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Abstract

We give an abstract description of the kernel of a proper primitive in-

verse congruence on a categorical semigroup. More specifically we show

that it is a ∗-reflexive, ∗-unitary, ∗-dense subsemigroup and that on a

given categorical semigroup there is a one-one correspondence between

such subsemigroups and the proper primitive inverse congruences. Our

results allow us to give a description of the minimum proper primitive

inverse semigroup congruence on a strongly E∗-dense categorical semi-

group.

Introduction

It is argued in [10] that when considering semigroups with zero, a case can
be made for regarding the class of Brandt semigroups as the natural analogue of
the class of groups. Another possible analogue is the related class of primitive
inverse semigroups (with zero). The point is that in either class, any semigroup
without zero-divisors is a group with an adjoined zero. These thoughts suggest
that for semigroups with zero, Brandt semigroup congruences or primitive in-
verse semigroup congruences might play the role played by group congruences for
general semigroups.

Three different, although necessarily equivalent, characterisations of the kernel
of a group congruence have been given by Dubreil [3], Levi [15, 16] and Gomes
[8]. An account of the approach of [3] and a brief description of that of [15, 16]
is given in Chapter 10 of [2]. The properties used in the characterisations can be
adapted to the case of semigroups with zero. However, it is not clear that the
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adaptations of the three characterisations are equivalent and the appropiate one
for semigroups with zero seems to be the approach of Gomes in [8].

After presenting the basic definitions in Section 1, we start Section 2 by showing
how to associate a proper primitive inverse congruence with a strongly ∗-dense
subsemigroup of a categorical semigroup. We then investigate the kernel of a
proper primitive inverse congruence on a categorical semigroup and show that it is
∗-reflexive, ∗-unitary and ∗-dense. Conversely, any subsemigroup of a categorical
semigroup which has these properties is the kernel of a proper primitive inverse
congruence.

The question arises of when a semigroup with zero has a proper primitive
inverse congruence. Preston [21], extending an earlier result of Munn [19], has
shown that the semigroup must be categorical. A categorical inverse semigroup
has a proper primitive inverse congruence, but categoricity is not sufficient in the
general case. We conclude Section 2 with a result suggested by the referee giving
necessary and sufficient conditions for the existence of a proper primitive inverse
congruence on an arbitrary semigroup.

We consider E∗-dense semigroups in Section 3 and give a description of the
minimum proper primitive inverse congruence on a strongly E∗-dense categorical
semigroup which is an analogue of the description in [18] of the minimum group
congruence on an E-dense semigroup.

In Section 4 we specialise to the case of categorical inverse semigroups and
examine the connections between our approach and the kernel-trace approach of
Petrich [20, Chapter III]. Finally, in Section 5 we give some analogues of results
due to Edwards [4].

We would like to thank the referee for drawing our attention to [17] and sug-
gesting Theorem 2.8.

1. Preliminaries

For the standard terminology and notation of semigroup theory we refer the
reader to [12]. In particular, E(S) denotes the set of idempotents of a semigroup
S, and a subsemigroup T of S is full if E(S) ⊆ T . We adopt the usual convention
that a semigroup with zero must contain at least two elements. By a proper
congruence on a semigroup with zero we mean a congruence ρ such that 0ρ = {0}.
Proper congruences are also widely known as 0-restricted congruences (see for
example [2]). We occasionally use the term 0-subsemigroup to emphasise that
0 is a member of the subsemigroup under consideration. The 0-subsemigroup
generated by a subset A of a semigroup with zero will be denoted by 〈A〉0.

Many concepts of semigroup theory can be modified to give closely related
ideas which are more useful in the context of semigroups with zero. We now
describe how the notions of dense, reflexive, and unitary subsets of a semigroup
are modified. Let T be a subset of a semigroup S with zero. The set of non-zero
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elements of T is denoted by T ∗; in particular, E∗(S) or just E∗ is the set of
non-zero idempotents of S.

We say that T is ∗-dense in S if for every non-zero element a of S there are
elements x, y ∈ S such that ax, ya ∈ T ∗.

We define T to be ∗-reflexive if ab ∈ T ∗ implies that ba ∈ T ∗ for all a, b ∈ S.
Next, T is said to be ∗-unitary if for all elements a of S and t of T, we have

a ∈ T if at or ta is in T ∗.
For an element a of S, define the sets XT (a) and YT (a) by:

XT (a) = {b ∈ S | atb ∈ T ∗ for all t ∈ T 1 such that at 6= 0 or tb 6= 0},

YT (a) = {b ∈ S | bta ∈ T ∗ for all t ∈ T 1 such that ta 6= 0 or bt 6= 0}.

Note that, in particular, if b ∈ XT (a), then ab ∈ T ∗, and if b ∈ YT (a), then
ba ∈ T ∗.

Now put W ∗

T (a) = XT (a) ∩ YT (a).
We say that T is strongly ∗-dense if T has no non-zero nilpotent elements and

W ∗

T (a) is nonempty for all non-zero elements a of S. Note that by definition, a
strongly ∗-dense subsemigroup is ∗-dense. Indeed, it satisfies the condition that
for every non-zero element a of S there is an element b such that ab, ba ∈ T ∗.

The following two lemmas are immediate from the definitions and will be used
frequently without further mention.

Lemma 1.1. Let T be a ∗-reflexive subset of a semigroup S with zero. Then the
following conditions are equivalent:

(1) T is ∗-unitary,
(2) for all elements a of S and t of T , if at ∈ T ∗, then a ∈ T ,
(3) for all elements a of S and t of T , if ta ∈ T ∗, then a ∈ T .

Lemma 1.2. Let T be a ∗-reflexive subset of a semigroup S with zero. Then the
following conditions are equivalent:

(1) T is ∗-dense,
(2) for every non-zero element a of S, there is an element x of S such that

ax ∈ T ∗,
(3) for every non-zero element a of S, there is an element y of S such that

ya ∈ T ∗,
(4) for every non-zero element a of S, there is an element z of S such that

az ∈ T ∗ and za ∈ T ∗.

A semigroup S is categorical if it has a zero and for elements a, b and c of S
such that abc = 0 we have ab = 0 or bc = 0. Categorical semigroups are also said
to be categorical at zero (see [2]). Note that when we say that a semigroup is
categorical it is implicit that the semigroup has a zero.

Lemma 1.3. Let S be a categorical semigroup and T be a ∗-reflexive subsemi-
group of S. Let a, b be elements of S with ab ∈ T ∗. If t ∈ T and at 6= 0 or tb 6= 0,
then atb ∈ T ∗.
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Proof. Let a, b ∈ S and t ∈ T be such that ab ∈ T ∗ and at 6= 0. Then ba ∈ T ∗

since T is ∗-reflexive, and bat 6= 0 since S is categorical. Hence bat ∈ T ∗ and
consequently, atb ∈ T ∗ as required .

Similarly, if tb 6= 0, then we also have atb ∈ T ∗. �

Corollary 1.4. If T is a ∗-reflexive, ∗-dense subsemigroup of a categorical semi-
group S, then T is strongly ∗-dense.

Proof. Since T is ∗-reflexive and ∗-dense, if a is a non-zero element of S, there
is an element z such that az, za ∈ T ∗. It is now immediate from the lemma that
z ∈ W ∗

T (a).
If t ∈ T ∗, then by ∗-reflexivity and ∗-denseness, ty, yt ∈ T ∗ for some y ∈ S.

By categoricity, tyt ∈ T ∗ and so yt2 ∈ T ∗. Hence t2 6= 0. It follows that T is
strongly ∗-dense. �

A Brandt semigroup is an inverse completely 0-simple semigroup. An inverse
semigroup S with zero is said to be primitive if every non-zero idempotent e in
S is primitive, that is, for all f ∈ E∗(S), if e 6 f , then e = f . For instance,
Brandt semigroups are primitive and, in fact, every primitive inverse semigroup
is a 0-direct union of Brandt semigroups (see for example, [20, Theorem III.4.3]
or [22, Corollary 2]). From [2, Lemma 7.61] we have the following result.

Lemma 1.5. A primitive inverse semigroup is categorical.

The following lemma is a special case of Lemma 7.63(i) of [2].

Lemma 1.6. Let S be a primitive inverse semigroup. Then, for e ∈ E(S) and
s ∈ S, if es 6= 0, then es = s. Similarly, se 6= 0 implies se = s.

A proper congruence ρ on a semigroup S with zero is said to be a primitive
inverse (Brandt) congruence if S/ρ is a primitive inverse (Brandt) semigroup.
As we are concerned only with proper congruences, when we use the phrases
“primitive inverse congruence” or “Brandt congruence” it is implicit that the
congruence is proper.

By the kernel of a congruence ρ on a semigroup S we mean the subset Kerρ
of S defined by

Kerρ = {a ∈ S | aρ ∈ E(S/ρ)} = {a ∈ S | aρa2}.

Observe that if ρ is a proper congruence and a is a non-zero element of Kerρ,
then a2 6= 0 and consequently, Kerρ has no non-zero nilpotent elements.

2. The Characterisation

Throughout this section S will be a categorical semigroup. We re-emphasise
that saying a semigroup is categorical implies that it has a zero. Our main aim
is to characterise the kernels of proper primitive inverse congruences on S as the
∗-unitary, ∗-reflexive, ∗-dense subsemigroups of S. We then show that there is
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an order-isomorphism between the set of all such subsemigroups of S and the set
of all proper primitive inverse congruences on S.

First, given any strongly ∗-dense subsemigroup T of S we define a congruence
ρT on S as follows. For all a, b ∈ S,

(a, b) ∈ ρT if and only if a = b = 0 or xa = bt 6= 0 for some x, t ∈ T.

The following proposition is an analogue of [7, Corollary 3.2].

Proposition 2.1. Let T be a strongly ∗-dense subsemigroup of S. Then the
relation ρT is a primitive inverse congruence on S and T ⊆ Ker ρT .

Proof. Note that if ρT is a congruence, then by definition, it is a proper congru-
ence.

For any non-zero element a of S there is an element x such that ax, xa ∈ T ∗

since T is strongly ∗-dense. Now S is categorical so that axa 6= 0 and hence
(a, a) ∈ ρT and ρT is reflexive.

Now let a, b be non-zero elements of S such that (a, b) ∈ ρT . Then there are
elements x, t of T such that xa = bt 6= 0. Let a′ ∈ W ∗

T (a), b′ ∈ W ∗

T (b). Since
x ∈ T and xa 6= 0 we have a′bt = a′xa ∈ T ∗ and similarly, xab′ = btb′ ∈ T ∗. Now
by categoricity,

a(a′xa)(b′b) = (aa′)(btb′)b 6= 0

and (a′xa)(b′b), (a′a)(btb′) ∈ T so that (b, a) ∈ ρT and ρT is symmetric.
To prove that ρT is transitive, let a, b, c ∈ S∗ be such that (a, b), (b, c) ∈ ρT .

Let x, t, u, v ∈ T be such that

xa = bt 6= 0 and ub = cv 6= 0.

Then ubt 6= 0 and so uxa = ubt = cvt 6= 0 where ut, vt ∈ T . Thus (a, c) ∈ ρT .
Next, we show that ρT is right compatible. Let a, b, c ∈ S∗ and suppose that

(a, b) ∈ ρT . Then xa = bt 6= 0 for some x, t ∈ T . Clearly, if ac = bc = 0, then
(ac, bc) ∈ ρT .

If bc 6= 0, let b′ ∈ W ∗

T (b) and c′ ∈ W ∗

T (c). Since b′b 6= 0 we have b′xa = b′bt 6= 0
and so b′x 6= 0. Also bcc′ 6= 0 by categoricity so that bcc′b′ ∈ T ∗ and hence
bcc′b′x ∈ T ∗.

Now b′b ∈ T ∗ and b′bc 6= 0 by categoricity, so c′b′bc ∈ T ∗. It follows that
c′b′bt 6= 0 and so c′b′btc ∈ T ∗. In particular, btc 6= 0 so that xac 6= 0. Now by
categoricity,

(bc)(c′b′btc) = (bcc′b′x)(ac) 6= 0

so that (ac, bc) ∈ ρT .
Since ρT is symmetric, it follows that if ac 6= 0, then we also have (ac, bc) ∈ ρT

and so ρT is right compatible. A similar argument shows that it is also left
compatible.

Next we show that T ⊆ KerρT . Certainly, 0 ∈ KerρT . Let t be a non-zero
element of T . Then t2 6= 0 since T has no nilpotents and so t3 6= 0 by categoricity.
Hence (t, t2) ∈ ρT and t ∈ KerρT .
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Now suppose that (a2, a) ∈ ρT for some non-zero element a of S. Then aq ∈ T ∗

for some q ∈ S and we have a2qρT aq. Hence we have t, x ∈ T such that

a(aqt) = x(aq) 6= 0.

Now aqt, x ∈ T so that aρT aq and a is related to an element of T . Thus we have
shown that

E(S/ρT ) = {tρT | t ∈ T}.

We now show that E(S/ρT ) is a semilattice. If t, u ∈ T and tu 6= 0, then
(tu)2 6= 0 so that ut 6= 0. Thus u(tu) = (ut)u 6= 0 so that (tu, ut) ∈ ρT . If tu = 0,
then clearly, ut = 0 so that again (tu, ut) ∈ ρT . Hence E(S/ρT ) is a semilattice.

Next we show that S/ρT is regular and hence inverse. If a is a non-zero element
of S, then ax, xa ∈ T ∗ for some x ∈ S. Hence (xa)2 ∈ T and

ax(axa) = a(xa)2 6= 0

so that (a, axa) ∈ ρT and S/ρT is regular.
Finally, we show that S/ρT is primitive. Let tρT , uρT be non-zero idempotents

of S/ρT and suppose that tρT 6 uρT so that (t, ut) ∈ ρT . Then xt = uty 6= 0 for
some elements x, y of T . We can assume that t, u ∈ T and so we have (t, u) ∈ ρT

since ty ∈ T .
Therefore, S/ρT is a primitive inverse semigroup. �

Our next result, which corresponds to [8, Lemma 5], shows that every primitive
inverse congruence on S is of the form ρK for some ∗-unitary, ∗-reflexive, ∗-dense
subsemigroup K of S.

Proposition 2.2. Let ρ be a primitive inverse congruence on S. Then Ker ρ is
a ∗-unitary, ∗-reflexive, ∗-dense subsemigroup of S and ρ = ρKer ρ.

Proof. Let K = Ker ρ. Suppose that a, b ∈ S and ab ∈ K∗. Then (aρ)(bρ) =
(ab)ρ is a non-zero idempotent of S/ρ. Since S/ρ is primitive inverse, (ba)ρ =
(bρ)(aρ) is also a non-zero idempotent. Thus ba ∈ K∗ and K is ∗-reflexive.

If a is a non-zero element of S, then aρ is a non-zero element of S/ρ and has
an inverse (aρ)−1 in S/ρ. Let (aρ)−1 = xρ. Then (ax)ρ = (aρ)(xρ) = (aρ)(aρ)−1

is a non-zero idempotent of S/ρ so that ax ∈ K∗. Thus K is ∗-dense.
If a, b ∈ S and ab, b ∈ K∗, then (aρ)(bρ) and bρ are non-zero idempotents

of S/ρ. Since all idempotents in S/ρ are primitive it follows that aρLbρ and
so (aρ)(bρ) = aρ. Thus aρ is a non-zero idempotent. Hence K is ∗-unitary as
required.

If a, b ∈ S∗ and (a, b) ∈ ρ, then since S/ρ is inverse we have (aρ)−1 = (bρ)−1 =
xρ for some non-zero element x of S. Now xa, bx ∈ K and (bx)a = b(xa) 6= 0 so
that (a, b) ∈ ρK .

Conversely, if (a, b) ∈ ρK and a, b are non-zero, then ua = bv 6= 0 for some
u, v ∈ K. In S/ρ, the element (uρ)(aρ) is non-zero and uρ ∈ E(S/ρ) so that by
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Lemma 1.6, (uρ)(aρ) = aρ. Similarly, (bρ)(vρ) = bρ so that (a, b) ∈ ρ. Thus
ρ = ρK as required. �

Note that a non-zero intersection of ∗-reflexive, ∗-unitary subsemigroups of S
is again ∗-reflexive and ∗-unitary. Let T be a non-zero subsemigroup of S and
suppose that T is contained in a ∗-reflexive, ∗-unitary subsemigroup. Let T∞ be
the least ∗-reflexive, ∗-unitary subsemigroup of S containing T . Note that if T is
∗-dense, then T∞ is also ∗-dense since T ⊆ T∞.

We can construct T∞ from T in the following way. First, let A be a non-zero
0-subsemigroup of S which is contained in a ∗-reflexive, ∗-unitary 0-subsemigroup
B. Let

u∗(A) = {x ∈ S | xy or yx is in A∗ for some y ∈ A1}.

Since B is ∗-unitary we have A∗ ⊆ u∗(A) ⊆ B and so the 0-subsemigroup 〈u∗(A)〉0

generated by u∗(A) is contained in B. Let

r∗(A) = {x ∈ S | x = yz for some y, z ∈ S1 such that zy ∈ A∗}.

Note that if x ∈ r∗(A), then x 6= 0. This is immediate if y = 1 or z = 1. If
y, z ∈ S, then zy ∈ B∗ so that yz ∈ B∗ and yz 6= 0. Observe also that since B is
∗-reflexive, A ⊆ 〈r∗(A)〉0 ⊆ B.

Now let T0 = T and for k > 0, let T2k+1 = 〈u∗(T2k)〉
0 and T2k+2 = 〈r∗(T2k+1)〉

0.
Then we have an ascending chain

T0 ⊆ T1 ⊆ T2 ⊆ ...

and T ′ =
⋃

k>0 Tk is a subsemigroup of S. Since T0 ⊆ T∞, it follows by induction
and the above remarks that Tk ⊆ T∞ for all k. Thus T ′ ⊆ T∞.

If ab ∈ T ′ and ab 6= 0, then ab ∈ T ∗

2k+1 for some k. Thus ba ∈ r∗(T2k+1) so that
ba is a non-zero element of T ′ and hence T ′ is ∗-reflexive.

If ab, b are non-zero elements of T ′, then we have ab, b ∈ T ∗

2k for some k and so
a ∈ u∗(T2k). It follows that T ′ is ∗-unitary and consequently, T∞ = T ′.

Now we show that if T is a strongly ∗-dense subsemigroup of S, then T∞ is the
kernel of the primitive inverse congruence ρT .

Proposition 2.3. If T is a strongly ∗-dense subsemigroup of S, then T∞ =
Ker ρT and ρT = ρT∞

.

Proof. By Proposition 2.1, T is contained in Ker ρT and by Proposition 2.2,
Ker ρT is ∗-unitary and ∗-reflexive. Hence, by definition, T∞ ⊆ Ker ρT .

On the other hand, if a ∈ Ker ρT , then as in the proof of Proposition 2.1,
(a, t) ∈ ρT for some t ∈ T . If a is non-zero, then there are elements x, v of T such
that ax = vt 6= 0. But vt ∈ T and T ⊆ T∞ so that ax ∈ T ∗

∞
and hence a ∈ T ∗

∞

since T∞ is ∗-unitary.
Thus T∞ = Ker ρT and so by Proposition 2.2, ρT = ρT∞

. �

We can now put our results together to obtain the main theorem of the section.
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Theorem 2.4. The mappings T 7→ ρT and ρ 7→ Ker ρ are mutually inverse order
isomorphisms between the set of ∗-unitary, ∗-reflexive, ∗-dense subsemigroups of
S and the set of all primitive inverse congruences on S.

Proof. If T is a ∗-unitary, ∗-reflexive, ∗-dense subsemigroup of S, then ρT is a
primitive inverse congruence by Proposition 2.1. By Proposition 2.3, Ker ρT = T∞

and T = T∞ since T is ∗-unitary, ∗-reflexive and ∗-dense.
On the other hand, if ρ is a primitive inverse congruence on S, then Ker ρ is

∗-unitary, ∗-reflexive and ∗-dense, and ρ = ρKer ρ by Proposition 2.2.
Thus the two mappings are mutually inverse. It is straightforward to verify

that they are order-preserving. �

An immediate consequence of the theorem is the following corollary.

Corollary 2.5. Let ρ, θ be primitive inverse congruences on S. Then ρ = θ if
and only if Kerρ = Kerθ.

We now turn our attention to Brandt congruences. We note first that if a
semigroup R has a Brandt congruence, then by [19, Theorem 1.1], R is categorical
and also, any two non-zero ideals of R have non-zero intersection. Following [9]
we say that such a semigroup is strongly categorical.

It is not difficult to show that if R is a strongly categorical semigroup and if
τ is any proper congruence on R, then R/τ is strongly categorical. Hence, if ρ
is a primitive inverse congruence on R, then R/ρ is a Brandt semigroup. The
following corollary is thus an immediate consequence of Theorem 2.4.

Corollary 2.6. Let R be a strongly categorical semigroup. Then the mappings
T 7→ ρT and ρ 7→ Kerρ are mutually inverse order isomorphisms between the set
of ∗-unitary, ∗-reflexive, ∗-dense subsemigroups of R and the set of all Brandt
congruences on R.

Having characterised proper primitive inverse congruences by their kernels we
now consider when such congruences exist. We start by quoting the following
result [17, Proposition 1].

Proposition 2.7. Let S be a semigroup with zero . Then

ρ = {(a, b) ∈ S × S | for all s, t ∈ S1, sat = 0 if and only if sbt = 0}
is a proper congruence on S. If τ is any proper congruence on S, then τ ⊆ ρ.

Borrowing terminology from ring theory, we say that a semigroup S with zero
is semiprime if aSa 6= 0 for every non-zero element a of S. A homomorphism
α:S → T of semigroups with zero is proper if 0α−1 = {0}, that is, α is proper if
and only if the congruence it induces is proper.

Theorem 2.8. Let S be a semigroup with zero and let

U = {a ∈ S | a2 6= 0} ∪ {0}.
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Then the following statements are equivalent:
(1) S has a proper primitive inverse homomorphic image,
(2) S is categorical, semiprime, and for all a, b in S,

a2 6= 0, b2 6= 0, ab 6= 0 together imply ba 6= 0,

(3) S is categorical and U is a ∗-dense subsemigroup,
(4) S is categorical and U is a ∗-unitary, ∗-reflexive, ∗-dense subsemigroup.

Proof. Suppose first that S has a proper primitive inverse homomorphic image,
say θ is a proper homomorphism onto a primitive inverse semigroup. Then by
[2, Lemma 7.62], S is categorical. If a is a non-zero element of S, then aθ 6= 0
so that if bθ is the inverse of aθ, then aba 6= 0 since θ is proper, and hence S is
semiprime.

A homomorphic image of an inverse semigroup is inverse [6, Theorem 5.1.4]
and it follows easily from Lallement’s Lemma [6, Lemma 2.4.4] that any non-zero
idempotent in a homomorphic image of a primitive inverse semigroup is primi-
tive. Thus the class of primitive inverse semigroups is closed under homomorphic
images and so by Proposition 2 of [17], S/ρ is primitive inverse. Now let a, b ∈ S
be such that a2, b2, and ab are non-zero. By categoricity, it follows that sa2t 6= 0 if
and only if sat 6= 0, and hence aρ is idempotent. Similarly, bρ is also idempotent
and so (aρ)(bρ) = (bρ)(aρ) since S/ρ is inverse. Thus ba 6= 0 and (2) holds.

Now suppose that (2) holds and let a, b ∈ U∗ so that a2 and b2 are non-zero.
If ab 6= 0, then ba 6= 0 by assumption and so by categoricity, abab 6= 0, whence
ab ∈ U and U is a subsemigroup.

Let s be a non-zero element of S. Then sSs 6= 0 since S is semiprime. Let
b ∈ S be such that sbs 6= 0. By categoricity, sbsb 6= 0 and bsbs 6= 0 so that
sb, bs ∈ U and U is ∗-dense in S.

Next, suppose that (3) holds. If ab ∈ U∗, then (ab)2 6= 0 so that ba 6= 0, and
hence by categoricity, (ba)2 6= 0, that is, ba ∈ U∗. Thus U is ∗-reflexive.

If s ∈ S, u ∈ U and su ∈ U∗, then u2 6= 0 and (su)2 6= 0 so that by categoricity,
(us)2 6= 0, that is, us ∈ U . Hence su2s ∈ U and by categoricity again, su2s 6= 0.
Thus (su2s)2 6= 0 so that s2 6= 0, that is, s ∈ U and therefore U is ∗-unitary.

Finally, if (4) holds, then by Corollary 1.4 and Proposition 2.1, ρU is a proper
primitive inverse congruence on S. �

3. E∗-dense semigroups

A semigroup S with zero is E∗-dense if for every non-zero element a of S
there are elements b, c of S such that ab, ca ∈ E∗(S). An E∗-dense semigroup
is obviously E-dense and the notion is an analogue for the class of semigroups
with zero of the concept of E-denseness in the class of all semigroups. An E-
dense semigroup is said to be E-inversive in [2]; E∗-dense semigroups are called
0-inversive in [14] and weakly regular in [17].
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The analogy between E-dense and E∗-dense semigroups is far from perfect.
For example, it is known that every E-dense semigroup has a minimum group
congruence. The existence of such a congruence was noted in [11] and an explicit
description given in [18, Proposition 9]. In contrast, as we have already noted,
the work of Munn and Preston shows that the existence of a (Brandt) primitive
inverse congruence on a semigroup forces the semigroup to be (strongly) categor-
ical. For an inverse semigroup, Preston (Munn) shows that (strong) categoricity
is sufficient and Fountain and Hayes [6] prove a similar result for an E∗-dense
semigroup in which the idempotents commute with each other. However, we
have seen that categoricity by itself is not sufficient for a general semigroup with
zero to have a primitive inverse congruence and the same is true for E∗-dense
semigroups.

Let T be a semigroup with zero such that E(T ) is a commutative subsemigroup.
Then, by Theorem 3 of [14], T is primitive inverse if and only if it is E∗-dense
and satisfies the following weak cancellation law:

if a, b, x, y ∈ T, then ax = bx 6= 0 and ya = yb 6= 0 together imply a = b.

Using this result it is easy to see that if I is the set of proper primitive inverse
congruences on an E∗-semigroup S, and if σ =

⋂
{τ : τ ∈ I}, then, provided that

I is not empty, σ is the minimum proper primitive inverse congruence on S.
We find necessary and sufficient conditions different from those of Theorem 2.8

for an E∗-dense semigroup S to have a (Brandt) primitive inverse congruence. In
fact, we show that S has such a congruence if and only if it is (strongly) categorical
and D(S) is strongly ∗-dense in S where D(S) is the least full, weakly self-
conjugate subsemigroup of S. We say that an E∗-dense semigroup S is strongly
E∗-dense if D(S) is a strongly ∗-dense subsemigroup of S. As noted above, a
strongly E∗-dense semigroup has a minimum proper primitive inverse congruence
and, as an analogue of Proposition 9 of [18], we give an explicit description this
congruence.

A weak inverse of an element a of a semigroup is an element b such that bab = b.
The set of all weak inverses of a is denoted by W (a) and if a is non-zero, then
W ∗(a) is the set of all non-zero weak inverses of a.

Lemma 3.1. Let S be a semigroup with zero, P be a primitive inverse semigroup
and α : S → P be a proper morphism. If a is a non-zero element of S and
a′ ∈ W ∗(a), then a′α is the inverse of aα in P .

Proof. Both aα and a′α are non-zero and since a′aa′ = a′, it follows that
(aα)(a′α) = (aa′)α is a non-zero idempotent of P . Similarly, (a′α)(aα) ∈ E∗(P ).
Since P is primitive inverse, it follows that aαL(a′α)(aα) and hence that a′α =
(aα)−1. �

We quote the following result from [6]. Its easy proof can be extracted from
[10] and it summarises some elementary properties of E∗-dense semigroups.
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Proposition 3.2. Let S be a semigroup with zero and E = E(S). Then the
following conditions are equivalent:

(1) S is E∗-dense,
(2) for every non-zero element a of S, there is an element b of S such that

ab ∈ E∗ and ba ∈ E∗,
(3) for every non-zero element a of S, there is an element c of S such that

ac ∈ E∗,
(4) for every non-zero element a of S, there is an element d of S such that

da ∈ E∗,
(5) every non-zero element of S has a non-zero weak inverse.

A subsemigroup T of S is said to be closed under weak conjugation or weakly
self-conjugate if ata′, a′ta ∈ T for all t ∈ T , a ∈ S and a′ ∈ W (a). Clearly,
in a semigroup with zero, the intersection of a family of weakly self-conjugate
subsemigroups contains zero and is weakly self-conjugate. Hence we can define
D(S) to be the least (under inclusion) full, weakly self-conjugate subsemigroup
of S.

There is a well known construction of D(S) [1] which we now describe. First,
for any subsemigroup T of S, put

q(T ) = {ata′, a′ta | t ∈ T, a, a′ ∈ S1, a′aa′ = a′}

and Q(T ) = 〈q(T )〉. Now put D0(S) = 〈E(S)〉 and for each non-negative integer
i, put Di+1 = Q(Di(S)). Clearly, we have an ascending chain

D0(S) ⊆ D1(S) ⊆ ... ⊆ Di(S) ⊆ ...

and D′ =
⋃

i>0 Di(S) is a subsemigroup of S. In fact, it is not difficult to see
that D′ = D(S).

Lemma 3.3. Let S be a categorical semigroup, P be a primitive inverse semi-
group and let α:S → P be a proper surjective morphism. Then D(S)α ⊆ E(P ).

Proof. Clearly, D0(S)α = 〈E(S)〉α ⊆ E(P ). Suppose that Di(S)α ⊆ E(P )
and that a ∈ S1, t ∈ Di(S) and a′ ∈ W (a). Then either ata′ = 0 in which
case (ata′)α ∈ E(P ) or a′ ∈ W ∗(a). If a = 1, then a′ is idempotent so that
ta′ ∈ Di(S) and (ata′)α ∈ E(P ). Otherwise, by Lemma 3.1, a′α = (aα)−1. Hence
(ata′)α = (aα)(tα)(aα)−1 which belongs to E(P ) since tα ∈ E(P ) by assumption
and P is inverse. Similarly, (a′ta)α ∈ E(P ) and so q(Di(S))α ⊆ E(P ). Hence
Di+1(S)α ⊆ E(P ) and the lemma follows by induction. �

We now define a subsemigroup T of a categorical E∗-dense semigroup S to be
weakly ∗-self-conjugate if it contains 0 and for all non-zero elements a of S and
all a′ ∈ W ∗(a) and t ∈ T 1, if one of at or ta′ is non-zero, then ata′ ∈ T ∗, and if
one of ta or a′t is non-zero, then a′ta ∈ T ∗.

It is clear that if T is weakly ∗-self-conjugate, then it is weakly self-conjugate.
It is also clear that if, in addition, T contains no non-zero nilpotents, then T is
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strongly ∗-dense. The converse of the last assertion, when T is full and weakly
self-conjugate, is a consequence of the following proposition.

Proposition 3.4. Let S be a categorical E∗-dense semigroup, P be a primitive
inverse semigroup and α : S → P be a proper surjective morphism. If T is a
non-zero weakly self-conjugate full subsemigroup of S such that Tα ⊆ E(P ), then
T has no non-zero nilpotents and is weakly ∗-self-conjugate.

Proof. Since α is proper, we have T ∗α ⊆ E∗(P ) and hence if t ∈ T ∗, then t2 6= 0
and so T has no non-zero nilpotents.

Let a be a non-zero element of S and a′ ∈ W ∗(a). Then certainly aa′ 6= 0.
Suppose that t ∈ T and at 6= 0. Then (at)α is non-zero, tα ∈ E∗(P ), and by
Lemma 3.1, a′α = (aα)−1 so that (ta′)α = (tα)(aα)−1 = ((aα)(tα))−1 is non-
zero. Hence ta′ 6= 0 and by categoricity, ata′ 6= 0. But ata′ ∈ T since T is weakly
self-conjugate and so ata′ ∈ T ∗.

Similar arguments give the other three conditions for T to be weakly ∗-self-
conjugate. �

Corollary 3.5. Let T be a weakly self-conjugate full subsemigroup of a categorical
E∗-dense semigroup S. Then T is strongly ∗-dense if and only if it has no non-
zero nilpotents and is weakly ∗-self-conjugate.

Proof. If T is strongly ∗-dense, then by definition, T has no non-zero nilpotents
and by Proposition 2.1, ρT is a proper primitive inverse congruence on S with
T ⊆ Ker ρT . Hence by Proposition 3.4, T is weakly ∗-self-conjugate.

The converse is clear. �

Corollary 3.6. Let S be a categorical E∗-dense semigroup and suppose that S
has a proper primitive inverse congruence ρ. Then D(S) is strongly ∗-dense.

Proof. By Lemma 3.3, D(S) ⊆ Ker ρ and since ρ is proper, tρ ∈ E∗(S/ρ) for
any non-zero element t of D(S). The result now follows from Proposition 3.4 and
Corollary 3.5. �

In general, if S is a categorical E∗-dense semigroup, then D(S) need not be
strongly ∗-dense. For instance, it is easy to produce examples of idempotent
generated completely 0-simple semigroups (which are categorical) which contain
non-zero nilpotent elements. For such a semigroup S we have D(S) = S so that
D(S) is not strongly ∗-dense.

On the other hand, if S is E∗-dense and the idempotents of S form a sub-
semigroup, then D(S) is strongly ∗-dense. To prove this we use the following
result.

Proposition 3.7. If S is an E-dense semigroup in which E(S) is a subsemigroup,
then E(S) = D(S).
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Proof. The result follows from [5, Proposition 2.1] but for completeness we in-
clude a short proof from [7, Lemma 8.14]. Let a ∈ S, a′ ∈ W (a) and e ∈ E(S).
Then a′aa′ = a′ and a′a ∈ E(S) so that

(aea′)2 = aea′aea′ = aea′aea′aa′ = a(ea′a)2a′ = a(ea′a)a′ = aea′.

Thus aea′ ∈ E(S). Similarly, a′ea ∈ E(S) and so E(S) is weakly self-conjugate.
Hence E(S) = D(S). �

Proposition 3.8. Let S be a categorical E∗-dense semigroup such that E(S) is
a subsemigroup. Then E(S) = D(S) and E(S) is strongly ∗-dense.

Proof. Certainly, S is E-dense and so by Proposition 3.7, E(S) = D(S).
It is clear that E(S) contains no non-zero nilpotent elements. Further, by

Proposition 3.2, W ∗(a) is nonempty for every non-zero element a of S. It follows
from this and [10, Lemma 1.6] that E(S) is strongly ∗-dense. �

We now give an analogue of [18, Proposition 9].

Theorem 3.9. Let S be a categorical E∗-dense semigroup. Then S has a proper
primitive inverse congruence if and only if D(S) is strongly ∗-dense. Moreover,
if D(S) is strongly ∗-dense, then the congruence ρD(S) is the minimum proper
primitive inverse congruence on S.

Proof. If S has a proper primitive inverse congruence, then by Corollary 3.6,
D(S) is strongly ∗-dense.

Conversely, if D(S) is strongly ∗-dense, then by Proposition 2.1, the congruence
ρD(S) is proper and primitive inverse.

Now suppose that D(S) is strongly ∗-dense and let τ be a proper primitive
inverse congruence on S. Let K = Ker τ . Clearly, E(S) ⊆ K. Suppose that
k ∈ K1 and a ∈ S. Let a′ ∈ W (a). If k = 1, then aka′ and a′ka are idempotents
and so belong to K. Otherwise, when aka′ 6= 0, we have (aka′)τ = (aτ)(kτ)(aτ)−1

by Lemma 3.1. Now (aτ)(kτ)(aτ)−1 is idempotent and hence aka′ ∈ K. Similarly,
a′ka ∈ K and K is weakly self-conjugate. Thus D(S) ⊆ K and so ρD(S) ⊆ ρK .
But ρK = τ by Proposition 2.2 and consequently, ρD(S) is the minimum primitive
inverse congruence on S. �

Of course, if we suppose that S is strongly categorical, then we can replace
“primitive inverse” by “Brandt” in the above theorem.

The following corollary strengthens [10, Theorem 2.1].

Corollary 3.10. Let S be a (strongly) categorical E∗-dense semigroup whose
idempotents form a subsemigroup. Then S has a proper (Brandt) primitive in-
verse congruence and the relation

β = {(a, b) | a = b = 0 or ea = bf 6= 0 for some e, f ∈ E(S)}

is the minimum proper primitive inverse (Brandt) congruence on S.
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Proof. By Proposition 3.8, E(S) = D(S) and hence the result follows from the
theorem. �

When E(S) is actually a semilattice we can recover the following result of
Fountain and Hayes [6, Theorem 2.2] which generalises [19, Theorem 2.7] and
[22, Theorem 5].

Corollary 3.11. Let S be a (strongly) categorical E∗-dense semigroup with E(S)
a semilattice. Then the relation

β = {(a, b) | a = b = 0 or ea = eb 6= 0 for some e ∈ E(S)}

is the minimum primitive inverse (Brandt) congruence on S.

Proof. For the moment, denote the congruence of Corollary 3.10 by β ′. By
Corollary 3.10, it suffices to prove that β ′ = β. Let a, b ∈ S be such that
ea = bf 6= 0 for some e, f ∈ E. Then eaf = ebf 6= 0. By [6, Lemma 2.1],
it follows that there is an idempotent k such that k(ea) = k(eb) 6= 0, that is,
(ke)a = (ke)b 6= 0 and (a, b) ∈ β. Thus β ′ ⊆ β.

Now suppose that ea = eb 6= 0 and let a′ ∈ W ∗(a) and b′ ∈ W ∗(b). Then by
[10, Lemma 1.6], f = a′ea ∈ E∗(S) and since bf 6= 0 follows from af 6= 0, we
also have bfb′ ∈ E∗(S). Put h = fb′b. Then

ah = afb′b = aa′eab′b = aa′e2ab′b = eaa′eab′b = eafb′b = ebfb′b 6= 0

and ebfb′ is idempotent so that (a, b) ∈ β ′ and the corollary follows. �

We conclude this section with the following result for categorical E∗-dense
semigroups.

Proposition 3.12. Let S be a categorical E∗-dense semigroup and let T be a
weakly ∗-self-conjugate full subsemigroup of S. If T is ∗-unitary, then it is also
∗-reflexive.

Proof. Suppose that a, b ∈ S and ab ∈ T ∗. By Proposition 3.2, a has a non-zero
weak inverse a′. Also, a′(ab) 6= 0 and since T is weakly ∗-self-conjugate, we have
a′aba ∈ T ∗. But a′a is idempotent and hence belongs to T and so ba ∈ T ∗ since
T is ∗-unitary. Thus T is ∗-reflexive as claimed. �

4. Proper primitive congruences on inverse semigroups

We can, of course, specialise the results of Section 2 to obtain a char-
acterisation of primitive inverse congruences on categorical inverse semigroups.
However, there is also a well known theory of congruences on arbitrary inverse
semigroups (see [20, Chapter III]) in which congruences are characterised by con-
gruence pairs.

Recall that a subsemigroup K of an inverse semigroup S is self-conjugate if
a−1Ka ⊆ K for all a ∈ S and that K is a normal subsemigroup of S if it is a
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full, self-conjugate, inverse subsemigroup. A congruence τ on E(S) is normal if
for any e, f ∈ E(S) and a ∈ S we have (a−1ea, a−1fa) ∈ τ whenever (e, f) ∈ τ .

The pair (K, τ) is a congruence pair for S if K is a normal subsemigroup of S,
τ is a normal congruence on E(S) and the following two conditions are satisfied
for all a ∈ S, e ∈ E(S), k ∈ K:

(i) If ae ∈ K and (e, a−1a) ∈ τ , then a ∈ K,
(ii) (kk−1, k−1k) ∈ τ .

Given a congruence pair (K, τ) on S, the relation ρ(K,τ) defined by

aρ(K,τ) b if and only if a−1aτ b−1b and ab−1 ∈ K

is a congruence on S with kernel K and which restricts to τ on E(S).
Our aim in this section is to show the connections between the kernel-trace

approach and that of Section 2 to primitive inverse congruences on inverse semi-
groups.

We start by pointing out that a ∗-dense, ∗-unitary subsemigroup T of any
semigroup S with zero is full. For, if e ∈ E∗(S), then eb ∈ T ∗ for some b ∈ S.
But e(eb) = eb and T is ∗-unitary so that e ∈ T . On the other hand, if S is
inverse, then it is clear that any full subsemigroup is ∗-dense. Hence the kernels
of primitive inverse congruences on an inverse semigroup are the full, ∗-unitary,
∗-reflexive subsemigroups. We also point out that an easy consequence of a
subsemigroup of an inverse semigroup being full and ∗-unitary is that it is an
inverse subsemigroup.

Now let T be a subsemigroup of an inverse semigroup with zero. We say that
T is ∗-self-conjugate if for all a ∈ S and t ∈ T ∗, if ta−1 6= 0, then ata−1 ∈ T ∗.
The next proposition relates this concept to others we have introduced earlier.

Proposition 4.1. Let T be a full subsemigroup of a categorical inverse semigroup
S. Then the following conditions are equivalent:

(1) T is ∗-self-conjugate,
(2) T is weakly ∗-self-conjugate,
(3) T is weakly self-conjugate and contains no non-zero nilpotents,
(4) T is self-conjugate and contains no non-zero nilpotents,
(5) T is strongly ∗-dense.

Proof. If (1) holds, let t ∈ T ∗. Then tt−1 6= 0 so that t2t−1 6= 0 since T is ∗-
self-conjugate. Hence tt−1t−1t = t−1ttt−1 6= 0 by categoricity and hence if a ∈ S
and at 6= 0, then att−1t−1t 6= 0. By [10, Lemma 1.6], att−1t−1ta′ 6= 0 for any
a′ ∈ W ∗(a). Hence ta′ 6= 0 and so ata′ 6= 0 by categoricity. Now

ata′ = ata′aa′ = ata′aa−1aa′ = (a(ta′a)a−1)aa′

which is in T since T is full and ∗-self-conjugate.
Similar arguments give the other three conditions needed for weak ∗-self-

conjugacy.
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If (2) holds, then clearly, T is weakly self-conjugate. Also, if t ∈ T ∗, then
tt−1 6= 0 and t−1 ∈ W ∗(t) so that t2t−1 6= 0 since T is weakly ∗-self-conjugate. In
particular, t2 6= 0 and so T contains no non-zero nilpotents.

That (3) implies (4) is immediate.
Suppose that (4) holds and let a ∈ S, t ∈ T be such that ta−1 6= 0. Then

at−1 = (ta−1)−1 6= 0 and t2 6= 0 so that

att−1t−1t = at−1ttt−1 6= 0

and in particular, at 6= 0. Hence ata−1 6= 0 and T is ∗-self-conjugate, that is (1)
holds.

Thus (1)–(4) are equivalent and it is now immediate from Corollary 3.5 that
(5) is equivalent to these conditions. �

If T is a full, inverse subsemigroup of a categorical inverse semigroup and T is
∗-self-conjugate, then T is said to be ∗-normal. As an immediate consequence of
Proposition 4.1 we have the following result.

Corollary 4.2. A subsemigroup of a categorical inverse semigroup is ∗-normal
if and only if it is normal and contains no non-zero nilpotent elements.

Next we note a connection between ∗-self-conjugacy and ∗-reflexivity.

Lemma 4.3. If T is a full, ∗-unitary subsemigroup of a categorical, inverse
semigroup S, then T is ∗-reflexive if and only if it is ∗-self-conjugate.

Proof. If T is ∗-self-conjugate, then by Proposition 4.1 it is weakly ∗-self-conjugate.
Hence, by Proposition 3.12, it is ∗-reflexive.

Conversely, if T is ∗-reflexive and t ∈ T ∗, a ∈ S are such that ta−1 6= 0, then
ta−1a 6= 0. Now ta−1a ∈ T since T is full and hence ata−1 ∈ T ∗ as required. �

The following alternative characterisation of kernels of primitive inverse con-
gruences on categorical inverse semigroups now follows from Theorem 2.4 and
the results of this section.

Proposition 4.4. A subsemigroup of a categorical inverse semigroup is the ker-
nel of a primitive inverse congruence if and only if it is a ∗-unitary, ∗-normal
subsemigroup.

Let S be a categorical inverse semigroup. We define a relation τ on E(S) by
the rule that

(e, f) ∈ τ if and only if e = f = 0 or ef 6= 0.

Proposition 4.5. If T is a ∗-unitary, ∗-normal subsemigroup of S, then the pair
(T, τ) is a congruence pair for S and ρT = ρ(T,τ).
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Proof. It is easy to see that τ is a congruence on E(S) in view of the fact that
S is categorical. If e, f ∈ E(S) and ef 6= 0, then for any a ∈ S such that ae 6= 0,
we have

aea−1afa−1 = aa−1aefa−1 = aefa−1 6= 0

by categoricity and hence τ is a normal congruence on E(S).
Let a ∈ S and e ∈ E(S) with ae ∈ T and (e, a−1a) ∈ τ . If e = 0, then a = 0

and a ∈ T . If e 6= 0, then a−1ae 6= 0 and since T is ∗-unitary, it follows that
a ∈ T .

If t ∈ T ∗, then t2 6= 0 and it follows easily that t−1tτ tt−1. Thus (T, τ) is a
congruence pair.

If aρT b and a 6= 0, then xa = bt 6= 0 for some x, t ∈ T . Hence xab−1 = btb−1

and since T is ∗-normal, xab−1 ∈ T . As x ∈ T and T is also ∗-unitary we have
ab−1 ∈ T . Now a−1ab−1b 6= 0 and so (a, b) ∈ ρ(T,τ).

Conversely, if (a, b) ∈ ρ(T,τ) and a 6= b, then a−1aτ b−1b and ab−1 ∈ T . Hence
a−1ab−1b 6= 0 so that, in particular, ab−1b 6= 0. It follows that aρT b since b−1b
and ab−1 are both in T .

Thus ρT = ρ(T,τ). �

Corollary 4.6. If T is a ∗-unitary, ∗-normal subsemigroup of a categorical in-
verse semigroup S, then for all a, b ∈ S,

(a, b) ∈ ρT if and only if a = b = 0 or ab−1 ∈ T ∗.

Proof. If (a, b) ∈ ρT , then (a, b) ∈ ρ(T,τ) so that, if a 6= 0, then ab−1 ∈ T ∗.
Conversely, if ab−1 ∈ T ∗, then ab−1b 6= 0 and hence (a, b) ∈ ρT . �

5. Joins with primitive inverse congruences

Recently, Edwards [4] proved that given a group congruence γ and an arbi-
trary congruence ρ on a semigroup, the join of γ with ρ is exactly γ ◦ ρ ◦ γ. As a
consequence, any group congruence γ on a semigroup S is a dually right modular
element of the lattice of all congruences on S in the sense of Jones [13].

In this section we show that very similar arguments yield a similar result for
proper primitive inverse congruences on categorical semigroups. As in the case of
group congruences, this result can be used to give an explicit description of the
join of a primitive inverse congruence and an arbitrary proper congruence and a
description of the kernel of such a join.

Proposition 5.1. Let γ and ρ be proper congruences on a categorical semigroup
S. If γ is primitive inverse, then γ ∨ ρ = γ ◦ ρ ◦ γ.

Proof. We modify the proof of [4, Theorem 1]. As there, we need only show
that the relation γ ◦ ρ ◦ γ is transitive.

Let a, b, c be non-zero elements of S with (a, b), (b, c) ∈ γ ◦ρ◦γ. Then there are
elements x, y, u, v of S such that aγxρyγ b and bγuρvγ c. Now yγ = bγ = uγ in
the primitive inverse semigroup S/γ so that if s ∈ S is such that sγ = (yγ)−1,

17



then (us)γ and (sy)γ are non-zero idempotents of S/γ. By categoricity, usy 6= 0
and as (usy, usx) ∈ ρ we have usx 6= 0. It now follows from Lemma 1.6 that
usxγx.

Similarly, vsyγv and hence (a, usx) ∈ γ, (usx, vsy) ∈ ρ and (vsy, c) ∈ γ so
that (a, c) ∈ γ ◦ ρ ◦ γ. �

An example is given in [4] to show that in general, ρ∨θ 6= ρ◦θ ◦ρ for arbitrary
congruences ρ, θ on a semigroup S. By adjoining a zero to S, we see that this is
also the case for proper congruences on a categorical semigroup.

The following lemma is another illustration of the similarity between groups
and primitive inverse semigroups.

Lemma 5.2. If ρ, σ are proper congruences on a primitive inverse semigroup S,
then ρ ◦ σ = σ ◦ ρ.

Proof. Since ef = 0 for distinct idempotents e, f of S, it follows that any proper
congruence is idempotent separating. The lemma now follows from Theorem 7.56
of [2]. �

In fact, on a Brandt semigroup the only congruence which is not proper is the
universal congruence [21]. It follows easily from this and the lemma that any two
congruences on a primitive inverse semigroup commute.

Corollary 5.3. Let ρ and σ be proper primitive inverse congruences on a cate-
gorical semigroup S. Then ρ ∨ σ = ρ ◦ σ ◦ ρ = σ ◦ ρ ◦ σ.

Moreover, if ρ∩σ is a primitive inverse congruence on S, then ρ∨σ = ρ◦σ =
σ ◦ ρ.

Proof. The first part is immediate by Proposition 5.1. Let β = ρ∩σ and suppose
that β is primitive inverse. Then ρ/β and σ/β are (proper) congruences on the
primitive inverse semigroup S/β so that by Lemma 5.2, they commute. Hence ρ
and σ commute. �

Proposition 5.4. Let γ be a primitive inverse congruence and ρ be an arbitrary
proper congruence on a categorical semigroup S. Then, for all a, b ∈ S,
(a, b) ∈ γ ∨ρ if and only if a = b = 0 or xaρbt for some x, t ∈ Kerγ with xa 6= 0.

Proof. The proof is a simple modification of that of Theorem 6 of [4]. Let
K = Ker γ and let a, b be non-zero elements of S such that (a, b) ∈ γ∨ρ. Then by
Theorem 5.1, there are elements c, d of S such that aγ cρdγ b. By Proposition 2.2,
there are elements x, t, h, k of K such that

xa = ct 6= 0 and hd = bk 6= 0.
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As γ and ρ are proper and xa 6= 0, we have xb 6= 0 so that xhd = xbk 6= 0 and in
particular, xh 6= 0. Hence xh ∈ K∗ and so hx ∈ K∗ since K is ∗-reflexive. Now
(hct, hdt) ∈ ρ and hxa = hct, hdt = bkt so that (hxa, bkt) ∈ ρ. Also, hx, kt ∈ K
and hxa 6= 0 as required.

Conversely, suppose that a, b are non-zero elements of S and that xaρbt for
some x, t ∈ K with xa 6= 0. Since x, t ∈ K and S/γ is primitive, it follows from
Lemma 1.6 that xaγa and btγ b. Thus (a, b) ∈ γ ∨ ρ as required. �

Finally, we give an analogue of Theorem 7 of [4]. First, we define the ∗-closure
of a subset A of a semigroup S with zero to be the subset Aω∗ where

Aω∗ = {x ∈ S | ax ∈ A∗ for some a ∈ A}.

Proposition 5.5. If γ is a primitive inverse congruence and ρ is any proper
congruence on a categorical semigroup S, then Ker(γ ∨ ρ) = ((Ker γ)ρ)ω∗ ∪ {0}.

Proof. Let K = Ker(γ ∨ ρ). Now γ ∨ ρ is proper so that if a ∈ K∗, then
a2 ∈ K∗. By Proposition 5.4, xa2ρat for some x, t ∈ Ker γ with xa 6= 0. Now
Ker γ is strongly ∗-dense and so there is an element z of S such that az, za are
non-zero and in Ker γ. By categoricity, xaz 6= 0. Also xaz ∈ Ker γ so that
zxa is a non-zero element of Ker γ by ∗-reflexivity. Furthermore, zxa2 ρzat and
zat ∈ Ker γ is non-zero and hence a ∈ ((Ker γ)ρ)ω∗.

Conversely, if a ∈ ((Ker γ)ρ)ω∗, then there is an element h of (Ker γ)ρ such that
ha ∈ (Ker γ)ρ and ha 6= 0. Let p, q ∈ Ker γ be such that hρp and haρq. Now
(ha)2ρq2γ q and q 6= 0 since ha 6= 0. Hence (ha)2 6= 0 and since (pa)2ρ(ha)2 we
have (pa)2 6= 0.But (pa)2γa2 since p ∈ Ker γ and consequently, (a2, ha) ∈ γ ∨ ρ.
Since haρpa and paγa we obtain (a2, a) ∈ γ ∨ ρ. Thus a ∈ K. �
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