
FESCA 2010

Semi-Automatic Specification of Behavioural Service
Adaptation Contracts

Javier Ćamaraa, Jośe Antonio Mart́ınb, Gwen Saläunc,
Carlos Canalb, Ernesto Pimentelb

a INRIA Grenoble - Rhône-Alpes, France
Email: Javier.Camara-Moreno@inrialpes.fr

b Department of Computer Science, University of Málaga, Spain
Email: {jamartin,canal,ernesto}@lcc.uma.es

c Grenoble INP- INRIA Grenoble - LIG, France
Email: Gwen.Salaun@inrialpes.fr

Abstract

An adaptation contract describes composition constraintsand adaptation requirements among several services which were
not initially built to interoperate with each other. The manual writing of this specification by a designer is a difficult and error-
prone task, especially when services are reused taking their behavioural descriptions into account. In this paper, we present
a semi-automatic approach to build adaptation contracts. To this purpose, we propose an adaptation contract design process
supported by an interactive environment based on a graphical notation, and an engine capable of automatically generating
contracts without any human intervention. We also present an experimental study that we carried out using the tool support
that we implemented in order to evaluate our approach.

Keywords: Service, Composition, Adaptation, Behavioural Interface, Contract, CASE

1 Introduction

Building software systems as a combination of interacting entities aims at improving pro-
ductivity since it enables the reuse of third-party, pre-existing software components or ser-
vices which are selected and assembled to build a new system.However, one cannot expect
any given service to perfectly match the needs of the new system or composition at hand,
thereby its integration may require some adaptations in order to solve potential mismatch
situations with the rest of the services.Software adaptation[20,9] is a hot topic in Software
Engineering since it is the only way to compose non-intrusively black-box components or
services with mismatching interfaces by automatically generating mediatingadaptorcom-
ponents. These are automatically built from an abstract specification of how mismatches
can be solved (i.e., anadaptation contract).

Mismatches may appear at different interoperability levels that are usually distinguished
in interface description languages [5]: signature level (operation names and types), be-
havioural level (interaction protocols), quality of service level (non-functional properties

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Cámara et al.

Adaptation 
Contract

Designer

Service/
Component

Interface 
Descriptions

Adaptor
Implementation

Adaptor Protocol
 Model (STS)

Behavioural Models (STS)

Behavioural Model 
Extraction

WSDL+BPEL

Annotated Java
Interfaces

WSDL+
Windows 

Workflow (WF)

.

.

.

Adaptor

.

.

.

Adaptor Protocol
 Generation

WSDL+BPEL

Java Classes

WSDL+
Windows 

Workflow (WF)

Interactive 
Contract 

Specification

Automatic 
Contract 

Specification

Fig. 1. Adaptation Process Overview

such as security or efficiency), and semantic or conceptual level (functional specification
of what the service actually does). Recently, many academicapproaches and industrial
platforms have integrated behavioural descriptions in interface models and programming
languages such as BPEL [1] or Windows Workflow Foundations [19] (.NET 3.0) in the
context of Web services. Indeed, the behavioural interoperability level is essential [17], be-
cause even if services match from a signature point of view, their composition can lead to
erroneous behaviours or deadlock situations if the designer is not aware of their execution
flows, and does not take them into account while building a newsystem.

The kinds of mismatch cover in this work are:(i) mismatches in the name of the opera-
tions; (ii) n to mcorrespondences, where some messages in one interface mustbe matched
against a different number of messages in another interface; and(iii) data mismatches,
where there are incompatibilities in the number and/or type of arguments being sent or re-
ceived. In order to solve these incompatibilities, adaptation contracts include a mapping
between the operations (and their arguments) of the services to adapt.

The manual writing of an adaptation contract is a difficult and error-prone task. In-
correct correspondences between operations in service interfaces, or syntactic mistakes are
common, especially when the contract has to be specified using cumbersome textual no-
tations. Moreover, a contract is just an abstract specification of how the different services
should interact and does not explicitly describe all the different execution scenarios of a
system, which may not be easily envisioned by the designer. Finally, writing a contract
requires a good knowledge of the services involved, and understanding all the details of
service protocols is quite complicated for non-experts.

In this paper, we focus on the behavioural interoperabilitylevel, and present a semi-
automatic approach to the specification of adaptation contracts. Specifically, we make use
of an automatic contract generation engine, and an interactive contract specification envi-
ronment to support the user through the adaptation contractdesign process. In order to
achieve our goal, we propose a combined use of both elements.The automatic approach
is able to generate deadlock-free contracts but it lacks thesemantic information about the
problem, therefore it suggests several contracts to the interactive environment, where the
user is able to choose and customize the result. Our solutionis completely tool-supported.

2



Cámara et al.

We applied our approach and tools to many examples for evaluation purposes, and we
present our experimental results in this paper. Figure1 gives an overview of the adaptation
process and shows the stage where contract specification takes place. Let us note that the
generation of adaptor protocols and code from the adaptation contract is out of scope here,
and the reader interested in more details about that may refer to [9,15].

The rest of this paper is structured as follows: Section2 presents our service model
and contract specification language, as well as a case study which will be used to illustrate
the different issues introduced throughout the remaining sections. Section3 first describes
the automatic contract generation algorithm that we use in our approach, and then presents
how it is extended with an interactive environment for semi-automatic contract specifica-
tion. Section4 presents some experimental results that we used to assess the benefits of our
approach. Finally, Section5 reviews related work, and Section6 draws up some conclu-
sions.

2 Interface Model and Contract Specification Language

2.1 Interface Model

We assume that service interfaces are equipped both with a signature (set of required and
provided operations) and a protocol represented by aSymbolic Transition System(STS)1 .
Communication between services is represented usingeventsrelative to the emission and
reception of messages corresponding to operation calls. Events may come with a set of
data terms whose types respect the operation signatures. Inour model, alabel is either
the internal actionτ or a tuple (M,D,PL) whereM is the message name,D stands for the
direction of communication (! for emissions and? for receptions), andPL is either a list of
data terms if the message corresponds to an emission, or a list of variables if the message
is a reception.

Definition 2.1 [STS] A Symbolic Transition System or STS is a tuple (A, S, I , F, T) where:
A is an alphabet which corresponds to the set of labels associated to transitions,S is a set
of states,I ∈ S is the initial state,F ⊆ S are final states, andT ⊆ S × A× S is a transition
relation.

This formal model has been chosen because it is simple, graphical, and it can be easily
derived from existing implementation languages (see for instance [13,18,12] where such
abstractions for Web services were used for verification, composition or adaptation pur-
poses). For space reasons, in the rest of the paper, we will describe service interfaces only
with their STSs. Signatures will be left implicit, yet they can be inferred from the typing of
arguments (made explicit here) in STS labels.
Example. We describe a simple example which consists of a client and a supplier service.
As it can be observed in Figure2, the client first sends a request for an item to be purchased
(getItem!), and receives its price (getItem?). Then, the client can either decide tobuy!
the item and receives aconfirmation?, or cancel! the transaction. On the other side,
the supplier waits for a product category (setCategory?) and a particularitemRequest?,
and replies with the price of the requested item. After that,the transaction can either abort,

1 In this paper, STSs are Labelled Transition Systems (LTSs) extended with value passing (data parameters coming with
messages).

3



Cámara et al.

CLIENT SUPPLIER

setCategory?type:string

s6

s1

s2

s3

s4

s5

s0

s7

itemRequest?item:string

itemRequest!price:int

purchase?item:stringinvoice!number:int

abort?

abort?

done!

setCategory?type:string

getItem!item:string, type:string

getItem?price:int

τ τ

buy!item:string cancel!

c0

c1

c3

c2

c5

c6c4

confirmation?

Fig. 2. Client and supplier behavioural interfaces

or receive the actualpurchase? order, returning afterwards its correspondinginvoice!
and notifying the correct completion of the purchase (done!). Finally, execution can either
finish (abort?), or continue with a new transaction.

Web service composition is subject to different mismatch situations:(i) name mismatch
occurs if a service expects a particular message, and receives one with a different name
(e.g., the client sendsbuy!, whereas the supplier is expectingpurchase?). (ii) n to m
correspondence is given if a message on a particular interface corresponds to several ones
in its counterpart’s interface (or similarly, a message hasno correspondence at all). In
Figure2 it can be observed that while the client intends to make an item request by only
sendinggetItem!, the supplier on the other endpoint expectssetCategory?, followed by
itemRequest?. (iii) Data mismatch may occur when the number and/or type of arguments
either being sent or received do not match between the eventson the different interfaces.
This can be observed in the supplier protocol wheninvoice! sends an invoice identifier
but no argument is expected in its client counterpart (confirmation?).

2.2 Contract Specification Language

In this section, we present our adaptation language that makes communication among ser-
vices explicit, and specifies how to work out mismatch situations. To make communication
explicit, we rely onvectors(inspired from synchronization vectors [2]), which denote com-
munication between several services, where each event appearing in one vector is executed
by one service and the overall result corresponds to an interaction between all the involved
services. A vector may involve any number of services and does not require interactions to
occur on the same names of events. Vectors express correspondences between messages,
like bindings between ports, or connectors in architectural descriptions. We consider a
binary communication model, therefore vectors are always reduced to one event (when a
service evolves independently) or two (when services communicate). Furthermore, vari-
ables are used as placeholders in message parameters. The same variable name appearing
in different labels (possibly in different vectors) enables the relation of sent and received
arguments of messages.

Definition 2.2 [Vector] A vectorfor a set of serviceS TSi = (Ai ,Si , I i , Fi ,Ti), i ∈ {1, .., n}

4



Cámara et al.

V = {vcat = 〈c:getItem!I,T; s:setCategory?T〉,
vreq = 〈s: itemRequest?I〉,
vres = 〈c:getItem?P; s: itemRequest!P〉,
vab1 = 〈c:cancel!; s:abort?〉,
vab2 = 〈s:abort?〉,
vdone = 〈s:done!〉,
vbuy = 〈c:buy!I; s:purchase?I〉,
vinv = 〈c:confirmation?;s: invoice!N〉}

VLTS

vbuy

V \ {vab2, vbuy}

V

Fig. 3. Adaptation contract for our running example: vectors (left) and VLTS (right)

is an element ofA j ∪ (A j × Ak) with j, k ∈ {1, . . . , n}, j , k. Such a vector is noted
〈sj : l〉, or 〈sj : l, sk : l′〉 wheresj , sk are service identifiers, andl, l′ are labels on the alphabets
of servicesA j ,Ak, where message parameters are substituted by placeholdersrelating the
arguments.

In addition, the contract notation includes an LTS with vectors on transitions (vector
LTS or VLTS). The purpose of VLTSs is to guide the applicationorder of the interactions
expressed by vectors. VLTSs go beyond port and parameter bindings, and express more
advanced adaptation properties (such as imposing a sequence of vectors or a choice between
some of them). If the application order of vectors does not matter, the vector LTS contains
a single state and all transitions looping on it.

Definition 2.3 [Adaptation Contract] An adaptation contract for a set of services S TSi ,
i ∈ {1, .., n}, is a couple(V,VLTS) whereV is a set of vectors for servicesS TSi , andVLTS
is a vector LTS.

An adaptor protocol can be automatically generated from an adaptation contract using
state-of-the-art techniques presented in [9,15]. Once the adaptor protocol is generated,
it can be implemented using BPEL or Windows Workflow Foundation using techniques
presented in [15,10].
Example. In order to illustrate how the different kinds of mismatch situations described in
our example can be worked out, we focus on the initial part of the client and the supplier,
where the item request is made:(i) name mismatch can be solved by writing the vector
〈c:getItem!I,T; s:setCategory?T〉; (ii) the correspondence established in the previ-
ous vector leavesitemRequest? on the supplier without counterpart. Thus, we can write
another vector〈s:itemRequest?I〉 in order to make the supplier service evolve indepen-
dently;(iii) data correspondences are established through namesI, T, P andN, which are
used as placeholders by the designer in order to relate values (in emissions) with variables
(in receptions).

Regarding the use of the vector LTS, inFigure 2we can observe that at statec2, the
client STS can either cancel the purchase or buy an item, whereas ats3, the supplier either
waits for a purchase, or the cancellation of the operation (abort?). Up to the current state of
the execution, vectorsvcat, vreq, andvres have been fired. Now, vectorsvab1, vab2, andvbuy

could be fired. An evolution of the system throughvab1 would be correct, since the client
and the supplier would reach their final statesc6 ands7, respectively. In contrast, firing
vab2 at this stage would insert a deadlock in the system, since theclient would be eventually
blocked: the supplier would reach its final states7, but the client would be stuck inc2 (no

5



Cámara et al.

more vectors available to be fired). On the right-hand side ofFigure 3, we can observe how
the execution ofvab2 is prevented by the VLTS in the contract untilvbuy is executed, hence
avoiding the potential deadlock of the system at state(c2,s3). Due to page limitation, we
present the full description of the adaptor protocol generated for the contract in Figure3 on
AppendixA.

3 Semi-automatic Contract Specification

This section first presents our automatic generation process for adaptation contracts. Al-
though this process is capable of generating correct contracts from the behavioural point
of view, it cannot control the semantic constraints presenton service interfaces. Hence, in
the second part of this section we present a semi-automatic approach to contract specifi-
cation as a solution to this problem. Rather than pursuing a fully automated approach by
making use of semantic technologies (which may not be enoughto infer complete interface
operation semantics and their relations), our solution is based on extending our automatic
generation process with an interactive contract specification environment that helps in cus-
tomizing and constraining automatically generated solutions.

3.1 Automatic Contract Generation

Our engine for automatic contract specification (Algorithm1) performs an incremental pro-
cess where an initially empty contract is refined while traversing the service behaviours un-
til a complete deadlock-free contract is generated. Our approach consists of a combination
of an expert system and an informed-search algorithm.

Algorithm 1 gen contracts
Returns a set of adaptation contracts for a couple of behavioural service interfaces.
inputs Service interfacesS TSi = (Ai ,Si , I i , Fi ,Ti), i ∈ {1, 2} and an initial set of vectorsV0, empty by default.
output Set of adaptation contractsC
1: C, c, val = ∅, ε, 0
2: c0 = (V0, createlooping VLTS(V0))
3: val0 = valuatecontract(c0)
4: queue= enqueuecontract(emptyqueue(), val0, c0, I1, I2)
5: for val, c, s1, s2 = explorecontract(queue) and¬is complete(c) do
6: {Generate all possible successor contracts for the given contractc.}
7: for i = 1 to 2do
8: for all (si ,a, s) ∈ T do
9: c′ = re f ine contract(c, a, i)

10: val′ = valuatecontract(c′ )
11: if i = 1 then
12: queue= enqueuecontract(queue, val′, c′, s, s2)
13: else
14: queue= enqueuecontract(queue, val′, c′, s1, s)
15: end if
16: end for
17: end for
18: end for
19: if c , ε then
20: {Find in the queue other complete contracts with the same heuristic value.}
21: C = {c} ∪ f ind completecontracts(queue, val)
22: end if
23: return C

Expert system. From a given partial contract (empty, by default) and a current state in
every service behaviour (beginning with their initial states) the expert system generates
new partial contracts by including every outgoing transition from those states in the given
contract (re f ine contract). These partial contracts compose a directed and acyclic graph
whose initial node is the empty contract and, in every arc, the successor contract contains
one label/message more than its predecessor (either included in a vector copied from the

6



Cámara et al.

parent contract or in a new vector with that single term). Theexpert system also contains
rules (is complete) that recognize which contracts are complete (i.e., those which allow ser-
vices to always reach a final state) and rules which evaluate every contract using a heuristic
function (valuatecontract). Different scenarios and contexts require different adaptation
policies, therefore the heuristic function and contract generation process are easily extended
or customized by means of expert system rules. These rules can prune partial contracts in
the graph depending on their vectors and the execution traces allowed by those contracts.

The heuristic function (see [14] for more details) is based on the direction of the oper-
ations and the matching between their arguments. It represents a measure of the suitability
of the contract for service adaptation since it ranks first those contracts which synchro-
nize compatible operations and avoid incompatible branches of the service behaviour. This
function imposes a total order among the contracts and thosewhich assume the minimum
number of mismatches,i.e., contracts where every operation corresponds to another and all
the parameters match, are placed first.
Informed-search algorithm (A*). This algorithm accepts as input the graph of partial con-
tracts generated by the expert system and it selects the nextpartial contract which has the
lowest heuristic value (explorecontract). This selected partial contract is returned to the
expert system to continue with the process until theA* algorithm selects a complete con-
tract (or several, if there are many with the same heuristic value, f ind completecontracts).
In this way, the contract generation process is equivalent to a search, guided by the heuris-
tic function, in the graph of partial contracts until a complete one is found. However, even
though guiding the process with the heuristic function alleviates the state-explosion prob-
lem, the number of possible partial contracts increases exponentially with the size of the
problem, therefore our automatic approach was originally designed to work with only two
services at a time.A* is an exhaustive search algorithm, therefore it always findsa solu-
tion. In the worst case, if the services are completely incompatible, atrivial contract will
be generated where all emissions are ignored and all receptions are fulfilled with made-up
arguments without any synchronization between the services.

3.2 Extending Automatic Generation with Interactive Specification

Service interfaces are not enough to automatically infer service functionality (e.g., whether
we are dealing with a booking or a weather service), nor the intended goal of their compo-
sition. When no additional requirements are given, deadlock-freedom is the only property
preserved by the automatic approach. Therefore, contractsfeaturing undesirable behaviour
(a service which always aborts the client’s session, for instance) can be obtained in cases
where such requirements are missing.

To solve this problem, we propose to extend automatic contract generation with an inter-
active specification environment that enables the customization of automatically generated
solutions, incorporating the following elements:

Graphical notation. Based on the model described in Section2, this notation is used in
order to: (i) Visualize service interfaces. As it can be observed in Figure 4, the graphical
notation for a service interface includes a representationof its protocol (STS) and a col-
lection of ports. Each label on the STS corresponds to aport in the graphical description.
Ports include adata port for each parameter contained in the parameter list of the label.
(ii) Define port bindings. Correspondences between the different service interfaces (vec-

7



Cámara et al.

tors) are represented asport anddata port bindings(solid and dashed lines, respectively).
Starting from the graphical representation of the interfaces, the designer builds a contract
by successively connecting ports and data ports. This results in the creation of bindings
which specify how the interactions should be carried out. Itis also possible to add aport
cap(vector with a single label) on a port in order to indicate that it does not have to be con-
nected anywhere. Port caps are represented by a ”⊣” on the corresponding port. Moreover,
our graphical notation supports the incremental specification of the adaptation through the
encapsulation of service hierarchies insidecomposite services. This is particularly useful
in cases where the number of services involved in the composition is high.

Fig. 4. Interactive contract specification and simulation for our case study

Verification and validation techniques. In order to help the designer to understand if
the behaviour of the system complies with his/her design intentions, we provide fully au-
tomated techniques:(i) Simulation. Our environment implements an algorithm able to
determine how the different behavioural interfaces evolve step-by-step as different vectors
in the contract are executed; and(ii) Trace-checking. Potential system execution traces are
first generated, and then traversed to detect those leading to deadlock situations or infinite
loops.

This interactive environment can provide additional constraints (expressed as vectors)
as input to the automatic approach which must be respected during the automatic gener-
ation process. Furthermore, the designer can take advantage of automatically generated
vectors using the interactive environment in two ways:(i) taking them as suggestions when
designing the contract from scratch. This is particularly interesting in scenarios that present
behavioural interfaces with large protocols and only a few incompatibilities, where the de-
signer must connect all ports one by one even if they obviously match with each other; or as
(ii) complementing an already existing partial specification, enabling incremental contract
specification.

Specifically, we propose an iterative process for contract refinement that integrates our
automatic generation process (Algorithm2) into the interactive contract design environ-
ment. Initially, we may optionally impose some vectors as constraints (Line6) which may
be directly related with the intended goal. Then, we invoke the automatic generation pro-
cess (gen contractsin Line 8) with the given initial vectors as input and we select through

8



Cámara et al.

Algorithm 2 contract specification
Builds an adaptation contract for a set of behavioural service interfaces.
inputs Service interfacesS TSi = (Ai ,Si , I i , Fi ,Ti), i ∈ {1, . . . ,n}
output Adaptation contractc = (V,VLTS= (V,SVLTS, IVLTS, FVLTS,TVLTS))
1: s= new state()
2: V = ∅
3: VLTS= (V, {s}, s, {s}, ∅)
4: c = (V,VLTS)
5: while ¬env valid(c) do
6: Vrest = env input vectors()
7: (S TSa,S TSb) = env selectS TS s(S TS1, . . . ,S TSn)
8: Vgen= env select(gen contracts(S TSa,S TSb,V ∪ Vrest))
9: for all vg ∈ Vgen do

10: if ¬env valid(vg) then
11: Vgen= Vgen\{vg}

12: end if
13: end for
14: Vadd = env input vectors()
15: V∆ = Vadd∪ Vgen
16: for all vδ ∈ V∆ do
17: V = V ∪ {vδ}
18: TVLTS = TVLTS∪ {s, vδ, s}
19: end for
20: (VLTS, s) = env edit VLTS(VLTS)
21: V = env edit vectors(V)
22: c = (V,VLTS)
23: end while
24: return c

V = {vcat = 〈c:getItem!I,T; s:setCategory?T〉,
vreq = 〈s: itemRequest?I〉,
vres = 〈c:getItem?P; s: itemRequest!P〉,
vab1 = 〈c:cancel!; s:abort?〉,
vbad = 〈c:buy!; s:abort?〉,
vcon f = 〈c:confirmation?〉}

VLTS
V

Fig. 5. Incorrect deadlock-free contract for our case study

the interactive environment one of the returned contracts.After validating the resulting
contract using the verification mechanisms provided by the interactive environment, we
determine if the current state of the contract is satisfactory (Line 5). If that is the case, the
specification process ends. Otherwise, we may alternatively: (i) remove the parts of the
contract causing problems (Lines9–13); or (ii) customize the parts of the contract causing
problems using the interactive environment (Lines14–21).

We now informally define the functions used by our algorithm.It is worth noticing that
all functions with names starting byenvcorrespond to functionality implemented in the
interactive environment which requires user input. Function new statecreates a new state
identifier for the VLTS.env valid returns whether the user considers the given vector valid
or not. env input vectorsreturns a set of vectors composed by the user.env selectS TS s
returns a pair of STSs.env select returns a set of vectors selected from a set of con-
tracts.gen contracts(detailed in Algorithm1) receives a pair of service STSs and a partial
contract that will be used as restrictions (may be empty), and returns different contracts
connecting the interfaces.env edit VLTS receives the current VLTS, and returns an edited
version, and the new active VLTS state selected by the user.env edit vectorsreceives a set
of vectors, and returns its edited version.

Example. The automatic approach generates two contracts with the same heuristic
value for our running example. The first contract (Figure 3) is the one defined as an exam-
ple inSubsection 2.2. However, the second contract (Figure 5) is not desirable becausevbad

matches the client’sbuy! request with theabort? branch in the supplier,i.e., the supplier

9



Cámara et al.

will abort the session no matter what the client decides. This second contract avoids the ar-
gument mismatch occurring in the first contract withvinv (to receive and discard the invoice
number received from the supplier) because the heuristic function considers this mismatch
as bad as ignoring the argument received from the client’sbuy! in vbad, therefore it aborts
the purchase. However, if we impose vectorvbuy in Figure 3as a compositional constraint,
the automatic approach restricts the generation process tocontracts containing that vector
and is able to fulfill the rest of the contract correctly.

4 Tool Support and Experimental Results

Our approach has been fully implemented and included intoITACA [8] (Integrated Toolbox
for the Automatic Composition and Adaptation of Web Services). ITACA is a toolbox
implemented at the University of Málaga that fully covers the adaptation process which
goes from behavioural model extraction from existing service interface descriptions, to the
final adaptor implementation.

In order to assess the benefits of our approach to contract specification in terms of de-
velopment effort and contract accuracy, we conducted an experimental study with the help
of a group of volunteers who were divided in three categories(expert, average, novice)
according to their expertise and familiarity with behavioural interfaces and software com-
position. The tests consisted in handing over to the volunteers adaptation problems which
included the graphical description of the behavioural interfaces to be reused in the compo-
sition and a short specification in natural language of what was the intended functionality
of the system. Since we measure user productivity in our experiments, the automatic ap-
proach as an independent tool is left out of our study. The three different approaches for
contract specification included in the experiments were:(i) manual contract specification
(M), where the user had to write down the contract without further assistance;(ii) interac-
tive contract specification (I), where volunteers made use of our interactive environment;
and(iii) Semi-automatic contract specification (A+I), where the user specified the contract
using the approach presented in this paper.

Time (s) Errors
Problem Interf. Ports States Trans. M I A+I M I A+I
ftp-002 2 9 11 11 338 222 130 1.77 1.5 0

client-sup-002 2 12 15 16 480 248 183 0.33 0.5 0

which-004 2 17 16 19 486 146 126 2.95 0.75 0

online-med-003 3 15 16 17 531 189 122 5 0 2

easyrest-005 4 17 22 24 689 310 203 3 1.66 1.5

pda-001 6 46 37 48 2160 1152 1087 27.6 10.66 13.33

Table 1
Problem size and experimental results for the three approaches.

For our experiments we used different case studies that were obtained from our own
archive of adaptation problems, which includes examples ranging from small synthetic
ones to real-world case studies. Table1 summarizes the problems used for our study, which
are organized according to increasing size and complexity.We also include the number of
services involved and ports to connect, as well as the overall size of the protocols (total
number of states and transitions). The table also shows the experimental results (time
required to solve the problem and number of errors in the specified contract) for each of the
case studies and tested approaches.

10



Cámara et al.

Time spent. Figure6 shows the results of our experiments. If we take a look to the left-
hand side of the figure, we can observe that there is a remarkable difference in the amount
of time required to solve the different problems between manual specification and the in-
teractive approach (an average improvement of 53% using interactive specification). In
addition, it is worth considering that users spent a reasonable amount of time simulating
and validating contracts with the interactive environmentwhereas they did not when man-
ually designing the same contracts.

Comparing interactive specification and the semi-automatic approach, there is an ad-
ditional reduction in the amount of time required when the semi-automatic approach is
used (12% on average). However, as the number of services to compose in the problem
increases, this difference between the semi-automatic and interactive approaches is notice-
ably reduced (from 27.2% in the simplest case studyftp-002, to 3% in the most complex
onepda-001). This is due to the fact that the automatic approach is only able to consider
two interfaces at a time and, as the number of interfaces increases, the user has to select
more pairs of interfaces to generate bindings between them,adding an additional complex-
ity to the task.
Effort and accuracy. Regarding the accuracy during the adaptation process, we measured
as errors the number of bindings created between ports whichwere either wrong or useless
for the resulting contract. In addition, we also consideredthe number of mistakes remain-
ing in the resulting contracts. In the case of manual specification we also took into account
syntactic errors (tool-supported approaches avoid this kind of mistakes). In Figure6 (right),
it can be noticed that the number of errors in problem solutions tends to be smaller in tool-
supported approaches compared to manual contract specification (an average improvement
of 59% and 77% over manual specification with interactive andsemi-automatic specifica-
tion, respectively). This improvement increases with the complexity of the problem.

Fig. 6. Experimental results: Time elapsed (left) and accuracy (right)

If we focus on the comparison between the tool-supported approaches, the semi-
automatic approach minimizes the number of errors in problems which contain only two
interfaces. This happens because the automatic approach generates the majority of the
bindings required to solve the problem, and the user does only have to customize the so-

11



Cámara et al.

lution if it is required, focusing on the remaining details.As it happened in the case of
time, in problems where multiple small services have to be adapted, this improvement is
lost since the user must modify or create additional bindings to integrate all the pairwise
bindings returned by the automatic approach.

It is worth observing that in the case ofonline-med-003, the general trend between
the interactive and the semi-automatic approach is reversed since users always solved the
problem correctly in the first attempt using the interactiveapproach but, in the case of the
semi-automatic approach, they need to modify two bindings on the contract returned by
the automatic approach to integrate the third service of theexample. Ineasyrest-005,
the semi-automatic approach hardly improves (5.3%) the result of interactive specification
since the problem contains two main interfaces which can be related using the automatic
approach, leaving details to the user.

5 Related Work

Model-based behavioural adaptation approaches are often classified in two families: (i) au-
tomatic approaches that are fully automated and try to solveinteroperability issues by prun-
ing the behaviours that may lead to mismatch, and (ii) generative approaches that are able
to accommodate protocols, for instance by reordering messages and their parameters, or
by supporting the specification of advanced adaptation scenarios. In this section, we com-
pare our solution with existing automatic approaches, and generative ones especially those
supporting the designer in the contract specification.
Automatic contract specification. The authors of [7] outlined a methodology for the au-
tomatic generation of adaptors capable of solving behavioural mismatches between BPEL
processes. In their adaptation methodology they use YAWL asan intermediate workflow
language. Once the adaptor workflow is generated, they use lock analysis techniques to
check if a full adaptor has been generated or only a partial one (some interaction scenarios
cannot be resolved). They solve protocol incompatibilities but their approach does not ad-
dress signature mismatch since they assume same operation names (and arguments) among
the services. In [4], the authors address the enforcement of certain behavioural properties
(namely liveness and safety properties expressed as LTL properties) out of a set of already
implemented components. Starting from the specification with MSCs of the components
to be assembled and of the properties that the resulting system should verify, they automat-
ically derive deadlock-free adaptor glue code for the set ofcomponents in order to obtain
a property-satisfying system. However, although this approach enables a precise specifica-
tion of the desirable behaviour of the system, it works by pruning branches of the behaviour
which are incompatible or do not satisfy the specified properties. Hence, the range of situ-
ations where mismatch can be reconciled is limited comparedto other approaches.
Interactive contract specification. Brogi et al. [6] present a methodology for genera-
tive behavioural adaptation where component behaviours are specified with a subset of the
π-calculus and composition specifications with name correspondences. An adaptor gener-
ation algorithm is used to refine the given specification intoa concrete adaptor which is
able to accommodate both message name and protocol mismatch. More recently, [9,15]
proposed state-of-the-art adaptation approaches that aregenerative and support adaptation
policies and system properties described by means of regular expressions or LTSs of vec-
tors. However, in these works, no support is proposed to helpthe designer during the

12



Cámara et al.

contract specification task, which is therefore achieved manually. Dumaset al. [11] in-
troduce an approach to service interface adaptation using avisual language based on an
algebra over behavioural interfaces. A graphical editor taking as input pairs of behavioural
interfaces allows to link them through interface transformation expressions. The output of
this tool can be used as input for a service mediation engine which interprets the infor-
mation in order to perform composition. Although this approach provides the means to
define interface transformation expressions graphically,it does not support the incremen-
tal specification of adaptation since it only considers pairs of provided-required interfaces.
Moreover, our approach provides systematic contract verification mechanisms.
Automatic-interactive approach. To the best of our knowledge, [16] is the only work
mixing both automatic and interactive aspects while building adaptation contracts. In [16],
some techniques are presented to automatically match the WSDL signature of two Web
services. The matching is performed by a combination of an XML schema matching tool
calledCOMA++ [3] and some protocol analysis. They are able to generate a mismatch tree
that gathers all protocol mismatches, and ask the designer to give a mapping function in or-
der to solve these mismatches if they are not automatically adaptable. However, no support
is provided to help the designer to specify this mapping function whereas we propose a full
environment to guide him in this task.

6 Conclusions

Manual specification of adaptation contracts is a cumbersome and error-prone task. In this
paper, we proposed a novel solution to ease the task of contract specification. The pro-
posed approach is semi-automatic, and relies on an interactive environment and automatic
generation techniques to support the designer. Our solution has been fully implemented in
tools, which have been applied to many case studies. Furthermore, we have shown that our
approach remarkably reduces the time spent to build the contract, as well as the number of
errors made during the process. More concretely:

• The time required to specify adaptation contracts using ourapproach has been reduced
to 35% of the overall time required to manually specify the contract.

• Our approach yields an accuracy improvement of 77% relativeto manual contract spec-
ification.

• Our proposal worked especially well in cases where functionality is not scattered across
multiple small interfaces.

As regards future work, we aim at extending our approach to consider goal-oriented
adaptation, using as input to the adaptation process a high-level property written using
temporal logic, that will be used to guide the contract construction.
Acknowledgements. This work has been partially supported by the project TIN2008-
05932 funded by the Spanish Ministry of Innovation and Science (MICINN).

References

[1] Andrews, T. et al., “Business Process Execution Language for Web Services (WSBPEL),” BEA Systems, IBM,
Microsoft, SAP AG, and Siebel Systems (2005).

[2] Arnold, A., “Finite Transition Systems,” International Series in Computer Science, Prentice-Hall, 1994.

13



Cámara et al.

[3] Aumueller, D., H. H. Do, S. Massmann and E. Rahm,Schema and Ontology Matching with COMA++, in: Proc. of
SIGMOD’05(2005), pp. 906–908.

[4] Autili, M., P. Inverardi, A. Navarra and M. Tivoli,SYNTHESIS: A Tool for Automatically Assembling Correct and
Distributed Component-based Systems, in: Proc. of ICSE’07(2007), pp. 784–787.

[5] Becker, S., A. Brogi, I. Gorton, S. Overhage, A. Romanovsky and M. Tivoli, Towards an Engineering Approach to
Component Adaptation, in: Architecting Systems with Trustworthy Components, LNCS3938(2006), pp. 193–215.

[6] Bracciali, A., A. Brogi and C. Canal,A Formal Approach to Component Adaptation, Journal of Systems and Software
74 (2005), pp. 45–54.

[7] Brogi, A. and R. Popescu,Automated Generation of BPEL Adapters, in: Proc. of ICSOC’06, LNCS 4294(2006), pp.
27–39.

[8] Cámara, J., J. A. Martı́n, G. Salaün, J. Cubo, M. Ouederni, C. Canal and E. Pimentel,ITACA: An Integrated Toolbox
for the Automatic Composition and Adaptation of Web Services, Proc. of ICSE’09 (2009), pp. 627–630.

[9] Canal, C., P. Poizat and G. Salaün,Model-Based Adaptation of Behavioural Mismatching Components, IEEE
Transactions on Software Engineering34 (2008), pp. 546–563.

[10] Cubo, J., G. Salaün, C. Canal, E. Pimentel and P. Poizat, A Model-Based Approach to the Verification and Adaptation
of WF/.NET Components, in: Proc. of FACS’07, ENTCS215(2007), pp. 39–55.

[11] Dumas, M., M. Spork and K. Wang,Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation, in:
In Proc. of BPM’06, LNCS4102(2006), pp. 65–80.

[12] Foster, H., S. Uchitel and J. Kramer,LTSA-WS: A Tool for Model-based Verification of Web Service Compositions and
Choreography, in: Proc. of ICSE’06(2006), pp. 771–774.

[13] Fu, X., T. Bultan and J. Su,Analysis of Interacting BPEL Web Services, in: Proc. of WWW’04(2004), pp. 621–630.

[14] Martı́n, J. A. and E. Pimentel,Automatic Generation of Adaptation Contracts, in: Proc. of FOCLASA’08, ENTCS229
(2009), pp. 115–131.

[15] Mateescu, R., P. Poizat and G. Salaün,Adaptation of Service Protocols using Process Algebra and On-the-Fly Reduction
Techniques, in: Proc. of ICSOC’08, LNCS5364(2008), pp. 84–99.

[16] Motahari Nezhad, H. R., B. Benatallah, A. Martens, F. Curbera and F. Casati,Semi-Automated Adaptation of Service
Interactions, in: Proc. of WWW’07(2007), pp. 993–1002.

[17] Plasil, F. and S. Visnovsky,Behavior Protocols for Software Components, IEEE Transactions on Software Engineering
28 (2002), pp. 1056–1076.

[18] Salaün, G., L. Bordeaux and M. Schaerf,Describing and Reasoning on Web Services using Process Algebra,
International Journal of Business Process Integration andManagement1 (2006), pp. 116–128.

[19] Scribner, K., “Microsoft Windows Workflow Foundation:Step by Step,” Microsoft Press, 2007.

[20] Yellin, D. M. and R. E. Strom,Protocol Specifications and Components Adaptors, ACM Transactions on Programming
Languages and Systems19 (1997), pp. 292–333.

14



Cámara et al.

A Adaptor Protocol

FigureA.1 displays the adaptor protocol generated using the adaptation contract described
in Subsection 2.2. For illustration purposes, our example is rather simple and in this case,
the adaptor protocol contains only 18 states and 19 transitions (although they tend to be
typically quite large). Interaction starts by receiving the category and the item to purchase
from the client. Next, the adaptor (state 5) can alternatively: (i) receivebuy and perform
the purchase; or (ii) receivecancel from the client and issueabort to the supplier before
finishing (state 11). It is worth observing thatabort cannot be executed without the client’s
cancellation at this point, and it can only occur on its own after the purchase is made,
according to the constraints expressed in the VLTS (Figure 3). The part of the adaptor after
state 10 corresponds to the confirmation of the purchase and the end of the transaction.

0

1

CLIENT:GETITEM ?I,T

2

SUPPLIER:SETCATEGORY !T

3

SUPPLIER:ITEMREQUEST !I

4

SUPPLIER:ITEMREQUEST ?P

5

CLIENT:GETITEM !P

6

CLIENT:BUY ?I

7

CLIENT:CANCEL ?

8

SUPPLIER:PURCHASE !I

9

SUPPLIER:ABORT !

10

SUPPLIER:INVOICE ?N

11

FINAL

12

CLIENT:CONFIRMATION !

13

SUPPLIER:DONE ?

14

SUPPLIER:DONE ? CLIENT:CONFIRMATION !

15

SUPPLIER:ABORT !

16

SUPPLIER:ABORT ! CLIENT:CONFIRMATION !

17

FINAL

Fig. A.1. Adaptor protocol generated for our running example

15


	Introduction
	Interface Model and Contract Specification Language
	Interface Model
	Contract Specification Language

	Semi-automatic Contract Specification
	Automatic Contract Generation
	Extending Automatic Generation with Interactive Specification

	Tool Support and Experimental Results
	Related Work
	Conclusions
	References
	Adaptor Protocol

