Velar nasal plus in the north of (ing)land

George Bailey

University of Manchester

@grbails

NEW7 - 14 April 2016

The topic

Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary
Ongoing work

The topic

Velar nasal plus in the north of (ing)land

- (ing) alternation between [m] and [m] in unstressed <-ing> clusters
- The north (ing) behaves differently here, in ways that aren't well-studied
- Velar nasal plus a third possible variant exclusive to the north west (and west midlands) of England

The topic

Velar nasal plus

Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary
Ongoing work

Velar nasal plus

- Third variant, where post-nasal /g/ is retained [ŋg]
- Expanded envelope of variation to stressed clusters, e.g. thing [θιη]~[θιηg]

 This talk: variationist study of how [ŋg] patterns along social dimensions, and how this is constrained by language-internal factors

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary
Ongoing work

The origins of (ing)

- Old English present participle -inde and verbal noun form -ynge/-inge (Visser 1966)
- Reduction (and later deletion) of the final vowels; simplification of the consonant clusters
- This historical alternation has a residual effect on modern-day (ing) variation
 - grammatical category verbs favour -in, nouns favour -ing (Labov 1989)
- Northern dialect regions retained the final /g/, leading to what Wells (1982) terms 'velar nasal plus'
- Deletion of post-nasal /g/ was not immediately exhaustive, it has its own diachronic trajectory

The life cycle of phonological processes (Bermúdez-Otero 2011)

- Diachronic trajectory for phonological processes that begin as extragrammatical factors
- Begins applying at the phrase-level, before progressing to the word- and stem-level
- The evolution of post-nasal /g/-deletion

•
$$/g/\longrightarrow g/ g$$
 σ

Stage	Surface form of underlying /ŋg/				Language variety/	
	finger	sing-er	sing it	$sing \parallel$	register	
0	[ŋg]	[ŋg]	[ŋg]	[ŋg]	Early Modern English	
1	[ŋg]	[ŋg]	[ŋg]	[ŋ]	Elphinston (formal)	
2	[ŋg]	[ŋg]	$[\mathfrak{y}]$	$[\mathfrak{y}]$	Elphinston (colloquial)	
3	[ŋg]	[ŋ]	$[\mathfrak{y}]$	$[\mathfrak{y}]$	Present Day English	

Adapted from Bermúdez-Otero (2011: 2024)

Adapted from Bermúdez-Otero & Trousdale (2012: 700)

The life cycle of phonological processes (Bermúdez-Otero 2011)

- Synchronic implication under a cyclic analysis:
 - more chances to apply in the derivation = higher application rate on the surface
- See Guy (1991) on /t,d/-deletion and Turton (2013, 2014) on /l/-darkening

Word	finger	singer	sing it	$sing \parallel$
Stem-level	/fiŋ.gə/	/sing/	/siŋg/	/sing/
Word-level	/fiŋ.gə/	/sɪŋ.gə/	/sing/	/sing/
Phrase-level	/fiŋ.gə/	/sɪŋ.gə/	/siŋ.git/	/sing/
	0	1	2	3

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary
Ongoing work

Methodology

- Quantitative approach drawing upon natural language data from fifteen sociolinguistic interviews
- Stratified by age, sex, and speech community (Manchester and Blackburn)
- Interviews typically one hour long, followed by a reading passage and word list
- Tokens of (ing) and (ng) coded auditorily, with inspection of spectrogram for ambiguous tokens

	Conversation	Elicited	Total
(ing)	2069	410	2479
(ng)	507	236	743
Total	2576	646	3222

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)

Stressed (ng)

4. Conclusion

Summary
Ongoing work

Results

Unstressed (ing)

- Three-way alternation in the unstressed -ing suffix...
- ... but it's more like a twoway alternation, at least in the conversation
- Velar nasal plus in unstressed clusters only really present in elicited speech

Social factors

Unstressed (ing)

- Slight age-graded pattern, though more observable for females than males
- Males show more of a preference for -in
- Expected results, given the well-established status of (ing) as a stable sociolinguistic variable with high social awareness

Internal factors

Unstressed (ing)

- No significant effect of part of speech
- Regressive assimilation with following velar consonants

Style Unstressed (ing)

- A fine-grained look at style reveals interesting behaviour
- Reading passage: decrease of -in and increase of -ing and -ingg
- But word list: -ing actually decreases, and -ingg becomes remarkably frequent (~76% of all tokens)

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary
Ongoing work

Results

- Two-way alternation between [ŋ] and [ŋg] in stressed contexts; variable application of /g/-deletion rule
- Highly variable in conversational data
 - both within-speaker and between-speaker variation

Social factors

- Effect of age and sex somewhat less clear than for unstressed (ing)
- Suggestion that older speakers show more /g/deletion
- No clear pattern in terms of age or sex

Internal factors (i)

- Grammatical category isn't much better nice monotonic pattern for females, but not for males
- Unusual curvilinear effect of word token frequency

The life cycle (i)

- The diachronic trajectory of /g/-deletion along the life cycle has interesting synchronic implications
- Correlation between surface rate of application and the number of cyclic levels in which it can apply
- This turns out to be a really strong predictor
- Word-final /ŋg/ should show comparable behaviour in pre-pausal and pre-consonantal environments
- But we actually find high rates of deletion preconsonantally (as predicted), but extremely *low* rates pre-pausally (not predicted)

Number of cyclic levels at which /g/-deletion can apply

Style Stressed (ng)

- Another interesting pattern across the four-way style distinction
- Rate of /g/-deletion doesn't decrease from conversation to reading passage, despite the latter being elicited
 - but [ŋg] is supposedly prestigious!
- Massive decrease in the word list

Why?

But what if style/formality is irrelevant?

What if this stylistic pattern actually reflects speech rate, not formality?

Why?

But what if style/formality is irrelevant?

What if this stylistic pattern actually reflects speech rate, not formality?

Then it makes perfect sense!

Style and speech rate

- There is clear collinearity between style and speech rate
 - More formal style = slower rate of speech
- Fairly linear relationship between average /g/-deletion and speech rate across the three discourse styles
- More work should be conducted to tease apart these two factors

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary

Ongoing work

Summary

- Velar nasal plus exists in these two northern varieties of English, in (ing) and (ng)
- For (ing), [ing] almost entirely absent in conversation, but very common in word list elicitations
- For (ng), lots of variation in conversational data but not modelled particularly well by social factors; almost entirely predicted by:
 - the cyclic nature of /g/-deletion
 - inhibition of the deletion rule pre-pausally
 - model with just these two predictors better by AIC (447, cf. 461) with only a minimal increase in deviance (435, cf. 423) compared to a model with all social/internal predictors

The topic Velar nasal plus Historical origin

2. Methodology

3. Results

Unstressed (ing)
Stressed (ng)

4. Conclusion

Summary

Ongoing work

Ongoing work

- Pre-boundary lengthening and duration do we see a gradient scale of [g]presence correlating with prosodic and syntactic boundary strength and rime
 duration?
- Phonetics [g]-presence in /ŋg/ clusters often devoiced and ejectivised, just like underlying /k/ phrase-finally
 - **Displaced contrast** pre-fortis clipping before underlying /k/ means that the underlying laryngeal contrast may be neutralised, but transferred onto preceding engma duration
 - Perception how much do speakers rely on engma duration as the primary acoustic cue to solving sing~sink ambiguity in these varieties?
- Prestige need independent evidence to uncover social perception of /ŋg/, both from perception studies and from investigating social class in this variationist study

Ongoing work: rime duration

- Research questions: is deletion inhibited pre-pausally because velar nasal plus is used as a boundary marker? Is /g/-presence correlated with rime duration and boundary strength (through pre-boundary lengthening)?
- Methodology: elicit word-final /ŋg/ before prosodic/syntactic boundaries of different 'strengths'
- **Preliminary results**: correlation between boundary strength and rime duration (r = 0.51); correlation between rime duration and [g]-presence (r = 0.48)

Ongoing work: displaced contrast

- Phonetically, post-nasal /g/ sounds devoiced and sometimes ejectivised
- Ejectivisation of word-final /k/ is well-attested in English (e.g. Gordeeva & Scobbie 2011; McCarthy & Stuart-Smith 2013)
- Neutralisation of underlying laryngeal contrast
- Still a contrast in engma duration due to pre-fortis clipping, leading to minimal pairs like sing~sink
 - $[sing'] \sim [sink']$
- Do speakers really just use engma duration as the acoustic cue for this alternation? Where's the cut-off point? Is this phonetic variation socially stratified, changing over time etc.? How do southern speakers (who don't usually rely on engma duration) behave in forced identification/discrimination tasks?

References

- Bermúdez-Otero, R. 2011. Cyclicity. In van Oostendorp, M., C. J. Ewen, E. Hume & K. Rice (eds.), *The Blackwell Companion to Phonology volume 4: Phonological interfaces*, 2019-2048. Malden, MA: Blackwell.
- Bermúdez-Otero, R. & G. Trousdale. 2012. Cycles and continua: on unidirectionality and gradualness in language change. In Nevalainen, T. & E. Traugott (eds.), *The Oxford Handbook of the History of English*, 691-720. New York: Oxford University Press.
- Gordeeva, O. B. & J. M. Scobbie. 2011. Laryngeal variation in the Scottish English voice contrast: glottalisation, ejectivisation and aspiration. Working Paper WP-19, Queen Margaret University.
- Guy, G. 1991a. Explanation in variable phonology: an exponential model of morphological constraints. *Language Variation and Change* 3: 1-22.
- Guy, G. 1991b. Contextual conditioning in variable lexical phonology. Language Variation and Change 3: 223-239.
- Labov, W. 1989. The child as linguistic historian. Language Variation and Change 1: 85-97.
- Labov, W. 2001. Principles of linguistic change vol. 2: social factors. Malden, MA: Blackwell.
- McCarthy, O. & J. Stuart-Smith. 2013. Ejectives in Scottish English: a social perspective. *Journal of the International Phonetic Association* 43(3), 273-298.
- Sproat, R. & O. Fujimura. 1993. Allophonic variation in American English /l/ and its implications for phonetic implementation. Journal of Phonetics 21, 291-311.
- Turton, D. 2013. The darkening of English /l/: a stochastic stratal OT analysis. Unpublished manuscript, University of Manchester. Available at: http://ling.auf.net/lingbuzz/001524.
- Turton, D. 2014. Variation in English /l/: synchronic reflections of the life cycle of phonological processes. PhD dissertation, University of Manchester.
- Visser, F. Th. 1966. An historical syntax of the English language, Vol. II. Leiden: Brill.
- Wells, J. C. 1982. Accents of English: the British Isles. Cambridge: Cambridge University Press.

Appendix

Logistic regression model for (ng); /g/-deletion as application value

Predictor	Log-odds	Std. error	z-value	<i>p-</i> value
cyclic levels three	3.2631	0.4830	6.756	<0.001
cyclic levels two	1.1996	0.4673	2.567	0.01026
pre-pausal <i>yes</i>	-3.2544	0.4374	-7.440	<0.001
AIC: 447.4	Deviance: 435.4	<i>C</i> : 0.790	D_{xy} : 0.5	581

(speaker and word entered as random factors)

Appendix

Logistic regression model for (ng); /g/-deletion as application value

Predictor	Log-odds	Std. error	z-value	<i>p</i> -value
sex - male	-0.08703	0.97621	-0.089	0.929
age - old	0.89791	1.28125	0.701	0.483
age - young	0.04535	0.85882	0.053	0.958
location - Manchester	0.34596	0.66449	0.521	0.603
speech rate	0.07116	0.14398	0.494	0.621
cyclic levels - three	2.94629	0.51926	5.674	1.40E-08
cyclic levels - two	0.80181	0.51639	1.553	0.12
word frequency	0.33294	0.30688	1.085	0.278
pos - <i>adverb</i>	-12.93915	1547.52842	-0.008	0.993
pos - <i>adjective</i>	-12.93268	1547.52839	-0.008	0.993
pos - noun	-12.67719	1547.52841	-0.008	0.993
pos - pronoun	-12.41297	1547.52871	-0.008	0.994
pos - <i>verb</i>	-12.63804	1547.52847	-0.008	0.993
pre-pausal - <i>yes</i>	-3.40533	0.45095	-7.551	4.30E-14
male:old	1.20136	1.83021	0.656	0.512
male:young	0.55798	1.22213	0.457	0.648
AIC: 460.8	Deviance: 422.8	C: 0.828	D_{xy} : 0.0	657

(speaker and word entered as random factors)