
1

Cellular Automata Models of

Self-Replicating Systems

James A. Reggia�

Dept. of Computer Science & Institute for Advanced Computer Studies
A. V. Williams Bldg., University of Maryland, College Park, MD 20742 USA

reggia@cs.umd.edu

Hui-Hsien Chou
The Institute for Genomic Research, 9712 Medical Center Drive

Rockville, MD 20850 USA
hhchou@tigr.org

Jason D. Lohn
Caelum Research Corporation

NASA Ames Research Center, MS 269-1, Mo�ett Field, CA 94035 USA
jlohn@ptolemy.arc.nasa.gov

Abstract: Since von Neumann's seminal work around 1950, computer scientists and oth-
ers have studied the algorithms needed to support self-replicating systems. Much of this work
has focused on abstract logical machines (automata) embedded in two-dimensional cellular
spaces. This research has been motivated by the desire to understand the basic informa-
tion processing principles underlying self-replication, the potential long term applications of
programmable self-replicating machines, and the possibility of gaining insight into biological
replication and the origins of life. Here we briey summarize the historical development of
work on arti�cial self-replicating structures in cellular spaces, and then describe some recent
advances in this area. Past research is viewed as taking three main directions: early complex
universal computer-constructors modeled after Turing machines, qualitatively simpler self-
replicating loops, and e�orts to view self-replication as an emergent phenomenon. We discuss
our own recent studies showing that self-replicating structures can emerge from non-replicating
components and that genetic algorithms can be applied to automatically program simple but
arbitrary structures to replicate. We also describe recent work in which self-replicating struc-
tures are successfully programmed to do useful problem solving as they replicate. We conclude
by identifying some implications and important research directions for the future.

�To whom correspondence should be sent.

Administrator
J.A. Reggia, H.-H. Chou, and J.D. Lohn. ``Cellular Automata Models of Self-replicating Systems,'' in Advances in Computers, M. Zelkowitz (ed), vol. 47, Academic Press, New York, 1998, pp.141-183.

Reggia 2

CONTENTS

1. Why Study Self-Replicating Systems?

2. Early Self-Replicating Structures

2.1 Cellular Automata Framework

2.2 von Neumann's Universal Computer-Constructor

2.3 The Drive to Simpli�cation

3. Self-Replicating Loops

3.1 Sheathed Loops

3.2 Unsheathed Loops

3.3 Varying Rotational Symmetry

3.4 Reduced Rule Sets

4. Emergence of Self-Replication

4.1 Emergence of Replicators

4.2 Automatic Programming of Replicator Rules

5. Programming Self-Replicating Loops

5.1 Duplicated Programming Sequences

5.2 Expanding Problem Solutions

6. Discussion

7. References

Reggia 3

1. WHY STUDY SELF-REPLICATING SYSTEMS?

Self-replicating systems are systems that have the ability to produce copies of themselves.

Biological organisms are, of course, the most familiar examples of such systems. However,

around 1950 mathematicians and computer scientists began studying arti�cial self-replicating

systems in order to gain a deeper understanding of complex systems and the fundamental

information-processing principles involved in self-replication [5, 70]. The initial models that

were developed consisted of abstract logical machines, or automata, embedded in cellular

spaces [2, 11, 33, 57]. In addition to work on cellular automata, other computational models,

such as those based on more traditional programming concepts [56], continue to be the subject

of research. Mechanical and biochemical models have also been constructed and studied

[26, 46, 49].

Much of this work on arti�cial self-replicating systems has been motivated by the desire

to understand the fundamental information processing principles and algorithms involved in

self-replication, independent of how they might be physically realized. A better theoreti-

cal understanding of these principles could be useful in a number of ways from a computa-

tional/engineering perspective. For example, it has been proposed that:

Self-replicating programs undergoing arti�cial selection could facilitate the di�cult task of

programming massively parallel computers. Experiments performed on sequential com-

puters have shown that such programs can optimize their algorithms more than �vefold

in a few hours of time [56].

Understanding self-replication processes could shed light on computer viruses and may con-

tribute to their detection and the creation of biologically-inspired \immune systems"

[30].

Self-replicating devices could play a key role in atomic-scale manufacturing or \nanotech-

nology" [13]. Researchers in this area have already gained insight from early work on

self-replicating systems [41].

Reggia 4

Year Model

Type

Dim. Rot.

Sym-

metry

States

per

Cell

Neigh-

borhood

size(s)

Struc-

ture

size(s)a

Capa-

bilitiesb
Refs.

1951 CA 2D weak 29 5 > 10
4

o [70, 51]

1965 CA 2D strong 8 5 > 10
4

o [11]

1966 CT-Mach. 2D weak � 10
100

5 � 10
2

o [2]

1973 CA 2D strong 8 5 > 10
4

s [68]

1976 �-Univ. 1D strong 5 -
c

(60)
d

s [25]

1984 CA 2D strong 8 5 86 s [33]

1989 CA 2D strong 6 5 12 s [6]

1993 CA 2D both 6,8 5,9 5{48 s [57]

1995 EA 2D weak 9,13 5 2,3 s [36]

1995 CA 2D strong 6 9 52 o [65]

1995 non-uni. CA 2D strong 2 9 5 s [61]

1996 CA/W-Mach. 2D strong 63 5 127 o [50]

1997 CA 2D weak 192 9 4 or more s [8]

aSome systems were never implemented, thus certain values are approximations.
bs=self-replication, o=other capabilities in addition to self-replication.
cNo �xed neighborhood size.
dTheorized.

Table 1: Examples of research involving self-replicating structures in cellular space models.

Self-replicating systems may have an important future role in planetary exploration [16] and

in creating robust electronic hardware [39, 40].

Developing an understanding of the principles of self-replication is also of interest in a

broader scienti�c context. For example, understanding these principles may advance our

knowledge of the biomolecular mechanisms of reproduction, clarifying conditions that any

self-replicating system must satisfy and providing alternative explanations for empirically

observed phenomena. Self-replicating systems have thus become a major area of research

activity in the �eld of arti�cial life [34, 35]. Work in the area of self-replicating systems could

shed light on those contemporary theories of the origins of life that postulate a prebiotic period

of molecular replication before the emergence of living cells [46, 47, 52].

2. EARLY SELF-REPLICATING STRUCTURES

Table 1 lists several examples of past cellular automata studies of self-replicating struc-

Reggia 5

tures. While the earliest work on arti�cial self-replicating structures/machines sometimes

used mechanical devices [29, 49], subsequent work has been based largely upon computational

modelling, especially with cellular automata. Thus, in the rest of this article, we will focus on

self-replicating structures implemented within the framework of cellular automata. Work on

such models can be viewed as primarily taking three approaches. First, early self-replicating

structures (1960's and 1970's) were large, complex universal systems modeled after Turing ma-

chines. Although these early models were so large and complex that they have never actually

been fully implemented, they provided the �rst demonstration that arti�cial self-replicating

structures could in principle be devised and stimulated substantial theoretical work. These

early models are discussed in Sections 2.2 and 2.3. A second generation of self-replicating

structures, studied since the mid 1980's, were designed to be qualitatively simpler than their

predecessors. This was done by relaxing the criteria that self-replicants must also be capable

of universal computation and construction. These models, characterized as self-replicating

loops, are discussed in Section 3. More recently, we have taken a third approach in our own

work that focuses on self-replication as an emergent property rather than, as in the past,

being based solely on manually designed replicants. This work has shown that self-replicating

structures can emerge from initially random states, and that rules to control self-replication

can be discovered using arti�cial evolution methods (genetic algorithms). It has also been

established that self-replicating structures can be used to solve problems while they replicate.

These recent developments are summarized in Sections 4 and 5. Finally, Section 6 speculates

about some of the implications of this work and o�ers suggestions for future work.

2.1 Cellular Automata Framework

Since the models of self-replication described below are implemented in a cellular automata

framework, we briey describe this framework here. Cellular automata can be characterized

as an array of identical processing units called cells that are arranged and interconnected

throughout space in a regular manner. Figure 1 shows a typical example of a small two-

dimensional space tesselated into squares where each square represents one cell. Each cell

represents the same abstract �nite state automaton (computer), which typically can be in any

of two or more possible states. These internal states are usually represented by letters, digits,

Reggia 6

C

N

W

S

E C

N

W

S

E

NE

SESW

NW

The von Neumann
neighborhood

The Moore
neighborhood

Figure 1: The von Neumann neighborhood (5-neighborhood) and Moore neighborhood (9-
neighborhood) of a central cell labeled C; here N = north, E = east, S = south, and W =
west. The labels here, unlike in all subsequent illustrations, do not represent cell states.

or other non-numeric characters. A special state, called the quiescent or inactive state, is

generally represented by an empty cell in pictures, or as a period in text. All other cells are

said to be active.

At each tick of simulated time, each cell simultaneously changes state as a function of

its own current state and the state of its immediately neighboring cells. Which cells are

considered to be immediate neighbors varies from model to model. With the 5-neighborhood

or von Neumann neighborhood, each cell (such as the one marked C for \central" in the left

half of Figure 1) is considered to have �ve immediate neighbors: north, east, south, west and

itself. In other words, a cell makes a decision about its new state based on its four adjacent cells

plus its own state. During processing, various structures (con�gurations) arise. A structure

is a �xed/moving persistent pattern of multiple contiguous activated cells. For example,

Figure 2 illustrates a structure called a \glider" from the well-known cellular automata model

called the Game of Life [4, 17]. The Game of Life model uses the 9-neighborhood or \Moore

neighborhood" (Fig. 1, right). Cells in the Game of Life have only two possible states, dead

(quiescent, indicated by empty cells) or alive (indicated by 1's). Thus, in Fig. 2 at the start

(upper left), exactly �ve cells are alive, and these form a structure called a glider. At each

instant of time t, each cell follows a simple set of rules forming the transition function, based

on the number N of its eight neighbors that are alive (in state 1):

Reggia 7

1 1
1 1

1

step 7

1 1
1
1

1

step 6

1 1 1
1

1

1
1 1

11

1 1
1
1

1
1 1

1 1
1

1 1 1
1

1

step 4

1
1 1

11

step 5

start step 1 step 2 step 3

Figure 2: Successive applications of the Game of Life rules given in the text to a small initial
cellular automata structure called a glider. The glider gradually moves to the lower right as
each cell follows the same set of instructions based solely on local information. For example,
at iteration 4 (lower right) it can be seen that the initial con�guration has reappeared but
shifted one space down and to the right.

If quiescent at time t and N=3,

then at time t+1 change state to 1 ("birth").

If alive at time t and either N < 2 or N > 3,

then at time t+1 become quiescent ("death").

Otherwise, stay in the same state at time t+1 as at time t.

Following these rules, the glider structure, the pattern of 1's in Figure 2, goes through a

sequence of steps that shift it one unit diagonally every four units of time. Again, we follow

the convention here and in the following �gures of showing quiescent cells as being empty or

blank. We refer to each iteration of the model in which all cells simultaneously change state

as one step or one unit of time.

As with the Game of Life, with any cellular automata model each cell's state transitions

are governed by a set of rules forming the transition function. Each single rule is simple and

based solely on locally-available information. The \locality" of computation, that is, the fact

that each cell can change its state based only on the state of its neighbors (including its own

current state), is a fundamental aspect of cellular automata computation. In spite of such

Reggia 8

localized information processing, experience has shown that the complete set of rules forming

a transition function, through their application by all of the cells in the model simultaneously

and repetitively over time, can produce very rich and at times striking behavior. For this

reason, cellular automata are being increasingly used as models in physics, chemistry, biology,

and other scienti�c �elds. The critical point here is that, since all computations are strictly

local operations, any �xed/moving/replicating structures that occur represent emergent be-

havior of the model. The reader interested in further details of cellular automata models in

general is referred to the many collections and reviews on this topic [12, 14, 21, 53, 72, 73].

2.2 von Neumann's Universal Computer-Constructor

The mathematician John von Neumann �rst used cellular automata to study the logi-

cal organization of self-replicating structures [70]. In his and most subsequent work, two-

dimensional cellular automata spaces are used, and cells can be in one of several possible

states. At any moment most cells are quiescent or inactive; those cells that are active are said

to be components. A self-replicating structure is represented as a con�guration of contiguous

active cells, each of which represents a component of a replicating machine. Put otherwise,

there are actually two levels at which one can talk about \machines" in the models we consider

below:

Cells: Each cell forming the cellular automaton space is a �nite state machine. For simplicity,

in the rest of this review this fact will largely be kept implicit. We will instead emphasize

the view that a cell represents a local region of space, a quiescent cell represents empty

space, an active cell represents a region containing a component of a structure, and

the transition function (rules or program) followed by a cell represents the \underlying

physics" of the space.

Structures: A set of contiguous active cells or components (such as the \glider" in Figure 2)

can also be viewed as an abstract machine. Such a structure, spanning several cells of

the cellular space and considered as a whole, is a machine at a higher level of abstraction.

When we refer to self-replicating structures or \machines" in the following, we will be

referring to this higher level of abstraction.

Reggia 9

Tape

→
⇒⇒⇒⇒⇒

→ ↑
γ
δ

Completed portion of
construction automaton

Uncompleted portion of
construction automaton

↑
↑
↑
↑
↑
↑
↑

↑
⇑
⇑
⇑
⇑
⇑
⇑
⇑

Construction Control
(not drawn to scale)

Tape Control
(not drawn to scale)

⇒
→

Constructing Arm

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒
→→→→→→→→→→

Figure 3: Schematic diagram of von Neumann's self-replicating structure. The actual structure
occupies at least tens of thousands of cells. The initial structure consists of construction and
tape controls as shown shaded on the left. The tape contains a description of the initial
structure to be replicated, the actual work being done by a constructing arm. A partially
completed copy of the original structure is shown in the nearby cellular space (upper right).
During the replication process, instructions on the tape cause the construction control to
send signals up the constructing arm. These signals cause the arm to move as it sequentially
deposits components in the replicant. (Figure taken from Essays on Cellular Automata, A.
Burks (ed.), copyright 1970 by the Board of Trustees of the University of Illinois, used with
permission of the University of Illinois Press).

Since at each instance of simulated time, each cell determines its next state as a function of

only its current state and the state of immediate neighbor cells, any self-replicating structures

observed in the models we consider must be an emergent behavior arising from strictly local

interactions. Based solely on these concurrent local interactions an initially-speci�ed self-

replicating structure goes through a sequence of steps to construct a duplicate copy of itself

(the replica being displaced and perhaps rotated relative to the original).

Von Neumann's original self-replicating structure is a complex universal computer-

constructor embedded in a large, two-dimensional cellular automata space that consists of

29-state cells. It is based on the 5-neighborhood, and is literally a simulated digital computer

Reggia 10

(Turing Machine) that useds a \construction arm" in a step-by-step fashion to construct a

copy of itself from instructions on a \tape". In Fig. 3, the initial state of this structure is

shown on the left (shaded) with its attached tape and its construction arm extended out to

the upper right where a replicant is in the process of being constructed. The initial machine

is said to be a universal constructor in that it can construct a copy of any structure properly

speci�ed on its tape [5]. It can also copy its input tape and attach it to the new structure.

Self-replication can thus occur if the original machine is given a tape with a description of its

own structure.

0

O L > > O O O O O

1

O O L > > O O O O

2

O O O L > > O O O

3

O O O O L > > O O

4

O O O O O L > > O

5

O O O O O O L > >

Figure 4: Signal sequence ow over a data path. Each box is a snapshot of the same region
in the cellular automata space during successive times (iterations). Numbers below each box
denote the times. The rules forming the transition function are such that signal > is followed
by either a signal > or by the signal L. Signal L always changes to O, the latter changing to
> if pointed at by >. The net e�ect is that the signal sequence L>> progressively moves to
the right at a rate of one cell per unit time.

One of the important concepts introduced in von Neumann's universal computer-

constructor is that of a data path over which signals can ow. The construction arm in

Fig. 3 provides an example. Without describing the details of von Neumann's speci�c design,

the basic idea of a data path and signal ow is illustrated in Fig. 4. The data path fragment

shown in the �gure consists of a row of cells in a state labeled by the letter O. Three signals

(>>L) are embedded in the data path at t = 0, and at each iteration (tick of the clock)

move one cell to the right. The transition rules obeyed by each and every individual cell that

produce such behavior can be summarized as:

Reggia 11

If in state O at time t and pointed at by >,

then change to state > at time t+1.

If in state > at time t and a neighbor cell is in state L,

then change to state L at time t+1.

If in state L at time t,

then change to state O at time t+1.

Otherwise do not change state.

Data paths similar to that illustrated here serve as the \wires" over which information is

transmitted, both internally in the universal computer-constructor and via the construction

arm (Fig. 3).

Von Neumann's work provided an early demonstration that an arti�cial information-

carrying system capable of self-replication was theoretically possible. It established, within

the cellular automata framework, a logical organization that is su�cient for self-replication.

The detailed design of von Neumann's original universal computer-constructor can be found

in [70] and is clearly summarized in [5].

2.3 The Drive to Simpli�cation

While the work by von Neumann established that arti�cial self-replication is possible, it

left open the question of the minimal logical organization necessary for self-replication [5, 70].

Subsequent analysis led to several other results: it showed that some simpli�cation of von

Neumann's con�guration was possible by redesigning speci�c components [66] or by increasing

cell state complexity [2], demonstrated that sexual reproduction could be simulated [68],

generalized von Neumann's basic result to other con�gurations and higher-dimensional cellular

spaces [45], established theoretical upper bounds on how rapid a population of self-replicating

con�gurations could grow [43], and examined several fundamental issues [3, 7, 22, 54, 60] that

continue to generate theoretical interest today [28, 63].

Most inuential among this early work has been Codd's demonstration that if the compo-

nents or cell states meet certain symmetry requirements, then von Neumann's con�guration

Reggia 12

could be done in a simpler fashion using cells having only eight states rather than the 29 used

originally [11]. Codd argued that using components that were symmetrical led to a simpler

model, and made modi�cations to von Neumann's design based on this and considerations

about how brain cells transmit information. He also implemented and tested several parts of

the replicating structure that he designed. His universal computer-constructor was simpler

but otherwise similar in spirit to that of von Neumann.

Another approach taken to reducing the complexity of von Neumann's design focused on

using more complex components [2]. The resulting 2-D cellular space model was referred to

as Constructing Turing Machines, or CT-machines [66]. Each cell in this space contains a

�nite-state automata that executes short 22-instruction programs. The instructions consist

of actions such as weld and move, and internal control constructs such as if and goto. Self-

replication occurs when individual CT-machines copy their instructions into empty cells.

While these early studies describe structures that self-replicate, these structures gener-

ally consist of tens of thousands of components or active cells, and their self-replication has

thus never actually been simulated computationally because of their tremendous size and

complexity. Only recently has a simpli�ed version of von Neumann's universal computer-

constructor actually been implemented [51]. This implementation involved redesigning many

of the components and extending the original transition function. Self-replication with this

new universal computer-constructor remains to be demonstrated; this will require design of

a tape that encodes a description of the universal computer-constructor (Pesavento, 1997,

personal communication).

3. SELF-REPLICATING LOOPS

The complexity of even the simpli�ed early cellular automata models described above

seems consistent with the remarkable complexity of biological self-replicating systems: they

appear to suggest that self-replication is, from an information processing perspective, an

inherently complex phenomenon. Recent work with self-replicating loops provides evidence

Reggia 13

that this is not necessarily so, and represents a major step forward in e�orts to produce simpler

self-replicants.

In this section, we consider sheathed and unsheathed replicating loops, and discuss some

issues concerning component symmetry and how simple self-replicating structures can be. For

clarity and preciseness, in the remainder of this article, self-replicating structures are labeled

by their type (SL = sheathed loop, UL = unsheathed loop, PS = polyominoe structure)

followed by the number of components, the rotational symmetry of the individual cell states

(S=strong, W=weak; explained below), the number of possible states a cell may have, and

the type of neighborhood (V=von Neumann, M=Moore). For example, the sheathed loop

discussed next is labeled SL86S8V because it spans 86 active cells, has strongly-symmetric

cell states with each cell assuming one of 8 possible states, and its transition function is based

on the 5-neighborhood (von Neumann neighborhood). This labeling convention provides a

compact description of the loops we consider.

3.1 Sheathed Loops

A much simpler self-replicating structure based on 8-state cells, the sheathed loop, was

developed by Langton in the mid-1980's (see Fig. 5b) [33]. The term \sheathed" here indicates

that this structure is surrounded by a covering or sheath (X's in Fig. 5a-c). Before examining

self-replicating loops, �rst consider Fig. 5a where a non-replicating loop plus arm (the latter

coming o� the lower right of the loop) is shown. The loop consists of a core of cells in

state O and a sheath of cells in state X. In this case, a signal + followed by a blank space

(quiescent cell) circulates around the \circular" data path forming the loop. Rules similar to

those governing signal propagation in the data path of Fig. 4 act here to support the counter-

clockwise circulation of signals. Each time the signal reaches the lower-right branch point

where the arm extends from the loop, a copy of it passes out the arm. This non-replicating

loop can be viewed as a storage element (any signal sequence circulating in it represents

stored information), and similar non-replicating structures were used as parts in the universal

computer-constructors designed by von Neumann and Codd.

Reggia 14

a. XXXXXXXX b. XXXXXXXX
 XOOOOOOOOX XO+ OL OLX
 XOXXXXXXOX X XXXXXX X c. XX
 XOX XOX X+X XOX XLOX
 XOX XOX XOX XOX XL+X
 XOX XOX X X XOX X*
 XOX XOX X+X XOX
 XOXXXXXXOXXXXX XOXXXXXXOXXXXX
 XOO +OOOOOOOOOX X +O +O +OOOOOX
 XXXXXXXXXXXXX XXXXXXXXXXXXX

d. -O+-O+-OL-OL
 + - e.
 O O O+-OL-OL
 - O - - f. g.
 + O + O OOO OO
 O O O O O O L+OO
 - O - O L++OO
 + O + O
 O O O O
 - O -+O-+O-+OOOO
 + O
 O-+O-+O-+O-+OOOO

h. OO<OO<LLOOOO
 v O i.
 O O OO<LLOOO
 O O v O j. k.
 v O O O OOO OO
 O O O O O O L>OO
 O O v O L>>OO
 v O O O
 O O O O
 O O >OO>OO>OOOOO
 v O
 OO>OO>OO>OO^OOOO

Figure 5: Self-replicating loops in two dimensional cellular automata. Cells in the quies-
cent state are indicated by blank spaces. (a) Sheathed but non-replicating loop. A core
of O's is surrounded by a sheath of X's. A single signal (+ followed by blank space) re-
peatedly circulates counterclockwise around the loop. (b) A self-replicating sheathed loop
designated SL86S8V; (c) A small self-replicating sheathed loop SL12S6V; (d)-(g) Unsheathed
self-replicating loops designated UL48S8V, UL32S8V, UL10S8V, and UL06S8V, respectively;
(h)-(k) Unsheathed self-replicating loops designated UL48W8V, UL32W8V, UL10W8V, and
UL06W8V, respectively.

Fig. 5b shows the initial state of a self-replicating sheathed loop that, as noted above, we

will designate as SL86S8V [33]. The signal or instruction sequence + + + + + + L L that

directs replication is embedded in the core of O's forming a loop similar to that shown in

Fig. 5a (reading clockwise around the loop starting at the lower right corner). As copies of

this circulating signal sequence periodically reach the end of the arm, they trigger the growth

and turning of that arm to form a duplicate loop in the nearby cellular space, as explained in

more detail below.

In creating a sheathed loop that replicates, the biologically-implausible requirements of

universal computability and of ability to function as a universal constructor that were used in

earlier models were abandoned. To avoid certain trivial cases, replicating loops are required

Reggia 15

to have a readily-identi�able stored instruction sequence or program that is used by the

underlying transition function in two ways: as instructions that are interpreted to direct the

construction of a replica, and as uninterpreted data that is copied onto the replica [33]. Thus,

self-replicating loops are truely \information replicating systems" in the sense that this term

is used by organic chemists [46].

The original sheathed loop was a modi�ed version of a periodic emitter, a storage element

and timing device in Codd's model [11]. Whereas von Neumann had used unsheathed data

paths similar to that in Fig. 4, Codd introduced the analogous concept of a sheathed data

path in his model. This consists of a series of adjacent cells in state O called the core covered

on both sides by a layer of cells in state X called the sheath similar to what is illustrated

in Fig. 5a. The sheathed data path served as a means for signal propagation, where signals

or instruction sequences, represented by cells in other states embedded in the core of a data

path, propagate along it. Codd's periodic emitter was a non-replicating loop similar to that

in Fig. 5a except that it contained a more complex sequence of signals that continuously

circulated around the loop. Each time the signal sequence passed the origin of the arm (lower

right of loop in Fig. 5a) a copy of the signal would propagate out the arm and, among other

things, could cause the arm to lengthen or turn. Langton showed that Codd's sheathed loop,

a part of a much larger self-replicating structure, could be made self-replicating all by itself

by storing in it a set of instructions that direct the replication process [33]. The \program"

of the replicating sheathed loop, pictured in Fig. 5b, consists of individual instructions +,

meaning \extend the current data path one cell", and LL, meaning \extend and turn left".

Thus, the sheathed loop's instruction sequence ++++++LL can be interpreted as \extend

the data path forward seven cells, then turn left". As this instruction sequence passes out

the loop's arm it is \executed" as it reaches the end of the arm or growing structure. Each

time the instructions are executed they generate one side of a new loop. Thus, executing

these instructions four times causes the arm to repeatedly extend and turn until a second

loop is formed, detaches, and also begins to replicate, so that eventually a growing \colony"

of self-replicating loops appears. This replicating sheathed loop consists of 86 active cells as

pictured in Fig. 5b, and its transition function has 207 rules based on the 5-neighborhood.

Reggia 16

Subsequently, two smaller self-replicating sheathed loops containing as few as 12 active cells

in one case were described (Fig. 5c) [6].

3.2 Unsheathed Loops

Following Codd's and Langton's work, we hypothesized that a number of alterations could

be made that would result in even simpler and smaller self-replicating structures [57]. Such

simpli�cation is important for understanding the minimal information processing requirements

of self-replication, for relating these formal models to theories of the origins of life, and for

identifying con�gurations so simple that they might actually be synthesized or fabricated.

One potential simplifying alteration is removal of the sheath surrounding data paths. It was

not obvious in advance that complete removal of the sheath would be possible. The sheath

was introduced by Codd and retained in developing sheathed loops because it was believed to

be essential for indicating growth direction and for discriminating right from left in a strongly

rotation-symmetric space ([11], p.40; [6], p. 296). In fact, we discovered that having a sheath

is not essential for these tasks, and its removal leads to smaller self-replicating structures that

also have simpler transition functions.

To understand how the sheath (surrounding covering of X's) can be discarded, consider

the unsheathed version UL32S8V (shown in Fig. 5e) of the original 86-component sheathed

loop (shown in Fig. 5b). The cell states and transition rules of this unsheathed loop obey the

same symmetry requirements as those of the sheathed loop, and the signal sequence +{+{

+{+{+{+{L{L{ directing self-replication is the exact same program written using di�erent

\instruction codes" (+{ for \extend", L{ for \extend and turn left"). As illustrated in Fig. 6,

just as with sheathed loops the instruction sequence circulates counterclockwise around the

loop, with a copy passing onto the construction arm. As the elements of the instruction se-

quence reach the tip of the construction arm, they cause it to extend and turn left periodically

until a new loop is formed. A \growth cap" of X's at the tip of the construction arm enables

directional growth and right-left discrimination at the growth site (seen in Fig. 6b-d). It is

this growth cap that makes elimination of the sheath possible. As shown in Fig. 6e, after

150 iterations or units of time the original structure (on the left, its construction arm having

Reggia 17

a. b. c. X
 OL-OL-OO OL-OOOOO -O+-O+-O XO+-
 - O - + + L X O
 + O L - O - +
 O O O O - O -
 - + - + + L O
 + - + - O - +
 O O O O X - O -
 -+O-+O-+O-+O -+O-+O-+O-+OX +O-+OOOOO-LO-LO-+O
 X

 O
 +
d. e. -
 O
 OL-OL-OO -O+-O+-O OOOO+-O+ O+-OL-OL
 - O + + O - - -
 + O XOX - - O + O
 O O X O L + O O
 - + L O - - O
 + - - - O + O
 O O O L + O O
 -+O-+O-+O-+OOOOO-L O-+O-+O- -+O-+O-+OOOO

Figure 6: Successive states of unsheathed loop UL32S8V starting at time t=0. The instruction
sequence repeatedly circulates counterclockwise around the loop with a copy periodically
passing onto the construction arm. At t=3 (a) the sequence of instructions has circulated
3 positions counterclockwise with a copy also entering the construction arm. At t=6 (b)
the arrival of the �rst + state at the end of the construction arm produces a growth cap of
X's. This growth cap, which is carried forward as the arm subsequently extends to produce
the replica, is what makes a sheath unnecessary by enabling directional growth and right-
left discrimination even though strong rotational symmetry is assumed (see text). Successive
arrival at the growth tip of +'s extends the emerging structure and arrival of L's causes left
turns, resulting in eventual formation of a new loop. Intermediate states are shown at t=80
(c) and t=115 (d). By t=150 (e) a duplicate of the initial loop has formed and separated
(on the right); the original loop (on the left, construction arm having moved to the top) is
beginning another cycle of self-directed replication.

moved to the top) has created a duplicate of itself (on the right).

Reggia 18

This unsheathed loop UL32S8V not only self-replicates but it also exhibits all of the other

behaviors of the sheathed loop: it and its descendents continue to replicate, and when they run

out of room for new replicas, they retract their construction arm and erase their instruction

code. After several generations a single unsheathed loop has formed an expanding \colony"

where actively replicating structures are found only around the periphery. Unsheathed loop

UL32S8V has the same number of cell states, neighborhood relationship, instruction sequence

length, rotational symmetry requirements, and so on, as the original sheathed loop and it

replicates in the same amount of time. However, it has only 177 rules compared to 207 for the

sheathed loop, and is less than 40% of the size of the original sheathed loop (32 active cells

versus 86 active cells, respectively). The rules forming the transition function for UL32S8V

are given in [58].

Successful removal of the sheath makes it possible to create a whole family of self-replicating

unsheathed loops using 8-state cells and strongly rotation-symmetric cell states. Examples

of these self-replicating structures are shown ordered in terms of progressively decreasing size

in Fig. 5d-g (labeled UL48S8V, UL32S8V, UL10S8V, and UL06S8V, respectively) and are

summarized in the �rst four rows of Table 2. Each of these structures is implemented under

exactly the same assumptions about the number of cell states available (eight), rotational

symmetry of cell states, neighborhood, isotropic and homogeneous cellular space, and so forth,

as sheathed loops within Codd's framework [11]. Given the initial states shown here, it is a

straightforward but tedious and time-consuming task to create the transition rules needed for

replication of each of these structures [58]. The smallest unsheathed loop in this speci�c group

using 8-state cells, UL06S8V in Fig. 5g, is listed in line 4 of Table 2; it is more than an order

of magnitude smaller than the original sheathed loop (SL86S8V; line 9 of Table 2). Consisting

of only six components and using the two instruction sequence +L, it replicates in 14 units

of time (column Replication Time in Table 2). Replication time is de�ned as the number of

iterations it takes for both the replica to appear and for the original structure to revert to

its initial state. This very small structure uses a total of 174 rules (Total Rules in Table 2)

of which only 83 are needed to produce replication (Replication Rules); the remaining rules

are used to detect and handle collisions between di�erent growing loops in a colony, and to

Reggia 19

erase the construction arm and instruction sequence of loops during the formation of a colony.

If one counts only those rules which cause a change in state of the cell to which they are

applied, this structure uses a total of 91 rules (State Change Rules) of which only 49 are used

to produce replication (State Change Replication Rules). This latter measure is taken here

to be the preferred measure of the information processing complexity of a transition function

because it includes only rules needed for replication and only rules that cause a state change.

Table 2: Replication Time and Number of Rules

State

State Change Reduced Reduced

Replication Total Replication Change Replication Total Replication

Label Time Rules Rules Rules Rules Rules Rules

----- ----- ----- ----- ---- ------- ------ ----------

UL48S8V 234 177 167 109 104 75 72

UL32S8V 150 177 166 109 104 74 71

UL10S8V 34 163 117 74 54 50 40

UL06S8V 14 174 83 91 49 66 32

UL48W8V 234 142 98 80 52 68 42

UL32W8V 151 134 98 77 52 66 42

UL10W8V 34 114 82 43 35 31 24

UL06W8V 10 101 58 44 31 33 20

SL86S8V 151 207 181 118 101 90 77

UL32S6M 150 - 305 - 129 - -

UL10W8M 34 - 221 - 56 - -

UX10W8V 44 173 103 70 36 57 25

SL12S6V 26 145 140 61 60 46 45

UL06S6V 18 115 83 64 46 30 30

UL05S6V 17 65 58 35 35 23 23

Prior to [57], the smallest previously described structure that persistently self-replicates

under the same assumptions [6], designated SL12S6V here, uses 6-state cells, has 12 compo-

nents (Fig. 5c), and as indicated in Table 2, requires 60 state change replication rules. We

have been able to create unsheathed loops, designated UL06S6V and UL05S6V, using 6-state

Reggia 20

cells with half as many components and requiring only 46 or 35 state change replication rules,

respectively (last two rows of Table 2). The initial state of UL06S6V is shown in Fig. 5g,

and that of UL05S6V is identical except it has one less component in its arm; the complete

transition functions are given in [58]. To our knowledge, UL05S6V is the smallest and simplest

self-replicating structure created under exactly the same assumptions about cell neighborhood,

symmetry, and so forth, as sheathed loops.

3.3 Varying Rotational Symmetry

Cellular automata models of self-replicating structures have usually assumed that the

underlying two dimensional space is homogeneous (every cell is identical except for its state)

and isotropic (the four directions NESW are indistinguishable). However, there has been

disagreement about the desirable rotational symmetry requirements for individual cell states

as represented in the transition function. The earliest cellular automata models, such as

von Neumann's, had transition functions satisfying weak rotational symmetry: some cell

states were directionally oriented [5, 66, 70]. These oriented cell states were such that they

permuted among one another consistently under successive 90� rotations of the underlying two-

dimensional coordinate system.1 For example, the cell state designated " in von-Neumann's

early work is oriented and thus permutes to di�erent cell states!, #, and under successive

90� rotations; it represents one oriented component that can exist in four di�erent states or

orientations. However, Codd's simpli�ed version of von Neumann's self-replicating universal

constructor-computer [11] and the simpler replicating sheathed loops [33] are based upon more

stringent criteria called strong rotational symmetry. With strong rotational symmetry all cell

states are viewed as being unoriented or rotationally symmetric. The transition functions

for the unsheathed loops shown in Fig. 5d-g also all use this strong rotational symmetry

requirement (indicated by S in their labels). Their eight cell states are designated

:O#L� �X+

1A formal de�nition of rotational symmetry in cellular automata can be found in [11]. Care should be

taken not to confuse the rotational symmetry of a cell state as interpreted by the transition function with the

rotational symmetry of the printed character used to represent that state. Here the printed character L is not

rotationally symmetric, for example, but the cell state it represent is treated as such.

Reggia 21

where the period indicates the quiescent state. All of these states are treated as being unori-

ented or rotationally symmetric by the transition function.

The fact that the simplest self-replicating structures developed in the past [11, 33] were

all based on strong rotational symmetry raises the question of whether the use of unoriented

cell states intrinsically leads to simpler algorithms for self-replication. Such a result would be

surprising as the components of self-replicating molecules generally have distinct orientations.

To examine this issue we developed a second family of self-replicating unsheathed loops, with

examples shown in Fig. 5h-k (labeled UL48W8V, UL32W8V, UL10W8V, and UL06W8V, re-

spectively), whose initial state and instruction sequence are similar to those already described

in Fig. 5d-g. However, for the structures in Fig. 5h-k weak symmetry is assumed, and the last

four of the eight possible cell states

:O#L^ > _ <

are treated as oriented. In other words, although there are still 8 states, the cell state ^ is

considered to represent a single component that has an orientation and thus can exist pointing

up or in the three other directions >, _ and <. The remaining four cell states (. 0 # L) are

unoriented. For example, in Fig. 5i the states >, _, and < appear on the lower, left and upper

loop segments, respectively, to represent the instruction sequence <<<<<< LL. While cells

in such a model have 8 possible states and are thus comparable in this sense with the above

work on sheathed and unsheathed loops (Fig. 5a-g), they also can be viewed as simpler in that

they have only 5 distinct possible components. As can be seen in Table 2 (lines 5-8), where the

presence of oriented cell states or weak symmetry is indicated by W in the structure labels,

relaxing the strong rotational symmetry requirement like this consistently leads to transition

functions requiring fewer rules than the corresponding strong symmetry version; this is true

by any of the measures in Table 2. This decrease in complexity occurred in part because the

directionality of the oriented cell states intrinsically permits directional growth and right-left

discrimination, making even a growth cap unnecessary.

This simplicity and speed of replication made possible by weak rotational symmetry are

Reggia 22

 <
OO O< vL LO O OO^O< O< vL
L>OO OL>O OOL> >OOL^ L>OOL OLvOO

 O O O O
 #< O O O ^
vL LO LO OO OO O< O^ vL vL LO
OO >O >O L^ L^ OL OL OO OO vO
 > ># O O O
 O O O

Figure 7: Structure UL06W8V uses only �ve unique components. Shown here are eleven
immediately successive structures ordered left to right, top to bottom. Starting at t = 0, the
initial state shown at the upper left passes through a sequence of steps until at t = 10 (last
structure shown) an identical but rotated replica has been created.

illustrated in Fig. 7 where the complete �rst replication cycle of UL06W8V is shown. Only

31 rules are needed to direct replication of this small structure which makes use of only 5

possible components. After several generations the older, inactive structures are surrounded

by persistently active, replicating progeny, as shown in Fig. 8, and this colony formation

continues inde�nitely. The small but complete set of transition function rules needed for one

replication of UL06W8V can be found in [57].

The results summarized in Table 2 lead to additional observations about unsheathed loops

[57]. For systems with either weak or strong symmetry requirements, the number of rules

in the transition function required for replication increases as structure size increases but

then levels o� to a value characteristic of which of the symmetry requirements are in e�ect.

Replication time is essentially independent of the type of rotational symmetry used (strong

versus weak) but is proportional to the size of the self-replicating loop. This proportionality is

e�ectively linear. To assess the e�ects of type of neighborhood, we implemented versions of the

two arbitrarily-selected unsheathed loops shown in Fig. 5e and 5j using the 9-neighborhood

(Moore neighborhood). The resultant systems, designated UL32S6M and UL10W8M in Table

2, had the same replication time as identically-structured loops UL32S8V and UL10W8V but

required dramatically more rules in their transition functions for replication.

3.4 Reduced Rule Sets

As noted earlier, the complete transition function for self-replicating loops includes a num-

ber of rules that are extraneous to the actual self-replication process (such as instruction

Reggia 23

 ^
 L
 LO OO
 >O OO

 OO OO OO
 ^ OO OO OO ^
 L L
 LO OO OO OO LO OO
 >O OO OO OO >O OO

 OO OO OO OO OO OO OO
 ^ OO OO OO OO OO OO OO ^
 L L
LO vL OO OO OO OO OO OO LO OO
>O OO OO OO OO OO OO OO >O L^
 O v
 LO OO OO OO OO OO OO OO O
 > OO OO OO OO OO OO OO

 OO vL OO OO OO OO
 OO OO OO OO OO L^
 O v
 LO OO OO OO O
 > OO OO OO

 OO OO
 OO L^
 v
 O

Figure 8: After several generations, a colony has formed from the original single copy of
structure UL06W8V pictured in the preceding �gure. Structures around the periphery are still
actively replicating; those in the center have retracted their arms and erased the instruction
sequence that directs their self-replication. Growth of this colony continues inde�nitely (this
was veri�ed by computer simulations out to at least 11 generations for all of the unsheathed
loops described in this article).

sequence erasure) and many rules which simply specify that a cell state should not change.

The state change rules, the subset of rules that specify that a cell's state should change, alone

are completely adequate to encode the replication process. As noted above, we believe that

the number of state change rules used for one replication is thus the most meaningful mea-

sure of complexity of transition functions supporting self-replication. As shown in the sixth

column of Table 2, this measure indicates that, from an information processing perspective,

algorithms for self-directed replication can be relatively simple compared to what has been

recognized in the past, especially when oriented components are present.

The simplicity of unsheathed loop transition functions when oriented components are used

is even more striking if one permits the use of unrestricted placeholder positions in encoding

their rules. We implemented a search program that takes as input a set of rules representing

a transition function, and produces as output a smaller set of reduced rules containing \don't

care" or \wildcard" positions [58]. The size of the reduced rule sets that result from applying

Reggia 24

this program to the complete original set of rules and to only the replication rules of each of

the cellular automata models described above is shown in the rightmost two columns of Table

2. With UL06W8V this procedure reduces the complete rule set from 101 to 33 rules, and the

set of rules needed for one replication from 58 to 20. Thus, by capturing regularities in rules

through wildcard or \don't care" positions, it is possible to encode the replication process

for unsheathed loop UL06W8V in only 20 rules. Computer simulations veri�ed that these 20

rules can guide the replication of UL06W8V in exactly the same way as do the original rules.

As shown in Table 2, similar reductions occur with other self-replicating structures. Such

simple systems indicate that self-replication can in principle be far simpler than previously

recognized.

4. EMERGENCE OF SELF-REPLICATION

The self-replicating structures described so far have all been initialized with an original

copy of the structure that will replicate (the \seed") and have been based on manually created

transition rules designed for that single, speci�c structure. Recently, we have taken a new

direction in creating self-replicating structures, focusing on self-replication as an emergent

property. In this section we give two examples of our work in this area. The �rst example

shows an approach where no initial replicants are present. Instead, self-replicating structures

emerge from initial states consisting of random isolated components. The second example

shows how, given a small but arbitrary initial structure, a genetic algorithm can be used to

automatically discover a set of transition rules that will cause that structure to replicate.

4.1. Emergence of Replicators

Recent work by our group has shown that it is possible to create cellular automata models

in which a simple self-replicating loop emerges from an initial state having a random density

and distribution of components (the \primordial soup") [8]. These emergent self-replicating

loops employ a general purpose rule set that supports the replication of loops of di�erent sizes

and their growth from smaller to larger ones. This rule set also allows random changes of

Reggia 25

loop sizes and interactions of self-replicating loops within a cellular automata space containing

free-oating components.

An example running in a randomly initialized, small (40 � 40) cellular automata space

using an initial component density of 25% is shown in Figure 9. Periodic boundary conditions

are used (opposite edges are taken as connected), so the space is e�ectively a torus. Initially, at

time t = 0 (upper left of Figure 9), the space is 25% �lled by randomly placed, non-replicating

components designated as O, >, or L, while cells in the quiescent state are indicated by blank

spaces. All components have strong rotational symmetry except > which is viewed as being

oriented, as described above.

This simulation is characterized by the initial emergence of very small, self-replicating

loops and their progressive evolution to increasingly large and varied replicants. During this

process a replicating loop may collide with other loops or with free-oating components, and

either recover or self-destruct. Thus, by time 500 (upper right of Figure 9), very small self-

replicating loops of size 2 � 2 and 3 � 3 are present. By time 1500 a 4 x 4 loop is about to

generate a 5 x 5 loop in the middle left region. At time 3000 the biggest loop is 8 x 8 and it

is about to generate a 9 x 9 loop. By time 5000 many very large loops have annihilated each

other and only one intact 10 x 10 loop is left. By time 7500 all large loops have \died", but

there are new 3 x 3 loops in the space. These loops will replicate and it is not clear when (if

ever) self-replication will cease. In this example, the size of the replicating structures became

too big to �t comfortably in such a small world (40� 40 only), and the large loops tended to

annihilate each other.

As can be seen from this example, the transition function supporting these self-replicating

loops di�ers from those used in previous cellular automata models of self-replication in several

ways. A self-replicating structure emerges from an initial random con�guration of compo-

nents rather than being given, replication occurs in a milieu of free-oating components, and

replicants grow and change their size over time, undergoing annihilation when replication is

no longer possible. All of this occurs in the presence of a single transition function based on

the 9-neighborhood (Fig. 1). As is increasingly being done in cellular automata modeling, the

Reggia 26

0

>

O

>

>

>

>

>

>

L

>

>

>
>

O

L
>

>

>

>

O

>

>>
>
>

>

>

>

O

>
>

O

>

O

>

O

>
>

>

>
L
>

>
>

L

>

>

L

L
L

>

O

>

O
>
O

>

>

>>

O

>
>

>
O>

>

L

O

O
>

L

L

>
L

>

L

>

>

>

O

>

>

>

>

L

>

>

O

O

O

L

>

>

L>

L

O
>

>

>

>>

>

>

>

>
>

>

>

O

>

>

O
>

O

L
L

>

>

>

>>

L

>

>

>

O
L
L>

O

O

>

>

>

O
L

>

O

>

>
>

>
>

>

L

>

>

O

>

>
>

L

>

O>

>

L

>

>
>

L

L

L

>

>

>

>

>

O

>

>
O

>

O

>
>
L

>
>

L

O

>

>

O

>

>
L
L

L

>

O

>
>

>
>

>

O

>

>>
>

O>

>

O

L

L

L
L

>
>

O

O

>

>

O

>

>

L

>

O

>

L

>>

>

>

>

L

L>

L

>

O

>

>

O>

L

O

>

L
O

>

>

O
L
L

L

O

O

>

>

O

>

>

>
>

>

>

L

>

>

O

>

>

>>

>

>

L

L

>

O

>

>

L

>
>

>

>

O

>

O

>
L

>

>

>
O

>

>

>

>

>

>

>

>

L

>

>>

L

>
>

L

O>
>

>>

>

L

>

>

>

>

>
>>

O

L

L

>

L
>

>

>

>

L>
>

O

>

O

L

L

>

>

>

>

>
>

O

O>

>

>
L
O

>

L

O

>
>

L>

O

>

>

>

>

L

>

>>

>

>
O>

>

>

L

>

L

>

>

L>

>

>
O

>
>

>

>

>

>

O

O>

O

L

>
>

>

O
>

500

>

O

D

>
L

O
L

O
L

L>

>

>

O

O

>

O
>

O

>

D
O
O

>

L

O

>

>
>

O
O

>

>

>

L

>

C

>

>

>

O
L

F
E

>

O

>

L

O
O
L

O

>
>

>

O
>

>

L

L
O

O>

F

>

L
>

>

L

F
E

>

O
L

F
E

F
E

L
F

O
L

O
L

>

L

O

O
>

>

L

>

L

O
O

O
F

O
>

>

O

O
L

F
E

B

>
>

L

O
>

>

L

C

O

>

>

O

O
O
O>

>

>

L
O

>
>

L

>

>

L
>
L

>

O>

O
O
O

>

>

O

>

O

O

L

L

L>

>

L

O
O
O

O
>

L>
>

F
E

E

O

C

>

O>

O
O
O

>

L

F
O
O

O

>
>

O

L

>

L>

O

>

>

O
L

F
E

>

>
>

C

>

L

>

O
>

>

L

L
O

O

>>

O

>
>

O

O

O

>

F

O
O

>

F

L>
>

>

>

L>

>

O

>

O

>

>

C
O
O

L
O

F
L

>

E

O

O

O
L

C

>

L
O
O

L
O

>
>

O
O
O
O
L
B

O
O
O
L>

>

O

>

>

L

O

L

O

>

L

>

O

>

>

C

L

L
B

>

O

O
L

O
L>

O
O

>

>

O
O

>

L
O

>

>

O
>

C

L

>
>

>

>

>

L>

>

>

L

>
L

L
B

>

O

F
O

F
O

O
O

O
O

F
O

>

>

>
>

O
O

>

L
O

>

L

L
O

F
L

F
L

L
O

L

>

L

>

L
B

>

O

L>

L>

>

O

F
E

L>

O
O

>

L
O

O
O

>

L
O
O

L
O

>

L

C

>

L
O
O

1500

>

L>

L

O

O
O
O
L

O

O
O

>>
>

E
O
O

O

>

O

L

L

O

>

O
O>

>

>

O
O
O

O
O

>

>

O
L
L

O

O

>

>

O

L

>

>
>

>

L
O

>

O

O

>

>

O
>
>

>
>

>

O

>

>

L

>
>

O
O
O
O
L
B

O

>
>

>

O

O

L
O
O

>

>

C

>

>
>

L
L

O

>

>

>

>

>>

>>

>

>

>

O

O

>

>

>

>

>

>

>

>

O
>

C

O

>

L

>

>
O
>

>

>

>

E>
>
>

>

>

O

F

>

L

O

>

O

O

O
L>

>>

>

L

O
O
O
O

O

>

>
>

L>
>

O
O
O

O
L

O

>

>
>

L

O
O
O
O

B

>>

>>

>
O

O

O

O

O
O
O
O
O
L

L
O

>

>

>

O

O

>

O

O

>

O
O

O
L
O

>
>

>
>

L

>

L
O

L

>

O
>
>

>

>

>

>
>

>

>

>

>
>

O

>

L>
>

L>

O

>

>

O>

>

O

O

>

O

O

>

O

>

O

>
>

>

O
O
O

O

O
O

>

>

O

>

>

L

O

O
O

O

>
O

>

>

B

>

>

>
>
>

L
>

>

O
O
O

O
O

B

>

O

>

O

L

>

L
O
O
O
O

>
>

>

>

>
>

>

>

O

L

3000
>

>
>

O
O
O
O
O>

O

O

O

>

>

>

>

>

O
O
O

>

O
O
O
O
O
O
O
O
O
O
O
O

L

>

>

>
>

>

O

>
O

O

>

O

O

>

>

>
O

>
O

O

>
>

>

>

>

O
>

>

>
L

>
O

>

>

>
O

>
>

O>

>
O

>

L

O

>

L>

L
O
O
O
O
O

L

>

>>

L
L

L

>

>

L
>
O

>

>
>

>

>
>

L

O>

>

O

>

L

L

O

>

O

>

L >

>

>

>

>

O

>

>

>>

O
O
O
O
O

O

O

>

O

>

O

O>

L
>

>
>

L
O
F

>

L

>>

O

O
O
O
O
O
O
O

>

>
>
>
>
>
>
>

O
O
O
O
O
O
O
O
O
O

>

O

L

O

>

O

O

O

O
O
O
O
O
O
O
O
O

>

O

O

O

O

O

>

O

O

O

O

O

>

O

O

O

O

O

>
>

>
>

>

L
O
O
O
O

O

O

>

O

>

>

O
O
O

>
>

O
O
O
O
O
O
O
O

>

O

L

>
>

>
>

>
>

L
O
F

O
L>

>
>

O

O

>

O

O

>
L

O

O

>

>

O
O
O
O
O

5000

>
>

>

>

>
>

>
>

>
>
>

>
>
>

>
>

>
>

>
>
>
>
>
>

>
>
>
>
>
>

>
>

>
>

>
>

>
>

>
>
>
>

L

>
>

>
>

>O

>

>
>

>
L

>>

>
>
L

C

>

>
>>

O

L

O

>

>

>

O
O
O

>

>

O

O

L>

O>

O
O

>
>

L

O
>

>

O
O

O
O
O
O
O
O
O
O
O

>

>
>

O

O

L

O

O

O

O
O
O

O
O

O

O

>

>

O

>

O

O

O

>

>

C

O

O
O

O

O

L

>

O

L

>

O

O

>

>

O

O
O

>

>

>

O

>

>
>

>
>

L
O
O
O
O

>

O O

>

O

>

L

>

> >

>

>

>

>>

B

L

7500

O

L

O

>

L
L
L

>

O

>

L

L

L

O

L

L

L>

O
O
O

L

L

O
O
O
L>

B

O

O

O

L
L
L

>

>

O

O

L

>
O

O
O
O
O

>
>

L

L

O

O

>

>

O
L

L
L
L

O
O
O

L

L

>

L

L

L

L

>
L
>

L
L
L

>
L
L

>O

>

>

>

O
L

>

L>

>

>

O
O

L
O

O

>

L>

>

>>

L
O

>

O

>>

L L
L
O

>

Figure 9: A running example of emergent self-replication. Times are shown.

Reggia 27

transition function is based on a functional division of data �elds [67]. As seen in Figure 10,

the bit depth of a cellular automata cell (in our case 8 bits) is functionally divided into four

di�erent �elds (4, 2, 1 and 1 bits each) such that each �eld encodes di�erent meanings and

functions to the rule writer. The utilization of �eld divisions greatly simpli�es the cellular

automata rule programming e�ort, and makes the resulting rules much more readable. In the

illustrations in this paper, only the component �eld is shown.

bits

component

special

growth

bound

4

2

1

1

states

16

4

2

2

fields

A Cell

Cellular Automata Space
Within a cell

component

special

growth

bound

Figure 10: The 8 bit state variable in each cell is conceptually sliced into four di�erent bit
groups called �elds. Each �eld represents a speci�c piece of information.

As noted earlier, each non-quiescent or active cell is taken to represent a potential \com-

ponent" of a cellular automata structure. A cellular automata structure can be just a single

cell, i.e., one with no conceptual connection with any adjacent non-quiescent cells, and in that

case we call it an unbound component. On the other hand, a cellular automata structure can

consist of several contiguous non-quiescent cells that are functionally interrelated, behaving

as a whole, such as a self-replicating loop. In the latter case we call the structure a multi-

component structure or simply a structure, and we call its components bound components

(their bound bit is set; see Figure 10).

The four data �elds (Figure 10) and their states in the transition function are as follows.

The four-bit component �eld accounts for most normal operations of cellular automata struc-

Reggia 28

tures. It encodes twelve state values (out of 16 possible) corresponding to components just

as in the previous examples we have seen. These include O (building block of data paths),

> (signals growth of data path; this actually represents four states), B (birth of new compo-

nent), L (left turn signal), C (corner), and D, E, F (branching/detachment). There is also

the quiescent state which is as usual shown as white space in all �gures. The other �elds are

new. A two-bit special �eld denotes special situations that arise occasionally in the cellular

automata space, such as branching, blocking passage of signals on a data path, or dissolution

of a loop. A one-bit growth �eld, if set, marks a stimulus that may cause the existing signal

sequence to increase in length. A one-bit bound �eld, if set, marks a cell as part of a multi-cell

structure; otherwise the cell is an unbound component.

The complete set of rules forming the transition function support replication of loops in a

fashion similar to those used in the past [33, 57]. In addition, a loop's replicant can be of a

di�erent (larger) size, a process referred to as extended replication. A loop's signal sequence

can become modi�ed to generate loops larger than itself if by chance an active growth �eld

appears in one of its cells during the arm branching process. Cellular automata rules that

support extended replication are new. In the past, a di�erent rule set has been required for

each size replicating loop; here the emergence of di�erent size loops and their simultaneous

replication is supported by a single rule set. This permits an initially small emergent self-

replicating structure to grow in size.

Another new aspect of this model is collision detection and resolution. In all past work

on self-replicating loops, replication occurs in an otherwise empty space and the transition

function does not need to handle unanticipated events. In other words, while writing the

rules one has complete control over the behaviors occurring in the cellular automata space,

including the initial state. In contrast, here the very �rst assumption is that there is no a

priori knowledge about the interactions between self-replicating loops, or what the cellular

automata space is like at time zero. Although the rules in the previous models of replication

that we have considered so far can reliably direct a structure to do replication in isolation, they

cannot guarantee that a structure will not run into another structure, that two structures will

not try to replicate into the same region of the cellular automata space, or that a replicating

Reggia 29

loop will not run into free-oating unbound components. These factors are all \randomly"

determined. The transition function used here thus assumes that not all designated regular

procedures will always be followed without interruption or disturbance from other structures.

It includes rules that will detect failed procedures and clean up the cellular automata space

after such failures. When a loop has any of its cells enter a failure mode, this mode quickly

spreads throughout the whole structure, causing the loop to dissolve completely. The loop's

components become unbound and revert to being controlled by the rules governing unbound

components.

There is no a priori information about when and where growth bits should be placed in this

model of emergent replication, and none are set initially. In the example shown here, whenever

a signal L dissolves or \dies", it leaves behind a growth bit at its location. A loop usually has

only one L signal, so one dissolving loop usually produces one new growth bit in the cellular

automata space. This way, the generation of the growth bit becomes part of the behavior of

the cellular automata space, since when and where a loop will dissolve is determined purely

by the interactions within the cellular automata space. The growth bit is utilized during the

arm branching phase of a self-replicating loop to extend the signal sequence in a loop. As

shown in Figure 11, this is a two step strategy. First, if a signal > sees a growth bit in its

place and it is the last > before the signal L, it does not copy the signal L behind itself as it

normally does. Instead, it stays at its current value > for one more time step, thus e�ectively

increasing the size of the signal sequence by one. The signal L disappears temporarily since

it is not copied, but reappears when the signal > sees a trailing signal F and the growth bit

in its position. The growth bit is unset after the signal L is regained, so the same growth

bit does not cause another growth stimulus. Thus, when a loop dies, it leaves a set growth

bit behind, and when a loop expands, it consumes a growth bit. This provides an interesting

ecological balancing factor in the cellular automata universe.

The emergence of self-replication is achieved by allowing the unbound components to

translate and change or appear at \random", i.e., by \stirring the primordial soup", until the

con�guration corresponding to a small (2 x 2) loop occurs by chance. The rules that do this

can be summarized by:

Reggia 30

0

O
O
*L

O

>

O
+O
>

1

O
O
*E

O

L

O
+>
>

2

O
O
F

O

E

>

+>

L

3

O
O
O

>

F

>

+>

E

4

>

O
O

>

O

>

L
F O

5

>

>

O

>

O

L
O
O >

6

>

>
>

L

O

O
O
O O B

7

L>
>

O

>

O
O
O O O

8

O
L>

O

>

O
O
> O O

47

L>
>

O

>

O
O
O D

O
L>

-O

O

O

O

L

O

>
>

>

58

O
O
O

O

L

O
O

>
>

>

O
O
O
*E

O

L

O

>

O
O

>

>

69

>

>

O

>

O

C
O

>
>

>

L
O
O

O
O
O
L

O

>

O

>

O
O
O
> O O

Figure 11: The growth of a larger loop (extended replication). At time 0 the branch special
ag in the lower left cell and the growth bit in the middle right cell are both set. At time
2 the normal arm branching EF signal sequence is generated. At time 3 the signal sequence
becomes >>> and subsequently the growth bit is unset. By time 8 the parent loop is about
to start the replication cycle with one more > signal than it normally has. By time 47 a whole
new loop bigger than the original one is generated. By time 58 the two loops have separated
and the original one is just about to start another replication cycle. At time 69 the new, larger
loop is �nished and is starting its own replication cycle.

Reggia 31

� If a quiescent cell has exactly three active neighbors, it becomes active at the next time

step. Its active value is determined based on the state of its neighbors.

� If an active cell has exactly two or three active neighbors, it will stay active; otherwise,

an active cell will return to the quiescent state at the next time step.

These rules, are generalizations (from binary to non-binary states) of those used in the Game

Of Life described earlier. These rules generally produce a continually varying distribution of

unbound components.

All that is then required for the emergence of self-replication is a small set of rules that

watch for the formation of the smallest loop con�guration (a 2 x 2 loop). Once such a con�g-

uration occurs, all four members of it simultaneously set their own bound bit and produce an

active smallest loop at the next time step. This is how the �rst self-replicant is formed. This

is possible using only local operations because the minimum loop con�guration is so small

that it �ts within a single 9-neighborhood, allowing each component to simultaneously \see"

the same con�guration. An example of how the unbound component rule set works and how

it leads to the �rst self-replicating structure is demonstrated in Figure 12.

The behavior of this model of emerging self-replication has been examined experimentally

[8]. Eighty one simulations were conducted while varying the cellular automata space size

(50 x 50, 100 x 100, 150 x 150 and 200 x 200), initial unbound component density (10%,

20%, 30%, 40% and 50%) and random initial con�guration used in each simulation. In 80 of

these 81 simulations, self-replicating loops emerged, and usually these persisted inde�nitely2.

The emergence, proliferation and persistence of self-replicating loops were found to be robust

phenomena relatively insensitive to the initial conditions of a simulation. There is a very stable

and characteristic dynamics under the emergent self-replicating rule set. In fact, the number

of active cells, and the fraction of bound/unbound components, always tended to approximate

a long-term stable value. This value depends on an interaction between the rules governing

2The one simulation where self-replication did not occur was with the small, 50 x 50 space, where signif-

icant variations in unbound components ceased before the con�guration of the smallest self-replicating loop

appeared.

Reggia 32

0

> L

O
>

>

L
>

L

>

>

L

>

>

>

>

>

L

>
L

1

L

>

L

L

>
L

>

L

>

>

>

L

>

>
L

2

L >
>

>

L

O

>

L

>

>
L

>
>

3

>> L

>

>
O

>
>

>

>
>

L
L O

>

8

L>>

> >

L

> L
O
>
O
O

>

L

>

9

>

L

>

>

L
>

>>
L
L>>

O
!O
!O>

>

!>

!L

10

>

L >

>

>

L

>

O

>

!
!
!
!>

>

!
!>

!O
!

L
!
!L
!O
!

!
!
!
!

11

>

L

>

L

>

O

>

>

L >

> >

!
!
!
!

>

!
!L
!

>

!

L
!
!E
!O
!

!
!
!

12
>

>

L>

>

O

>>

L

>

>

!
!
!
!

>

!
!E
!L
!

L
!
!F
!>
!

>

!
!
!
!

13

> >

>

>

O

>

>

>

L
L

>

!
!O
!
!

>

!
!F
!O
!

!
!>

!L
!

!
!
!
!

28

O

O

>> !
!
!
!
L>
!
!O
!O
!
L
O

!
!>

!L
!

!
!D
!
!

!
!O
!L
!

!
!O
!>
!

!
!
!
!

51

!
!
!O
!
!

>

!
!
!F
!O
!

>

!
!>

!L
!

>

!
!
!
!

!
!E
!L
!

!
!O
!>
!

!
!
!
!
!
!
!

!
!L
!

>

!
!E
!L
!

!
!O
!O
!
!O
!>
!

!
!
!
!
!
!
!

Figure 12: The emergence of a self-replicating structure. Components of structures are marked
by a non-zero bound bit, or an '!' mark. At time 0 a randomly generated initial space is
given. This space has only unbound components until time 8, when the pattern of the smallest
replicating loop (circled) appears. At time 9 this con�guration turns into a functioning self-
replicating loop when its four cells set their bound bit simultaneously (set bound bits are
indicated by faint exclamation points). Its peripheral cells clear and the arm branching process
begins (times 10 to 13). By time 28 the �rst sibling is about to separate. By time 51 four
loops are obtained and all are actively engaging in the replication processes.

Reggia 33

replication and these governing movement of unbound components, and not on either of these

subsets of rules alone. The number and size of replicating loops generally stabilizes too. After

a few thousand time steps, there is typically no signi�cant change in the average number and

size of loops in the cellular automata space. These values tend to oscillate in a non-periodic,

varying-amplitude fashion about a mean, suggesting an underlying chaotic dynamics. Details

of these experiments can be found in [8]

These results show for the �rst time that non-trivial self-replicating structures can emerge

in a cellular automata space initialized with a randomly distributed set of components. Some

other computational studies of emergent self-replication have been done (see Chap. 28 of [31],

and [48]), but these have not used cellular automata methods. For example, the investigation

in [48] used a very di�erent (non-cellular automata) model having an initial state composed

of randomly generated sequences of computer operations. It evolved self-replication via a

mutation operation. The primary conclusion, backed up by simulation results, was that the

probability of a randomly generated sequence of operations becoming self-replicating increased

with the number of computer operations it contained. Further, self-replicating sequences

decreased in size once they appeared. The cellular automata model described here shows

that such behaviors are not necessarily an inherent aspect of emergent self-replication, in that

very small self-replicants can arise �rst and then increase in size, as is often argued to have

occurred with the origins of biological replication. We attribute the di�erences in results to

the fact that our cellular automata model starts with random individual components rather

than random initial sequences of computer operations, that its rules were hand crafted, and

that cellular automata are based solely on highly local operations (e.g., there is no global copy

operation that copies a loop to a nearby region of the space).

4.2 Automatic Programming of Replicator Rules

In the past, the rules or transition function governing self-replicating structures have al-

ways been programmed manually. This is a very di�cult and time-consuming task, and it is

also inuenced by subjective biases of the implementer. As an alternative, we have recently

shown that it is possible to automatically generate a set of rules for self-replication, i.e., to

Reggia 34

automatically program a cellular automata space to generate a sequence of steps that the

components of a structure can follow to produce replicants of the original structure [36, 37].

While work in this area is just beginning and the structures used so far are quite small, initial

results have already created a new class of non-trivially replicating structures unlike those

developed previously.

initialize population of chromosomes
evaluate �tness of each chromosome
while (termination criterion not reached) do
select parent chromosomes for mating
apply crossover and mutation to produce children
evaluate �tness of each chromosome

end

Figure 13: Brief summary of traditional genetic algorithm.

The approach we describe here is based on using genetic algorithms, a powerful stochas-

tic search technique, to discover rules producing self-replication. A genetic algorithm pro-

duces a solution to a problem by manipulation of a population of candidate solutions

[19, 20, 24, 31, 42]. Each individual in the population, called a chromosome, encodes a

potential solution to the problem under consideration. Typically the population is initialized

with randomly generated chromosomes (see Figure 13). Each existing chromosome (prob-

lem solution) has its e�ectiveness as a solution to the problem measured by a �tness function.

Then, simulating natural selection as it is understood to occur in biological evolution, the most

highly �t chromosomes are selected to serve as parents for o�spring chromosomes that form

the next generation. This process occurs repeatedly with progressively better solutions being

represented in the population. The genetic algorithm typically terminates after identifying a

su�ciently good problem solution or after a prespeci�ed number of generations.

A key aspect of this genetic search process is the use of genetic operators, such as crossover

and mutation, in producing o�spring chromosomes. Crossover takes two parent chromo-

somes and swaps randomly-selected parts of their contents to form two o�spring chromosomes

(Figure 14a). Mutation takes one parent/o�spring chromosome and complements randomly-

Reggia 35

10100100100110111010

10111000110101110001

crossover
point

1010010010

1011100011 0110111010

0101110001

10100100100101110001

10111000110110111010

two
parents

two
children

crossover

10100100100110111010

mutation
point

10100100100010111010

child

mutated
child

Figure 14: The two most commonly used genetic operators are crossover, illustrated on the
left, and mutation, illustrated on the right. Each chromosome here is a binary string. These
operations introduce variability into the chromosome manipulated by the genetic algorithm.

selected bits (Figure 14b). These alterations to the population of chromosomes, coupled with

�tness-guided selection of parents, allows the genetic algorithm to heuristically and stochas-

tically search the space of problem solutions for good solutions.

Relatively few previous studies have reported using a genetic algorithm to automatically

produce rule tables for cellular automata (see, for example, [42, 59]. For self-replication, there

are some clear barriers to using genetic algorithms in this way. One barrier is the enormous

computational load involved. At each iteration of the genetic algorithm, a whole population

of cellular automata models must be run, each individually involving a substantial amount

of computation. This process must be done repeatedly, generation after generation, and the

�tness of each individual rule table evaluated each generation. Further, the space of possible

rules that must be searched is enormous. A second barrier is that it is not obvious what

form a good �tness function should have. The straightforward approach of making �tness

proportional to the number of replicants produced is generally useless. This is because there

are typically no replicants produced by any randomly generated initial rule set in a population,

so counting the number of replicants produced gives no guidance early on, reducing the genetic

algorithm to blind search.

Fortunately, it has proven possible to solve these problems, at least to a limited extent

Reggia 36

Linear Normalization of Fitnesses
Roulette Wheel Sampling
Generational Replacement with Elitism

Repeated Single-point Crossover
within Gene Segments

Selection

Crossover

Mutation

Create New Population
(generation g+1)

Point mutation of actions/states

Evaluate Population

Run 100 Simulations
Compute Fitnesses, F1, F2, . . . , F100
Extract Statistics
Determine Best-of-Generation F*

Convergence Criteria Satisfied

Population of Randomized
Rule Tables

1 2 100

yes
no

Exit with
Best Rule

Table

Figure 15: Schematic overview of the use of a genetic algorithm to search for a rule set
that produces self-replication when given a simple but arbitrary initial structure in a cellular
automata space. Given an arbitrary structure, an initial population of possible transition
functions is randomly generated (top). In general, none of these initial rule sets will cause
the given structure to replicate. Each rule table or transition function is then tested and its
potential (\�tness") to be changed into rules that do produce self-replication is measured. If a
rule set that does produce self-replication has been found, the program quits and returns that
rule table. If not, a new population of rule tables is created by selecting the most promising
or most �t existing rule tables. These promising rule tables are modi�ed via crossover and
mutation, and the entire process repeats.

Reggia 37

•Y•••

•YYYY

•
•

•

•X•••

YX•••

YYYYY

•
•

•

Y••••

XX•••

XYYYY

•
•

•

X••••

rules for
state •

rules for
state X

rules for
state Y

CNESW

•
•

•

next state

next state
next state

•
•

•
next state

next state
next state

•
•

•

next state

next state
next state

Figure 16: Encoding of a rule table used to represent a chromosome in the genetic algorithm
of Fig. 15.

[36, 37]. Figure 15 summarizes a genetic algorithm that has been applied successfully to this

task. The genetic algorithm begins by generating a population of randomly initialized rule

tables, and uses these to execute cellular automata simulations, each starting with the same

initial structure. Following these simulations, each rule table in the population receives a

�tness measure F reecting the degree to which its rules appear promising as a means of

supporting self-replication. A new population is then created, randomly choosing rule tables

to carry forward to the new population in proportion to their �tness. As the new population

is formed, rule tables from the old population are \mixed together" and combined through

the genetic operation of crossover, and randomly altered by mutation, as explained above.

(An exception is that a copy of the very best rule table in a population is always carried

forward unchanged.) At this point, the whole process iterates, this time starting with the new

population of rule tables and discarding the old. Typical parameter values in a simulation like

this include a population of 100 rule sets examined over 2000 generations, with probabilities

of crossover and mutation of 0.8 and 0.1, respectively. At the end of this process, the most

highly �t rule table is returned as a potential transition function supporting self-replication

with the given initial structure.

Figure 16 shows the encoding of a rule table used by the genetic algorithm in this process,

i.e., a chromosome representing one individual in the population. The rule table is indexed

Reggia 38

on the left by the 5-neighborhood pattern CNESW (center, north, east, south, west), and

rules for each speci�c component are grouped together. Each rule has a \next state" entry

indicating what the center cell component C should become at the next time step for the given

neighborhood pattern. By adopting the convention that a rule for every possible neighborhood

pattern must be represented in a chromosome, and that these are always in the same order, it

is not necessary to explicitly store the CNESW neighborhood patterns. Thus a chromosome

is represented as just a list of next-state entries (i.e., just the next state list indicated on

the right in Fig. 16). For the simulations described below, chromosomes were roughly 850

next-state elements long.

Creating a �tness function F that accurately measures the promise of a rule table for

eventually generating self-replication of an arbitrary initial structure was the most challenging

aspect of this work. None of the initial random rule tables produce replicants, so in this sense

each has a zero �tness. This issue was addressed by creating a �tness function F that is a

linearly weighted sum of three measures,

F = wg fg + wpfp + wr fr,

where the w's are �xed weights (0 < w < 1) and the f 's are �tness measures (0 � f � 1). The

basic idea here is that an intermediate state on the path to evolving rules for self-replication

is the evolution of a rule set that produces growth and/or con�gurations similar to that of the

seed structure. Thus, the overall �tness F includes a growth measure fg assessing the extent

to which each component type in a given initial structure generates an increasing supply of

that component from one time step to the next, and a relative position measure fp assessing

the extent that each component has the same neighbor components over time as it did in the

initial structure. High values of fg and fp do not necessarily imply that replication is present

(although replication, if present, would be expected to make them relatively large), but they

do represent behaviors that might be useful precursors to replication. The third term in F ,

the replicant measure fr, is a function of the number of actual replicants present. While this

is zero for many early generations with a rule table, it can cause a substantial rise in F if

actual replication occurs.

Reggia 39

How should the three weights in F be chosen to maximize the chances of success with this

approach? There is no precise answer that can be given to this question at present. Systematic

experiments have suggested that wg = 0:05, wp = 0:75, and wr = 0:20 is a good set of values

when the weights are constrained to sum to 1.0 [37]. In other words, the relative positioning

measure proved to be the most critical factor in discovering rules for self-replication.

To assess the success of the above approach, 100 experiments were done with each of several

small arbitrary initial seed con�gurations. The rate of success in discovering rules producing

self-replication declined sharply as the number of components in the initial structure increased.

Under the best conditions, the percentage of runs in which the genetic algorithm discovered a

rule-table that resulted in self-replication was 93% for structures with two components, 22%

for structures with three components, and 2% for structures with four components.

A representative example of a self-replicating structure discovered in this fashion is shown

in Figure 17. The naming convention used here to catalog these structures is similar to those

for loops except the pre�x PS is used (for \polyominoe structure") to designate the arbitrary

block-like shape of the initial structure. Structure PS4W17V in Fig. 17 provides a typical

example. It is a four-component replicator for which multiple replicants can be observed by

t=5. Like self-replicating loops, these structures gradually form expanding colonies.

The replicators discovered in this fashion by the genetic algorithm can be viewed as form-

ing a third class of self-replicating structures (the �rst two classes being complex universal

computer-constructors and self-replicating loops). In addition to being formed from arbitrary

non-loop seed structures, the replicators discovered in this fashion generallymove through the

cellular space, depositing copies as they go, a design that has apparently never been adopted in

past manually-created cellular automata models of replication. For example, the 4-component

replicator in Figure 17 can be viewed as going through transformations as it translates to the

right (relative to its initial position, which is marked by the origin of arbitrary coordinate axes

in the �gure), periodically reappearing in its original form (t=3,6,...) as it gives o� replicants

in the upper right quadrant (t=4,7,...) that themselves are rotated and moving upwards.

Further details can be found in [37].

Reggia40

ABC
D

t=0

B

C

D
C

t=1

B

B

CD C

D
C

t=2

A

B B

B

C
D

D
C

C

D
C

t=3

A
B

B

B

B

D

C
D D

C D

C

D

C
C

t=4

A

A

B

B

B

B

B

C
D

C

D

C
D

C

D

CD C

C

t=5

A

B B

B

BB B

B

A

C
D

D
C

C

D

CC

D

C

C

D

C
D

D
C

C

C

t=6

A

A

B

B
B

BB

B

B

B

B
B

B

D D

C
D D

CC D

C

D
CD

D

C

C

C D

C

D

C
D D

C D

C

C

C

t=7

A

A

A

A

A

A

B

BB

B

B

B

B

B

B

B

B

B

B
B

D

C
D

C

D

D

A

DD

C

D

C
DD

CA C

D

C
D

C

D

C
D

C

CD C

t=8

Figure17:A4-componentself-replicatingpolyominoe.Itsinitialstateisshownattheupper
left(t=0).Severalreplicantscanbeseenbyt=7andt=8.

Reggia 41

5. PROGRAMMING SELF-REPLICATING LOOPS

We observed earlier that, in discussing self-replicating systems in cellular automata, there

are two levels of abstract machines: the individual cells of the cellular space, and the con�g-

uration of \components" that, as an aggregate, jointly represent a self-replicating structure.

We can thus speak of programming either type of machine. In the former case, the rule table

representing the transition function is the \program" directing a cell's behavior. In the latter

case, the sequence of signals on a tape or loop that direct the self-replication forms a program.

In this section we are solely concerned with the latter case when we refer to programming a

self-replicating structure.

The concept of programming self-replicators can be traced back to von Neumann's original

universal computer-constructor [70]. The set of instructions (signals) or description on the

replicating structure's tape that describe its own structure can be viewed as the machine's

program. Similarly, the sequence of instructions that circulate around a self-replicating loop

form a program that directs the loop's replication. Such programs have only been concerned

with replication of the loop in the past. During recent years, however, the idea of programming

self-replicators to do more than just replicate has been receiving increasing attention. The

underlying idea is that the signal sequences directing a structure's replication can be extended

in some fashion to solve a speci�c class of problems while replication occurs. The motivation

for such programmed replicators is that they provide a novel, massively parallel computational

environment that may lead over the long term to powerful, very fast computing methods.

Two di�erent approaches have been taken so far.

5.1 Duplicated Program Sequences

Perhaps the most straightforward approach to programming self-replicating loops to solve

problems is simply to extend the sequence of signals circulating around the loop, adding

additional signals representing a program that carries out some task. This application program

is copied along with the replication program unchanged from generation to generation as the

loop replicates, and is executed once by each loop in between replications. The viability of this

Reggia 42

approach was recently demonstrated by programming partially sheathed loops to construct a

pattern (the letters LSL) in the interior of each replicated loop [65]. Using a loop with four

arms based on the 9-neighborhood, it was possible to create extra space on the loop for an

application program by factoring more of the replication process into the loop's transition

function. In other words, rather than the growth process of the child loop being directed to

occur by a sequence of `>' signals as in the examples above, such growth/extension was the

default that occurred automatically. The instruction sequence thus needed to consist only of

appropriately delayed `L' signals indicating when the growth process should change direction

to start a new side of the loop. The price paid for automatic loop growth and the execution

of an application program is in terms of the complexity of the rule set: typically, on the order

of a few hundred rules are required in this situation [65].

a. XXXXXXXX b. XXXXXXXX
 XO+ OL OLX XO+ OL OLX
 X XXXXXX X X XXXXXX X
 X+X XOX X+X XOX
 XOX XOX XOX XOX
 X X XOX X X XOX
 X+X XOX X+X XOX
 XOXXXXXXOXXXXX XOXXXXXXOXXXXX
 X +O +O +OOOOOX X +O +O +OOOOOX
 XXXXXXXXXXXXX XAXXXXXXXXXXXX
 XPX XDX
 XPX XDX
 XPH XDX
 XPX XDX
 XPX XDX
 XPX X
 XPX
 XPX
 X

Figure 18: a. Self-replicating sheathed loop discussed earlier [33]; reproduced here for compar-
ison purposes. b. Schematic illustration of how the sheathed loop can be extended to support
programming [50]. Two potentially in�nite, vertical \tapes" have been added, one to include
a program (lower left) and one for data (lower right). Each P designates a simple program
instruction and each D a unit of data. The P's and D's are replaced by speci�c signals in
solving a problem.

A practical problem with the above approach to programming self-replicating loops is the

restricted amount of space available along a loop for application programs and data. This

problem can be solved by adding \tapes" to the loops [50]. This is analogous to the tapes used

in the earliest universal computer-constructor replicators [11, 70]. The basic idea is illustrated

in Figure 18. Starting with a sheathed loop (Fig. 18a), two vertically descending tapes of

arbitrary size are added to one side of the loop (Fig. 18b). The left tape is used to store a

Reggia 43

signal sequence representing an application program (signal locations marked by P's), while

the right tape is used to store problem data (item locations marked by D's). Reading heads,

e.g., the H in the right part of the instruction tape sheath in Fig. 18, move up and down the

tapes. As the program reading head reaches an instruction P, that instruction may cause a

signal to move along the sheath to act on part of the data tape.

Using this approach with the 5-neighborhood, it has been shown that one can program a

self-replicating loop to perform parentheses checking [50]. An expression with parentheses is

represented on the data tape, and the program checks that the parentheses are well-formed

or balanced, a computation that corresponds to recognition by a non-regular language. A

parent loop �rst replicates itself and copies unchanged its program and data tapes onto its

child loop. It then executes its program to balance parentheses. This process uses cells having

63 states and roughly 8500 state change rules in the transition function. Because of the

presence of tapes, replication is restricted to the two horizontal directions only, at least in a

two-dimensional cellular automata space.

It can be shown that tape-extended self-replicating loops are capable of executing any

desired program [50]. Thus, in principle such extended self-replicating loops exhibit computa-

tional universality just as did the earliest self-replicating structures, yet they are qualitatively

simpler.

5.2 Expanding Problem Solutions

The programmable self-replicating loops described above literally encode a set of instruc-

tions on the loop or an attached tape that directs solution of a problem. This application

program is copied unchanged from parent to child, so each generation of loops is executing

exactly the same program on exactly the same data. This demonstrates the feasability of

programming self-replicating loops and might �nd use in some applications, but a more gen-

eral approach would allow the program and data to change over time in some systematic

fashion. While such a generalized approach has not been examined yet, it has proven possi-

ble to append potential problem solutions to the replication instruction sequence circulating

Reggia 44

on a self-replicating loop [9]. Unlike the above approach, the initial problem solution is not

copied exactly from parent to child but is modi�ed from generation to generation. Each

child loop gets a di�erent partial problem solution. If a loop determines it has found a valid

complete problem solution, it stops replicating and retains that solution as a circulating pat-

tern in its loop. On the other hand, if a loop determines its partial solution is not useful,

the loop \dies", erasing itself without descendents. Thus, the process of forming a colony of

loops can be viewed as a parallel state space search through the space of problem solutions.

At the end of this process when replication has stopped, the cellular space contains one or

more non-replicating loops, each with a circulating sequence of signals that encodes a valid

problem-solution (assuming such a solution exists).

We recently applied this approach of generating possible solutions and selectively dis-

carding non-viable ones to solve satis�ability problems (SAT problems), a classic example of

an NP-complete problem [27]. Given a boolean predicate like P = (� x1 _ x3) ^ (x1_ �

x2)^ (x2_ � x3), the SAT problem is: \What assignment of boolean values to the binary vari-

ables x1, x2 and x3 can satisfy this predicate?", i.e., what assignment can make this predicate

evaluate to True? In this case, P will be true if x1 = 1; x2 = 1 and x3 = 1, for example. The

predicate P here is in conjunctive normal form, where each part of the predicate surrounded

by parentheses is called a clause. A SAT problem is usually designated as an m-SAT problem

if there are m boolean variables in a clause of its predicate. Therefore, the above example P

is a 2-SAT problem.

Figure 19 illustrates the generate-and-select process for a self-replicating loop carrying 3

binary bits representing the three variables x1, x2 and x3 used in predicate P. In the initial

loop at t = 0, unexplored bits are represented by the symbol A. These A's replace some of

the o's forming the data path in the self-replicating loop. The original growth signal '>' is

also replaced by the symbol + reecting some minor di�erences in the replication process

(the data path symbol O used in earlier �gures has also been changed here to lower case

o typographically to avoid confusion with the digit zero). Explored bits are represented by

either digit 0 (\false") or 1 (\true") in the loops. The bit sequence that a loop carries is read

o� counterclockwise starting right after the L symbol. Thus, for example, the lower left loop

Reggia 45

0

A
A
L

A

+

o
o
+ o o

44

+
o
o

+

A

+
+
L
0
A

A
1
L

A

+

o
o
+ F o

82

L
+
+

E
A
0

0

o

F

0

1
A
E

+
+
L

L
+
+

1

o

0
A
E

o
A
A

o

1

+
+
L

84

o F

1
0
L

+
o
o

A

+

+

A

F
+

L
0
0

0
1
L

A

+

E
F
+

+
o
E

+

A

L
1
1

86

+ +

A
1

L
+
+

0

0

o

0
A
o

o
A
0

o

1

o
F
+
+
L

L
+
+

1

F

1
A
E

124

0
0
L

1

+

o
o
+

+
o
o

+

0

L
0
0

+
o
o

0
1
L

+

A

0

+

L
1
0

o
o
+

+
o
o

+

A

L
1
1

1
1
L

A

+

o
o
+

129

o
0
1

0
0
0

o

L

o
+
+

1
0
1

+
+

o

L

L

o

+
+

1
0
0

0
1
1

o

L

o
+
+

+
+
o

L

o

1
1
1

131

o
o
0

+

0

+
L
0

o
1 0

0 0
o o

0 1
L
1

1
L
+

1

+

1
o
o

134

L
+
+

0

o

0
0
o

o
1
1

o

1

+
+
L

Figure 19: The generation and selection of satisfying boolean assignments by self-replicating
loops for the predicate P given in the text. The monitoring of circulating loop signals by
each cell provides the selection process. At time 0, the initial loop is placed in the cellular
automata space, and carries unexplored binary bits represented as AAA. By time 44 the �rst
replication cycle has completed and there are two loops in the cellular automata space. The
�rst binary bit has been explored, resulting in the �rst A being converted into 0 and 1 in the
two resulting loops. By time 82 the second replication cycle has completed and there are four
loops in the cellular automata space. Starting at time 84 the top loop is being destroyed (note
the missing corner cell of the loop). Its bit sequence `01A' does not satisfy the second clause
in predicate P, so it is being erased by the monitor underneath its top-right corner. At time
86 the erasing process continues while the other loops start their next replication cycle. At
time 124 the third (also the last) replication stage is completed and there are six loops in the
cellular automata space. Four of these loops do not survive the selection process for long and
are erased (times 129 and 131). Finally, two satisfying assignments 000 and 111 remain in the
cellular space at time 134.

Reggia 46

in Fig. 19 at t = 124 carries the sequence 001.

Without the selection process, in three generations all eight possible boolean assignments

for the variables used in P would appear, carried by eight loops in the cellular automata space,

assuming that no collisions occurred. Loops stop replicating once they have explored all of

their A bits. Since the exploration of bits is done one bit at a time at each generation, and

since at each exploration step a di�erent bit appears in the parent and child loops, we can be

sure that all possible boolean assignments will be found with the generation process, if there

are no collisions of loops in the space. If collisions do occur, a loop unable to replicate initially

will continue trying until space appears for it to do so.

To remove those loops which do not satisfy a SAT predicate, each cell in the space serves

as a monitor. Each monitor tests a particular clause of the SAT predicate. If the condition a

cell is looking for in its role as a monitor is found, it will \destroy" the loop passing through

it. For the speci�c predicate P , three classes of monitors, each testing for one of the following

conditions, are planted in the cellular automata space: x1^ � x3, � x1 ^ x2, and � x2 ^ x3.

These conditions are just the negated clauses of P . If any one clause of predicate P is not

satis�ed, the whole predicate will not be satis�ed. A monitor will destroy a loop passing

through it if its corresponding clause is found to be unsatis�ed by the bit sequence carried by

the loop. This detection process is done in linear time since essentially each monitor is just

a �nite automata machine, and the bit sequence passing through it can be seen as the string

for regular expression recognition. With enough properly distributed monitors in the cellular

automata space, they can e�ectively remove all unsatisfying solutions.

Some steps of the generation and selection process for the same 3 x 3 loop are shown in

Figure 19. Starting with one initial loop carrying a totally unexplored bit sequence AAA

at t = 0, 0AA appears in the parent loop and 1AA in the child loop in the �rst generation

(t = 44). In the second generation two new loops carrying 01A and 11A are obtained; the two

parents now carry 00A and 10A. If all goes well, in the third and �nal generation, we should

get four more loops 011, 111, 001 and 101; the four parents would carry 010, 110, 000 and

100. If no selection and no collisions occurred, then there should be all eight possible values

Reggia 47

for a 3 bit binary sequence. However, it can be seen in this �gure that some of the loops

are destroyed or never even generated after the second generation. For example, the topmost

loop at t = 82 is erased (t = 84, t = 86). Since it has been found (by the monitors) that this

loop's partially explored bits 01A do not satisfy one of the clauses, there is no need to explore

further since all of its descendents will carry the same binary bits. In three generations only

two loops are left in the cellular automata space instead of eight (t = 134). These two loops

carry exactly the only two satisfying boolean assignments for the original SAT predicate P ,

which are 000 and 111. The details of this process are given in [9].

6. DISCUSSION

Cellular automata models of self-replication have been studied for almost �fty years now.

In this article we have presented the view that work on this topic has involved at least three dif-

ferent approaches. The earliest work examined large, complex universal computer-constructors

that are marginally realizable. This work established the feasibility of arti�cial self-replication,

examined many important theoretical issues involved, and gradually examined progressively

simpler self-replicating universal systems. A second and more recent approach has focussed

on the design of self-replicating loops. Self-replicating loops are so small and simple that they

have been readily realizable. Finally, we believe that a third approach merits investigation:

the emergence of self-replicators from initially non-replicating systems. As examples of this,

we discussed our recent studies of the emergence of self-replicating structures from randomly-

distributed, non-replicating components, and the evolution of transition rules that support

replication of small but arbitrary initial structures.

The recent work on self-replicating cellular automata models that is of most direct signif-

icance for computer science is that on programming self-replicating loops. As we have seen,

problem-solving can be accomplished by self-replicating structures as they replicate. This can

be achieved either by attaching a set of instructions (signals) to those directing replication,

or by encoding a tentative problem-solution that systematically evolves into a �nal solution.

Implementations have shown that programmed replicators are clearly capable of solving non-

Reggia 48

trivial problems. These programmed self-replicating structures are intriguing in part because

they provide a novel approach to computation. This approach is characterized by massive

parallelism (each cell in the underlying cellular automata space is simultaneously carrying out

computation), and by the fact that both self-replication and problem-solving by replicators

appears as emergent properties of solely local interactions.

While progress in creating and studying cellular automata models has accelerated during

the last few years, a great deal remains to be done. A high level language that speci�cally

supports development of cellular automata transition functions would be of great value to

future investigations, as this is currently largely unavailable. Similarly, while hardware that

directly supports the massively parallel but local computations of cellular automata modeling

has appeared [23, 67], it is also largely unavailable today. If such software and hardware envi-

ronments could be made available in the future, it would greatly reduce the large programming

and processing times associated with research in this area.

Among the many issues that might be examined in the future, several appear to be of par-

ticular importance. These include the further development of programmable self-replicators

for real applications, and a better theoretical understanding of the principles of self-replication

in cellular automata spaces. More general and exible cellular automata environments, such

as those having non-uniform transition functions [61] or novel interpretations of transition

functions [36], merit exploration. It has already proven possible, for example, to create simple

self-replicating structures in which a cell can change the state of neighboring cells directly [36],

or can copy its transition function into a neighbor cell while allowing cells to have di�erent

transition functions [61]. Also, from the perspective of realizing physically self-replicating de-

vices, closer ties and exchange of information between the modeling work described here and

ongoing work to develop self-replicating molecules and nanotechnology is important. Closely

related to this issue is ongoing investigation of the feasibility of electronic hardware directly

supporting self-replication [39, 40]. If these developments occur and progress, we foresee a

bright and productive future for the development of a technology of self-replicating systems.

Finally, we expect that as the modeling of self-replication progresses, it will assume in-

Reggia 49

creasing importance in theoretical biology. Arti�cial self-replicators have already shown that

self-replication of information-carrying structures can be far simpler than many people have

realized [57]. Analogous conclusions about unexpectedly simple information processing re-

quirements have been reached regarding other complex physical/chemical processes after cel-

lular automata models of them were developed, such as the appearance of stably rotating

spiral forms in the Belousov-Zhabotinskii autocatalytic reaction [18, 38]. Further, it seems

probable that the simple self-replicating structures described here are not the only ones pos-

sible. The self-replicating structures discovered using a genetic algorithm (Figure 17) suggest

that novel approaches still remain to be identi�ed.

At present it has not been possible to actually realize any \informational replicating sys-

tems" in the biochemistry laboratory [46], although recent results in experimental chemistry

suggest this may someday be possible [1, 15, 26, 69]. The replicating loops and polyomi-

noes described here provide intriguing ideas for self-replicating molecular systems, but are

not intended as realistic models of known biochemical processes and have only a vague cor-

respondence to real molecular structures. The information-carrying loop, for example, might

be loosely correlated, with a circular oligonucleotide, and the construction arm with a protein

that reads the encoded replication algorithm to create the replica. Still, the existence of these

systems raises the question of whether contemporary techniques being developed by organic

chemists studying autocatalytic systems or the innovative manufacturing techniques currently

being developed in the �eld of nanotechnology could be used to realize self-replicating molec-

ular structures patterned after the information processing occurring in simple self-replicating

cellular automata structures.

Reggia 50

References

[1] I. Amato, Capturing Chemical Evolution in a Jar, Science, 255, 1992, 800.

[2] M. Arbib, Simple Self-Reproducing Universal Automata, Inform. and Control, 9, 1966,

177-180.

[3] E. Banks, Universality in Cellular Automata, Eleventh Ann. Symp. on Switching and

Automata Theory, IEEE, 1970, 194-215.

[4] E. Berlekamp, J. Conway and R. Guy, Winning Ways for Your Mathematical Plays,

(Academic Press, New York, 1982), vol. 2, chap. 25.

[5] A. Burks, in Essays on Cellular Automata, A. Burks, Ed. (University of Illinois Press,

Urbana, 1970), chap. 1.

[6] J. Byl, Self-Reproduction in Small Cellular Automata, Physica D, 34, 1989, 295-299.

[7] J. Case, Periodicity in Generations of Automata, Mathematical Systems Theory, 8,

1974, 15-32.

[8] H. Chou & J. Reggia, Emergence of Self-Replicating Structures in a Cellular Automata

Space, Physica D, 1997, in press.

[9] H. Chou & J. Reggia Solving SAT Programs with Self-Replicating Loops. In prepara-

tion, 1997.

[10] H. Chou, J. Reggia, R. Navarro-Gonzalez, & J. Wu. An Extended Cellular Space

Method for Simulating Autocatalytic Oligonucleotides, Computers and Chemistry, 18,

1994, 33-43.

[11] E. Codd, Cellular Automata, Academic Press, 1968.

[12] J. Demongeot, E. Goles & M. Tchuente (eds.) Dynamical Systems and Cellular Au-

tomata, Academic Press, 1995.

Reggia 51

[13] K. Drexler, Biological and Nanomechanical Systems, in Arti�cial Life, C. Langton, Ed.

(Addison-Wesley, New York, 1989), 501-509.

[14] D. Farmer, T. To�oli & S. Wol�ram (eds.), Cellular Automata, North Holland, 1984.

[15] Q. Feng, T. Park and J. Rebek, Crossover Reactions Between Synthetic Replicators

Yield Active and Inactive Recombinants, Science, 256, 1992, 1179-1180.

[16] R. Freitas & W. Gilbreath (eds.) Advanced Automation for Space Missions, NASA

Conference, Publication 2255, NTIS, 1982.

[17] M. Gardner, The Fantastic Combinations of John Conway's New Solitaire Game \Life",

Scienti�c American, 223(4):120-123, 1970.

[18] M. Gerhardt, Schuster H & Tyson J. A Cellular Automaton Model of Excitable Media

Including Curvature and Dispersion, Science, 247, 1990, 1563-1566.

[19] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, 1989.

[20] J. Grefenstette, Genetic Algorithms and Their Applications, in Encyclopedia of Com-

puter Science and Technology, vol. 21, Suppl. 6, Marcel Dekker, 1990, 139-152.

[21] H. Gutowitz (eds.), Cellular Automata-Theory and Practice, MIT Press, 1991.

[22] G. Herman, On Universal Computer-Constructors, Information Processing Letters, 2,

1973, 61-64.

[23] W. Hillis The Connection Machine, MIT Press, 1985.

[24] J. Holland Adaptation in Natural and Arti�cial Systems, University of Michigan Press,

1975.

[25] J. H. Holland, Studies of the Spontaneous Emergence of Self-Replicating Systems Using

Cellular Automata and Formal Grammars. In Automata, Languages, Development, A.

Lindenmayer and G. Rozenberg (eds), North-Holland, pp. 385{404, 1976.

Reggia 52

[26] J. Hong, Q. Feng, V. Rotello and J. Rebek, Competition, Cooperation and Mutation:

Improving a Synthetic Replicator by Light Irradiation, Science, 255, 1992, 848-850.

[27] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Language and Compu-

tation, (Addison-Wesley, Reading, 1979), Chap. 7.

[28] J. Ibanez, D. Anabitarte, et al. Self-Inspection Based Reproduction in Cellular Au-

tomata, in Proc. 3rd Euro. Conf. Artif. Life, F. Moran et al, eds., Springer, 1995,

564-576.

[29] H. Jacobson, Amer. Sci., On Models of Self-Replication, Amer. Sci. 46, 1958, 255-284.

[30] J. Kephart, A Biologically Inspired Immune System for Computers, in R. Brooks & P.

Maes (eds.). Arti�cial Life IV, MIT Press, 1994, 130-139.

[31] J. Koza, Genetic Programming, MIT Press, 1992.

[32] R. Laing, Some Alternative Reproductive Strategies in Arti�cial Molecular Machines,

J. Theor. Biol., 54, 1975, 63-84.

[33] C. Langton, Self-Reproduction in Cellular Automata, Physica 10D, 1984, 135-144.

[34] C. Langton, Ed., Arti�cial Life (Addison-Wesley, New York, 1989);

[35] C. Langton, C. Taylor, J. Farmer and S. Rasmussen, Eds., Arti�cial Life II (Addison-

Wesley, New York, 1992).

[36] J. Lohn and J. Reggia, Discovery of Self-Replicating Structures using a Genetic Algo-

rithm, IEEE Internat. Conf. on Evolutionary Computing, Perth, 678{683, 1995.

[37] J. Lohn and J. Reggia. Automatic Discovery of Self-Replicating Structures in Cellular

Automata, in preparation, 1997.

[38] B. Madore and W. Freedman, Computer Simulations of the Belousov-Zhabotinsky

Reaction, Science, 222, 1983, 615-616.

Reggia 53

[39] D. Mange, M. Goeke, D. Madon, et al. Embryonics: A New Family of Coarse-Grained

Field-Programmable Gate Array with Self-Repair and Self-Reproducing Properties,

Towards Evolvable Hardware, Springer Verlag, 1996, 197-220.

[40] D.Mange, A. Stau�er, & G. Tempesti. Self-replicating and Self-repairing Field-

Programmable Processor Arrays with Universal Construction/Computation, Proc.

15th Internat. Joint Conf. on Artif. Intell., Workshop on Evolvable Systems, Morgan

Kaufmann, 1997, in press.

[41] R. Merkle Self-Replicating Systems and Low Cost Manufacturing, in M. Welland & J.

Gimzewski (eds), The Ultimate Limits of Fabrication and Measurement, Kluwer, 1994,

25-32.

[42] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.

[43] E. Moore, Machine Models of Self-Reproduction, Proc. Fourteenth Symp. Appl. Math,

American Mathematical Society, 1962, 17-33.

[44] H. Morowitz, A Model of Reproduction, Amer. Sci., 47, 1959, 261-263.

[45] J. Myhill, The Abstract Theory of Self-Reproduction, in Views on General Systems

Theory, M. Mesarovi�c, Ed. Wiley, 1964, 106-118.

[46] L. Orgel, Molecular Replication, Nature, 358, 203-209 (1992).

[47] J. Or�o, S. Miller and A. Lazcano. The Origin and Early Evolution of Life on Earth,

Ann. Rev. Earth Planet. Sci., 18, 1990, 317-356.

[48] A. Pargellis, The Evolution of Self-Replicating Computer Organisms, Physica D, 98,

1996, 111-127.

[49] L. Penrose, Mechanics of Self-Reproduction, Ann. Human Genetics, 23, 1958, 59-72.

[50] J. Perrier, M. Sipper & J. Zahnd. Toward a Viable, Self-Reproducing Universal Com-

puter, Physica D, 97, 1996, 335-352.

Reggia 54

[51] U. Pesavento, An Implementation of von Neumann's Self-Reproducing Machine, Arti-

�cial Life, 2 (4), pp. 337{354, 1995.

[52] C. Ponnamperuma, Y. Honda, and R. Navarro-Gonz�alez, Chemical Studies on the

Existence of Extraterrestrial Life, J. Brit. Interplanet. Soc., 45, 1992, 241-249.

[53] K. Preston and Du� M. Modern Cellular Automata, Plenum, 1984.

[54] L. Priese, On a Simple Combinatorial Structure for Syblying Nontrivial Self-

Reproduction, J. Cybernet, 6, 1976, 101-137.

[55] S. Rasmussen, Knudsen C., Feldberg R., & Hindsholm M. The Coreworld: Emergence

and Evolution of Cooperative Structures in a Computational Chemistry, Physica D,

42, 1990, 111-134.

[56] T. Ray. Evolution, Ecology and the Optimization of Digital Organisms, Santa Fe Work-

ing Paper 92-08-042, 1992.

[57] J. Reggia, S. Armentrout, H. Chou, and Y. Peng. Simple Systems That Exhibit Self-

Directed Replication, Science, 259:1282-1288, 1993.

[58] J. Reggia, H. Chou, S. Armentrout & Y. Peng, Transition Functions and Software

Documentation, Technical Report, CS-TR-2965, Dept. of Computer Science, UMCP,

1992.

[59] F. Richards, Meyer T & Packwood N. Extracting Cellular Automata Rules Directly

from Experimental Data, Physica D, 45, 1990, 189-202.

[60] R. Rosen, On a Logical Paradox Implicit in the Notion of a Self-Reproducing Automa-

ton, Bull. Math. Biophys., 21, 1959, 387-394.

[61] M. Sipper, Studying Arti�cial Life Using a Simple, General Cellular Model, Arti�cial

Life, 2 (1), pp. 1{35, 1995.

[62] M. Sipper & E. Ruppin, Co-Evolving Architectures for Cellular Machines, Physica D,

99, 1997, 428-441.

Reggia 55

[63] A. Smith, in Arti�cial Life II, C. Langton, C. Taylor, J. Farmer and S. Rasmusen,

Eds., Addison-Wesley, 1992, 709.

[64] P. Tamayo and Hartman H. Cellular Automata, Reaction-Di�usion Systems, and the

Origin of Life, in Arti�cial Life, C. Langton (editor), Addison-Wesley, 1989.

[65] G. Tempesti, A New Self-Reproducing Cellular Automaton Capable of Construction

and Computation. In Proc. Third European Conference on Arti�cial Life, F. Moran,

A. Moreno, J. Morelo, and P. Chacon (eds), Springer, 555{563, 1995.

[66] J. Thatcher, Universality in the von Neumann Cellular Model, in Essays on Cellular

Automata, A. Burks, Ed., Univ. of Illinois Press, Urbana, 1970, 132-186.

[67] T. To�oli and Margolus N. Cellular Automata Machines, MIT Press, 1987.

[68] P. Vit�anyi, Sexually Reproducing Cellular Automata, Math. Biosci., 18, 23 (1973).

[69] G. von Kiedrowski, A Self-Replicating Hexadeoxynucleotide, Angew. Chem. Int. Ed.

Engl., 25, 1986, 932.

[70] J. von NeumannThe Theory of Self-Reproducing Automata, University of Illinois Press,

Urbana 1966.

[71] K. Williams, Simpli�cations of a Self-Replication Model, Science, 261, 1993, 925.

[72] S. Wolfram, Theory and Applications of Cellular Automata, World Scienti�c, 1986.

[73] S. Wolfram, Cellular Automata and Complexity, Addison Wesley, 1994.

