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Introduction

Inspired by the ring theory concepts of orders and classical rings of quotients,
Fountain and Petrich introduced the notion of a completely 0-simple semigroup
of quotients in [19]. This was generalised to a much wider class of semigroups
by Gould in [20]. The notion extends the well known concept of group of
quotients [8]. To give the definition we first have to explain what is meant
by a square-cancellable element in a semigroup. Let a be an element of a
semigroup S. We say that a is square-cancellable in S if for all x, y ∈ S1,

xa2 = ya2 implies that xa = ya

and

a2x = a2y implies that ax = ay.
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It is clear that all cancellable elements are square-cancellable but the converse
is not true because it is equally clear that any element which lies in a subgroup
of S is also square-cancellable. In fact, it is easy to see that being square-
cancellable is a necessary condition for an element of S to be a member of a
subgroup of some oversemigroup of S.

We now define a semigroup Q to be a semigroup of left quotients of a semi-
group S if S is a subsemigroup of Q satisfying

(i) every square-cancellable element of S lies in a subgroup of Q, and
(ii) every element of Q can be written as a♯b for some elements a, b of S

where a is square-cancellable and a♯ is the inverse of a in a subgroup of Q.
We also say that S is a left order in Q.

Semigroups of right quotients and right orders are defined dually. If S is
both a left order and a right order in Q, then we say that S is an order in Q
and that Q is a semigroup of quotients of S.

In ring theory the classical ring of (one-sided) quotients has an identity but
this is not appropriate in the context of semigroups. Our definition gives equal
status to all the maximal subgroups of the semigroup. When applied to rings
with identity it coincides in many cases with the classical ring of quotients [15].

Much research has been devoted to characterising orders or left orders in
various classes of semigroups and surveys of the early work of this type may
be found in [10, 11, 23]. More recent papers on this aspect of the theory are
[1, 2].

The definition of left order in a semigroup Q can also be applied to the case
when Q is a ring, where in addition we require the left order to be a subring of
Q. As already mentioned, for several important classes of rings with identity,
our definition gives the classical notion of left order. However, our definition
can also be applied when Q is a ring without identity and this idea has been
explored in a series of papers by the first two authors [15, 18, 16, 17], Ánh and
Márki [3, 4, 6, 5] and López, Rus and Campos [9].

The present paper studies orders from a different perspective, again inspired
by ring theory. To say that S is a left order in a semigroup or ring Q tells us
something about the way in which S sits in Q and also ties the structure of
S very closely to that of Q. For a given semigroup or ring Q there may, of
course, be many different orders in Q and we can ask how the orders in a fixed
Q might be classified. In the case when Q is a ring with identity this question
has been extensively investigated. If R and S are (classical) left orders in such
a ring Q, then R and S are said to be equivalent if there are units a, b, c, d ∈ Q
such that aRb ⊆ S and cSd ⊆ R. A left order is then said to be a maximal
left order in Q if it is maximal (under inclusion) in its equivalence class. If R
is an order in Q and S is a left order equivalent to R, then S is also an order
in Q so that the equivalence class of an order consists entirely of orders and
there is no ambiguity in the notion of maximal order. The concept of maximal
order was introduced by Asano [7] and generalises the notion of completely
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integrally closed commutative integral domain. We refer the reader to [26] and
Chapters 3 and 5 of [27] for further details.

Our aim in this paper is to develop corresponding notions of equivalence
and maximality within the context of semigroups of quotients. We restrict
our attention to regular semigroups of quotients and, in fact, work with what
we call weak straight left orders (see Section 1) in a regular semigroup Q. In
Section 1 we introduce two equivalence relations, ∼ and ≡, the latter being
defined in terms of the former. Two weak straight left orders are said to
be equivalent if they are related by ≡. Maximal weak straight left orders
are those which are maximal in their ≡-classes. Although the definition of
equivalence is rather complicated we show that it can be used effectively in
the remaining sections of the paper. In Section 2 we show that the maximal
orders in commutative groups are precisely those commutative cancellative
monoids which can be thought of as analogues of completely integrally closed
commutative integral domains. We also provide examples to illustrate our
concepts of equivalence and maximality and consider the relationship between
them and the established notions in ring theory.

We investigate maximal left orders in Clifford semigroups in Section 3 and
obtain a characterisation for a class of Clifford semigroups which includes the
class of commutative regular semigroups. In Section 4 we investigate when
weak straight (left) orders are ∼-maximal, that is, maximal in their ∼-classes.
For the one-sided case this leads us to introduce the notion of fractional ideal
by analogy with ring theory.

Some results of this paper are contained in the thesis of the third author
[28] and together with the results from papers by the first two authors [13, 14]
they were reported in [12].

1. Equivalence

Throughout the paper, Q denotes a regular semigroup. A subset U of Q is
said to be large if it has non-empty intersection with each group H-class of Q.
We denote the set of all large subsemigroups of Q by LSQ.

Following [15] we define a weak left order in Q to be a subsemigroup S of Q
such that every element q of Q can be written as q = a♯b for some a, b ∈ S.

Thus we have dropped condition (i) in the definition of left order so that
square-cancellable elements of S are not required to lie in subgroups of Q.
Clearly we can formulate corresponding notions of weak right order and weak
order.

We point out that for some semigroups Q a weak left order is automatically
a left order. For example, this is clearly the case if Q is completely regular or
completely 0-simple.

We say that a (weak) left order S in Q is straight if every element of Q
can be written as a♯b where a, b ∈ S and a R b in Q. (Weak) straight right
orders and (weak) straight orders are defined in the obvious way. Straight left
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orders in semigroups are studied in [24] and straight left orders in rings in [18].
Examples of (weak) straight left orders are plentiful in view of the following
result from [22]. It was given there for left orders but the proof is valid for
weak left orders.

Proposition 1.1. If Q is a regular semigroup on which H is a congruence,
then any weak left order in Q is straight.

We make extensive use of another result from the same paper.

Proposition 1.2. Let S be a weak straight left order in a semigroup Q and
let q = a♯b ∈ Q where a, b ∈ S and a is square-cancellable. If a R b in Q,
then q H b in Q. Hence S has non-empty intersection with every H-class of
Q. Further, if H is a group H-class of Q, then S ∩H is a left order in H.

When the last property of the proposition holds, we say, following [22], that
S is a local weak left order in Q. Let S, T be subsets of Q and let Π index the
group H-classes of Q. We define the relation ∼ by the rule that S ∼ T if and
only if

for all σ ∈ Π, there are elements aσ, bσ, cσ, dσ ∈ Hσ such that for all π, θ ∈ Π,
aπSbθ ⊆ T and cπTdθ ⊆ S.

We are concerned with the restriction of ∼ to LSQ and we have the following
easy lemma.

Lemma 1.3. On LSQ, the relation ∼ is an equivalence.

Proof If S ∈ LSQ, then, for all π, θ ∈ Π, we have S∩Hπ 6= ∅ and S∩Hθ 6= ∅.
If aπ ∈ S∩Hπ and aθ ∈ S∩Hθ, then certainly aπSaθ ⊆ S and so ∼ is reflexive.

Clearly ∼ is symmetric.
To see that ∼ is transitive let S, T,R ∈ LSQ be such that S ∼ T and T ∼ R.

Then for all π, θ ∈ Π there are elements aπ, a
′

π, cπ, c
′

π in Hπ and bθ, b
′

θ, dθ, d
′

θ

in Hθ such that aπSbθ ⊆ T, cπTdθ ⊆ S, a′πTb
′

θ ⊆ R and c′πRd
′

θ ⊆ T . Hence
(a′πaπ)S(bθb

′

θ) ⊆ R and (cπc
′

π)R(d′θdθ) ⊆ S so that S ∼ R since Hπ and Hθ are
groups.

It is an immediate consequence of the following result that if [S] denotes
the ∼-equivalence class of S ∈ LSQ, then either [S] consists entirely of weak
straight left orders in Q or contains no such subsemigroups.

Proposition 1.4. Let S be a weak straight left order in Q and suppose that
S ∼ T for some T ⊆ Q. Then any element q of Q can be written as q = u♯v
for some element u, v ∈ T with u R v in Q. Thus if T is a subsemigroup of
Q, then T is a weak straight left order in Q.

Proof Let q ∈ Q and let e, f be idempotents such that eR q L f and sup-
pose that e ∈ Hπ, f ∈ Hθ for π, θ ∈ Π. For any σ ∈ Π, there are elements
aσ, bσ, cσ, dσ ∈ Hσ satisfying the definition of S ∼ T . From bπH eR qL f H b♯θ
and the fact that R (respectively L) is a left (respectively right) congruence,

we deduce that qH bπqb
♯
θ. Since S is a weak straight left order in Q, there are
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elements h, k ∈ S with hR k in Q and bπqb
♯
θ = h♯k so that by Proposition 1.2,

bπqb
♯
θH k and hence qH k.

Consequently hHh2 R bπ and h♯H (h♯)2 R a♯π. Since R is a left congruence,
it follows that hbπH bπ and h♯a♯πH a♯π. Thus aπhbπ, b

♯
πh

♯a♯π ∈ Hπ and we obtain
(aπhbπ)

♯ = b♯πh
♯a♯π. Now

q = eqf = (b♯πbπ)q(b
♯
θbθ) = b♯π(bπqb

♯
θ)bθ

= b♯πh
♯kbθ = b♯πh

♯a♯πaπkbθ = (aπhbπ)
♯aπkbθ

and certainly u = aπhbπ, v = aπkbθ ∈ T . Finally, since

aπH eR kL f H bθ,

it follows that aπkbθ H k and so uH eR qH kH v.

In general, ∼ is not the relation we want to define equivalence of orders
but we now use it to construct the appropriate relation. First, for a principal
factor J/I of Q and subsemigroup S of Q, put SI = (S ∩ (J \ I)) ∪ {I}. The
proof of the next lemma is straightforward.

Lemma 1.5. If S is a large subsemigroup of Q, then SI is a large subsemigroup
of J/I. Furthermore, if S is a weak straight left order in Q, then SI is a weak
straight left order in J/I.

We now define a relation ≡ on LSQ by the rule that
S ≡ T if and only if SI ∼ TI in J/I for each principal factor J/I of Q.

The following result is immediate from Lemmas 1.3 and 1.5.

Corollary 1.6. The relation ≡ is an equivalence relation on LSQ.

Lemma 1.7. If S is a weak straight left order in Q and S ≡ T for some
subsemigroup T of Q, then T is also a weak straight left order in Q.

Proof If S ≡ T and J/I is any principal factor of Q, then SI is a weak
straight left order in J/I, TI is a subsemigroup of J/I and SI ∼ TI so that by
Proposition 1.4, TI is a weak straight left order in J/I. It is now routine to
verify that T is a weak straight left order in Q.

We now define weak straight left orders S and T to be equivalent if S ≡ T .
We also say that a weak straight left order is maximal if it is a maximal member
(under inclusion) of its ≡-equivalence class in LSQ.

The relations ∼ and ≡ are, of course, closely related and clearly, when Q is
simple or 0-simple so that we have only one non-trivial principal factor, then
∼ and ≡ coincide on LSQ. In general, we have the following result.

Lemma 1.8. If S, T ∈ LSQ and S ∼ T , then S ≡ T .

Proof This follows easily from the definitions of ∼ and ≡ because in any
principal factor J/I of Q a non-trivial group H-class of J/I is actually a group
H-class of Q.
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In general the relations ∼ and ≡ do not coincide as we see from the simple
example below.

Example 1.9.

Let Q = G1 ∪G0 be a chain of two infinite cyclic groups G1, G0 with gener-
ators a, b respectively and multiplication determined by the trivial homomor-
phism G1 → G0.

Put C1 = {ak : k > 0}, C0 = {bk : k > 0}, S0 = {bk : k > 2} and let
M = C1 ∪ C0, N = C1 ∪ S0. Then it is easy to see that M and N are both
straight orders in Q.

Now S0 ⊆ C0 and bC0b ⊆ S0 so that S0 ∼ C0 in the principal factor G0 and
certainly C1 ∪{0} ∼ C1 ∪{0} in the principal factor G1 ∪{0}. Hence M ≡ N .

On the other hand, C0 ⊆ ahMak for all h, k ∈ Z so that ahMak 6⊆ N and
M and N are not ∼-related.

Suppose that M is a weak straight left order in a regular semigroup P and
M ⊆ N for some subsemigroup N of P . Clearly N is also a weak straight
left order in P . Let Θ index the group H-classes of P . Since M is large in P
we can choose mθ ∈ M ∩ Hθ, for any θ ∈ Θ. Clearly mπMmφ ⊆ N for any
π, φ ∈ Θ.

This elementary observation simplifies what we have to do to prove that a
weak straight left order is maximal.

Lemma 1.10. Let S be a weak straight left order in Q and, for any principal
factor J/I of Q, let the group H-classes of J/I be indexed by ΠJ . Then S is a
maximal order in Q if and only if the following condition holds :

if T ∈ LSQ, S ⊆ T and for every principal factor J/I of Q and all π, θ ∈ ΠJ

there are elements aπ ∈ Hπ, bθ ∈ Hθ such that aπTIbθ ⊆ SI , then S = T .

2. Examples and special cases

The definitions of the previous section might seem unwieldy and difficult to
use. To persuade the reader that they are natural and potentially useful we
provide a number of examples and also some results which show that in several
special cases of interest the definitions simplify and become easy to apply.

Proposition 2.1. Let C be a commutative cancellative semigroup. Then C
is a maximal order in its group of quotients G if and only if C satisfies the
following condition :

(A) if a ∈ C, g ∈ G are such that agn ∈ C for all n > 1, then g ∈ C.

Proof If C is maximal and a ∈ C, g ∈ G are such that agn ∈ C for all
n > 1, then

D =
⋃

{C1gk : k > 0}

is clearly a subsemigroup of G which contains C and hence D is an order in
G. Further, aD1 ⊆ C and hence C and D are equivalent. Since C is maximal
we have C = D and hence g ∈ C.
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Conversely, if condition (A) is satisfied, and if B is an order in G equivalent
to and containing C, then B1 also has these properties and so aB1 ⊆ C for
some element a of G. It follows that a ∈ C and so if g ∈ B, then gn ∈ B for
all n > 1 so that agn ∈ C for all n > 1 and hence g ∈ C by condition (A).
Thus B = C and C is maximal.

We remark that when condition (A) is applied to the non-zero elements of
a commutative integral domain we get a completely integrally closed domain.
Thus the proposition is a precise analogue of the ring theory result and, indeed,
the proof is essentially the same.

Example 2.2. Let G an infinite cyclic group with generator a. Then, exclud-
ing G itself, there are two equivalence classes of orders in G each containing
just one maximal order. The two maximal orders in G other than G itself are
C = {ak : k > 0} and D = {ak : k 6 0}.

Proof Any subsemigroup which contains both positive and negative powers
of a is a subgroup, and so all orders other than G are contained in either C or
D. It is easy to see that any order contained in C (respectively D) is equivalent
to C (respectively D) and that neither C nor D is equivalent to G.

Now let T be a left order in a group G and let P be a Λ × I matrix over
T ∪{0}. If every column of P contains a non-zero entry, then the Rees matrix
semigroup S = M0(T ; I,Λ;P ) is a left order in Q = M0(G; I,Λ;P ). Even
if we assume that every row of P contains a non-zero element so that Q is
completely 0-simple we can still have T maximal in G but S not maximal in
Q as the following example demonstrates.

Example 2.3. Let G be the infinite cyclic group generated by a. Let

T = {ak : k > 0}

and P =

(

a 0
0 a

)

. Then S is not maximal in Q.

Proof Put R = S ∪ {(2, a−1, 1)}. Then it is easy to verify that R is a
left order in Q. Choosing the element (1, a, 1), (2, a, 2) from the two non-zero
group H-classes of Q, we see that (i, a, i)R(j, a, j) ⊆ S for i, j ∈ {1, 2} and so
R is equivalent to S. Hence S is not maximal.

For a positive result we have to consider a sandwich matrix whose rows and
columns contain units of T .

Proposition 2.4. If each row and each column of P contains a unit of T and
if T is maximal in G, then S is maximal in Q.

Proof Suppose that R is a left order in Q containing S and equivalent to
S. Let i ∈ I and λ ∈ Λ and put Riλ = {g ∈ G : (i, g, λ) ∈ R}. For some
µ ∈ Λ, j ∈ I the elements pµi, pλj are units in T so that if g1, g2 ∈ Riλ, then

(i, g1, λ)(j, p−1
λj p

−1
µi , µ)(i, g2, λ) ∈ R

7



and hence g1g2 ∈ Riλ. Now T ⊆ Riλ since S ⊆ R and so Riλ is a left order in
G.

As R and S are equivalent, there are elements (i, a, µ), (j, b, λ) in Q such
that (i, a, µ)R(j, b, λ) ⊆ S and so apµigpλjb ∈ T for any g ∈ Riλ. Hence
apµiRiλpλjb ⊆ T and so Riλ is equivalent to T . But T is maximal in G so that
Riλ = T and hence R = S, that is, S is a maximal left order in Q.

Recall that if S is a semigroup and θ is an endomorphism of S, then we can
form the Bruck-Reilly extension BR(S, θ) with underlying set N × S × N and
multiplication defined by

(m, a, n)(p, b, q) = (m− n+ t, aθt−nbθt−p, q − p+ t)

where t = max {n, p}. Now suppose that T is a left order in a group G and
that θ is an endomorphism of T with an extension θ : G → G. It is observed
in [20] that B = BR(T, θ) is a left order in Q = BR(G, θ).

Proposition 2.5. If T is maximal in G, then B is maximal in Q.

Proof Let S be a left order in Q containing B and equivalent to B. For
m,n ∈ N, put S(m,n) = {g ∈ G : (m, g, n) ∈ S}. Since T is maximal in G,
1 ∈ T so that (n, 1, m) ∈ B for all m,n ∈ N. It is then easy to see that S(m,n)

is a submonoid of G and, in fact, it is a left order in G since T ⊆ S(m,n).
Now B is equivalent to S and so there are elements (m, a,m), (n, b, n) such

that (m, a,m)S(n, b, n) ⊆ B. It follows that aS(m,n)b ⊆ T and hence that
S(m,n) is equivalent to T . But T is maximal so that T = S(m,n) and hence
B = S.

When Q is a regular monoid the relation ∼ can be defined in a much simpler
way than for the general case of a regular semigroup.

Proposition 2.6. If Q is a regular monoid and S, T are weak straight left
orders in Q, then S ∼ T if and only if there are invertible elements u, v, x, y
in Q such that uSv ⊆ T and xTy ⊆ S.

The proof rests on the following lemma.

Lemma 2.7. Let S, T be subsemigroups of a regular semigroup Q which meet
every H-class of Q. Let I index the R-classes and Λ index the L-classes of
Q. Then S ∼ T if and only if for all i ∈ I and λ ∈ Λ there are elements
ai, ci ∈ Ri, bλ, dλ ∈ Lλ such that aiSbλ ⊆ T and ciTdλ ⊆ S.

Proof If S ∼ T , then it is easy to see that the condition holds.
Now suppose that the condition holds and that the group H-classes are

indexed by Π. For each π ∈ Π, let eπ be the identity of Hπ and let i = iπ ∈ I
be such that Hπ ⊆ Ri. Then ai R eπ and so there is a semigroup inverse a′i of
ai with eπ = aia

′

i, and ai L a′iai R a′i. Let sπ ∈ S be such that sπ H a′i. Then
aπ = aisπ ∈ Hπ. Similarly, if λ = λπ is such that eπ ∈ Lλ, then there is an
element tπ ∈ S with bπ = tπbλ ∈ Hπ.
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Then for all π, θ ∈ Π, with eθ ∈ Lζ

aπSbθ = aisπStθbζ ⊆ aiSbζ ⊆ T.

Together with its dual, this gives S ∼ T .

It is now easy to prove Proposition 2.6. For, suppose that u, v, x, y are units
in Q with uSv ⊆ T and xTy ⊆ S and for each i ∈ I, λ ∈ Λ, choose elements
Ti ∈ T ∩ Ri and sλ ∈ T ∩ Lλ. Then, since 1 R u and 1 L v we have that
ti R tiu and sλ L vsλ so that for all i, λ,

(tiu)S(vsλ) ⊆ tiTsλ ⊆ T.

Together with its dual this gives S ∼ T by Lemma 2.7.

We conclude this section with a result which relates the ring theory notion
of equivalence with our relation ∼. First we recall that if S is a subring of a
regular ring Q with identity, then by Theorem 3.4 and Corollary 3.6 of [15], S
is an order in Q in the ring theory sense if and only if S is an order in Q in
the semigroup sense. Thus there is no ambiguity in the phrase ‘S is an order
in Q’ and we may speak of straight orders in Q. The following result is now
immediate from Proposition 2.6.

Corollary 2.8. If Q is a regular ring with identity and the subrings S, T are
straight orders in Q, then S ∼ T if and only if S and T are equivalent orders
in the ring theory sense.

3. Maximal orders in semilattices of groups

Let Q =
⋃

α∈Y Gα be a semilattice Y of groups Gα with linking homomor-
phisms θα,β for α, β ∈ Y with α > β. For each α ∈ Y , let eα be the identity of
Gα.

If S is a left order in Q, then by [21], S =
⋃

α∈Y Sα is a semilattice Y of
right reversible, cancellative semigroups Sα = Gα ∩ S and for each α ∈ Y , Sα
is a left order in Gα. The question arises as to whether there is any connection
between the semigroup S being a maximal left order in Q and each constituent
Sα being a maximal left order in Gα. On the positive side we have the following
result.

Proposition 3.1. If for each α ∈ Y, Sα is a maximal left order in Gα, then S
is a maximal left order in Q.

Proof Let T be a left order in Q which contains S and is equivalent to S.
Then for α ∈ Y , Sα = S∩Gα ⊆ T ∩Gα and putting Tα = T ∩Gα we have that
Tα is a left order in Gα. Since T ≡ S and Gα ∪ {0} (or Gα if α is the zero of
Y ) is a principal factor of Q, we see that Tα ∪ {0} ∼ Sα ∪ {0}. Hence Tα ∼ Sα
and so Sα = Tα since Sα is maximal in Gα. Thus T = S and so S is maximal.

Whether the converse of Proposition 3.1 is true is an open question. We do,
however, have a partial answer. First we need two straightforward lemmas.
The first follows from the definition of the relation ≡ and the fact that the
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principal factors of Q are the semigroups Gα ∪ {0} for each non-zero α ∈ Y
and Gζ if Y has zero ζ .

Lemma 3.2. Let S, T be left orders in Q and let Sα = S ∩Gα, Tα = T ∩Gα.
Then

S ≡ T if and only if Sα ∼ Tα for all α ∈ Y.

Lemma 3.3. Let S be a left order in Q and let

T = 〈
⋃

α∈Y

(Sα ∪ {eα})〉

be the subsemigroup of Q generated by S and E(Q). Then T is a left order in
Q and S ≡ T .

Proof That T is a left order in Q is immediate since S ⊆ T . By Lemma 3.2,
to show that S ≡ T we have to show that Sα ∼ Tα for each α ∈ Y and since
Sα ⊆ Tα, we need only show that there are elements uα, vα ∈ Gα such that
uαTαvα ⊆ Sα. Choose uα, vα to be any two elements of Sα. Now E(Q) is
central in Q so that if t ∈ Tα, then t = eγs for some eγ ∈ E(Q), s ∈ S. In
fact, we must have s ∈ Sδ for some δ such that γδ = α and so t = eαt = eαs.
Now uαtvα = uαeαsvα = uαsvα ∈ Sα since uα, vα, s ∈ S and α 6 δ. Thus
uαTαvα ⊆ Sα and so Tα ∼ Sα.

Corollary 3.4. If S is a maximal left order in Q, then E(Q) ⊆ S.

Theorem 3.5. Suppose that for all α, β ∈ Y with α > β, Im θα,β ⊆ Z(Gβ),
the centre of Gβ. Then S is a maximal left order in Q if and only if each Sα
is a maximal left order in Gα.

Proof Suppose that S is a maximal left order in Q and let α ∈ Y . Let Tα
be a left order in Gα which contains and is equivalent to Sα. Then there are
elements p, q ∈ Gα such that pTαq ⊆ Sα.

Now let T = 〈S ∪ Tα〉 be the subsemigroup of Q generated by S and Tα.
Certainly T is a left order in Q since S ⊆ T . Any element of T∩Gα is a product
of elements of Tα and elements of S. Such elements of S must be members
of some Sγ ’s where α 6 γ and so in a product with members of Tα they can
be replaced by their images under θγ,α for the appropriate γ. But in view of
Corollary 3.4 all such images are in Sα and hence in Tα. Thus T ∩ Gα = Tα.
Hence there is no ambiguity if, for each γ ∈ Y , we put Tγ = Gγ ∩ T as usual.

If γ ∈ Y and α < γ or if α and γ are incomparable, then clearly Tγ =
Sγ. Suppose that γ < α. Then any element of Tγ is a product of ele-
ments of S and elements tθα,γ where t ∈ Tα. But the latter are central in
Gγ and so if tγ ∈ Tγ , then tγ = s(tθα,γ) for some s ∈ S, t ∈ Tα. Hence
(pθα,γ)tγ(qθα,γ) = (pθα,γ)s(tθα,γ)(qθα,γ) = s((ptq)θα,γ) since pθα,γ is also cen-
tral and θα,γ is a homomorphism. But ptq ∈ Sα so that (pθα,γ)tγ(qθα,γ) ∈ Sγ ,
and (pθα,γ)Tγ(qθα,γ) ⊆ Sγ. Thus we have seen that Tγ ∼ Sγ for all γ and so by
Lemma 3.2, S ≡ T . Now S is maximal and S ⊆ T so that S = T and hence
Sα = Tα, that is, Sα is a maximal order in Gα.

10



We have the following immediate corollaries.

Corollary 3.6. Let Q =
⋃

α∈Y Gα be a semilattice Y of abelian groups Gα.
Then S =

⋃

α∈Y Sα is a maximal order in Q if and only if, for each α ∈ Y , Sα
is a maximal order in Gα.

Corollary 3.7. Let Q =
⋃

α∈Y Gα be a semilattice Y with trivial linking ho-
momorphisms. Then S =

⋃

α∈Y Sα is a maximal left order in Q if and only if,
for each α ∈ Y , Sα is a maximal left order in Gα.

4. Fractional ideals

Although the relations ≡ and ∼ do not coincide in general, there are, as
we have noted, several interesting special cases where they do. It is shown in
[14] that this is also the case when Q is a simple ring with minimal one-sided
ideals. There is some interest, therefore, in examining necessary and sufficient
conditions for a weak straight order to be ∼-maximal, that is, maximal in its
∼-equivalence class.

Let Q be a regular semigroup, S a subsemigroup of Q and K an ideal of S.
We say that K is a large ideal if it is large as a subset of Q. Using this concept
we have our first characterisation of ∼-maximal weak straight orders.

Proposition 4.1. Let S be a weak straight order in a regular semigroup Q.
Then S is ∼-maximal if and only if for all large ideals I of S and elements q
of Q,

qI ⊆ I implies q ∈ S and Iq ⊆ I implies q ∈ S.

Proof Suppose that the condition holds and let T be a weak order in Q
which contains S and is such that S ∼ T . Let Π index the group H-classes of
Q. Then for all σ ∈ Π, there are elements aσ and bσ in Hσ such that aπTbθ ⊆ S
for all π, θ ∈ Π. By Proposition 1.2 we can write aπ = uπ

♯vπ, bθ = wθzθ
♯ for

some elements uπ, vπ ∈ Hπ ∩S and wθ, zθ ∈ Hθ ∩S. It follows that vπTwθ ⊆ S
for all π, θ ∈ Π and hence that the set

I = {s ∈ S : sTwθ ⊆ S for all θ ∈ Π}

is large in Q. Since S ⊆ T we have for each θ ∈ Π that

(S1IS1)Twθ ⊆ S1ITwθ ⊆ S1S ⊆ S

so that S1IS1 ⊆ I and I is an ideal of S. Furthermore, for all π, ψ ∈ Π, we
have ITwπ ⊆ S and

(ITwπ)(Twψ) = I(TwπT )wψ ⊆ ITwψ ⊆ S

since wπ ∈ S ⊆ T . Hence ITwπ ⊆ I and so, by the condition, Twπ ⊆ S.
Now let K = {s ∈ S : Ts ⊆ S}. Then wπ ∈ K for all π ∈ Π so that K is

large in Q. It is easy to see that K is an ideal of S and since T (TK) ⊆ TK ⊆ S
it follows that TK ⊆ K. Hence T ⊆ S by the given condition. Thus T = S
and S is ∼-maximal in Q.
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Conversely suppose that S is ∼-maximal in Q and that I is a large ideal of
S. Put

T = {q ∈ Q : qI ⊆ I}.

Certainly S ⊆ T and T is a subsemigroup of Q. It follows that T is a weak
straight order in Q. For any π, θ ∈ Π choose an element aπ ∈ S ∩Hπ and an
element bθ ∈ I ∩Hθ. Then aπTbθ ⊆ aπI ⊆ I ⊆ S so that S ∼ T and by the
maximality of S, S = T . Thus qI ⊆ I implies q ∈ S. The dual condition is
obtained in a similar manner.

Remark It is worth mentioning that the condition of the theorem is also, in
fact, a necessary condition for S to be a maximal weak straight order in Q.
A sufficient condition for S to be maximal can be obtained by imposing the
conditions on each principal factor of Q rather than Q itself.

The study of equivalent and maximal orders in ring theory is facilitated by
the notion of a fractional ideal. The following definitions provide semigroup
analogues of this concept. We introduce them in order to obtain a result
corresponding to Proposition 4.1 for weak straight left orders; it transpires
that in the one-sided case they play the role that large ideals take in that
proposition.

Let S be a large subsemigroup of a regular semigroup Q. A subset I of Q
is a left S-ideal if

(i) SI ⊆ I, and
(ii) I is large in Q.

By replacing (i) by its dual we obtain the notion of a right S-ideal and if (i)
and its dual both hold we have an S-ideal.

A left S-ideal I is a left fractional left S-ideal if
(iii) for every group H-class H of Q there is an element c ∈ H such that

Ic ⊆ S.
By replacing (iii) by its dual we obtain the notion of a right fractional left
S-ideal and if (iii) and its dual both hold we have a fractional left S-ideal.

When S is a weak straight left (or right) order in Q we have an alternative
description of left fractional left S-ideals given by the following proposition.

Proposition 4.2. Let S be a weak straight left (or right) order in a regular
semigroup Q and let I be a subset of Q. Then I is a left fractional left S-ideal
of Q if and only if the following conditions hold :

(i) SI ⊆ I
(ii) I meets every L-class of Q
(iii) for every R-class R of Q, there is an element b ∈ R such that Ib ⊆ S.

Proof Suppose that I is a left fractional left S-ideal of Q. Then certainly
condition (i) holds. Condition (ii) is immediate from the fact that I is large
and condition (iii) is immediate from (iii) in the definition of left fractional
left S-ideal.
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Conversely suppose that the conditions of the proposition hold. We have
condition (i) of the definition. Now let H be a group H-class of Q with identity
e. Then there is an element c in Le ∩ I. Let f be an idempotent in Rc, the
R-class of c. Then, by Proposition 1.2, there is an element a in S ∩ (Re ∩Lf ).
Now f 2 = f ∈ La ∩Rc and so, by Proposition 2.3.7 of [25], ac ∈ Ra ∩Lc, that
is, ac ∈ H . Since c ∈ I and a ∈ S, condition (i) gives ac ∈ I and so H ∩ I 6= ∅
and I is large.

Finally, we again let H be a group H-class of Q with identity e and let
b ∈ Re be such that Ib ⊆ S. Let f be an idempotent in the L-class of b.
Again, by Proposition 1.2, there is an element c in S ∩ (Le ∩ Rf) and again
by Proposition 2.3.7 of [25], bc ∈ H . Now Ibc ⊆ Sc ⊆ S and so I is a left
fractional left S-ideal.

This allows us to obtain the following result for monoids.

Corollary 4.3. Let S be a weak straight left (or right) order in a regular
monoid Q and let I be a subset of Q. Then I is a left fractional left S-ideal if
and only if the following conditions hold :

(i) SI ⊆ I,
(ii) I contains a unit of Q,
(iii) there is a unit v of Q such that Iv ⊆ S.

Proof It is clear from the definition that the conditions hold for a left
fractional left S-ideal.

Now suppose that the conditions hold for a subset I and let L be an L-class
of Q. Let u be a unit of Q in I and let e be an idempotent in L. Then e = zu
for some z ∈ Q and since, by Proposition 1.2, S meets every H-class of Q,
there is an element a in S ∩ Hz. Now auL zu since aL z, and au ∈ I since
SI ⊆ I. Hence L ∩ I 6= ∅.

Now let v be a unit of Q such that Iv ⊆ S and let R be an R-class of Q
and e an idempotent in R. Then e = vy for some y ∈ Q and S meets Hy. Let
a ∈ S ∩Hy. Then vaR vy since aR y and so va ∈ R. Also Iva ⊆ Sa ⊆ S.

Thus the conditions of Proposition 4.2 hold and hence I is a left fractional
left S-ideal.

The conditions of Corollary 4.3 are precisely those used to define a (left)
fractional left S-ideal in ring theory [27]. It follows from Corollary 3.6 of
[15] and Proposition 3.10 of [18] that ring orders in simple artinian rings are
straight left and right orders in our sense and so our concept of fractional ideal
coincides with the standard one in this case.

We conclude with a result which gives a criterion for one-sided straight weak
orders in a regular semigroup to be ∼-maximal. It is similar to the condition in
Proposition 4.1 for two-sided orders but uses fractional S-ideals instead large
ideals.
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Proposition 4.4. Let S be a weak straight left order in a regular semigroup
Q. Then S is ∼-maximal if and only if for all left fractional S-ideals I and all
right fractional S-ideals J ,

if Iq ⊆ I, then q ∈ S, and if qJ ⊆ J , then q ∈ S.

Proof Let Π index the group H-classes of Q.
Suppose that S is ∼-maximal. Let I be a left fractional S-ideal and consider

the set T = {q ∈ Q : Iq ⊆ I}. Clearly, S ⊆ T and T is a subsemigroup of Q so
that T is a weak straight left order in Q. Now I meets every group H-class of
Q; say aπ ∈ I ∩Hπ for π ∈ Π. Also, for all θ ∈ Π, there is an element cθ ∈ Hθ

with Icθ ⊆ S so that aπTcθ ⊆ Icθ ⊆ S for all π, θ ∈ Π. Then S ∼ T and so
S = T since S is ∼-maximal. Thus if Iq ⊆ I, then q ∈ S.

A similar argument gives the condition for right fractional S-ifeals.
Conversely, suppose that the conditions hold and let T be a weak straight left

order in Q which contains S and is such that S ∼ T . Then, for all π, θ ∈ Π,
there are elements aπ ∈ Hπ, bθ ∈ Hθ with aπTbθ ⊆ S. By Proposition 1.2,
aπ = u♯πvπ for some uπ, vπ ∈ S ∩Hπ so that vπTbθ ⊆ uπS ⊆ S. Let

I = {x ∈ Q : xTbθ ⊆ S for all θ ∈ Π}.

Then we have vπ ∈ I for any π ∈ Π so that I is large in Q. If dπ ∈ S ∩ Hπ,
then Idπbπ ⊆ ISbπ ⊆ IT bπ ⊆ S. Also, if x ∈ I and θ ∈ Π, then

S1xS1Tbθ ⊆ S1xTbθ ⊆ S1S ⊆ S

and hence S1IS1 ⊆ I so that I is a left fractional S-ideal.
Let J = {s ∈ S : Ts ⊆ S}. Let π, θ ∈ Π and dπ, bθ be as above. Then

ITdπTbθ ⊆ IT bθ ⊆ S

so that ITdπ ⊆ I and hence Tdπ ⊆ S by the assumed conditions. Thus J 6= ∅.
If s ∈ J , then clearly,

TS1sS1 ⊆ TsS1 ⊆ SS1 ⊆ S

so that S1JS1 ⊆ J . If π ∈ Π, then dπ ∈ J ∩ Hπ and dπJ ⊆ S. Hence J is a
right fractional S-ideal. But TJ ⊆ S and T (TJ) ⊆ TJ ⊆ S so that TJ ⊆ J
and by the assumed conditions, T ⊆ S. Hence T = S and S is ∼-maximal.

Remark As with Proposition 4.1, it is not difficult to modify the proof to
show that the conditions are necessary for S to be a maximal weak straight
left order in Q. Also, a sufficient condition for S to be maximal can be obtained
by imposing the conditions on each principal factor of Q rather than Q itself.
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