
Hardware/software coevolution of genome programs and cellular processors

Gianluca Tempesti, Pierre-André Mudry, Guillaume Zufferey
Cellular Architectures Research Group

Ecole Polytechnique Fédérale de Lausanne (EPFL)
EPFL-IC-GRTEM, Station 14, 1015 Lausanne, Switzerland

gianluca.tempesti@epfl.ch

Abstract

The application of evolutionary techniques to the design
of custom processing elements bears a strong relation to
the natural process that led to the co-evolution of cells and
genomes in biological organisms. As such, it is an inter-
esting avenue for an effective application of evolutionary
approaches in the domain of hardware design.

The architecture of conventional non-configurable pro-
cessors, however, is ill-adapted to this kind of approach,
as evolution can operate exclusively on the software (the
genome) and not on the hardware that executes it, leading
to scalability issues that seem very difficult to overcome.

Building on a family of configurable processors we de-
veloped in the past years, in this article we introduce a de-
sign methodology that allows the architecture of the proces-
sor to co-evolve together with the code to be executed.

1. Introduction

The analogy between biological cells and processors (or

processing elements) in silicon is fairly current in the design

of bio-inspired computing systems, particularly through

the implicit assumption that programs are equivalent to

genomes (e.g, in the genetic programming paradigm). With

few exceptions, however, these efforts have focused either

on off-the-shelf processors or hand-designed custom ones.

The former provide researchers with design environ-

ments and software tools, but cannot use dedicated bio-

inspired hardware and need to move much of the inherent

complexity to software, introducing scalability issues that

have not been solved to date. On the other hand, custom

processors can exploit specific mechanisms but need to be

designed by hand, a process that absorbs time and resources

better spent on the exploration of bio-inspired solutions.

Due to these issues, bio-inspired processors are rarely

used as a tool, hindering in turn research aimed at exploit-

ing in hardware bio-inspired processes such as cell special-

ization (i.e., the capability of cells to adapt their structure to

their task) or cellular evolution (i.e., the co-evolution of the

cell structure and of the genome of the organism).

The work presented here describes a step in the devel-

opment of a set of processor architectures dedicated to bio-

inspired systems and of a design environment that simplifies

their conception and use. We will show how the architecture

of the processors and the code they execute (the genome)

can be co-evolved, a process that considerably simplifies

the software and increases its evolvability and scalability.

2. Background

Bio-inspiration imposes a set of non-conventional con-

straints on the design of processors meant to behave as cells

within an artificial organism. In this section, we will present

how we draw inspiration from biology for system design

and then analyze how the processor architecture we have

been using can address the requirements of the approach.

2.1. Embryonics

In the Embryonics project [13], we have been studying

how to transpose some of the mechanisms and properties

involved in the development of complex organisms to the

design of digital hardware. Our approach involves a self-

contained mapping between the world of multi-cellular or-

ganisms in biology and that of silicon, based on levels of

complexity ranging from the population to the molecule.

Within this mapping, we define an artificial organism as

a parallel array of cells, where each cell is a simple proces-

sor that stores the description of the operation of every cell

in the organism as a program (the genome). This inherent

redundancy is compensated by the added capabilities of the

system, such as growth [14] and self-repair [18].

The operation of multi-cellular organisms relies, among

other things, on the specialization of the cells to a finite set

of specific operations, implying that their physical struc-
ture is adapted to its function (e.g., a skin cell is physically

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

different from a liver cell). Structural differences notwith-

standing, the same program (genome) controls the operation

of all cells. To maintain the analogy with digital processors,

we must achieve a similar degree of adaptation.

A first step in this direction was to define our cells

as reconfigurable processing elements, realized by pro-

grammable logic and structurally adapted to the task. For

a given application, all cells are structurally identical and

contain the same program (and can thus be seen as stem
cells [16]), but different parts of the program and of the

structure are activated depending on the cell’s position in

the organism, implementing specialization.

2.2. MOVE processors

Our cellular processors require then an architecture that

is substantially different from conventional general-purpose

processor architectures: it must be possible to adapt the cell

structure to the application to exploit the programmability

of application specific systems and it must be possible to

adapt the topology of the system to the application to take

advantage of the features of the ontogenetic approach [19].

To achieve this kind of adaptability within an array

of processors, we exploited the Move or TTA (Transport-

Triggered Architecture) paradigm [1][3], originally devel-

oped for the design of application-specific dataflow proces-

sors (i.e., processors where the instructions define the flow

of data, rather than the operation to be executed).

In some respects, the overall structure of a TTA-based

system is fairly conventional: data and instructions are

fetched from the main memory using standard mechanisms

(caches, memory management units, etc.) and are decoded

more or less as in conventional processors. The basic dif-

ferences lay in the architecture of the processor itself, and

hence in the instruction set.

Rather than being structured, as is usual, around a more

or less serial pipeline, a Move processor (Fig. 1) relies on

a set of functional units (FUs) connected by one or more

transport busses. All computation is carried out by the func-

tional units (examples of FUs can be adders, multipliers,

register files, etc.) and the instructions simply move data to

and from the FUs in the order required to implement the de-

sired operations. As all FUs are uniformly accessed through

I/O registers, instruction decoding is reduced to its simplest

expression, as only one instruction is needed: move.

Figure 1. Architecture of a TTA processor.

TTA move instructions trigger operations that in fact cor-

respond to normal RISC instructions. For example, a RISC

add instruction specifies two operands and, usually, a desti-

nation register. The Move paradigm requires a slightly dif-

ferent approach to obtain the same result: instead of us-

ing a specific add instruction, the program moves the two

operands to the input registers of a functional unit that im-

plements the add operation. The result can then be retrieved

from the output register of the FU and used where needed.

The Move approach, in and for itself, does not imply high

performance, but several arguments in favor of TTAs have

been proposed [3][10]. Most notable of these in our context

is the capability to easily add new instructions in the form

of functional units. This feature, along with the fact that the

functional units are handled as “black boxes”, i.e. without

any inherent knowledge of their functionality, implies that

the architecture of the processor can be described as a mem-
ory map which associates the different possible operations

with the addresses of the corresponding FUs.

This capability, coupled with an algorithm such as the

one described in this paper, introduces in the system an in-

teresting amount of flexibility by specializing the instruc-

tion set (i.e., with ad-hoc functional units) to the application

while keeping the overall structure of the processor (fetch

and decode unit, bus structure, etc.) unchanged.

In biological terms, this ability corresponds to special-

izing the internal structure and operation of the cells (or-

ganelles, metabolic pathways, protein coding, etc.) while

keeping the structure and operation of the genome (DNA

bases, genome chemistry and access, etc.) unchanged, and

as such seems perfectly suited to the requirements of an ap-

proach that seeks to draw inspiration from biology. It also

opens the way, as shown in this article, to an efficient co-

evolution of the genome and of the cell architecture.

3. Objectives and related literature

The work presented in this paper is part of a broader re-

search effort aimed at developing a complete design envi-

ronment for bio-inspired digital systems. The goal of the

project is to allow researchers to rapidly design a cellular

system starting from a high-level language description of

an application and to implement it within a reconfigurable

co-processing unit for highly-parallel computation.

The environment will eventually handle the design of

complete multi-cellular networks and include features to

control communication and growth within the network.

This article, however, focuses on the synthesis and opti-

mization of a single processor within the network, i.e., of

a cell and of the gene that it will have to express within

the organism. Developed specifically to address the design

of application-specific processors, the Move architecture is

ideally suited for this kind of hardware/software codesign.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

Consisting of the design of the hardware and the soft-

ware layers of a system at the same time, codesign has ap-

peared the early 90s and is widely spread in the industry.

This approach exploits the synergies of hardware and soft-

ware in an application-specific system. Such systems are

usually built around a core processor that can be connected

to hardware modules tailored for a specific application. This

“tailoring” corresponds to the codesign of the system and

can be divided into different subtasks, as defined in [8]: par-

titioning, co-synthesis, co-verification and co-simulation.

In this paper, we focus on the complex, NP-complete

[15] partitioning problem, defined as follows: starting from

a program to be implemented on a system and given some

execution time and/or size constraints, partitioning consists

in determining which parts of the program have to be im-

plemented in hardware in order to satisfy the constraints.

Several methods have been proposed in the past to solve

this problem: Gupta and De Micheli start with a full hard-

ware implementation [7], while Ernst et al. [6] use profiling

results to determine with a simulated annealing algorithm

which blocks to move to hardware. Vahid et al. [21] use

clustering together with a binary-constrained search to min-

imize hardware size while meeting constraints. Other ap-

proaches include fuzzy logic [2], GAs [4][17], hierarchical

clustering [11] or tabu search [5].

In this article, we will show that despite the fact that stan-

dard GAs have been shown in the past to be less efficient

than other techniques to solve the partitioning task [22][23],

they can be hybridized to take into account domain-specific

knowledge and solve it much more efficiently.

Because of the versatility of Move processors, automatic

partitioning becomes very interesting for the synthesis of

bio-inspired, application-specific processorsm as it can be

used to determine which parts of a given program are the

best candidates to be implemented as FUs in the processor.

From a biological and evolutionary perspective, this ap-

proach has several advantages: it models rather accurately

the kind of cellular specialization that occurs during the de-

velopment of an individual (as required for embryonic sys-

tems), it can be integrated into a design flow (a crucial ad-

vantage for research), and, more importantly for this article,

it increases the evolvability of the system by providing a

well-defined target for genetic algorithms (the evolution of

the cell as the basic building block of complex organisms).

4. A genetic algorithm for partitioning

To tackle the partitioning problem in our processors we

opted for a genetic algorithm that selects the parts of the

program code which can be advantageously transformed

into functional units for our processors. Some domain-

specific ameliorations have been introduced to guide the al-

gorithm in its search and increase its performance.

Obviously, this approach is not a requirement for us-

ing Move processors and indeed their features fit the needs

of bio-inspired systems independently of any evolutionary

technique. However, genetic algorithms in this context not

only maintain a strong analogy to nature (where cells did

indeed evolve along with the genome) but are also a very

efficient method to tackle a difficult problem (partitioning).

4.1. Overview and genome encoding

The partitioner we used (Fig. 2) works on programs writ-

ten in a simplified programming language that supports all

the classical declarative language constructs in a C-like syn-

tax. Several limitations (which could eventually be lifted)

have however been imposed to this language: pointers are

not supported, recursion is forbidden, and no typing exists

(all values are treated as 32-bit integers).

Prior to being used in the algorithm, the code is anno-
tated with coverage information using standard profiling

tools on a Java-equivalent program. This step provides an

estimation of how many times each line is executed for a

large number of realistic input vectors, allowing the GA to

find the most interesting kernels to be moved to hardware.

The algorithm then analyzes the syntax of the annotated

source code and generates the corresponding program tree,

which will then be the main data structure in the algorithm.

From this tree, the genome is constructed by associating to

each node of the tree a boolean value indicating if the node’s

subtree is implemented in hardware (Fig. 3).

As we also want to regroup instructions together to form

new FUs, to each statement (assignments, for, while, if,
function calls. . .) correspond two additional boolean values

that permit the creation of groups of adjacent instructions:

the first value indicates if a new group has to be created and,

if so, the second value indicates if the whole group has to

be implemented in hardware (i.e. to create a new FU).

Figure 2. Flow diagram of the algorithm.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

Figure 3. Genome encoding.

The complete genome of the program could then be

formed by the concatenation of the values of the nodes. This

naive encoding, however, introduces a strong bias by im-

plicitly favoring the implementation in hardware of nodes

close to the root. In fact, when the GA changes a node to

hardware, its whole sub-tree is also changed and the genes

of the sub-nodes are no longer affected by the evolution-

ary process. If this occurs for an individual that has a good

fitness, the evolution may stay trapped in a local maximum,

because it will never explore the possibility of using smaller

functional units within that hardware sub-tree.

The solution we propose (Fig. 4) resides in the decom-

position of the program tree into different levels that corre-

spond to blocks in the program (series of instructions delim-

ited by brackets). These levels represent interesting points

of separation because they often correspond to the most

computationally intensive parts of the programs (e.g. loops)

that are good candidates for being implemented in new FUs.

The GA is then recursively applied to each level, starting

with the deepest ones (level 0). To pass information be-

tween each level, the genome of the best individual evolved

at each level is stored. A mutated version of this genome is

then used for each new individual created at the next level.

This approach permits to construct the solution progres-

sively by trying to find the optimal solution of each level. It

gives priority to nodes close to the leaves to express them-

Figure 4. Levels definition.

selves, and thus good solutions will not be hidden by higher

level groups. This specific optimization also dramatically

reduces the search space of the algorithm as it only has to

work on small trees representing different levels of com-

plexity in the program.

4.2. Genetic operators and optimizations

The GA starts with a basic population composed of ran-

dom individuals. For each new generation, individuals are

chosen for reproduction using rank-based selection with

elitism. To ensure a larger population diversity, part of the

new population is not obtained by reproduction but by ran-

dom generation. For each generation, the standard genetic

operators are applied, together with some domain-specific

operations that increase the performance of the algorithm.

Crossover is applied by randomly choosing a node in

each parent’s tree and by exchanging the corresponding

sub-trees. This corresponds to a double-point crossover and

it is used to enhance the genetic diversity of the population.

A mutation consists of inverting the binary value of a

gene. However, as a mutation can affect the partitioning

differently, depending on where it happens, different muta-

tion rates are defined for the following cases:

1. A new functional unit is created.

2. An existing functional unit is destroyed and the corre-

sponding group reverts to software.

3. A new group of statements is created or two groups are

merged together.

Using different mutation rates for the creation and the de-

struction of functional units can be very useful. For exam-

ple, increasing the probability of destruction introduces a

bias towards fewer FUs.

In addition to these standard operators, two additional

operations are performed on each new individual: pattern
matching and non-optimal block pruning.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

To optimize partitioning, it is crucial to find reusable
functional units that can be used at different locations in

a program. This task is however very difficult for the stan-

dard operators, and to help evolution to find such blocks, a

pattern matching step has been added: every time a piece of

code is transformed in hardware, similar pieces are searched

in the whole program tree and mutated to become hardware

as well. Reusability is then greatly improved because the

standard operators need to find only one occurrence of a

block, the others being given by this new step.

The GA is further aided by pruning the best individual

of each generation. This step consists of removing all non-

optimal hardware blocks from the genome. These blocks

are detected by computing the fitness of the individual when

each block or group of similar blocks is implemented in

software. If the considered block does not increase or de-

creases the fitness, the genome is changed so that the part in

question is no longer implemented as a functional unit.

4.3. Fitness computation

The fitness of an individual is derived by computing

hardware size and execution time. Different techniques ex-

ist to determine these values (e.g., [9][20]). The method

we adopted is based on a very fine characterization of ele-

mentary hardware building blocks (blocks that conduct very

simple logical and arithmetic operations such as AND, OR,

+, . . .) on the target platform. These building blocks can

then be joined to create more complex operations that form

new FUs and their characterization is used to determine the

size and timing values for the FUs.

While our approach can be applied to any programmable

hardware platform, this characterization obviously depends

on the target platform. In the current implementation we use

a Xilinx VirtexTMFPGA. The size (number of slices) and

timing metrics of the basic blocks have been determined us-

ing the Synplify ProTMsynthesis solution coupled, in some

cases, with the Xilinx place-and-route tools.

This very detailed characterization permitted us to take

into account a wide range of timings, from sub-cycle esti-

mates for combinational operators to multi-cycle, high la-

tency operators such as pipelined dividers. Area estimators

were built using the same principles. Using these param-

eters, determining size and time for each sub-tree is then

relatively straightforward because only two different cases

have to be considered:

1. For software sub-trees, the estimation is done recur-

sively over the nodes of the tree, adding at each step

the appropriate execution time and potential hardware

unit (e.g. the first time an add instruction is encoun-

tered, an add FU must be added to compose the mini-

mal processor necessary to execute this program).

2. For hardware sub-trees, the computation is a bit more

complex because it depends on the position of the con-

sidered sub-tree. For example, if it represents a new

FU, some computation is needed to take into account

factors such as the time to move the data to the new

FU, the size of the bus interface, and the size of the

registers required for the storage of the local variables.

The objective of the GA is to find the partitioning with

the smallest execution time given an area constraint. As-

suming that the basic solution to the problem is a software

implementation on a simple processor with minimal hard-

ware, we use a relative fitness function. This simple proces-

sor, whose hardware size is β, has then a fitness of 1 and the

fitness of the discovered solutions are expressed in terms of

this trivial solution. We also define α as the time to execute

the given program on this trivial processor.

Moreover, as our goal is to use all available hardware,

we biased evolution towards solutions that use more hard-

ware. This bias must be active only when a relatively good

solution has been found, as we do not want evolution to be

biased towards solutions with a large hardware cost at the

start. To achieve this, a dynamic parameter is added to the

fitness function to let larger blocks be used when good so-

lutions are found. For an individual of hardware size s, we

first compute the adaptive factor k:

k =
hwLimit − s

hwLimit

where hwLimit is the maximum hardware size for the pro-

cessor with the new FUs defined by the algorithm.

For an individual having a size s and an execution time

t, the fitness function f can then be defined as:

f(s, t) =

{
α
t · (k · β

s − k + 1) If s ≤ hwLimit

(log (s − hwLimit) + 1)−1 otherwise

This function assigns a greater fitness to individuals that

balance well the area/speed compromise: when the speed

increase obtained during one step of the evolution is rel-

atively bigger than the hardware increase it requires, the

fitness increases. The parameter k implies that the weight

of the hardware increase in the computation of the fitness

drops as the individual approaches hwLimit.

5. Results

In the context of the design of bio-inspired systems, it

is fundamental to develop approaches that, on one hand,

can be easily exploited and parametrized to allow their use

as research tools and, on the other hand, are efficient and

can scale up to real-world applications. In this section,

we present the system interface, illustrate its operation on

a simple example, and show some performance measures.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

Figure 5. The two main windows of the user interface: execution (left) and results (right).

5.1. User interface

The above GA partitions quite efficiently programs of

useful size, as we shall see. However, the algorithm itself

could obviously be ameliorated by exploiting the latest evo-

lutionary techniques and especially by identifying the cor-

rect parameters for the system. To this end, we designed a

graphical user interface (written in Java, like all other soft-

ware in the system) based on two main windows (Fig. 5).

The execution window allows the user to set the con-

ventional and the domain-specific parameters of the algo-

rithm. Beside the ”standard” mutation and recombination

rates, population size, and number of iterations, the key pa-

rameters (bottom left) are the hardware rate of the initial

population, the maximum hardware increase with respect

to the minimal processor (defined either as a percentage or

as an absolute number), and whether an adaptive fitness is

used (and, if not, the value of k). In addition, a sub-window

(not shown) allows the user to change the hardware costs of

the basic blocks used to evaluate the size of the processor.

The middle row of commands in the window determines

the program to which the algorithm will be applied (loaded

from a source file or generated randomly to allow faster

benchmarking) and displays the current results of the evo-

lution as numbers that correspond to the graphical display

at the top of the window. These results show the fitness

achieved by the best individual in the current population and

the hardware and performance increases for this individual.

Once the evolutionary run is completed, the results win-

dow can display various representations of the output of

the system. Firstly, the performance of the whole evolu-

tionary search can be explored visually using various two-

dimensional graphs of the optimization space from differ-

ent points of view, a feature that allows the user to estimate

the impact of the different parameters of the evolutionary

process. Another option allows the user to export the data

generated for external analysis, plotting, or reuse.

Finally, every single evolved individual can also be ana-

lyzed and displayed. The analysis shows the basic param-

eters of a given solution. The display shows the final code

after optimization, showing the discovered FUs in their uti-

lization context. Using this view, it is for example possible

to see where the blocks have been used in the code.

5.2. Operation

Fig. 6 shows the effects of the algorithm on a set of func-

tions of the FACT program, which factorizes large integers

in prime numbers. The left column shows the original code,

annotated by the profiler with the estimated number of times

each line is executed. The right-hand column shows the ef-

fect of the partitioning algorithm on these same functions.

The main result of the operation is the creation of a set

of dedicated FUs, indicated by the HW label. A set of func-

tions (HW(1) to HW(4)) represent code that has been trans-

formed into hardware. These functions usually represent

dedicated instructions that are used often in the program

and are annotated with the performance increase they al-

low, their execution time, the size of hardware required for

their implementation, and how often they are used within

the code (note that, in the figure, these numbers correspond

to the entire program and not just to the functions shown).

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

Figure 6. Sample results of partitioning.

In this case, the evolutionary algorithm has also decided

to transform an entire function (log2) in hardware and

to build a dedicated FU that implements directly the entire

function. This kind of operation is usually applied to small

functions that are executed a large numbers of times in the

program (as defined by the profiler).

Figure 7. Evolution results on various pro-
grams (mean value of 500 runs).

The results of the evolutionary run that produced the

partition shown are significant and can be quantified by

means of the estimated speedup and hardware increase.

The speedup is computed by comparing the software-only

solution to the final partition and the hardware increase rep-

resents the number of Virtex slices added to the software-

only solution to obtain the final partition. Given a maximum

hardware increase of 10% (i.e., the final processor had to be

at most 10% larger than the minimal processor, and in fact

was 8% larger in the individual shown), in this example evo-

lution was able to find a partition that provides an estimated

speedup of 227% in the execution time of the program.

5.3. Performance

To show the efficiency of our partitioning method we

tested it on two benchmark programs and several randomly-

generated ones. The size of the applications tested lies be-

tween 60 lines for the DCT program, which is an integer

direct cosine transform, and 300 lines of code for the FACT
program. The last kind of programs tested are random gen-

erated programs with different genome sizes.

Fig. 7 sums up the experiments that have been conducted

to test our algorithm. Each figure in the table represents the

mean of 500 runs. It is particularly interesting to note that

all the results were obtained in the order of a few seconds

and that the algorithm converged to very efficient solutions

during that time.

Unfortunately, even if the domain is a rich source of

literature, a direct comparison of our approach to others

seems very difficult. Indeed, the large differences that exist

in the various design environments and the lack of com-

mon benchmarking techniques (which can be explained by

the different inputs of HW/SW partitioners that may exist)

have already been identified in [12] to be a major difficulty

against direct comparisons.

Obviously, the scalability of our approach should be ver-

ified on larger programs. However, it should also be kept

in mind that our cellular arrays are meant to operate as

configurable co-processing units attached to more conven-

tional processors and as such target applications based on a

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

highly-parallel execution of computationally intensive ker-

nels of code, such as those found in scientific or multimedia

applications. These kernels, while sometimes very com-

plex, rarely require extremely large code: in this context,

to be effective in real-world applications our algorithm only

has to scale up to a relatively small program size.

6. Conclusions and future work

In this article we presented an approach to the co-

evolution of program code and processor architecture. Stud-

ied to be included within a design environment for bio-

inspired systems, the approach reflects rather accurately the

co-evolution of cells and genomes in biological systems and

is quite efficient for the design of custom processors.

In particular, we presented the results we obtained by ap-

plying an evolutionary algorithm to the co-design of a Move
processor and of the code it has to execute. These results,

valuable in themselves, must also be regarded in the context

of the development of a research tool. Elements such as

a versatile user interface to allow the exploration of evolu-

tionary parameters and the annotation of results to increase

their interpretability represent then important outcomes of

our research.

The next phase of our research aims at integrating the al-

gorithm into a working design environment, relaxing some

of the restrictions currently imposed on the programs to be

co-evolved and streamlining the process of generating the

VHDL code that implements the cellular processors. In a

second stage, we will examine the complex issues associ-

ated with the design of complex arrays of communicating

processors to identify other areas where evolution can be

usefully exploited for the design of bio-inspired hardware.

References

[1] M. Arnold and H. Corporaal. Designing domain-specific

processors. In Proceedings of the 9th International Work-
shop on Hardware/Software Codesign, pages 61–66, Copen-

hagen, April 2001.

[2] V. Catania, M. Malgeri, and M. Russo. Applying fuzzy logic

to codesign partitioning. In IEEE Micro, 1997.

[3] H. Corporaal. Microprocessor Architectures : from VLIW to
TTA. Wiley and Sons, 1997.

[4] R. P. Dick and N. K. Jha. MOGAC: a multiobjec-

tive genetic algorithm for hardware-software cosynthesis

of distributed embedded systems. IEEE Transacations on
Computer-Aided Design of Integrated Circuits and Systems,

17(10):920–935, October 1998.

[5] P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli. System level

hardware/software partioning based on simulated annealing

and tabu search. Design Automation for Embedded Systems,

2:5–32, 1997.

[6] R. Ernst, J. Henkel, and T. Benner. Hardware-software

cosynthesis for microcontrollers. In IEEE. Design & Test
of Computers, pages 64–75, December 1993.

[7] R. Gupta and G. D. Micheli. System-level synthesis using

re-programmable components. In Proc. European Design
Automation Conference, pages 2–7, August 1992.

[8] J. Harkin, T. M. McGinnity, and L. Maguire. Genetic algo-

rithm driven hardware-software partitioning for dynamically

reconfigurable embedded systems. Microprocessors and Mi-
crosystems, 25(5):263–274, August 2001.

[9] J. Henkel and R. Ernst. High-level estimation techniques for

usage in hardware/software co-design. In ASP-DAC, pages

353–360, 1998.
[10] J. Hoogerbrugge and H. Corporaal. Transport-triggering vs.

operation-triggering. In International Conference on Com-
piler Construction, Edinburgh, 1994.

[11] J. Hou and W. Wolf. Process partitioning for distributed em-

bedded systems. In Fourth International Workshop on Hard-
ware/Software codesign, pages 70–76, March 1996.

[12] M. López-Vallejo and J. C. López. On the hardware-

software partitioning problem: System modeling and par-

titioning techniques. ACM Transactions on Design Automa-
tion of Electronic Systems, 8(3), July 2003.

[13] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. To-

wards robust integrated circuits: The embryonics approach.

Proceedings of the IEEE, 88(4):516–541, 2000.
[14] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Em-

bryonic machines that divide and differentiate. In Proc. 1st
Int. Workshop on Biologically Inspired Approaches to Ad-
vanced Information Technology (BioADIT04), 2004.

[15] H. Oudghiri and B. Kaminska. Global weighted schedul-

ing and allocation algorithms. In European Conference on
Design Automation, pages 491–495, March 1992.

[16] H. Pearson. The regeneration gap. Nature, (414):388, 2001.
[17] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware

software partitioning with integrated hardware design space

exploration. pages 28–35, Paris, France, 1998.
[18] G. Tempesti, D. Mange, and A. Stauffer. A robust

multiplexer-based fpga inspired by biological systems. Jour-
nal of Systems Architecture, 43(10):719–733, 1997.

[19] G. Tempesti, P.-A. Mudry, and R. Hoffmann. A move

processor for bio-inspired systems. In NASA/DoD Confer-
ence on Evolvable Hardware (EH05), pages 262–271, Los

Alamitos, June 2005. IEEE Computer Society Press.
[20] F. Vahid and D. Gajski. Incremental hardware estima-

tion during hardware/software functional partitioning. IEEE
Transactions on VLSI Systems, 3(3):459–464, September

1995.
[21] F. Vahid, J. Gong, and D. Gajski. A binary-constraint

search algorithm for minimizing hardware during hard-

ware/software partitioning. In Proc. EURODAC, pages 214–

219, 1994.
[22] T. Wiangtong. Hardware/Software Partitioning And

Scheduling For Reconfigurable Systems. PhD thesis, Impe-

rial College London, February 2004.
[23] T. Wiangtong, P. Y. Cheung, and W. Luk. Comparing

three heuristic search methods for functional partitioning in

hardware-software codesign. Design Automation for Em-
bedded Systems, 6(4):425–449, July 2002.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

