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Abstract. In Ubiquitous Computing, users interact with multiple small networked
computing devices on a daily basis, accessing services present within their phys-
ical environment. In particular, the need to discover and correctly access those
services as users move from one location to another and the conditions of the
environment change, is a crucial requirement in the design and implementation
of such systems. This work addresses the discovery and adaptation of services
with potentially mismatching interfaces in ubiquitous computing environments,
where applications are directly subject to the availability of services which may
be discovered or depart from the system’s environment at any given moment. In
particular, we discuss the design of a framework to enable scalable adaptation
capabilities.

1 Introduction

Since the appearance of modern computers, we have shifted from what Mark Weiser
once defined as the Mainframe Age in which a single computer was shared by many
people, to the Ubiquitous Computing Age [12], in which a single person commonly
interacts with many small networked computing devices, accessing services present
within the physical environment. In particular, the need to discover and correctly access
those services as the conditions of the environment change, is a crucial requirement in
the design and implementation of such systems.

Services are independently developed by different service providers as reusable
black boxes whose functionality is accessed through public interfaces. The heterogene-
ity of service implementations, which are not designed to interoperate with each other
in most situations, commonly results in the appearance of mismatch among their public
interfaces when they are composed. Specifically, we can distinguish four interoper-
ability levels in existing Interface Description Languages (IDLs): (i) Signature. At this
level, IDLs (e.g., Java interfaces, WSDL descriptions) provide operation names, type
of arguments and return values. Signature interoperability problems are related to dif-
ferent operation names or parameter types between provided and required operations
on the different interfaces; (ii) Protocol or behaviour. Specifies the order in which the
operations available on an interface should be invoked. If such orders are incompatible
among services, this may lead situations such as deadlocks or infinite loops. Notorious
examples of behavioural interface descriptions include Abstract BPEL, automata-based



languages such as UML state diagrams, or high-level MSCs; (iii) Functional or Se-
mantic. Even if service interfaces match at the other levels, we must ensure that they
are going to fulfill their expected behaviour. This level of description provides seman-
tic information about services using ontology-based notations such as OWL-S (used in
Web Services), which are interesting for service mining; and (iv) Service. Description
of other non-functional properties like temporal requirements, security, etc.

Software Adaptation [4, 13] is the only way to compose services with mismatching
interfaces in a non-intrusively manner by automatically generating mediating adaptor
services able to solve interoperability problems between them at all levels. Particularly,
in this work we focus on the protocol or behavioural level, currently acknowledged as
one of the most relevant research directions in software adaptation [4, 2, 10, 13]. Most
approaches in behavioural software adaptation build adaptors for the whole system at
design-time, a costly process that relies on the specific set of services involved in the
system. Hence, these techniques (often referred to as static approaches) are not suited
for ubicomp environments, since the adaptor would have to be recomputed each time a
new service is discovered or departs from the current system configuration. On the con-
trary, in some recent developments [11, 5, 7] a composition engine enacts adaptation at
run-time. In particular, Cámara et al. [3] addressed run-time adaptation in the specific
context of ubicomp environments. However, although this approach lays out the formal
foundations of adaptation in such environments, the reference architecture used by the
authors (and in general by all the aforementioned run-time approaches) does not con-
sider scalability issues, and includes a single central adaptation unit which performs all
the adaptation between all services in the system, something that turns this central node
into a performance bottleneck.

Here, we extend the work in [3], providing architectural support for service adapta-
tion in ubicomp environments, where applications are directly subject to the availability
of services which may be discovered or depart from the system’s environment anytime.
In particular, we discuss the design of a framework to enable scalable adaptation capa-
bilities and support of service discovery which considers behavioural information about
the services available in the environment.

To illustrate our approach, we will use a running example described in the context
of an airport: let us suppose a traveller who walks into an airport with a PDA or a
smartphone equipped with a client containing a client application based on the different
services which may be accessed through a local wireless network at the airport. First, the
user needs to contact his airline and check-in in order to obtain a seat on the flight. This
is achieved by approaching a kiosk which provides a local check-in service available
to the handheld device. Next, the traveller may browse the duty-free shops located at
the airport. The selected shop should be able to access the airport information system
in order to check if a passenger has checked-in on a particular flight, and apply a tax
exemption on the sale in that case. The payment is completed by means of credit card
information stored in the traveller’s device.

In the rest of this paper, Section 2 presents our service model and the run-time
adaptation process in ubicomp environments. Next, Section 3 discusses the design and
implementation of our framework. Finally, Section 4 compares our approach with the
related work in the field, and Section 5 concludes.



2 Behavioural Adaptation in Ubiquitous Computing

In this work we use a service interface model [3] which includes both a signature, and
a behavioural interface. In order to enable composition with services which are discov-
ered at run-time, we extend the behavioural interfaces with additional information. In
particular, our behavioural interface consists of: (i) a protocol description (STS); and
(ii) a set of correspondences between abstract and concrete service operations.

Definition 1 (STS). An STS is a tuple (A, S, I,B, T ) where: A is an alphabet that cor-
responds to message events relative to the service’s provided and required operations,
S is a set of states, I ∈ S is the initial state, B ∈ S are stable states in which the
service can be removed from the current system configuration if it is not engaged in any
open transactions and, and T ⊆ S ×A× S is a transition relation.

Generic Correspondences. Adaptor generation approaches commonly rely on inter-
face mappings that express correspondences between operations names, as well as pa-
rameter types and ordering on the different interfaces. However, these mappings can
be produced only once the description of the different interfaces is known. In ubicomp
environments, this information is only available when services are discovered at run-
time. Specifically, when we are describing the protocol of a service to be reused in such
systems, we know what the required operations are, but we do not know which spe-
cific service implementation is going to provide them, or even the specific name of the
concrete operation implementing the required functionality.

Approaches to run-time service discovery use service ontologies that describe the
properties and capabilities of services in unambiguous, computer-interpretable form.
Here, we assume that services available in the environment are exposed using such de-
scriptions, which will be used as a reference to relate service interfaces. For simplicity,
instead of using any of the emerging standards for the semantic description of services,
we will use in the remainder a notation which abstracts away specific notations for
service descriptions such as OWL-S [6].

Definition 2 (Abstract Operation Signature). An abstract operation signature is the
name of a generic operation, together with its arguments and return types defined within
the context of a service ontology.

Definition 3 (Abstract Role). We define an abstract role as a set of abstract operation
signatures associated with a common task or goal.

Our model of interface makes explicit correspondences of how labels in the protocol
description (STS) are related with generic operations described by the service ontology.
To do so, we also rely on vectors (based on synchronous vectors [1]). However, in this
application domain, we have to make a distinction between the generic correspondences
established in vectors, and what we call vector instances, which relate actual service
interface operations.

Definition 4 (Vector). A vector for a service STS (A, S, I,B, T ) and an abstract role,
is a couple 〈el, er〉 where el is a label term for A, and er is an abstract label term for



an abstract role. A label term t contains the name of the operation, a direction(?/!),
and as many untyped fresh names as elements in the argument type list (placeholders).
An abstract label term is defined in the context of an abstract role, instead of a service
interface.

Definition 5 (Vector Instance). A vector instance for a pair of service STSs (Al, Sl,
Il, Bl, Tl) and (Ar,Sr,Ir,Br,Tr) is a couple 〈el, er〉 where el, er are label terms in Al

and Ar, respectively.

Vector instances are obtained from vectors by binding concrete service interface
operations at run-time. Specifically, for each vector v, we extract all the other vectors
on the counterpart interfaces including abstract label terms corresponding to the same
abstract operation signatures.

Client Application

checkIn?(seat)

checkIn!(passport,idFlight)

taxFreeBuy?(success )

buy ! (result)

search!(string)

taxFreeBuy!(passport,idFlight,result)

buy?(success)

search?(result)

search! 
(string)

Duty-Free Shop

search!(res)

search?(query)

buy?(r)

ack!(res)

bookStore: retailer

idBuy?(id,f,r)

checkedIn!(id,f)
checkedIn?
(success)

ack!(res)

VECTORS
...
<taxFreeBuy!(P,F,R) ; taxFreeSale?(R,P,F)>

<taxFreeBuy?(S) ; taxFreeSale!(S)>

VECTORS
...

<idBuy?!(P,F,R) ; taxFreeSale!(R,P,F)>

<ack!(S) ; taxFreeSale?(S)>

VECTOR INSTANCES

...

<taxFreeBuy!(P,F,R) ; idBuy?(P,F,R)>

<taxFreeBuy?(S) ; ack!(S)>

SERVICE ONTOLOGY

...

Operation : taxFreeSale 

Inputs:  itemId, passportId, flightId 

Outputs : resultCode

Fig. 1. Protocol STS and vector instantiation example for the client and the store.

Fig. 1 depicts an example of vector instantiation between the client and the online
store in our case study: concrete interface operations taxFreeBuy and idBuy are related
through the taxFreeSale abstract operation in the service ontology. Placeholders P,F,
and R are used to relate sent and received arguments between the operations.

Once we have described interfaces and processed vector instantiation, we have to
compute the reachability analysis of stable states being given a set of service protocols,
and a set of instantiated vectors. A stable state of the system is one, where each of
the services in the system is on a stable state. It is only at this point that services can
be incorporated or removed, and the system properly reconfigured. To perform this
adaptability analysis we use a depth-first search algorithm which seeks stable system
states, and stops as soon as a final state for the whole system has been found. If the
analysis determines that global stability can be reached, then the execution of the system
can be launched (Fig. 2).

3 Framework Architecture

Although the service composition process presented in last section enables interoper-
ability between services with potentially mismatching interfaces at run-time, this pro-
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Fig. 2. Overview of the adapted service composition process.

cess also requires support from an architectural point of view in order to put this ap-
proach into practice. Specifically, we can identify two important problems that need to
be addressed in order to allow scalable adapted service interaction in ubiquitous com-
puting environments:

– Adaptation. We have to rule out design choices which consider a single central
adaptation unit performing all the adaptation between all services in the system.
This can quickly turn into a performance bottleneck.

– Service Discovery. Our framework must facilitate the discovery of candidate ser-
vice implementations for client applications. The discovery mechanism must take
into account behavioural descriptions of services. Moreover, we cannot load a sin-
gle service registry with the task of checking if a service is adaptable for the pur-
poses of a client application at the behavioural level.

In order to provide support for the adaptation process described in the previous sec-
tion, we have designed a framework that tackles the aforementioned problems. Fig. 3
depicts the architecture of our framework, where we can distinguish the following com-
ponents:

Client Applications and Service Providers Both clients and services expose their
functionality public interfaces (Behavioural Interface Descriptions or BIDs) which de-
scribe provided and required operations, as well as a description of their protocol (STS),
which are necessary for behavioural adaptation. In the case of service providers, BIDs
are accompanied by a thin proxy component that is imported to the client side and is
used for communication with the service’s implementation. A service BID, along with
its corresponding proxy is known in our framework as a service entry. These entries are
used by clients to discover suitable service implementations. Further details about their
use can be found in Section 3.1.

Adaptation Manager In our framework, the adaptation process is performed always
at the client’s side by a component called adaptation manager, which stays in between
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Fig. 3. Framework architecture.

the client application and the rest of the elements in the environment. This manager
consists of two main components: (i) the adaptation engine in charge of handling all
adaptation-related tasks. The main subcomponent of the adaptation engine is the run-
time behavioural adaptation engine (RTBAE for short) where the global stability check
and the adaptation algorithms are implemented. In the process of the adaptation other
subcomponent - the interceptor, implemented as an aspect, is used to notify the RT-
BAE when an operation is invoked on the client application or on the service proxy. To
perform adaptation, the RTBAE needs the client and service BIDs and also appropriate
vector instances. The vector instances, along with the BIDs and all service proxies are
stored in dedicated components of the adaptation engine, the mapping, interface and
service proxy repositories. Finally, the director subcomponent is a mediator that is in
charge of coordinating all operations within the adaptation engine; and (ii) the commu-
nication manager, which is responsible for providing the adaptation manager with all
the elements required to perform the adaptation, communicating with the lookup and
interface mapper services.

Network Services The framework also includes a set of network services that enable
service discovery and matching: (i) the Lookup service performs service matching over
the set of service implementations registered in it, determining the set of service en-
tries that match the request criteria of the client. To do this, it uses the client’s BID
provided by the client’s communication manager, and the BID in the service entry of
each candidate service, (ii) the interface mapper service produces vector instances for
the adaptation process using one or more (iii) dictionary services, which contain a rep-
resentation of the valid abstract service types and operations which may be exposed in
the environment.



3.1 Framework Component Interaction

Initially, after the lookup service starts up, the dictionary and interface mapper services
start up and register with the lookup service (Fig. 4). Afterwards, when the service
providers appear in the network, they register with the lookup service sending their
service entries.

Adaptation Manager Interface MapperService ProviderLookup DictionaryClient

[until end
of interaction]

loop

request required services

store service BIDs and
proxies in repositories

request vector instances

global stability test

replaced proxy invocation

replaced invocation response

inspect client BID

request terms matching

return vector instances

register the service entry

response to the invocation

return set of service entries

return terms matching

invoke proxy operation

Fig. 4. Dynamics of the process followed for service discovery and adaptation.

Service Discovery When a client enters the network, its associated director stores its
BID in the interface repository. The communication manager then queries the lookup
service for available service implementations in the network that could provide oper-
ations required by the client. This query includes the information in the client’s BID.
As a result, a list of service entries is sent to the client’s communication manager. The
list contains only one service for each type required by the client. The director stores
for each received service its BID and proxy into their respective repositories. Then, the
communication manager bundles the BIDs of the client and the services obtained in
the previous matching, and sends them to the interface mapper, which returns the set
of vector instances needed for the adaptation. Finally, the director stores them in the
mapping repository.

The director extracts the client and required services BIDs from the interface repos-
itory and supplies them to the RTBAE, which uses them to execute the global stability
analysis in order to ensure that during execution, the system is not going to end up in
a deadlock state. If the result from this check is positive, the real adaptation process



starts. Otherwise, the RTBAE starts to discard proxies. In the latter case, the director
first removes each discarded proxy and BID from their respective repositories, followed
by the related vector instances from the mappings repository. Then the communication
manager tries to find a replacement service from the discarded type of service. The dis-
carded service entry will not be accepted by the communication manager if the lookup
service sends it back again, unless the set of services in the different repositories has
changed since the time of the last service entry request. When a replacement service
implementation is found, the process starts all over again. When the global stability
check succeeds, the framework proceeds with the actual adaptation process.

Adapted Interaction The adaptation process in our framework implements an ex-
tended version of the algorithm presented in [2]. During this process, the interceptor
component intercepts all operation invocations in the service proxies and notifies the
RTBAE about the invoked operation. The RTBA engine replaces the invocation accord-
ing to the indications of the RTBAE, which in turn determines the invocation substitu-
tions to apply according to the adaptation algorithm and the message correspondences
encoded in vector instances stored into the interface mapping repository. Once the sys-
tem reaches stable state, the director removes the proxies, BIDs and vector instances
which are not needed anymore from the corresponding repositories. If from the current
stable state, the client application has all the required service proxies and BIDs to con-
tinue operating, the adaptation process starts all over again. Otherwise, the adaptation
manager keeps on performing service discovery until this condition is fulfilled.

4 Related Work

So far, there are few proposals in the literature where a composition engine enacts be-
havioural adaptation at run-time, not requiring the explicit generation of an adaptor
protocol description at design-time. Dumas et al. [11] introduce a service mediation
engine which interprets an interface mapping obtained at design-time. Internally, this
engine relies on an abstract representation of behavioural interfaces as FSMs. The en-
gine manipulates the exchanged messages according to the interface mapping provided
(expressed as a set of production rules). It is worth observing that a deadlock is only
detected once the current execution of the engine terminates. Hence, deadlocks are only
considered as a termination anomaly, but cannot be prevented.

Cavallaro and di Nitto [5] propose an approach to allow the invocation of services
at run-time with mismatches at the signature and protocol levels. The authors consider
that the user is going to specify the task to be carried out by implementing a service
composition with respect to a set of abstract service interfaces, instead of real service
implementations, which will only be known at run-time. Their approach includes a
framework for service composition which takes a BPEL process specified with respect
to a set of abstract services as input. When an abstract service is invoked by the process,
the call is forwarded to a proxy for that abstract service, which subsequently forwards
the call to the concrete implementation of the service selected at run-time. The actual
adaptor is inserted in the communication between the proxy and the concrete service
implementation. However, the authors propose to map states and transitions between



abstract and concrete service protocols, assuming that protocols have equivalent states
and transitions. This is a strong assumption that reduces drastically the number of cases
where adaptation can be performed. Indeed, no means are provided to systematically
deal with deadlocks in the resulting adaptors.

Moser et al. [7] present a system that allows the monitoring of BPEL processes
according to Quality of Service (QoS) attributes, as well as the replacement of partner
services involved in the process at run-time. The alternative service replacements can ei-
ther be syntactically or semantically equivalent to the original. To enable interoperabil-
ity, this approach addresses adaptation through the use of special components named
transformers. These are mediators that compensate interface mismatches between the
original service and its replacement by applying transformation rules to incoming and
outgoing messages. Both monitoring and adaptation facilities are implemented using
AOP. Although this approach enables substitution of services at run-time with a certain
degree of adaptation, important behavioural aspects of services are not addressed (e.g.,
guaranteeing deadlock freedom when services are integrated into the BPEL process).

Finally, Cámara et al. [3] contribute an interface model which relates abstract ser-
vice types with concrete implementations and an extended version of a run-time adap-
tation engine that enables behavioural service adaptation at run-time. In this case, be-
havioural interface descriptions are used to perform adaptability check of the services
before they start their (adapted) interaction, ruling out undesired behaviours such as
deadlocks or livelocks. Unfortunately, there is no architectural support provided for
their approach. Specifically, although the authors mention the possibility of distributing
the adaptation process, this point is not addressed and they assume a single centralized
adaptation unit which performs all the adaptation of service interactions.

5 Conclusions and Future Work

In this work, we have presented a proposal to support run-time behavioural adaptation
in ubiquitous computing environments. In particular, we have discussed the design of a
framework that enables run-time service discovery, taking into account behavioural ser-
vice interface information and transparent adaptation of service interactions. Moreover,
we have implemented a prototype of our framework, extending the Java Jini service
platform using Aspect-Oriented Programming (AspectJ).

With respect to future work, in the current version of our framework only one ser-
vice instance of each required type is returned by the dispatcher to the client. This is
intended to reduce network traffic, but if the reachability check in the client virtual
machine fails, the process of retrieving services would need to restart, consuming too
much time and client resources, and potentially causing heavy network traffic. Hence,
we think that optimizing the interaction protocol between the client and the dispatcher,
as well as the service matching mechanisms is an interesting direction that could rep-
resent a noticeable improvement of the framework’s performance. Moreover, right now
if a service disappears in a non-stable state, the current transaction has to be aborted.
In relation with this problem, we aim at enabling reconfiguration, using execution trace
equivalence checking in order to replace departing services in the middle of a running
transaction.
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