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Abstract

Fountain, Gould and Smith introduced the concept of equivalence of orders in a semi-

group and the notion of a maximal order. We examine these ideas in the context of orders

in completely 0-simple semigroups with particular emphasis on abundant orders.

Introduction

In this paper we develop further the theory, introduced in [3], of equivalence and
maximality of orders in a semigroup. In particular, we study maximal and abundant
orders in completely 0-simple semigroups.

Two equivalence relations on the set of weak straight left orders in a semigroup Q were
introduced in [3]. In general these relations are distinct but they coincide when Q is
completely 0-simple. The two relations are denoted by ≡ and ∼, and we define ∼ in
Section 1. Two weak straight left orders are said to be equivalent if they are related by ≡
and a maximal weak straight left order is one which is maximal in its ≡-class. Of course,
in a completely 0-simple semigroup we can use the relation ∼ to define these notions.
Thus we examine weak straight left orders which are maximal in their ∼-classes. Such an
investigation was initiated in [3] and we take it further in Section 2 where we introduce
the inverse of a one-sided fractional one-sided S-ideal when S is a straight left order in a
regular semigroup.

We use the results of Section 2 to study maximal orders in completely 0-simple semi-
groups. This is the subject of Section 3 where we note that if S is an order in a completely
0-simple semigroup Q, then the fractional S-ideals of Q form a semigroup F(S) under
multiplication of subsets. Furthermore, for certain maximal orders, F(S) is a group.
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We review projective S-acts where S is a semigroup with zero in Section 4. Then in
Section 5 we obtain more precise results relating the properties of F(S) and those of S when
S is an abundant order in a completely 0-simple semigroup. These results are strengthened
in Section 6 where we consider orders in Brandt semigroups. We conclude the paper with
some examples in Section 7.

Some of the results of this paper were announced in [2].

1. Preliminaries

We refer the reader to [6] for standard concepts and facts concerning semigroups.
In particular, details about Green’s relations and completely 0-simple semigroups can be
found there.

Let Q be a regular semigroup. A subset U of Q is large if it has non-empty intersection
with each group H-class of Q. If a is an element in a group H-class of Q, then a♯ denotes
the inverse of a in Ha.

A weak left order in Q is a subsemigroup S of Q such that every element q of Q can be
written as q = a♯b for some a, b ∈ S. Weak right orders are defined dually and S is a weak
order in Q if it is both a weak left order and a weak right order.

A weak left order S in Q is straight if every element of Q can be written as a♯b where
a, b ∈ S and aRb in Q. Weak straight right orders and weak straight orders are defined in
the obvious way.

An element a of a semigroup S is said to be square-cancellable if, for all elements x, y
of S1, we have xa2 = ya2 implies xa = ya, and a2x = a2y implies ax = ay. A weak left
order S in Q is a left order in Q if every square-cancellable element lies in a subgroup of
Q. Similarly, one has right orders and orders. When Q is a completely 0-simple semigroup
it is clear that every weak left or right order is a left or right order.

Two fundamental results from [5] on weak left orders which we will often use without
further mention are the following.

Proposition 1.1. If Q is a regular semigroup on which H is a congruence, then every
weak left order in Q is straight.

Proposition 1.2. If S is a weak straight left order in a semigroup Q, then S has non-
empty intersection with each H-class of Q. Moreover, for each group H-class of Q, the
subsemigroup S ∩H is a left order in H.

Let Q be a regular semigroup and let Π index the group H-classes of Q. Define the
relation ∼ on the set of all large subsemigroups of Q by the rule that S ∼ T if and only if
for all σ ∈ Π, there are elements aσ, bσ, cσ, dσ ∈ Hσ such that for all π, θ ∈ Π, aπSbθ ⊆ T

and cπTdθ ⊆ S. It is shown in [3] that ∼ is an equivalence relation. It is also shown that
if S, T are large subsemigroups and S ∼ T , then S is a weak straight left order if and only
if T is a weak straight left order.

In [3] another equivalence relation ≡ is defined on the set of large subsemigroups of Q
and two large subsemigroups S and T are said to be equivalent if S ≡ T . A weak straight
left order is maximal if it is a maximal member (under inclusion) of its ≡-equivalence
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class. However, we shall be concerned with orders in completely 0-simple semigroups and,
as observed in [3], in this case the relations ∼ and ≡ coincide. Thus if S, T are (left) orders
in a completely 0-simple semigroup Q, then S is equivalent to T if and only if S ∼ T and
S is a maximal (left) order in Q if and only if S is maximal in its ∼-class.

2. Fractional Ideals

Let S be a large subsemigroup of a regular semigroup Q. Following [3] we define a
subset I of Q to be a left S-ideal if

(i) SI ⊆ I, and
(ii) I is large in Q.

The notion of right S-ideal is obtained by replacing (i) by its dual; an S-ideal is a subset
of Q which is both a left and a right S-ideal.

A left fractional left S-ideal of Q is a left S-ideal such that

(iii) for every group H-class H of Q there is an element c of H such that Ic ⊆ S.

By replacing (iii) by its dual we obtain the notion of a right fractional left S-ideal ; a
fractional left S-ideal is a left S-ideal I for which both (iii) and its dual hold.

For any one-sided fractional one-sided S-ideal I of Q we define subsets Oℓ(I) and Or(I)
as follows:

Oℓ(I) = {q ∈ Q | qI ⊆ I},

Or(I) = {q ∈ Q | Iq ⊆ I}.

Clearly, both Oℓ(I) and Or(I) are subsemigroups of Q. If I is a one-sided fractional left
S-ideal, then S ⊆ Oℓ(I) and so Oℓ(I) is large in Q. In fact, Or(I) is also large in Q: if H
is a group H-class of Q, then there is an element c of H such that Ic ⊆ S. Also, I is large
in Q so that I ∩ H 6= ∅. Let d ∈ H ∩ I. Then cd ∈ H and Icd ⊆ Sd ⊆ SI ⊆ I so that
Or(I) is large. We record these facts and others in the following result.

Proposition 2.1. Let I be a left fractional left S-ideal of Q. Then

(1) Or(I) is a large subsemigroup of Q, Or(I) ∼ S and I is a right fractional right
Or(I)-ideal,

(2) Oℓ(I) is a large subsemigroup of Q, Oℓ(I) ∼ S and I is a left fractional left Oℓ(I)-
ideal.

Proof. Let Π index the group H-classes of Q and for each π ∈ Π let cπ, dπ ∈ Hπ be such
that Icπ ⊆ I and dπ ∈ H ∩ I. Then, for all θ, π ∈ Π,

IcθSdπ ⊆ Sdπ ⊆ SI ⊆ I

so that

cθSdπ ⊆ Or(I)

and

dθOr(I)cπ ⊆ IOr(I)cπ ⊆ Icπ ⊆ S.

Thus S ∼ Or(I).
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For each π ∈ Π there is an element aπ in S ∩ Hπ since S is large in Q. Now, for all θ,
π ∈ Π,

aπSaθI ⊆ SI ⊆ I

so that

aπSaθ ⊆ Oℓ(I)

and

aπOℓ(I)dθcθ ⊆ aπIcθ ⊆ aπS ⊆ S.

Hence S ∼ Oℓ(I).
It is clear that I is a right Or(I)-ideal and a left Oℓ(I)-ideal. For π ∈ Π we also have

IcπI ⊆ SI ⊆ I so that cπI ⊆ Or(I) and Icπ ⊆ S ⊆ Oℓ(I) as required. �

The following result is an easy consequence of the facts that Oℓ(I) ∼ S and that S ⊆
Oℓ(I).

Corollary 2.2. If S is a ∼-maximal weak straight left order and I is a left fractional left
S-ideal, then S = Oℓ(I).

Given a large subsemigroup S of a regular semigroup Q and a one-sided fractional one-
sided S-ideal I we define the inverse of I to be the set

I−1 = {q ∈ Q | IqI ⊆ I}
= {q ∈ Q | Iq ⊆ Oℓ(I)}
= {q ∈ Q | qI ⊆ Or(I)}.

Lemma 2.3. If I is a left fractional left S-ideal of Q, then I−1 is a right fractional right
Oℓ(I)-ideal.

Proof. First we have I(I−1Oℓ(I)) = (II−1)Oℓ(I) ⊆ Oℓ(I)
2 ⊆ Oℓ(I) so that I−1Oℓ(I) ⊆ I−1.

For any H-class H of Q, there is an element c ∈ H such that Ic ⊆ S. Since S ⊆ Oℓ(I)
it follows that c ∈ I−1 and hence I−1 is large.

Now I is large so that I ∩H 6= ∅. Let d ∈ I ∩H . Then

dI−1 ⊆ II−1 ⊆ Oℓ(I)

as required. �

One might hope that II−1 = S = I−1I, but this is not the case in general as we see from
Example 7.2. We do, however, have that both II−1 and I−1I are ∼-related to S.

Proposition 2.4. Let S be a large subsemigroup of a regular semigroup Q and let I be a
left fractional left S-ideal of Q. Then

(1) II−1and I−1I are large subsemigroups of Q and II−1 ∼ S ∼ I−1I,
(2) I is a left fractional left II−1-ideal and a right fractional right I−1I-ideal,
(3) I−1 is a right fractional right II−1-ideal and a left fractional left I−1I-ideal.
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Proof. (1) Since II−1I ⊆ I it is clear that II−1 and I−1I are subsemigroups of Q. They
are both large because I and I−1 are large.

Let the group H-classes of Q be indexed by Π and for each π ∈ Π choose aπ, cπ, dπ ∈ Hπ

with aπ ∈ S, dπ ∈ I and Icπ ⊆ S. Then for all π, θ ∈ Π we have cθ ∈ I−1 and dθcθ ∈ Hθ

so that
aπSdθcθ ⊆ SII−1 ⊆ II−1

and
aπII

−1dθcθ ⊆ aπIcθ ⊆ Icθ ⊆ S.

Moreover,
dπI

−1Icθ ⊆ Icθ ⊆ S and cπSdθ ⊆ I−1I.

Thus II−1 ∼ S ∼ I−1I.
Parts (2) and (3) follow immediately from the definitions involved. �

3. Orders In Completely 0-simple Semigroups

We have already noted that in a completely 0-simple semigroup Q, every weak (left)
order is actually a straight (left) order. Now, an easy consequence of Proposition 1.2 is
that every non-zero ideal I of S meets each H-class of Q. In particular, I is large in Q

and consequently, I is a fractional S-ideal. Note that S itself is thus a fractional S-ideal.
Recall from Section 1 that the maximal orders in Q are precisely the ∼-maximal orders.
In view of these observations we have the following result from Proposition 4.1 of [3].

Proposition 3.1. Let S be an order in a completely 0-simple semigroup Q. Then S is a
maximal order in Q if and only if for all non-zero ideals I of S and elements q of Q,

qI ⊆ I implies q ∈ S and Iq ⊆ I implies q ∈ S.

We say that S is closed in Q if the ideal S satisfies the condition of the proposition.
We need one more definition. If S is an order in a completely 0-simple semigroup Q and

if I is a fractional S-ideal, then we say that I is invertible if there is a fractional S-ideal Ī
such that IĪ = S = ĪI. We now come to the main result of this section.

Theorem 3.2. The fractional S-ideals of Q form a semigroup F(S) under multiplication
of subsets. If S is an identity for F(S), then the following conditions are equivalent:

(1) S is maximal and S = II−1 = I−1I for all non-zero ideals I of S,
(2) every non-zero ideal of S is invertible and S is closed in Q,
(3) F(S) is a group and S is closed in Q.

Proof. If I, J ∈ F(S), then certainly IJ is large and an S-ideal. Furthermore, if H is a
group H-class of Q, then there are elements c, d ∈ H with cI ⊆ S, dJ ⊆ S and hence
dcIJ ⊆ S. Similarly, there is an element x in H such that IJx ⊆ S. Thus F(S) is a
semigroup.

Now suppose that S is an identity for F(S).
If (1) holds, then certainly every non-zero ideal of S is invertible and as S is maximal,

it follows from Proposition 3.1 that S is closed in Q.
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Suppose that (2) holds and let I ∈ F(S) and q ∈ Q be such that qI ⊆ I. Now
I is invertible and so there is a fractional S-ideal Ī such that IĪ = S = ĪI. Hence
qS = qIĪ ⊆ IĪ = S and so q ∈ S since S is closed in Q. Similarly, Iq ⊆ I implies q ∈ S

and so S is maximal by Proposition 3.1.
Since S is maximal, S = Oℓ(I) by Corollary 2.2 and so I−1 is a right fractional right

S-ideal by Lemma 2.3. By the left-right duals of Corollary 2.2 and Lemma 2.3, I−1 is also
a left fractional left S-ideal and hence I−1 ∈ F(S). Since S = Oℓ(I) = Or(I), it follows
from the definition of I−1 that Ī ⊆ I−1 and also that II−1 ⊆ S and I−1I ⊆ S. Thus
S = I−1I = II−1. In particular, this is true when I is a non-zero ideal of S and so (1)
holds.

It is clear that (2) follows from (3) and so to complete the proof we show that if (1)
holds, then F(S) is a group. Let J ∈ F(S). Then J−1 ∈ F(S) because S is maximal and
so J−1 ∩ S is an ideal of S. Put K = J−1 ∩ S.

Let H be a non-zero group H-class of Q. Then H ∩ J−1 6= ∅ and if q is an element of
H ∩ J−1, then by Proposition 1.2, q = a♯b for some a, b in S ∩H . Now

b = aa♯b = aq ∈ SJ−1 ⊆ J−1

so that b ∈ K and K is non-zero. Therefore, by assumption, K−1K = S = KK−1.
Further, KJ ∈ F(S) and KJ ⊆ J−1J ⊆ S so that KJ is a non-zero ideal of S and

hence (KJ)(KJ)−1 = S = (KJ)−1(KJ). Since S is maximal, (KJ)−1 is in F(S) and so
(KJ)−1K ∈ F(S). Also,

J((KJ)−1K) = SJ(KJ)−1K = K−1KJ(KJ)−1K = K−1SK = K−1K = S

and ((KJ)−1K)J = S so that (KJ)−1K is an inverse of J in F(S). Thus F(S) is a group
as required. �

Remark 3.3. In the notation of the above proof we have (KJ)−1K = J−1 because from the
proof of (2) implies (1) we see that if I ∈ F(S) has an inverse in F(S), then the inverse
must be I−1.

Again, suppose that S is a maximal order in a completely 0-simple semigroup Q. By
Corollary 2.2 and its left-right dual, S = Oℓ(I) = Or(I) for any fractional S-ideal I. Thus

I−1 = {q ∈ Q | Iq ⊆ S} = {q ∈ Q | qI ⊆ S}.

Since II−1 ⊆ S we have I ⊆ (I−1)−1. Further, if I ⊆ S, then SI ⊆ I ⊆ S so that S ⊆ I−1.
Again, if I ⊆ S, then (I−1)−1 ⊆ S since for u ∈ (I−1)−1 we have uS ⊆ uI−1 ⊆ S so that
u ∈ S by Proposition 3.1. We say that I is reflexive if I = (I−1)−1. Notice that if F(S) is
a group with identity S, then all fractional S-ideals are reflexive.

Recall that a proper ideal P of S is prime when for all ideals I, J of S, if IJ ⊆ P , then
at least one of I, J is contained in P . It is not difficult to show that P is prime if and only
if for all elements a, b of S, if aSb ⊆ P , then a ∈ P or b ∈ P .

If S is an order in a completely 0-simple semigroup, then by Theorem 4.1 of [4], 0 is a
prime ideal of S. We now consider non-zero prime ideals of a maximal order S. A non-zero
prime ideal P is said to be a minimal prime if the only prime ideal of S properly contained
in P is 0.
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Proposition 3.4. Let S be a maximal order in a completely 0-simple semigroup and let P
be a non-zero prime ideal of S. Then P is reflexive if and only if S is properly contained
in P−1. Furthermore, if P is reflexive, then P is a minimal prime of S.

Proof. Suppose that P is reflexive and that S = P−1. Then SP−1 ⊆ S so that S ⊆ (P−1)−1

and P 6= (P−1)−1, a contradiction. Hence S $ P−1.
Conversely, if S $ P−1, then it follows from the observations above that PP−1(P−1)−1 ⊆

P . But PP−1 ⊆ S and (P−1)−1 ⊆ S so that PP−1 and (P−1)−1 are ideals of S. Since P
is prime we have PP−1 ⊆ P or (P−1)−1 ⊆ P . If PP−1 ⊆ P , then P−1 ⊆ Or(P ) = S, a
contradiction. Hence (P−1)−1 ⊆ P and so P is reflexive.

Now suppose that P is reflexive and that K is a non-zero prime ideal of S contained
in P . Then P−1K ∈ F(S) and P−1K ⊆ P−1P ⊆ S so that P−1K is an ideal of S. Now
PP−1K ⊆ SK ⊆ K and K is prime so that P ⊆ K or P−1K ⊆ K. But if the latter
holds, then P−1 ⊆ Oℓ(K) = S, a contradiction since P is reflexive. Thus P = K and P is
a minimal prime. �

4. Projective Acts

For a semigroup S, a pointed left S-act or left S-act with zero is a left S-act A with
a distinguished element 0 satisfying s0 = 0 for all s ∈ S. Notice that if S itself has a zero
and A is a pointed left S-act, then 0a = 0 for all a ∈ A so that there is little danger of
confusion in using the symbol 0 for both the zero of S and the zero of A.

Of course, we may define pointed right S-acts and for each of the following definitions
and results there is a left-right dual.

Notice that in a semigroup S with zero, the left ideals are pointed left S-acts with the
semigroup zero being the zero of the act.

For the rest of this section, every semigroup has a zero, the term “S-act” means “pointed
left S-act” and the action is assumed to be unitary if S is a monoid.

Note that if θ : A → B is an S-morphism, that is, if (sa)θ = s(aθ) for all a ∈ A, s ∈ S,
then 0θ = 0.

Projective S-acts are defined in the usual way, that is, an S-act P is projective if for
any S-acts A, B and S-morphisms α : P → B, θ : A → B with θ surjective, there is an
S-morphism β : P → A such that the triangle

P

A
θ

-

β

�

B

α
?

is commutative.
If S is a monoid, there are analogous results to those for projective acts without zero

[7]. The proofs are essentially the same and we omit them. In our case, the coproduct is
the 0-direct union rather than simply disjoint union. Thus a free S-act is a 0-direct union⋃

i∈I Sxi where each Sxi is isomorphic to S and we have the following two propositions.
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Proposition 4.1. Let S be a monoid with zero and suppose that the S-act P is a 0-direct
union of S-acts Pi (i ∈ I). Then P is projective if and only if each Pi is projective.

Proposition 4.2. Let S be a monoid with zero. Then an S-act is projective if and only if it
is a 0-direct union of cyclic S-acts each of which is isomorphic to an idempotent generated
principal left ideal of S.

If S is a semigroup without an identity, then clearly each S-act is also a unitary S1-act
and conversely, each unitary S1-act becomes an S-act by restricting the action. Equally
clearly, for S-acts A, B, an S-morphism from A to B is an S1-morphism and vice versa.
Thus an S-act is projective if and only if it is a projective S1-act and we obtain a semigroup
version of Proposition 4.1 by simply replacing the word “monoid” by “semigroup”. By a
cyclic S-act we mean an S-act of the form S1c for some c in the act. Now we have the
following semigroup version of Proposition 4.2.

Proposition 4.3. Let S be a semigroup with zero. Then an S-act is projective if and
only if it is a 0-direct union of cyclic S-acts each of which is isomorphic to an idempotent
generated principal left ideal of S1.

In some cases, even if S is not a monoid we can replace S1 in the statement of Proposition
4.3 by S.

Lemma 4.4. Let A be an S-act where S 6= S1 and suppose that for each element a of A
there is an element s of S such that sa = a. Then A is not isomorphic to S1.

Proof. If θ : A → S1 is an isomorphism, then aθ = 1 for some a ∈ A. Now there is
an element s ∈ S such that sa = a and so s = s1 = s(aθ) = (sa)θ = aθ = 1, a
contradiction. �

The following proposition is now an immediate consequence of Lemma 4.4 and Proposi-
tion 4.3.

Proposition 4.5. Let S be a semigroup without identity. Let P be an S-act and suppose
that for each p ∈ P there is an element s of S such that sp = p. Then P is projective if and
only if it is a 0-direct union of cyclic S-acts each of which is isomorphic to an idempotent
generated left ideal of S.

5. Abundant Orders In Completely 0-simple Semigroups

Recall that the relation R∗ is defined on a semigroup S by the rule that aR∗b if and
only if aRb in some oversemigroup of S. The relation L∗ is defined dually. We remark that
if S is regular, then R = R∗ and L = L∗. A semigroup S is abundant if each R∗-class and
each L∗-class contains an idempotent. Note that an idempotent is a left (right) identity for
its R∗-class (L∗-class). Further information about R∗, L∗ and abundant semigroups can
be found in [1]. In particular, if a semigroup is abundant, then all its principal one-sided
ideals are projective. The converse is true when S is a monoid but not generally. For
example, it is easy to see that every principal ideal of the infinite monogenic semigroup is
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projective but this semigroup is not abundant. If a semigroup is such that all its one-sided
ideals are projective, then it is said to be hereditary. We are more concerned with what we
call weakly hereditary semigroups, that is, abundant semigroups in which every two-sided
ideal is projective as a left act and a right act.

We now investigate abundant orders in completely 0-simple semigroups. First, we have
the following result which is an immediate consequence of Lemma 2.10 and Proposition
5.2 of [4].

Lemma 5.1. If S is an abundant order in a completely 0-simple semigroup Q, then the
relations R∗ and L∗ on S are the restrictions of the relations of R and L on Q respectively.

Lemma 5.2. If I is a fractional S-ideal where S is an abundant order in a completely
0-simple semigroup Q, then Oℓ(I) is an abundant order in Q.

Proof. Since S ⊆ Oℓ(I), it is clear that Oℓ(I) is an order and since S is abundant, it follows
easily from Lemma 5.1 that Oℓ(I) is abundant. �

For a fractional S-ideal I as in the lemma, we recall from Section 2 that, by the definition
of I−1,

I−1I ⊆ Or(I) = {q ∈ I | Iq ⊆ I}.

Further, by Proposition 2.1, I is a fractional left Oℓ(I)-ideal so that, in particular, I is an
Oℓ(I)-act. With this notation we can now prove the following result.

Proposition 5.3. If I−1I = Or(I), then I is a projective Oℓ(I)-act.

Proof. Let M , N be Oℓ(I)-acts and suppose that ψ : M → N and ϕ : I → N are Oℓ(I)-
morphisms with ψ surjective.

For each L-class L of Q choose an idempotent eL in L ∩ S. It follows from Lemma 5.1
that such a choice is possible since S is large in Q and is abundant. Now S ⊆ Or(I) = I−1I

so that eL ∈ I−1I. For each L, choose elements hL ∈ I−1, kL ∈ I such that hLkL = eL.
Finally, for each L, choose an element mL ∈M such that mLψ = kLϕ.

We now define a function θ : I → M as follows. First, 0θ = 0. Next, for a non-zero
element x of I we have x ∈ L for some L-class L of Q and we put

xθ = xhLmL.

Note that xhL ∈ II−1 ⊆ Oℓ(I) so that we have xθ ∈M as required.
Let t ∈ Oℓ(I) and let x ∈ I ∩ L as above. If tx = 0, then

(tx)θ = 0 = 0mL = txhLmL = t(xθ).

If tx 6= 0, then
(tx)θ = txhLmL = t(xθ)

and hence θ is an Oℓ(I)-morphism.
Furthermore, 0θψ = 0 = 0ϕ and

xθψ = (xhLmL)ψ = (xhL)(mLψ) = xhL(kLϕ) = (xhLkL)ϕ = (xeL)ϕ = xϕ

so that θψ = ϕ. Thus I is projective as claimed. �
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The following simple lemma gives some properties of abundant orders in completely
0-simple semigroups not enjoyed by all orders.

Lemma 5.4. Let S be an abundant order in a completely 0-simple semigroup Q. Then
F(S) is a monoid with identity S and S is closed in Q.

Proof. Let q ∈ Q. Since S is large and abundant, it follows from Lemma 5.1 that there are
idempotents e, f in S such that qe = q and fq = q. If I ∈ F(S), then SI ⊆ I and IS ⊆ I

and it follows that SI = I = IS. Thus F(S) is a monoid.
If q ∈ Q, then we have just seen that q ∈ qS and q ∈ Sq. It follows that S is closed in

Q. �

We can now prove the following result which corrects Proposition 6.3 of [2].

Theorem 5.5. If S is an abundant order in a completely 0-simple semigroup Q, then
F(S) is a group if and only if S is maximal, weakly hereditary and S = II−1 = I−1I for
all non-zero ideals I of S.

Proof. If F(S) is a group, then it has identity S by Lemma 5.4. Also S is closed in Q and
so by Theorem 3.2, S is maximal and S = II−1 = I−1I for all non-zero ideals I of S. If I
is a non-zero ideal of S, then it follows from the maximality of S that S = Oℓ(I) = Or(I).
Hence by Proposition 5.3 and its dual, I is projective as a left S-act and as a right S-act.
Thus S is weakly hereditary.

For the converse note that since S is the identity of F(S), it follows from Theorem 3.2
that F(S) is a group. �

The next proposition tells us about the nature of prime ideals in a maximal, weakly
hereditary order.

Proposition 5.6. Let S be an abundant order in a completely 0-simple semigroup Q such
that F(S) is a group. Then a proper ideal I of S is prime if and only if it is a maximal
ideal.

Proof. If I is a maximal ideal of S and JK ⊆ I for some ideals J , K with J * I, then
I ∪ J = S by the maximality of I. Let a ∈ K. Then a = ea for some idempotent e of S
since S is abundant. Thus a ∈ (I ∪ J)K ⊆ I and so K ⊆ I. Hence I is prime.

Conversely, suppose that I is prime and let W be an ideal of S with I $ W . Since S is
a maximal order in Q we have S = Oℓ(J) = Or(J) for any ideal J of S and so W−1 ⊆ I−1.
Consequently, W−1I ⊆ I−1I = S, and therefore W (W−1I) ⊆ SI = I. Now I is prime and
W is not contained in I, so W−1I ⊆ I. Thus W−1 ⊆ Oℓ(I) = S and so W−1 = S. Hence
W = SW = W−1W = S and so I is a maximal ideal of S. �

Our next objective is to illustrate further the way in which the properties of the group
F(S) and those of S are related. First we need the following three lemmas.

Lemma 5.7. Let S be an abundant order in a completely 0-simple semigroup Q. Then S

is 0-simple if and only if S = Q.
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Proof. Since S is abundant it contains an idempotent which is necessarily primitive. Hence,
if S is 0-simple, then it is completely 0-simple. Thus S is regular and so by Lemma 5.1,
elements of S which are R-related or L-related in Q are similarly related in S. If q ∈ Q,
then q = a♯b for some elements a, b of S. Now aHa2 in Q so that aHa2 in S. Consequently,
if H is the H-class of a in S, then H is a group. Hence a♯ ∈ S and q ∈ S so that S = Q. �

Lemma 5.8. Let S be an abundant order in a completely 0-simple semigroup Q such that
F(S) is a group. If I, J are non-zero proper ideals of S and I ⊆ J , then there is an ideal
A of S such I = JA.

Proof. Put A = J−1I. Then J−1I ∈ F(S) and A ⊆ J−1J = S so that A is an ideal of S.
Also

I = SI = (JJ−1)I = JA.

�

Lemma 5.9. Let S be an abundant order in a completely 0-simple semigroup Q such that
F(S) is a group. If M , N are maximal ideals of S, then

MN = M ∩N = NM .

Proof. If 0 is a maximal ideal, then there is nothing to prove. Assume that M , N are
distinct and non-zero. Then they are both large so that if H is a non-zero group H-class
of Q, then there are elements m and n in M ∩H and N ∩H respectively. Thus mn 6= 0
and mn ∈ M ∩ N since MN ⊆ M ∩ N . Hence M ∩ N is non-zero and contained in M

and consequently, by Lemma 5.8, M ∩N = MA where A = M−1(M ∩N) is an ideal of S.
Now N is prime, M * N and MA ⊆ N so that A ⊆ N . Thus M ∩N = MA ⊆ MN and
M ∩N = MN as required. �

Theorem 5.10. Let S be an abundant order in a completely 0-simple semigroup Q with
S 6= Q and F(S) a group. Then the following conditions are equivalent:

(1) S satisfies the ascending chain condition for ideals,
(2) F(S) is abelian and every non-zero proper ideal of S can be written as a product of

maximal ideals of S.

Proof. Suppose that (1) holds. Since S 6= Q, we may assume, by Lemma 5.7, that S does
have a proper non-zero ideal I. Since S satisfies the ascending chain condition for ideals,
I ⊆M1 for some maximal ideal M1. As in the proof of Lemma 5.8, M−1

1 I is an ideal of S;
also I ⊆M−1

1 I since S ⊆M−1
1 . If I = M−1

1 I, then S = II−1 = M−1
1 II−1 = M−1

1 S = M−1
1

so that M1 = SM1 = M−1
1 M1 = S, a contradiction. Hence I $ M−1

1 I.
If M−1

1 I = S, then I = M1. Otherwise, M−1
1 I ⊆M2 for some maximal ideal M2 and we

obtain
I $ M−1

1 I $ M−1
2 M−1

1 I ⊆ S.

Continuing in this way we see that since S satisfies the ascending chain condition for
ideals, S = M−1

n . . .M−1
1 I for some maximal ideals M1, . . . ,Mn. Hence I = M1 . . .Mn.

Now let J ∈ F(S) with J 6= S. Putting K = J−1∩S we have, as in the proof of Theorem
3.2, that KJ and K are non-zero ideals of S. By Remark 3.3, (KJ)−1K = J−1 and since
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F(S) is a group, J = K−1(KJ). Since all non-zero proper ideals are products of maximal
ideals, it follows that the group F(S) is generated by the maximal ideals of S. Hence, by
Lemma 5.9, F(S) is abelian.

Now suppose that (2) holds and let I, J be non-zero proper ideals of S with I ⊆ J . By as-
sumption, I = M1 . . .Ms and J = N1 . . . Nt for some maximal idealsM1, . . . ,Ms, N1, . . . , Nt.
Thus M1 . . .Ms ⊆ Ni for i = 1, . . . , t. By the primeness of Ni one of the Mj ’s is contained
in Ni. We may assume that M1 is contained in N1 and since M1 is a maximal ideal,
M1 = N1. By Lemma 5.8, there is an ideal A of S such that

M1 . . .Ms = I = JA = N1 . . . NtA.

Cancelling, we have M2 . . .Ms = N2 . . . NtA. Continuing in this way we see that t 6 s

and that Mi = Ni for i = 1, . . . , t. The ascending chain condition now follows easily. �

6. Orders In Brandt Semigroups

A Brandt semigroup is an inverse completely 0-simple semigroup. When we specialise
to the case of orders in Brandt semigroups, two of the results of the previous section can
be strengthened and simplified. This is partly because we have a converse of Proposition
5.3 and also because all maximal orders are abundant.

Proposition 6.1. Let S be a maximal order in a Brandt semigroup Q. Then S is abundant.

Proof. Put T = E(Q)∪ S where E(Q) is the semilattice of idempotents of Q. If e ∈ E(Q)
and s ∈ S, then es = 0 or eRs in Q so that es = s. Similarly, se = 0 or se = s. Thus T
is a subsemigroup of Q and hence it is an order in Q. Since S is large we can choose an
element in S ∩H for each group H-class H of Q and it is then easy to verify that S ∼ T .
Since S ⊆ T and S is maximal, we have S = T so that E(Q) ⊆ S and S is abundant. �

We now give the converse of Proposition 5.3.

Proposition 6.2. Let S be a maximal order in a Brandt semigroup Q and let I ∈ F(S).
If I is a projective Oℓ(I)-act, then I−1I = Or(I).

Proof. Since S is abundant we must have E(Q) ⊆ S and hence Oℓ(I) is also full since
S ⊆ Oℓ(I). Thus if i ∈ I, then there is an element e ∈ Oℓ(I) such that ei = i. By
Proposition 4.5, I is a 0-direct union of cyclic Oℓ(I)-acts each of which is isomorphic to an
idempotent generated principal left ideal of Oℓ(I), say

I =
⋃

λ∈Λ

Oℓ(I)cλ

for some index set Λ and non-zero elements cλ of I. If cλLcµ in Q, then cλ = qcµ for some
q ∈ Q. Now q = a♯b for some a, b ∈ S with aRb in Q. Thus acλ = aa♯bcµ = bcµ 6= 0 and
as S ⊆ Oℓ(I) we have

Oℓ(I)cλ ∩ Oℓ(I)cµ 6= 0.

Hence λ = µ. Since I is large in Q, there is a cλ in each L-class of Q and so Λ indexes the
L-classes (and hence also the R-classes) of Q.
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Let c−1
µ be the inverse of cµ and note that for x ∈ Q we have xc−1

µ cµ 6= 0 if and only if
x ∈ Lµ. Hence cλc

−1
µ = 0 if λ 6= µ. Consequently,

Ic−1
µ =

⋃

λ∈Λ

Oℓ(I)cλc
−1
µ = Oℓ(I)cµc

−1
µ ⊆ Oℓ(I)

so that c−1
µ ∈ I−1.

Clearly, I−1I ⊆ Or(I). Let p be a non-zero element of Or(I) and suppose that p ∈
Rµ ∩ Lλ. Then cµp ∈ I since cµ ∈ I and I is a right Or(I)-act and so p = c−1

µ cµp ∈ I−1I.

Thus Or(I) = I−1I as required. �

Armed with these results we can now give the promised strengthening of some results
in Section 5. First, corresponding to Theorem 5.5 we have the following theorem.

Theorem 6.3. Let S be an abundant order in a Brandt semigroup Q. Then F(S) is a
group if and only if S is maximal and weakly hereditary.

Proof. If F(S) is a group, then, by Theorem 5.5, S is maximal and weakly hereditary.
Conversely, if S is maximal and weakly hereditary, then Oℓ(I) = Or(I) = S by maximal-

ity and hence by Proposition 6.2 and its left-right dual, S = II−1 = I−1I for all non-zero
ideals I of S. It now follows from Theorem 3.2 that F(S) is a group. �

Next, corresponding to Theorem 5.10 we have the following result.

Theorem 6.4. Let S be a maximal order in a Brandt semigroup Q with S 6= Q. Then the
following conditions are equivalent:

(1) Every ideal of S is projective as a left S-act and right S-act and S satisfies the
ascending chain condition for ideals,

(2) F(S) is an abelian group and every non-zero proper ideal of S can be written as a
product of maximal ideals of S.

Proof. By Proposition 6.1, S is abundant and so if (1) holds, then S is weakly hereditary
so that by Theorem 6.3, F(S) is a group. That (2) follows from (1) is now immediate by
Theorem 5.10.

Conversely, if (2) holds, then S is weakly hereditary by Theorem 6.3 and satisfies the
ascending chain condition for ideals by Theorem 5.10. �

7. Examples

We conclude the paper with some examples to illustrate the theorems of Sections 3,
5 and 6. Note that if S is an order in a completely simple semigroup, then S0 is an order
in Q0 and S is maximal or abundant or weakly hereditary if and only if S0 has the same
property. Thus the examples we give of orders in abelian groups are relevant to the theory
we have developed.

We note that for a commutative semigroup, being weakly hereditary is the same as
being hereditary and we recall the criterion from [3] for an order in an abelian group to be
maximal.
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Proposition 7.1. A commutative cancellative semigroup C is a maximal order in its group
of quotients G if and only if it satisfies the following condition:

if a ∈ C, g ∈ G are such that agn ∈ C for all n > 1, then g ∈ C.

Our first example gives a maximal, weakly hereditary order which satisfies the ascending
chain condition for ideals.

Example 7.1. It is noted in Example 2.2 of [3] that C = {ak | k ∈ Z, k > 0} is a maximal
order in the infinite cyclic group G with generator a. It is easy to verify that the fractional
C-ideals are precisely the sets Im where m ∈ Z and Im = {ak | k > m}. Thus C satisfies
the ascending chain condition for ideals and so by Theorem 6.4, F(C) is an abelian group
generated by the unique maximal ideal of C. In fact, ImIn = Im+n so that the group F(C)
is isomorphic to Z.

The next example shows that an order can be maximal and abundant but not weakly
hereditary.

Example 7.2. Let S = {x ∈ R | x > 0}. Then S is a maximal order in the additive
group R. It can be verified that the fractional S-ideals are the sets

Ia = {x ∈ R | x > a} and Ka = {x ∈ R | x > a}

where a ∈ R. The semigroup F(S) (with operation addition) is a chain of two groups
A ∪ B where A = {Ia | a ∈ R} and B = {Ka | a ∈ R}.

Although S is maximal and S = I0 is the identity of F(S), condition (1) of Theorem 3.2
does not hold because K−1

a = K−a and Ka +K−a = K0 6= S.

We now give a simple example of a non-maximal order S for which F(S) is a group.

Example 7.3. In the notation of Example 7.1, let S = I1. Then S is an order in G but is
not maximal since it is equivalent to and strictly contained in C. The fractional S-ideals
are the same as those of C so that F(S) is a group but the identity is C rather than S.
Since S is not abundant, this example does not contradict Theorem 6.3.

The next example is a maximal, weakly hereditary order in a non-commutative Brandt
semigroup.

Example 7.4 Let G, C be as in Example 7.1 and let P be the 2× 2 identity matrix. Put
S = M0(C; 2, 2;P ) and Q = M0(G; 2, 2;P ) where 2 = {1, 2}. Then it can be verified
that the fractional S-ideals are the sets M0(Im; 2, 2;P ) where m ∈ Z and that F(S) is
a group isomorphic to Z. Since S is a full semigroup of Q, it is certainly abundant and
so by Theorem 6.3, S is maximal and weakly hereditary. We could also deduce that S is
maximal from Proposition 2.4 of [3].

We now give a collection of inequivalent maximal orders in the multiplicative group of
positive rationals. Each is abundant but not hereditary.

Example 7.5. First, let T = {x ∈ Q | 1 6 x}. Then T is an order in Q+ and using
Proposition 7.1, it is easy to verify that T is maximal. It is straightforward to show that a
fractional T -ideal is one of Ia = {x ∈ Q | x > a} for some a ∈ R+ or Ja = {x ∈ Q | x > a}
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for some a ∈ Q+. The principal ideals of T are those Ja with a > 1 and since Ja is
isomorphic to T (as a T -act) for any positive rational a, it is clear that T is abundant.
However, for any real a with a > 1, the ideal Ia cannot be written as a disjoint union of
principal ideals and so by Corollary 3.8 of [7], T is not weakly hereditary. The monoid
F(T ) is a chain of two groups with the group of units consisting of {Ja | a ∈ Q+}. Notice
that T is semihereditary, that is, every finitely generated ideal is projective.

Next note that by Proposition 7.1, the order P consisting of the positive integers is
maximal. It is not even semihereditary since, for example, the ideal 2P∪3P is not projective.
It is easy to see that T and P are not equivalent.

Finally, for each prime p, let Vp = { n
pk | n ∈ P, k ∈ P ∪ {0}}. Clearly, each Vp is an

order in Q+ and, again using Proposition 7.1, we see that each Vp is maximal. No Vp

is semihereditary since for distinct primes p, q, r the ideal generated by q and r is not
projective. It is easy to see that Vp and Vq are inequivalent if p 6= q and also that no Vp is
equivalent to either T or P.
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