotropy subgroup and γ ∈ G/H.

Remark 2.3. The assumption that k is algebraically closed is essential in Propo-
sition 2.1. However, one may obtain results in the non-algebraically closed case
by considering a geometric separating set : for G finite, this is a subset of k[V ]G

that separates orbits of G in V ⊗k k (see [4, Section 2]). By [4, Theorem 2.1], a
geometric separating set is characterized by the ideal-theoretic equality in Propo-
sition 2.1. Accordingly, the results of Section 3 hold for k 6= k if one replaces the
phrase “separating set” with “geometric separating set.” Further, since k[V ]G is a
geometric separating set, Corollary 3.5 holds verbatim for all k.

2.3. Posets. For an arrangement of linear subspaces X ⊂ Am, let P (X) denote the
intersection poset of X: the collection, ordered by inclusion, of linear subspaces that
occur as intersections of components of X. For p ∈ P (X), the interval P (>p) is the
subposet of P (X) consisting of elements containing p. One defines P (<p), P (>p),
and P (6 p) analogously. The reduced homology of a poset P with coefficients

in k will be denoted by H̃•(P ;k): this is the reduced simplicial homology of the
simplicial complex whose vertices are elements of the poset, and whose faces are
the chains.

In our setting, for a linear action of a finite group, the separating variety SV,G is
a subspace arrangement. By abuse of notation, we will also denote its intersection
poset by SV,G. Note that if W ⊆ V is a subspace, then SV,G(> (1 ⊗ 1)(W )) ∼=
SV,GW

(>(1⊗ 1)(W )).
We will also consider the poset RV,G of r-reflecting subspaces (all possible r’s).

The two posets SV,G and RV,G are related by the following lemma.

Lemma 2.4. For any σ ∈ G, the interval SV,G(< (1 ⊗ σ)(V )) is isomorphic to
RV,G.
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Proof. The map on ΓV,G given by applying σ to the second coordinate is an iso-
morphism, thus SV,G(6(1⊗ σ)(V )) ∼= SV,G(6(1⊗ 1)(V )). Now,

(1⊗ 1)(V ) ∩ (1⊗ σ1)(V ) ∩ · · · ∩ (1⊗ σm)(V )

= {(v, v) | v = σ1(v) = · · · = σm(v)}

= (1⊗ 1)(V 〈σ1,...,σm〉) ,

so that the intersections of components of SV,G contained in (1 ⊗ 1)(V ) coincide
with the diagonal embeddings of reflecting subspaces. �

It is worth noting that the order onRV,G used here is dual to that most commonly
used in the literature on subspace arrangements.

2.4. Local Cohomology. For the convenience of the reader unfamiliar with local
cohomology, we give a quick review with an eye towards the main fact we will
employ. A welcoming source on local cohomology which includes the material
below is [9]. For an ideal I in a ring R and an R-module M , the I-torsion part of
M is

ΓI(M) = {m ∈M | Itm = 0 for some t ∈ N} .
The assignment ΓI(−) is easily checked to form a left-exact functor (with maps
given by restriction), and its right-derived functors are defined as the local cohomol-

ogy functors with support in I, denoted Hi
I(−). Since ΓI(−) = ΓJ(−) if

√
I =
√
J,

we also have Hi
I(−) = Hi

J(−).
Given a generating set I = (f1, . . . , ft), the local cohomology of I can also be

computed as the cohomology of the Čech complex:

Hi
I(M) = Hi

(
0→M →

⊕
j

Mfj →
⊕
j<j′

Mfjfj′ → · · · →Mf1···ft → 0
)
,

where the maps on each component are ±1 times the natural maps, with the signs
chosen so that the sequence above forms a complex. Consequently, if Hi

I(R) 6= 0
and f1, . . . , ft generates I up to radical, we necessarily have t > i, since the Čech
complex must have at least i terms if its ith cohomology is non-zero.

3. Lower bounds on the size of separating sets

In this section, we give a lower bound on the size of a separating set for a ring
of invariants of a finite group. We reiterate the assumption that k is algebraically
closed; see Remark 2.3 for the non-algebraically closed case. The following lemma
will be key to our applications.

Lemma 3.1. The separating variety is connected in codimension 6 r if and only
if the action of G is generated by (6r)-reflections.

Proof. By Lemma 2.2 (a), the separating variety SV,G is connected in codimension
6r if and only if, for any σ, σ′ ∈ G, there is a sequence of components

(1⊗ σ)(V ) = (1⊗ σ0)(V ) , (1⊗ σ1)(V ) , . . . , (1⊗ σr)(V ) = (1⊗ σ′)(V )

such that (1 ⊗ σi)(V ) ∩ (1 ⊗ σi+1)(V ) has codimension 6 r. By Lemma 2.2 (b),

dim (1⊗ σi)(V ) ∩ (1⊗ σi+1)(V ) = dimV σ
−1
i+1σi . Thus, SV,G is connected in codi-

mension 6r if and only if for any σ, σ′ ∈ G there exist (6r)-reflections

τ1 = σ−10 σ1 , τ2 = σ−11 σ2 , . . . , τr = σ−1r−1σr
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such that σ = τ1 · · · τrσ′ . But this just means that G is generated by (6 r)-
reflections. �

We first note that a connectedness theorem of Grothendieck allows for the fol-
lowing generalization of [4, Theorem 1.1].

Proposition 3.2. If there exists a separating set of size d+ r− 1, then the action
of G is generated by (6r)-reflections.

Proof. By Proposition 2.1, if there is a separating set of size d+ r−1, then ISV,G
is

set-theoretically defined by d+ r−1 equations. By [7, Exposé XIII, Théorème 2.1],
if ISV,G

can be set-theoretically cut out by d+ r − 1 or fewer equations, then SV,G
is connected in codimension 6 r. Then, by Lemma 3.1, G is generated by (6 r)-
reflections. �

A stronger result can be obtained by examining the local cohomology with sup-
port in ISV,G

. Local cohomology with support in a subspace arrangement is studied

by Àlvarez, Garćıa, and Zarzuela in [1]. Following along the lines of Björner and
Ekedahl’s computation of `-adic cohomology of such spaces, they establish a Mayer-
Vietoris spectral sequence for local cohomology and show that it degenerates for
subspace arrangements, thus obtaining a Goresky-MacPherson analogue in local
cohomology. In particular, their formula provides a combinatorial characterization
of the vanishing and non-vanishing of the local cohomology modules.

Theorem 3.3. (a) [1, p. 39], [13, Theorem 2.1] If I1, . . . , It ⊂ R are ideals,
and M an R-module, then there is a Mayer-Vietoris spectral sequence

E−p,q1 =
⊕

i0<···<ip

Hq
Ii0+···+Iip

(M) =⇒ Hq−p
I1∩···∩It(M) .

(b) [1, Corollary 1.3] If I1, . . . , It ⊂ R are ideals of linear subspaces in a poly-
nomial ring, then the spectral sequence above degenerates at E2, and for all
q > 0 there is an associated graded module of the local cohomology module
Hq
I1∩···∩It(R) with

gr
(

Hq
I1∩···∩It(R)

) ∼= ⊕
p∈P

[
H

codim(p)
I(p) (R)⊗k H̃codim(p)−q−1(P (>p); k)

]
,

where P is the intersection poset of V(I1 ∩ · · · ∩ It).
With this description of the local cohomology in hand, we obtain the following

strengthening of Proposition 3.2.

Theorem 3.4. Let r1, . . . , rs be the codimensions of minimal reflecting subspaces.
Then Hd+ri−1

SV,G
(k[V 2]) 6= 0. In particular, if r is the maximal codimension of a

reflecting subspace, then every separating set has size at least d+ r − 1.

Proof. Let W ⊂ V be a minimal reflecting subspace of codimension r. Note that
SV,G(> (1 ⊗ 1)(W )) ∼= SV,GW

(> (1 ⊗ 1)(V GW )). The latter poset is connected if
and only if SV,GW

is connected in codimension <r. By Lemma 3.1, this is the case
if and only if GW is generated by (<r)-reflections. Since W is minimal, GW is not

generated by (<r)-reflections, so H̃0

(
SV,G(>(1⊗ 1)(W ));k

)
6= 0. Theorem 3.3 (b)

applies to show that Hd+r−1
SV,G

(k[V 2]) 6= 0. Thus, ISV,G
cannot be set-theoretically

defined by d+ r− 1 or fewer equations, and by Proposition 2.1, any separating set
has size at least d+ r − 1. �
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Corollary 3.5. If r is the maximal codimension of a reflecting subspace, then the
embedding dimension of k[V ]G is at least d+ r − 1.

Proof. This follows immediately from Theorem 3.4 since a minimal generating set is
a separating set. Alternatively, one may argue by using Proposition 3.2 to conclude
that the embedding codimension is at least r if G is not a (< r)-reflection group,
and applying [11, Theorem A], according to which the embedding codimension
(referred to in ibid. as the polynomial defect) does not increase when passing to
the invariants of an isotropy subgroup. �

Remark 3.6. In a recent work of Reimers [16, Theorem 2.4], the statement of
Lemma 3.1 is established in the more general setting where G acts on a variety that
is connected in codimension 6r. This result is then applied to study the depth of
schemes defining the separating variety of the action — particularly, in terms of
local cohomology, the least i for which Hi

m(R/J) 6= 0 for some J with
√
J = ISV,G

.
In characteristic p > 0, the vanishing of these local cohomology modules is related to
the vanishing of those considered above by Peskine and Szpiro’s vanishing theorem
[15, Remarque p. 110].

Remark 3.7. It follows from the Hartshorne-Lichtenbaum vanishing theorem [8,

Theorem 3.1] that H2d
SV,G

(k[V 2]) = 0. This can also be deduced from Theo-
rem 3.3. Indeed, the only potential element of the poset SV,G of codimension
2d is (1⊗ 1)(V G), and this occurs only if V G is the origin. As SV,G(>(1⊗ 1)(V G))

is non-empty, H̃−1(SV,G(>(1⊗ 1)(V G));k) = 0, and we are done.

4. Rigid Reflection Groups

In this section, we focus on rigid reflection groups. In this situation, every
minimal reflecting subspace is a hyperplane, and in particular, the arrangement of
reflecting subspaces RV,G is a hyperplane arrangement. Recall that a simplicial
complex is pure if each of its maximal facets have the same dimension. A pure
simplicial complex is shellable if there is a linear ordering of its maximal facets (a
shelling) F1, F2, . . . , Ft such that Fi ∩

⋃
j<i Fj is pure of codimension 1; we call

a poset shellable if its order complex is pure and shellable. The salient fact we
use is that a shellable unbounded poset has non-vanishing homology only in the
dimension of the poset, see [18, Subsection 3.1].

We refer to [18, Subsection 3.2] for the notions and facts from poset topology
used in the proof of the following lemma. This lemma is undoubtedly previously
known, but we were unable to find it in the literature in the form needed for the
subsequent theorem.

Lemma 4.1. If G acts on V as a rigid reflection group, and H is a reflecting
hyperplane, then there exists a shelling of RV,G starting with a facet containing H.

Proof. Note first that it is equivalent to find such a shelling of the dual R∗V,G
of RV,G. Since R∗V,G is the standard poset of a hyperplane arrangement, it is a
geometric lattice, whose atoms are the reflecting hyperplanes. For any ordering
of these atoms H = H1, H2, . . . ,Ht, label each edge of the Hasse diagram, (x, y),
where y covers x, with the least integer i such that the join of x and Hi is y. This
is an EL-labelling, so the associated lexicographic ordering on the maximal chains
is a shelling, and the first facet of this shelling contains H. �
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Theorem 4.2. If G acts on V as a rigid reflection group, then the intersection
poset of SV,G is shellable.

Proof. Order the elements of G

1 = σ0 , σ1 , . . . , σ|G|−1

so that for each j > 0 there is some i < j such that σ−1i σj is a reflection. We then
construct a shelling inductively as follows.

First, by the identification SV,G(6(1⊗ 1)(W )) ∼= RV,G from Lemma 2.4, list the
facets in a shelling of SV,G(6(1⊗ 1)(V )). Then, for j > 0, given a list of the facets
in ⋃

j′<j

SV,G(6(1⊗ σj′)(V ))

such that each subsequent facet intersects the union of the others in pure codimen-
sion 1, choose an i < j such that σ−1i σj is a reflection. By Lemmas 2.4 and 4.1, list
the facets in a shelling of SV,G(6(1⊗σj)(V )) that starts with a facet Fj containing
a facet of

SV,G(6(1⊗ σi)(V )) ∩ SV,G(6(1⊗ σj)(V )) = SV,G(6(1⊗ σj)(V σ
−1
i σj )) .

As this is a codimension 1 subposet of
⋃
j′<j SV,G(6(1⊗ σj′)(V )), the facet Fj

intersects the union of previously listed faces in codimension 1. Continue with the
list of facets in the chosen shelling of SV,G(6(1⊗ σj)(V )).

Iterating this procedure for all j = 0, . . . , |G|−1 produces a shelling of SV,G. �

As a consequence, we find that our method from Theorem 3.4 does not provide
sharper bounds for rigid reflection groups.

Corollary 4.3. If G acts on V as a d-dimensional rigid reflection group, then
Ht
SV,G

(k[V 2]) = 0 for all t 6= d.

Proof. Since G is a rigid reflection group, GW is a reflection group for each isotropy

subgroupGW . Then, by Theorem 4.2, we find that H̃i(SV,G(>(1⊗1)(V GW ));k) = 0
for all i 6= codim(V GW )− 1. Since

SV,G(>(1⊗ 1)(V GW )) ∼= SV,G(>(1⊗ τ)(V GW ))

for any τ , by Lemma 2.2, we have H̃i(SV,G(>p); k) = 0 for all i 6= codim(p)− 1 and
all p in the intersection poset. The result follows by Theorem 3.3. �

Conjecture 4.4. There exists a separating set of size d (that is, there exists a
polynomial separating algebra) if and only if G is a rigid reflection group.

The following example shows that the bounds in Theorem 3.4 are not necessarily
sharp if G is not a reflection group.

Example 4.5. Let G be the symmetric group on three letters, with elements

1 , (12) = τ3 , (13) = τ2 , (23) = τ1 , (132) = σ1 , (123) = σ2 .

Let V be its standard three-dimensional permutation representation. Let W = V ⊕n

with G acting diagonally. The group G acts on V as a rigid reflection group, and
its action on W is as a rigid n-reflection group. Note that the intersection poset of
SW,G is isomorphic to that of SV,G, depicted in Figure 1 where gV is shorthand for
(1⊗ g)(V ), and similarly for gV h.
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1V τ3V τ2V σ1V τ1V σ2V

1V τ3 τ1V
τ3 τ2V

τ3 1V τ2 τ3V
τ2 τ1V

τ2 1V τ1 τ3V
τ1 τ2V

τ1

1V G

Figure 1. The intersection poset of the separating variety of the
permutation representation of S3.

The complex of SV,G(> (1 ⊗ 1)(V G)) is a graph, with a maximal tree depicted
with solid lines, and the corresponding homology edges dotted. We thus have

H̃1(SW,G(>(1⊗ 1)(WG));k) ∼= H̃1(SV,G(>(1⊗ 1)(V G));k) ∼= k4 .

By Theorem 3.3, H5n−2
SW,G

(k[W 2]) 6= 0, so, as in the argument of Theorem 3.4, we

conclude that any separating set for W has at least 5n− 2 elements. Note that the
bound provided by Theorem 3.4 for W is 4n− 1.

5. Examples of separating sets of minimal size

Below, we present a variety of examples of separating sets that realize the lower
bound in Theorem 3.4, thereby showing that the bound is sharp for these actions
and that the found separating sets are of minimal size. First, we review an example
from the first author’s thesis:

Proposition 5.1. [5, Proposition 5.2.2] Let G = 〈σ〉 be the cyclic group of order
m, and suppose k contain ζ, a primitive mth root of unity. Let G act diagonally on
k[V ] by the rule

σ(xi) = ζdixi

where 1 = d1|d2| · · · |dn|m. Then there is a separating set for k[V ]G of order 2n−1.

For this construction, a separating set ui,j : 1 6 i 6 j 6 n is first identified.
The terms naturally align in a triangle. It is then shown that the values of the
invariants ui,j can be recovered from the diagonal sums Sk =

∑
i+j=k ui,j of the

triangle. This “triangle trick” is used in many of the examples below.
It is worth noting that Proposition 5.1 includes as a special case the mth Veronese

subring of a polynomial ring of dimension n, for char(k) 6 |m.

5.1. Indecomposable representations of cyclic groups of prime order. In
this subsection we construct separating sets of minimal size for the indecomposable
modular representations of a cyclic group of prime order. Our argument is greatly
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inspired by Sezer’s iterative construction of a separating set (see [17]) and uses
the triangle trick mentioned above. After an appropriate change of basis, any
indecomposable representation of a cyclic group of prime order will be given by a
Jordan block of size at most p. We may further choose a basis so that the action
on the coordinate ring k[x1, . . . , xn] is as follows:

σ · xi = xi + xi+1 , for i = 1, . . . , n− 1 ,

σ · xn = xn .

One way to construct some invariants is to take norms (orbit products) and traces
(orbit sums) of elements: in fact, by [14, Theorem 3], for representations of p-
groups, norms and transfers will form a separating set. For f ∈ k[V ], the norm of

f is the orbit product N(f) :=
∏p−1
i=0 (σi · f) and the trace of f is the orbit sum

Tr(f) :=
∑p−1
i=0 (σi · f).

Proposition 5.2. Let Vn be the n-dimensional indecomposable representation of
the cyclic group of order p. The set Sn of the sum of the elements appearing on the
diagonal of the following triangle forms a separating set.

(1)

N(x1) Tr(x1x
p−1
2 ) Tr(x1x

p−1
3 ) · · · Tr(x1x

p−1
n−1)

N(x2) Tr(x2x
p−1
3 ) · · · Tr(x2x

p−1
n−1)

N(x3)
. . .

...
N(xn−1)

xpn

Proof. We proceed by induction on n. For n = 2, we have k[x1, x2]Cp = k[N(x1), x2].
As x2 and xp2 separate the same points, we are done.

Now, suppose n > 2. If xpn = 0, then xn = 0 and the triangle (1) reduces to
the triangle for Vn−1. Thus the sum of the diagonals separate by the induction
hypothesis.

Now suppose that xn 6= 0. For i > n− 2, the coefficient of xi in Tr(xix
p−1
n−1) is

xp−1n−1 +
∑p−1
l=0

(
p−1
j

)
xjn−1x

p−1−j
n

(
1 + 2p−1−j + · · ·+ (p− 1)p−1−j

)
= xp−1n−1 − xp−1n − xp−1n−1 = −xp−1n .

Indeed, in characteristic p, one has
(
1 + 2p−1−j + . . .+ (p− 1)p−1−j

)
= −1 for

j = 0 or j = p− 1 and zero otherwise. It follows that

k[x1, . . . , xn, x
−1
n ] = k[Tr(x1x

p−1
n−1), . . . ,Tr(xn−2x

p−1
n−1), xn−1, xn, x

−1
n ] .

Taking invariants, we then have:

k[x1, . . . , xn, x
−1
n ]Cp = k[Tr(x1x

p−1
n−1), . . . ,Tr(xn−2x

p−1
n−1),N(xn−1), xn, x

−1
n ] .

That is, the invariants which appear in the one before last column of the triangle
(1) generate up to dividing by some power of xn. Now we need only explain how to

get these from Sn. The bottom two, N(xn−1) and Tr(xn−2x
p−1
n−1), are in Sn. As any

term in the triangle can be expressed as a polynomial, up to dividing by a power
of xn−1, in elements of Sn lying either on the same row or below, we can express
the remaining elements of Sn in terms of the sums of the diagonals. �
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5.2. Vector Invariants of V2. Let V2 denote the 2-dimensional indecomposable
representation of Cp as above. We consider the diagonal representation of Cp on
V ⊕n2 . Let x1, y1, . . . , xn, yn be a choice of coordinates on V ⊕n2 such that σ · xi = xi,
and σ · yi = xi + yi. The ring of invariants is generated by

xi , 1 6 i 6 n

ui,i = N(yi) = ypi − x
p−1
i yi , 1 6 i 6 n

ui,j = xiyj − xjyi , 1 6 i < j 6 n

TrCp(ya11 · · · yann ) , ai < p , Σai > 2p− 2 .

By [2, Corollary 3.9.14], the invariants of degree less than |G| = p form a separating
set: in particular, the generators

xi : 1 6 i 6 n and uij : 1 6 i 6 j 6 n

form a separating set. Note that we have the relations

xiuj,k − xjui,k + xkui,j ∀i < j < k,

xiuj,j − xjui,i + xp−1i xp−1j ui,j − upi,j ∀i < j .

Set S` =
∑
i+j=` ui,j for all 2 6 ` 6 2n. Remark that the S` correspond to the

diagonal sums of the triangle consisting of the ui,j .

Proposition 5.3. The set of all xi and S` is a separating set for k[V ⊕n2 ]Cp .

Proof. It suffices to show that given the values of all xi and f`, we may recover the
values of each uij . We induce on n. If n = 1, there is nothing to show.

Case 1: xn 6= 0: In this case, we may write

ui,i = x−1n (xiun,n + xp−1i xp−1n ui,n + (−ui,n)p )(2)

ui,j = x−1n (xjui,n − xiuj,n) , i < j(3)

to express each ui,j with j < n in terms of the xs and uk,n with k > j. This enables
us to express each ui,j in terms of the S` and xs: indeed, un,n = S2n, and if each
ui,j with j > k has such an expression, then

Sn+k−1 = uk−1,n +
∑

i+j=n+k−1
j>k

ui,j

provides such an expression for uk−1,n, and the formulas (2) and (3) above provide
such an expression for uk−1,k−1 and each uk−1,j .

Case 2: xn = 0: Here, we have ypn = unn, so that ui,n = xiyn = xiu
1/p
n,n. Then,

by the induction hypothesis, we may express each ui,j with j < n in terms of the
xs and

Ŝ` =
∑
i+j=`
j<n

ui,j = S` − x`−nu1/pn,n

(where x`−n := 0 for ` 6 n), and thus in terms of the xs and S`. �

As the action of Cp on V ⊕n2 is generated by n-reflections, by Theorem 3.4, any
separating set for k[V ⊕n2 ]Cp has at least 3n− 1 elements. Thus, the set

{xi, S` | 1 6 i 6 n, 2 6 ` 6 2n}
is a separating set of minimal size.
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5.3. A Non-Rigid Reflection Group. Let k have characteristic 2 and G be the
finite subgroup of GL7(F2) given by

G :=


 I4 0
α1 0 0 α4
0 α2 0 α4
0 0 α3 α4

I3

 ∣∣∣ α1, . . . , α4 ∈ F2

 ,

where Im denotes the m ×m identity matrix. The group G is isomorphic to C4
2 ,

and generated by reflections (namely those elements where exactly one of the αi’s
is non-zero). This is a remarkable example since its invariant ring is not Cohen-
Macaulay (see [10]) and, moreover, neither is any graded separating subalgebra (see
[6]) despite the action of G being generated by reflections.

Setting all αi’s to be 1 yields an element σ whose fixed space of codimension 3 is
a minimal reflecting subspace. By Theorem 3.4, it follows that any separating set
contains at least 9 elements. Writing xi for the coordinate functions on V = k7,
one has the minimal generating set

k[V ]G = k[x1, x2, x3, x4, f1, f2, f3, g1, g2, g3, r]

where deg fi = 3, deg gi = 4, and deg r = 5. Using a computer algebra system, one
verifies that

fir ∈ k[x1, x2, x3, x4, f1, f2, f3, g1, g2, g3], for i = 1, 2, 3,(4)

r2 ≡ (x1 + x4)2g2g3 mod (f1, f2, f3) .(5)

Thus, given the values of the xi’s, fi’s, and gi’s, one may recover the value of r
using (4) if some fi 6= 0 and (5) if all fi = 0, so we can leave out r still have a
separating set. One also finds

(x3 + x4)f3 = f2(x2 + x4) + f1(x1 + x4)(6)

(xi + x4)2g3 ≡ f2i mod (x3 + x4), i = 1, 2,(7)

f3 ≡ 0 mod (x1 + x4, x2 + x4, x3 + x4) .(8)

Hence, given the values of the xi’s, f1, and f2, one can either obtain the value of
f3 (using (6) if x3 6= x4 or (8) if x1 = x2 = x3 = x4) or g3 (using (7) if x3 = x4 and
either x1 6= x4 or x2 6= x4). Concluding, we have the following:

Proposition 5.4. The invariants x1, x2, x3, x4, f1, f2, g1, g2, f3 + g3 form a sepa-
rating set for k[V ]G of minimal size.
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[14] Mara Neusel and Müfit Sezer. Separating invariants for modular p-groups and groups acting

diagonally. Math. Res. Lett., 16 (2009), no. 6, 1029–1036.

[15] Christian Peskine and Lucien Szpiro. Dimension projective finie et cohomologie locale. Inst.

Hautes Études Sci. Publ. Math., no. 42 (1973), 47–119.
[16] Fabian Reimers. Polynomial separating algebras and reflection groups. arXiv:1307.7522.
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