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Abstract. A left ample semigroup is a semigroup with a unary operation +

which has a (2, 1)-algebra embedding into a symmetric inverse monoid I(X),
the operation + on I(X) being defined by α+ = αα−1. We consider some
analogues for left ample semigroups of results on E-unitary covers of inverse
semigroups due to McAlister and Reilly. The analogue of an E-unitary cover
is a proper cover, and we discuss the construction of proper covers in terms
of relational homomorphisms, and of dual prehomomorphisms. We observe
that our construction gives an E-dense proper cover for an E-dense left ample
semigroup. We also consider proper covers constructed from strict embeddings
into factorisable left ample monoids. In contrast to the inverse case, not all
proper covers arise in this way. However, in the E-dense case, we characterise
those E-dense proper covers which can be constructed from such embeddings.

Introduction

On an inverse semigroup S, we define a unary operation + by a+ = aa−1 for
a ∈ S thus making S into a (2, 1)-algebra. Of course, S also has the unary
operation −1, but this will not play a significant role in the paper.

A left ample semigroup can now be defined to be a semigroup S with a unary
operation + such that there is a (2, 1)-algebra embedding of S into an inverse
monoid. As usual, E(S) denotes the set of idempotents of S. It is immediate
from the definition that, in a left ample semigroup, the idempotents commute
with each other, and so E(S) is a subsemilattice of S. It is also clear that every
inverse semigroup is a left ample semigroup with the operation + defined as above.

Since left ample semigroups are (2, 1)-algebras, the homomorphisms and sub-
algebras etc. with which we shall be most concerned are those associated with the
class of (2, 1)-algebras. To emphasise this point we shall sometimes use the terms
+-homomorphism and +-subsemigroup, etc. In the case of inverse semigroups,
all semigroup homomorphisms are +-homomorphisms, and inverse subsemigroups
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are +-subsemigroups. We shall also use the following notation: if A is a subset
of a left ample semigroup S, then A+ denotes the set {a+ : a ∈ A}.

On a left ample semigroup S, there is a least congruence σ such that S/σ is
a right cancellative monoid. We say that S is proper if for all elements a and
b of S such that a+ = b+ and aσb, we have a = b. It is well known that an
inverse semigroup is proper if and only if it is E-unitary (see, for example, [7,
Proposition 5.9.1]). Example 3 of [3] shows that the corresponding statement
does not hold for left ample semigroups.

Let S be a left ample semigroup and T be a right cancellative monoid. We
say that a left ample semigroup P is a proper cover of S (over T ) if P is proper
and there is a surjective +-homomorphism α from P onto S which maps E(P )
isomorphically onto E(S) (and is such that P/σ ∼= T ). The existence of proper
covers for right ample monoids was established in [3]; the result is easily extended
to the semigroup case, and of course, the left ample results are simply the duals.
These results are analogues of the corresponding well known covering theorem
for inverse semigroups (see, for example [7, Section 5.9] or [9, Section 2.2]).

We relate proper covers to certain relational morphisms in Section 1. We follow
this in Section 2 by first recalling the notion of a weakly left ample semigroup,
and then constructing such a semigroup C(S) from a left ample semigroup S.
The elements of C(S) are certain order ideals of S which we call compatible
order ideals. This is an analogue (but not a generalisation) of a construction in
inverse semigroup theory. In Section 3, we use C(S) to obtain an analogue of
one of the results of McAlister and Reilly, namely we show that proper covers
of S over a right cancellative monoid T all arise from and give rise to a dual
prehomomomorphism from T into C(S).

An inverse monoid F with group of units G is factorisable if every element of
F can be written as a product of a unit and an idempotent. An embedding ϕ of
an inverse semigroup S into a factorisable inverse monoid F is strict if for each
g ∈ G, there is an element s of S such that sϕ 6 g. McAlister and Reilly [12]
showed that such an embedding gives rise to an E-unitary cover of S over G,
and conversely that every E-unitary cover is isomorphic to one constructed in
this way. The situation is more complicated in the case of left ample semigroups.
We recall the notion of factorisable left ample monoid in Section 4 and point
out that every left ample semigroup can be strictly embedded in such a monoid.
It is straightforward to show that such embeddings give rise to proper covers.
However, the converse is not true as we see in the final section, which is devoted
to E-dense left ample semigroups. The existence of proper E-dense left ample
covers for such semigroups was noted in [5]. We show that an E-dense left ample
semigroup S can be strictly embedded in a factorisable inverse monoid, and that
the proper cover that arises from such an embedding is E-dense. Not every
E-dense proper cover arises from a strict embedding into a factorisable inverse
monoid, and we intoduce the concept of an even cover to characterise those which
do so arise.
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1. Relational Morphisms, Prehomomorphisms and Proper Covers

We start with some elementary properties of left ample semigroups which will
be used without further mention. Proofs can be found in [4] or [6]

Lemma 1.1. Let S be a left ample semigroup. If a, b, c ∈ S, then

(1) (a+b)+ = a+b+,
(2) a+a = a,
(3) ac = bc implies ac+ = bc+,
(4) a+ = (abc)+ implies a+ = (ab)+,
(5) aσb if and only if ea = eb for some idempotent e.

A relational morphism τ :S−→◦ T of left ample semigroups S and T is a rela-
tional morphism of (2, 1)-algebras, that is, τ maps S to 2T and, for all s, s1, s2 ∈ S,
we have

(1) sτ 6= ∅,
(2) (sτ)+ ⊆ s+τ ,
(3) (s1τ)(s2τ) ⊆ (s1s2)τ .

If S and T are monoids, we also require

(4) 1 ∈ 1τ .

These conditions ensure that the graph of τ , which we denote by gr(τ), is a (2, 1)-
subalgebra of the direct product S × T , and that the projection of gr(τ) to S is
surjective. In particular, gr(τ) is a left ample subsemigroup of S × T .

If S and T are inverse semigroups, then we require

(5) (sτ)−1 = s−1τ

where X−1 = {x−1 : x ∈ X} for X ⊆ T .
Notice that (5) and (3) together give (2).
We say that τ is surjective if the projection to T is surjective. In this case,

gr(τ) is a subdirect product of S and T ; moreover, we also have a surjective
relational morphism τ−1 :T −→◦ S given by tτ−1 = {s ∈ S : t ∈ sτ}, and, clearly,
(τ−1)−1 = τ .

Examples of relational morphisms between left ample semigroups are given
by +-homomorphisms, and inverses of surjective +-homomorphisms. It is easy
to verify that composing relational morphisms gives a relational morphism. For
example, if R, S, T are left ample semigroups and α : R → S, β : R → T are
+-homomorphisms with α surjective, then the composite α−1β is a relational
morphism from S to T . In fact, all relational morphisms arise in this way, for
given τ :S−→◦ T , we may take R to be gr(τ), and α and β to be the projections
to S and T respectively; then τ = α−1β.

Let S be a left ample semigroup and T be a right cancellative monoid. We
note that 1T ∈ eτ for every idempotent e of S. For, eτ is not empty, and if
t ∈ eτ , then 1T = t+ ∈ (eτ)+ ⊆ eτ . We say that a surjective relational morphism
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τ :S−→◦ T is (left) proper if for all a, b ∈ S,

aτ ∩ bτ 6= ∅ implies a+b = b+a.

We remark that a proper relational morphism τ :S−→◦ T is idempotent pure in
the sense that if 1T ∈ aτ , then a is idempotent. For, we also have 1T ∈ a+τ and
so we get (a+)+a = a+a+, that is, a = a+. When S is inverse and T is a group,
being proper is equivalent to being idempotent pure as shown in the next lemma.

Lemma 1.2. Let τ :S−→◦ G be a relational morphism from an inverse semigroup
to a group G. Then τ is proper if and only if it is idempotent pure.

Proof. We have already noted that if τ is proper, then it is idempotent pure.
For the converse, suppose that τ is idempotent pure, that a, b ∈ S and that
aτ ∩ bτ 6= ∅. Let g ∈ aτ ∩ bτ . Then g−1 ∈ (aτ)−1 ∩ (bτ)−1 = a−1τ ∩ b−1τ and
hence 1 = g−1g ∈ (a−1τ)(bτ) ⊆ (a−1b)τ . Similarly, 1 is in (ab−1)τ so that a−1b
and ab−1 are idempotent. By [9, Lemma 1.4.12], we have aa−1b = bb−1a and
ab−1b = ba−1a so that τ is left and right proper. �

We now show how relational morphisms are related to proper covers. Let the
left ample semigroup P be a proper cover of the left ample semigroup S over a
right cancellative monoid T . Then we have surjective homomorphisms α and β:

P

S

α
?

T

β
-

where the restriction of α to E(P ) is an isomorphism from E(P ) onto E(S), and
ββ−1 = σ, the least right cancellative congruence on P . The condition on α is
equivalent to α being idempotent separating.

For emphasis, we record the following elementary fact as a lemma.

Lemma 1.3. If p, q ∈ P are such that pα = qα and pβ = qβ, then p = q.

Proof. We have p+ = q+ since α is an idempotent separating +-homomorphism.
Also pβ = qβ gives pσq, and hence p = q since P is proper. �

Proposition 1.4. Let P be a proper cover of S over T as above. Then the
relational morphism τ = α−1β is proper and P ∼= gr(τ).

Conversely, if τ :S−→◦ T is a proper surjective relational morphism, then gr(τ)
is a proper cover of S over T .

Proof. Let P be a proper cover. Then the mapping θ : P → gr(τ) given by
pθ = (pα, pβ) is clearly a surjective +-homomorphism. By Lemma 1.3, it is
injective, and thus P ∼= gr(τ).

To see that τ is proper, suppose that aτ ∩ bτ 6= ∅, for some a, b ∈ S. Then
there are elements p, q ∈ P such that pα = a, qα = b and pβ = qβ. Thus pσq
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so that q+pσp+q. But (q+p)+ = q+p+ = (p+q)+, so that q+p = p+q since P is
proper. Applying α gives b+a = a+b.

For the converse, suppose that τ : S−→◦ T is a surjective proper relational
morphism, and let α : gr(τ) → S, β : gr(τ) → T be the projections. Since
E(gr(τ)) = {(e, 1) : e ∈ E(S)}, it is clear that α is idempotent separating.

Since T is right cancellative, so is Im β, and so we have σ ⊆ β−1β. Conversely,
if (a, t), (b, u) ∈ gr(τ) and (a, t)β = (b, u)β, then t = u so that aτ ∩ bτ 6= ∅, and
hence a+b = b+a. Thus (a+b+, 1)(a, t) = (a+b+, 1)(b, u) so that (a, t)σ(b, u) and
so σ = β−1β.

Now let (a, t), (b, u) ∈ gr(τ) be such that (a, t)+ = (b, u)+ and (a, t)σ(b, u), that
is, (a+, 1) = (b+, 1) and t = (a, t)β = (b, u)β = u. As in the preceding paragraph,
a+b = b+a, and since a+ = b+, we have a = b, so that (a, t) = (b, u) and gr(τ) is
proper. �

It follows from the proposition that finding all proper covers of a left ample
semigroup S over a right cancellative monoid T is equivalent to finding all surjec-
tive proper relational morphisms S−→◦ T , or to finding all surjective relational
morphisms ρ : T −→◦ S which satisfy:

a, b ∈ tρ implies a+b = b+a.

Such relational morphisms ρ will also be called proper.
This parallels the case for certain covers of regular semigroups [1] and E-unitary

covers of inverse semigroups [12]. In these cases, the monoid T is replaced by a
group G and one is interested in idempotent pure surjective relational morphisms
τ :S−→◦ G and their inverses τ−1 :G−→◦ S.

In the inverse case, the associated covers can be described in terms of preho-
momorphisms from S into the inverse monoid of all cosets of subgroups of G [12].
For each s ∈ S, the subset sτ is a coset of G; in the left ample case, however, the
subsets sτ of T do not appear to enjoy any corresponding property, and so we do
not have analogues of these particular results.

The surjective relational morphisms from G to S and their associated covers
are described in [12] in terms of dual prehomomorphisms from G to the inverse
monoid of all permissible subsets of S. There are analogous results for the left
ample case which we describe in the following sections.

2. compatible subsets

Let S be a left ample semigroup. We construct a semigroup C(S) and an
embedding from S into C(S); the elements of C(S) are certain subsets of S. As
we shall see, C(S) is a weakly left E-ample semigroup, and so we now explain
what such a semigroup is.

Let S be a semigroup, E(S) its set of idempotents, and E a subset of E(S).
Suppose that E is a commutative subsemigroup of S such that every element of
S has a left identity in E. Then the relation 6 on S defined by a 6 b if and
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only if a = eb for some e ∈ E is a partial order on S which extends the natural
semilattice order on E. When E = E(S), we refer to 6 as the natural partial
order on S.

We say that S is left E-semiadequate if, for each a ∈ S, there is a minimum
(in the semilattice order on E) left identity a+ of a in E. It is easy to see that in
such a semigroup, a 6 b if and only if a = a+b.

If S is left E-semiadequate and also satisfies the following two conditions for
all elements a, b of S and all idempotents e in E, then it is weakly left E-ample:

(1) (ab)+ = (ab+)+,
(2) ae = (ae)+a.

An elementary property of weakly left E-ample semigroups, which will be used
frequently without further mention, is given in the next lemma.

Lemma 2.1. Let S be a weakly left E-ample semigroup. Then for all elements
a of S and idempotents e in E,

(ea)+ = ea+.

For further information about weakly left E-ample semigroups see [8] and [6].
In particular, if S is a left ample semigroup, then it follows from Lemma 1.1 that
a+ is the minimum left identity of a in S, and that as a (2,1)-algebra, S is weakly
left E-ample with E = E(S).

Let S be a left ample semigroup. We say that a nonempty subset A of S is
compatible if it satisfies the following condition:

(C) if a, b ∈ A, then a+b = b+a.

Note that condition (C) is equivalent to the existence of a greatest lower bound
c of a and b with c+ = a+b+. For, if such a bound exists, then c 6 a, b so that

c = c+a = c+b = b+a = a+b.

Conversely, if condition (C) holds, then certainly a+b is a lower bound of a and
b, and if d 6 a, b, then d = d+a = d+b so that d = d+a = d+a+a = d+a+b, that is,
d 6 a+b. Hence a+b is the greatest lower bound of a and b; also (a+b)+ = a+b+

by Lemma 2.1.
It follows from this observation and Lemma 1.11 of [9] that, in an inverse semi-

group, a compatible subset (in our sense) is a subset in which any two elements
are left compatible.

We now define C(S) to be the set of all compatible order ideals of S. We caution
the reader that our notation does not agree with that of inverse semigroup theory,
and that the results we obtain are analogues of those in inverse semigroup theory
rather than generalisations. We start by giving a weak analogue of a result of
Schein [14] (see also [9]) on the semigroup structure of C(S).

Observe that E(S) is a member of C(S). Indeed, any order ideal of E(S)
belongs to C(S). Also, every principal order ideal of S is in C(S). For, let
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[a] = {b ∈ S : b 6 a}. Certainly, [a] is an order ideal. If b, c ∈ [a], then b = ea
and c = fa for some idempotents e, f so that

b+c = (ea)+c = ea+fa = fa+ea = (fa)+b = c+b.

The following easy lemma will be useful.

Lemma 2.2. Let S be a left ample semigroup, and let A be a compatible subset
of S. If a, a+ ∈ A, then a = a+.

Proof. By definition, a = a+a = (a+)+a = a+a+ = a+. �

Defining ι :S → C(S) by ι(s) = [s], we give the main properties of C(S) in the
following result.

For any subset A of S, let A+ = {a+ : a ∈ A}. Let E be the set of order ideals
of E(S).

Proposition 2.3. Let S be a left ample semigroup, and let E be the set of all
order ideals of E(S). Then, under multiplication of subsets, C(S) is a weakly left
E-ample semigroup with left identity E(S), the map ι : S → C(S) is an injective
+-homomorphism and, for every member A of C(S), there is an element a ∈ S
such that ι(a) 6 A.

Proof. Let A,B ∈ C(S). If a ∈ A, b ∈ B and c 6 ab, then c = c+ab. Now
c+a ∈ A since A is an order ideal, and so c ∈ AB.

To see that AB is compatible, let x = ab, y = cd ∈ AB where a, c ∈ A and
b, d ∈ B. Now AE(S) ⊆ A, because if a ∈ A and e ∈ E(S), then ae = (ae)+a 6 a.
Hence ab+, cd+ ∈ A, and so

x+cd+ = (ab)+cd+ = (ab+)+cd+ = (cd+)+ab+ = (cd)+ab+ = y+ab+.

Thus

x+y = x+cd = x+cd+d = y+ab+d = y+ad+b

= y+(ad+)+ab = (ad+)+y+x

6 y+x.

Similarly, y+x 6 x+y and so x+y = y+x as required. Thus C(S) is closed and
hence a semigroup.

That E(S) is a left identity of C(S) follows from the facts that S is left ample,
and the members of C(S) are order ideals.

We know that E ⊆ C(S), and clearly, members of E are idempotents. If
A ∈ C(S), define A+ to be the set {a+ : a ∈ A}. Clearly, A+ ⊆ E(S). If
a+ ∈ A+ and e ∈ E(S) with e 6 a+, then e = ea+ = (ea)+. As ea ∈ A, we have
e ∈ A+, and A+ is an order ideal of E(S). Hence A+ ∈ E.

Clearly, A+A = A. If F ∈ E and FA = A, let a ∈ A. Then a = fa for some
f ∈ F so that a+ = (fa)+ = fa+. Hence a+ 6 f , and so a+ ∈ F . Thus A+ ⊆ F
and consequently A+ 6 F in the natural partial order on E.
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Thus C(S) is weakly left E-adequate.
We now show that the natural partial order on C(S) coincides with inclusion.

Let A,B ∈ C(S). If A 6 B, then A = FB for some F ∈ E, and so A ⊆ B since
B is an order ideal of S. Now suppose that A ⊆ B. Then A = A+A ⊆ A+B.
If x ∈ A+B, then x = a+b for some a ∈ A and b ∈ B. Since a, b ∈ B, we have
a+b = b+a 6 a so that a+b ∈ A and we have A+B = A.

Next, we show that the two defining conditions for C(S) to be weakly left ample
hold. Let A,B ∈ C(S). Since (BA+)+BA = (BA+)+BA+A = BA+A = BA,
we have (BA)+ 6 (BA+)+. On the other hand, if e ∈ (BA+)+, then e = (ba+)+

for some b ∈ B, a ∈ A. As S is left ample, (ba+)+ = (ba)+ ∈ (BA)+ and
consequently, (BA)+ = (BA+)+.

If F ∈ E, and x ∈ AF , then, for some a ∈ A, f ∈ F , we have x = af =
(af)+a ∈ (AF )+A so that AF ⊆ (AF )+A, that is, AF 6 (AF )+A. Thus
AF = (AF )+((AF )+A) = (AF )+A.

It is easy to check that ι is an injective +-homomorphism; furthermore, if
A ∈ C(S) and a ∈ A, then clearly, ι(a) 6 A. �

3. dual prehomomorphisms and covers

Let S and T be left ample semigroups. A function θ : S → T is a dual
prehomomorphism if , for all a, b ∈ S,

(ab)θ > (aθ)(bθ) and a+θ > (aθ)+.

Let S be a left ample semigroup, and T be a left cancellative monoid. In
this section, we give conditions in terms of dual prehomomorphisms from T into
C(S) for the existence of proper covers of S over T , obtaining an analogue of
[12, Theorem 4.5]. To be more precise, we prove the following theorem which is
a consequence of Propositions 1.4, 3.2 and 3.3. Note that we identify s ∈ S with
its image ι(s) in C(S).

Theorem 3.1. Let θ :T → C(S) be a dual prehomomorphism such that, for each
s ∈ S, there exists t ∈ T with s 6 tθ. Then {(t, s) ∈ T × S : s 6 tθ} is a proper
cover of S over T . Conversely, every proper cover of S over T has this form for
some dual prehomomorphism θ of T into C(S).

First, we show that dual prehomomorphisms give rise to proper covers.

Proposition 3.2. Let S be a left ample +-subsemigroup of a weakly left E-
ample semigroup C such that for every element c ∈ C there exists a ∈ S such
that a 6 c. Let T be a left cancellative monoid, and suppose that θ :T → C is a
dual prehomomorphism and define a relation τ between T and S by the rule

tτ = {s ∈ S : s 6 tθ}.

Then τ is a proper relational morphism, and it is surjective if and only if for each
s ∈ S, there exists t ∈ T such that s 6 tθ.
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Proof. Certainly, tτ 6= ∅ for every t ∈ T , and it is straightforward to verify that
(t1τ)(t2τ) ⊆ (t1t2)τ for all t1, t2 ∈ T .

If a ∈ tτ , then a 6 tθ, and so a = a+(tθ). Hence

a+ = (a+(tθ))+ = a+(tθ)+ 6 (tθ)+ 6 t+θ = 1θ,

so that a+ ∈ t+τ and (tτ)+ ⊆ t+τ .
Thus τ is a relational morphism. It is proper because, if a, b ∈ tτ for some

t ∈ T , then a = a+(tθ) and b = b+(tθ) so that b+a = a+b as required.
The assertion about surjectivity is clear. �

We now show that there is a dual prehomomorphism associated with each
proper cover of a left ample semigroup S over a right cancellative monoid T (or
what amounts to the same thing, with each proper surjective relational morphism
from T to S).

Proposition 3.3. Let S be a left ample semigroup, and T be a left cancellative
monoid. If τ : T −→◦ S is a proper surjective relational morphism, then tτ is a
compatible order ideal of S for each t in T , and the function θ :T → C(S) defined
by tθ = tτ is a dual prehomomorphism with the property that, for each s ∈ S,
there exists t ∈ T with s 6 tθ. Moreover,

gr(τ) = {(t, s) ∈ T × S : s 6 tθ}.

Proof. We claim that 1τ = E(S). For, if a ∈ 1τ , then also a+ ∈ 1τ , and, as τ is
proper, we have (a+)+a = a+a+ so that a = a+ ∈ E(S). If e ∈ E(S), then since
τ is surjective, e ∈ tτ for some t, and so e = e+ ∈ (tτ)+ ⊆ t+τ = 1τ , proving the
claim.

Now, if a ∈ tτ for some t and b 6 a, then b = b+a ∈ (1τ)(tτ) ⊆ tτ so that tτ
is an order ideal; it is compatible since τ is proper.

Thus tθ ∈ C(S) and it is clear that θ is a dual prehomomorphism. Further,
since τ is surjective, θ has the claimed property by Proposition 3.2. The final
assertion is also clear in view of the definition of θ. �

4. Factorisable left ample monoids

Dualising the notion of factorisable right ample monoid [2], we say that a left
ample monoid F is factorisable if F = ET where E = E(F ) and T is the R∗-class
of the identity. Note that T is a right cancellative submonoid of F . We say that
F is c-factorisable if every element of T is cancellable (in F ). Observe that if T
is actually a group, then it must be the H -class of the identity. In this case, an
element of F can be written as eg for some e ∈ E and unit g of F ; clearly, g−1e
is an inverse of eg and so F is an inverse monoid. For emphasis, we record this
observation in the following lemma.

Lemma 4.1. Let F = ET be a factorisable right ample monoid. If T is a group,
then F is inverse.
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A +-embedding θ of a left ample semigroup S in a factorisable left ample
monoid F = ET is strict if for each element t of T , there is an element s ∈ S
such that sθ 6 t. We start by showing that, for any left ample semigroup S, such
an embedding exists and that it gives rise to a proper cover of S over T .

Lemma 4.2. If S is a left ample semigroup, then there is a strict +-embedding
of S into a c-factorisable left ample monoid.

Proof. By Proposition 1.2 of [3], there is a +-embedding ψ of S into an inverse
semigroup I. By [9, Theorem 2.2.3], I can be embedded into a factorisable inverse
monoid J ; let ϕ be this embedding. Then ϕ is a +-embedding, and so θ = ψϕ is
a +-embedding of S into J .

Let H be the group of units of J and put

T = {t ∈ H : sθ 6 t for some s ∈ S}.

Since the natural order is compatible, T is a submonoid of H . Now put

F = {x ∈ J : x 6 t for some t ∈ T}.

Then F is a full submonoid of J and hence it is left ample. The elements of T
are the cancellable elements in F so that F is c-factorisable. Clearly, Sθ ⊆ F
and θ : S → F is a strict +-embedding. �

Proposition 4.3. Let S be a left ample semigroup, and θ : S → F = ET be a
strict +-embedding of S into a factorisable left ample monoid. If

P = {(s, t) : sθ 6 t},

then P is a +-subsemigroup of S × T , and is a proper cover of S over T .

Proof. Define τ : S−→◦ T by sτ = {t ∈ T : sθ 6 t}. Then sτ 6= ∅ for all
s ∈ S since F is factorisable. If e ∈ E(S), then eθ 6 1, so 1 ∈ eτ . Hence
(sτ)+ = {1} ⊆ s+τ . Compatibility of the natural order gives (aτ)(bτ) ⊆ (ab)τ
for a, b ∈ S so that τ is a relational morphism. It is surjective since θ is a strict
embedding.

Finally, if t ∈ rτ ∩ sτ , then rθ 6 t and sθ 6 t so that rθ = (r+θ)t and
sθ = (s+θ)t. Hence

(r+s)θ = (r+θ)(sθ) = (r+θ)(s+θ)t = (r+s+)θt = (s+r)θ

and so r+s = s+r.
Thus τ is a proper relational morphism, and so, by Proposition 1.4, P is a

proper cover of S over T . �

By virtue of Lemma 4.2 and Proposition 4.3, every left ample semigroup has a
proper cover which arises from a strict embedding into a c-factorisable left ample
monoid. McAlister and Reilly [12] (see also [9]) show that all E-unitary covers
of an inverse semigroup arise from strict embeddings into factorisable inverse
monoids, but as we shall see in the next section, the analogue for left ample
semigroups does not hold.
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5. E-dense left ample semigroups

We have been unable to determine necessary and sufficient conditions for a
proper cover of a left ample semigroup to be (isomorphic to) a proper cover
which arises from a strict embedding. We now consider the question for E-dense
proper covers of E-dense left ample semigroups.

Recall that a semigroup S is E-dense if for all a ∈ S, there is an element b ∈ S
such that ba is idempotent. From [13], we have

Lemma 5.1. The following conditions are equivalent for a semigroup S with set
of idempotents E(S).

(1) S is E-dense;
(2) for all a ∈ S, there is an element c ∈ S such that ac ∈ E(S);
(3) for all a ∈ S, there is an element d ∈ S such that ad, da ∈ E(S);
(4) for all a ∈ S, there is an element x ∈ S such that xax = x.

For E-dense left ample semigroups, we have a stronger version of Lemma 4.2.

Proposition 5.2. If S is an E-dense left ample semigroup, then there is a strict
+-embedding of S into a factorisable inverse monoid.

Proof. We use the strict +-embedding θ : S → F of Lemma 4.2. Since F is a
c-factorisable left ample monoid, it is enough to show that it is inverse, and, by
Lemma 4.1, this follows if we show that T (the set of cancellable elements of F )
is a subgroup of the group H of units of J .

Let t ∈ T so that sθ 6 t for some s ∈ S. Let r ∈ S be such that sr is
idempotent, and let u ∈ T be such that rθ 6 u. Then sθ = et and rθ = fu for
some idempotents e, f in F . Since F is left ample, we have

(etf)+etu = etfu = (sθ)(rθ) = (sr)θ

so that (sr)θ 6 tu. Since sr is idempotent, (sr)θ = (sr)θtu and so (sr)θ(tu)−1 =
(sr)θ where (tu)−1 is the inverse of tu inH . But (sr)θ 6 (tu)−1 implies (tu)−1 ∈ T
and so t−1 = u(tu)−1 ∈ T and T is a subgroup of H . �

Let S be a left ample semigroup, and θ :S → F = ET be a strict +-embedding
of S into a factorisable left ample monoid. We now show that if the proper cover
P arising from the embedding is E-dense, then F is inverse.

Lemma 5.3. If P is E-dense, then F is inverse.

Proof. By [5, Lemma 1.6], P/σ is a group, but it follows from Propositions 1.4
and 4.3 that P/σ ∼= T , so by Lemma 4.1, F is inverse. �
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Let S be an E-dense left ample semigroup, and let M be a proper E-dense left
ample cover of S over a group G with surjective homomorphisms α and β:

M

S

α
?

G

β
-

with α|E(M) an isomorphism from E(M) onto E(S), ββ−1 = σ and τ = α−1β.
We say that M is an even cover of S over G if for all s ∈ S,

g, h ∈ sτ implies gh−1 ∈ s+τ.

Note that the defining condition is equivalent to asserting that eτ is a subgroup
for every idempotent in S and that sτ is contained in a right coset of s+τ for every
s ∈ S. First, we show that a proper cover constructed from a strict embedding
into a factorisable inverse monoid is an even cover.

Proposition 5.4. Let θ :S → F be a strict embedding of an E-dense left ample
semigroup S into a factorisable inverse monoid F , and let P be the proper cover
arising from the embedding. Then P is E-dense and even. Moreover, if S is
inverse, so is P .

Proof. Since P/σ ∼= G is a group, it follows from Lemma 1.6 of [5] that P is
E-dense.

If g, h ∈ sτ , then sθ 6 g, h so that sθ = xg = yh for some idempotents x, y ∈ F .
In fact, x = y = (sθ)+ = s+θ. Hence (s+θ)gh−1 = s+θ, that is, s+θ 6 gh−1 and
so gh−1 ∈ s+τ .

If S is inverse, the construction is that of McAlister and Reilly, and so by [12,
Proposition 1.3], P is inverse. �

Now let M be any E-dense even cover of S over a group G. Our aim is to show
that M arises from a strict embedding into a factorisable inverse monoid. Our
proof is inspired by that of McAlister and Reilly for [12, Theorem 1.7] although
there are considerable differences in detail.

Put E = E(S), and define a relation ∼ on E ×G by

(e, g) ∼ (f, h) if and only if e = f and gh−1 ∈ eτ.

Note that ∼ is an equivalence relation since eτ is a subgroup for each e ∈ E.
We know that α maps E(M) isomorphically onto E; for e ∈ E, we write e

for the idempotent in M such that eα = e. Let s ∈ S and (e, g) ∈ E × G. We
say that (e, g) is s-accessible if there are elements n,m ∈ M such that mα = s,
nβ = g and e = n+ = (nm)+. Note that n is uniquely determined by these
conditions since M is proper. Also, if p ∈ sα−1, then

(np)+α = ((np)α)+ = ((nm))α)+ = (nm)+α

so that (np)+ = (nm)+, and hence the s-accessibility of (e, g) is independent of
the choice of m.
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Next, we note that for any s ∈ S, the pair (s+, 1) is s-accessible. For the
defining condition, we can take n = m = s+.

Now suppose that (e, g) is s-accessible and that (e, g) ∼ (e, h). Then hg−1 ∈ eτ ,
and there are elements m,n ∈M with mα = s and e = n+ = (nm)+, and nβ = g.
Let y ∈ M be such that yα = e and yβ = hg−1. Then (yn)β = hg−1g = h. Also
(yn)α = (yα)(nα) = (n+α)(nα) = nα, so (yn)+α = n+α whence (yn)+ = n+.
Similarly, (ynm)+ = (nm)+. Hence the ∼-equivalence class of (e, g), which we
denote by [e, g], consists of s-accessible pairs.

Now let
Z = (E ×G)/∼ ⊔ G

be the disjoint union of the set of ∼-equivalence classes and G. For each s ∈ S,
define a subset Us of (E ×G)/∼ by

Us = {[e, g] : (e, g) is s-accessible}.

Let g ∈ sτ . Define a partial function θs on Z with domain Us by

[e, u]θs = [e, ug].

To see that θs is well defined, let [e, u] = [e, v] ∈ Us and g, h ∈ sτ . Then
uv−1 ∈ eτ so that there is an element y ∈M with yα = e and yβ = vu−1. Since
(e, u) is s-accessible, there is an element n ∈M with nβ = u and e = n+ = (nm)+

for all m ∈ sα−1. Let p, q ∈ sα−1 be such that pβ = g and qβ = h.
Then (np)β = ug and (ynq)β = vu−1uh = vh. Also

(ynq)α = (yα)(nα)s = (n+α)(nα)s = (nα)s = (np)α,

and hence ug, vh ∈ ((nα)s)τ . Since M is even, (ug)(vh)−1 ∈ ((nα)s)+τ . But,
((nα)s)+ = ((np)+)α = (np)+α = e. Thus (e, ug) ∼ (e, vh), and θs is well
defined.

We claim that θs is one-one. Suppose that [e, u], [f, v] ∈ Us and that [e, u]θs =
[f, v]θs. Then [e, ug] = [f, vg] so that e = f and uv−1 = ug(vg)−1 ∈ eτ whence
[e, u] = [f, v].

Let IZ be the symmetric inverse monoid on Z.

Lemma 5.5. The mapping θ :S → IZ given by sθ = θs is a +-embedding.

Proof. First, for elements r, s ∈ S, we show that Dom θrθs = Dom θrs = Urs. If
[e, u] ∈ Dom θrθs, then certainly [e, u] ∈ Ur and [e, ug] ∈ Us for g ∈ rτ . Hence if
m ∈ rα−1 with mβ = g, and n ∈ sα−1, there exist m1, m2 ∈M such that

e = m+
1 = (m1m)+ = m+

2 = (m2n)+

and m1β = u and m2β = ug = u(mβ). Now (m1m)β = m2β so that (m1m)σm2,
and since (m1m)+ = m+

2 and M is proper, we have m1m = m2.
Since ((m1m)n)+ = m+

1 = e and (mn)α = rs, it follows that [e, u] ∈ Urs.
On the other hand, if [e, u] ∈ Urs, then there is an element p in M such

that e = p+ = (pmn)+ and pβ = u. By Lemma 1.1, p+ = (pm)+ and so
[e, u] ∈ Ur. Moreover, [e, u]θr = [e, u(mβ)], so that since e = (pm)+ = ((pm)n)+
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and (pm)β = u(mβ), we have [e, u(mβ)] ∈ Us whence [e, u] ∈ Dom θrθs as
required.

For [e, u] ∈ Urs, we have

[e, u]θrθs = [e, u(mβ)(nβ)] = [e, u(mn)β] = [e, u]θrs

so that θ is a semigroup homomorphism.
Now θ+

s = θsθ
−1
s so that θ+

s is the identity map with domain Us. It is easy to
see that θs+ has the same domain and acts in the same way so that s+θ = (sθ)+.

Finally, if θr = θs, and m ∈ rα−1, n ∈ sα−1, then, putting f = m+α, we have

[f,mβ] = [f, 1]θr = [f, 1]θs = [f, nβ].

Thus (mβ)(nβ)−1 ∈ fτ so that, in particular, mβ, nβ ∈ aτ for some a ∈ S, and

r = mα = a = nα = s.

Hence θ is a +-embedding. �

We also want to embed G in the group of units if IZ . For g ∈ G, we define
πg : Z → Z by the rule

[e, u]πg = [e, ug] and uπg = ug for all (e, u) ∈ E ×G and u ∈ G.

It is easy to see that πg is well defined and one-one. Moreover, πgπg−1 = idZ =
πg−1πg so that πg is a unit of IZ . Clearly, π : G → IZ given by gπ = πg is an
embedding.

Proposition 5.6. Let F = {γ ∈ IZ : γ 6 πg for some g ∈ G}. Then F is
a factorisable inverse monoid, Sθ ⊆ F and S is strictly embedded in F by θ.
Further, M is isomorphic to P where

P = {(s, πg) ∈ S ×Gπ : sθ 6 πg}.

Proof. Clearly, F is a submonoid of IZ , Gπ is its group of units and F = E(F )Gπ,
so that F is a factorisable inverse monoid.

If s ∈ S, then, for g ∈ sτ , we have θs = idD πg where D = Us, and so Sθ ⊆ F .
Moreover, for each g ∈ G, there is some s ∈ S with g ∈ sτ , so the embedding θ
(into F ) is strict. Thus, as in Proposition 4.3,

P = {(s, πg) ∈ S ×Gπ : sθ 6 πg}

is a proper cover of S over G.
We identify G with Gπ and write the elements of P as (s, g). Now define

ϕ : M → P by
mϕ = (mα,mβ).

Clearly, ϕ is a homomorphism, and it is injective since M is proper.
To see that ϕ is onto, let (s, g) ∈ P . Then sθ 6 πg and s = mα for some

m ∈M . Hence we have

[s+, mβ] = [s+, 1]θs = [s+, 1]πg = [s+, g]
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so that g(mβ)−1 ∈ s+τ . Now mβ ∈ sτ , so

g = g(mβ)−1(mβ) ∈ (s+τ)(sτ) ⊆ sτ.

Thus there is an element q ∈ M with qα = s and qβ = g, that is, qϕ = (s, g),
and so ϕ is onto. �

The following theorem is now an immediate consequence of the foregoing.

Theorem 5.7. Let S be an E-dense left ample semigroup. Every even cover of
S over a group G is isomorphic to one constructed from a strict embedding of S
into a factorisable inverse monoid with group of units isomorphic to G.

Corollary 5.8. Let S be an inverse semigroup. Every even cover of S over a
group is inverse.

Proof. Let P be an even cover of S over a group. By Theorem 5.7, P can
be regarded as a proper cover constructed from a strict embedding of S into a
factorisable inverse monoid. Hence, as noted in Proposition 5.4, P is inverse. �

We conclude with an example of an E-dense proper cover which is not even.

Example. Let G = 〈g〉 be an infinite cyclic group with identity e, and let A =
{ak : k > 0} be an infinite cyclic monoid with identity 1 = a0. Extend the
multiplications of G and A to M = A ∪G by defining aigj = gjai = gi+j for all
integers i, j with i > 0. Clearly, M is a commutative E-dense proper left ample
monoid.

Let H = 〈h〉 be a finite cyclic group, and S be the semigroup H ∪ {0}. The
mapping which sends ai to hi and gj to 0 makes M into a proper cover of S, but
M is not inverse, and so, by Corollary 5.8, it cannot be even.

The example shows that not every proper cover of a left ample semigroup arises
from a strict embedding into a factorisable left ample monoid. For, if M did so
arise, say from a strict embedding θ : S → F , then by Lemma 5.3, F must be
inverse. But, by Proposition 5.4, this implies that M is inverse, a contradiction.
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