
Interactive Specification and Verification of Behavioural Adaptation Contracts

Javier Cámara, Gwen Salaün, Carlos Canal, and Meriem Ouederni
Department of Computer Science, University of Málaga, Spain

{jcamara,salaun,canal,meriem}@lcc.uma.es

Abstract

Adaptation is a crucial issue when building new applica-
tions by reusing existing software services which were not
initially designed to interoperate with each other. Adapta-
tion contracts describe composition constraints and adap-
tation requirements among these services. The writing of
this specification by a designer is a difficult and error-
prone task, especially when service protocol needs to be
considered and service functionality accessed through be-
havioural interfaces. In this paper, we propose an interac-
tive approach to support the contract design process, and
more specifically: (i) a graphical notation to define port
bindings, and an interface similarity measure to compare
protocols and suggest some port connections to the de-
signer, (ii) compositional and hierarchical techniques to fa-
cilitate the specification of adaptation contracts by building
them incrementally, (iii) validation and verification tech-
niques to check that the contract will make the involved ser-
vices work correctly and as expected by the designer. Our
approach is fully supported by a prototype tool we have im-
plemented.

1 Introduction

Services can be accessed and used to fulfill basic require-
ments, or can be composed with other services in order to
build bigger systems which aim at working out complex
tasks. They must be equipped with rich interfaces to ease
their reuse and enable their automatic composition. Inter-
face description languages distinguish several interoperabil-
ity levels (i.e., signature, protocol, quality of service, and
semantics). Composition of services is seldom achieved
seamlessly because mismatch may occur at the different in-
teroperability levels and must be solved. Software adapta-
tion [22, 7] is a recent discipline which aims at generating,
as automatically as possible, adaptors used to solve mis-
matches among services in a non-intrusive way. So far, most
adaptation approaches have assumed interfaces described
by signatures (operation names and types) and behaviours

Adaptation 
Contract

Designer

Service/
Component

Interface 
Descriptions

Adaptor
Implementation

Adaptor Protocol Model (STS)

Behavioural Models (STS)

Contract 
specification

Behavioural Model 
ExtractionWSDL+

Abstract 
BPEL

Annotated 
Java 

Interfaces

WSDL+
Windows 
Workflow 

(WF)

.

.

.

Adaptor

.

.

.
Adaptor Protocol

 Generation

WSDL
+BPEL

Java 
Classes

WSDL+
Windows 
Workflow 

(WF)

Figure 1. Generative adaptation process

(interaction protocols). Describing protocols in service in-
terfaces is essential because erroneous executions or dead-
lock situations may occur if the designer does not consider
them while building composite services.

A first class of existing works dedicated to model-
based behavioural adaptation is referred to as restrictive
approaches, see for instance [5, 3, 17]. They favour full
automation of the process, and try to solve interoperabil-
ity issues by pruning the behaviours that may lead to mis-
match, thus restricting the functionality of the services in-
volved. These techniques are limited since they are not able
to fix subtle incompatibilities between service protocols by
remembering and reordering events and data when neces-
sary. A second class of solution is referred to as genera-
tive approaches, see for instance [4, 9, 7]. They avoid the
arbitrary restriction of service behaviour, and support the
specification of advanced adaptation scenarios. Generative
approaches build adaptors automatically from an abstract
specification, namely an adaptation contract, of how mis-
match cases can be solved.

Although generative approaches result in a more general
and satisfactory solution while composing and adapting ser-
vices, writing the contract is a difficult and error-prone task.
Incorrect correspondences between operations in service in-
terfaces, or syntactic mistakes are common, especially in
cases where the contract has to be specified using cum-
bersome textual notations [4]. Contracts should also de-
scribe in an abstract way the different execution scenarios



of the system, which may not be easily envisioned by the
designer. Moreover, contracts must avoid undesirable sys-
tem behaviour such as deadlocks or incorrect order of the
messages exchanged, and this is difficult when protocols are
taken into account in interface descriptions.

In this paper, we advocate for interactive techniques to
help the designer in the adaptation contract specification
process (see Figure 1 for an overview of the whole adapta-
tion process). To this purpose, we first propose a graphical
notation to visualize service protocols and define port bind-
ings. Our notation also integrates a measure of similarity
between protocols that the designer can use to detect parts
of service protocols which turn out to be similar, and then
connect them. Second, we formalise compositional and hi-
erarchical techniques in order to build the system incremen-
tally and therefore simplify the process. Last, to check if the
behaviour of the system complies with the designer’s in-
tentions, we propose validation and verification techniques
which allow to simulate visually the execution of the system
step-by-step, and find out which parts of the system lead
to erroneous behaviour (deadlock, infinite loops, safety and
liveness properties). Our approach is fully implemented in
a prototype tool, ACIDE, which has been applied to many
case studies.

The rest of this paper is structured as follows: Section 2
presents our service model. Section 3 introduces our con-
tract specification language and overviews adaptation tech-
niques that can be used to generate adaptor protocols from
such contracts. Section 4 presents a compositional and hi-
erarchical approach to ease the specification of adaptation
contracts. Section 5 describes our graphical environment
that supports contract design, as well as our similarity mea-
sure between service protocols. In Section 6, we propose
verification techniques to check contracts. Section 7 intro-
duces our prototype tool (ACIDE), and some experimental
results. Finally, Section 8 compares our approach with re-
lated works, and Section 9 concludes the paper.

2 Interface Model

We assume that service interfaces are equipped both with
a signature (set of required and provided operations), and
a protocol represented by a Symbolic Transition System
(STS). Communication between services is represented us-
ing events relative to the emission and reception of mes-
sages corresponding to operation calls. Events may come
with a list of parameters whose types respect the operation
signatures. In our model, a label is either the internal action
τ or a tuple (M,D, PL) where M is the message name, D
stands for the communication direction (! for emission, and
? for reception), and PL is either a list of data terms if the
message corresponds to an emission, or a list of variables if
the message is a reception.

Definition 1 (STS) A Symbolic Transition System is a tuple
(A,S, I, F, T ) where: A is an alphabet which corresponds
to the set of labels (τ or a tuple (M, D,PL)) associated to
transitions, S is a set of states, I ∈ S is the initial state,
F ⊆ S are final states, and T : S×A → S is the transition
function.

Our STS are a simplified version of STG (Symbolic
Transition Graphs) introduced in [12]. The only difference
is that guards are abstracted as τ transitions, that corre-
spond to internal (unobservable) activities of the service.
The operational semantics of an STS (−→b) is defined with
three rules (Fig. 2) formalising the meaning of each kind
of labels, namely τ (TAU), emissions (EM), and receptions
(REC). Each couple 〈s,E〉 represents an active state s ∈ S
and a data environment E. A data environment is a set of
couples 〈x, v〉 where x is a variable and v a ground value.
We use a function type which returns the type of a variable,
and we define the environment update “®”, and the evalua-
tion function ev as follows:

E ® 〈x, v〉 , E(x) = v

ev(E, x) , E(x)
ev(E, f(v1, . . . , vn)) , f(ev(E, v1), . . . , ev(E, vn))

The operational semantics of n STSs (−→c) is defined
with one rule (COM, see Fig. 2) that formalises a syn-
chronous communication between two services. Value-
passing and variable substitutions rely on a late binding
semantics [16], and {as1, . . . , asn} is a set of couples
〈si, Ei〉.

The STS formal model has been chosen because it is sim-
ple, graphical, and it can be easily derived from existing
implementation languages (see for instance [11, 21, 10, 8]
where such abstractions for Web services were used for ver-
ification, composition or adaptation purposes). Due to page
limitation, in the rest of the paper we will describe service
interfaces only with their STSs. Signatures will be left im-
plicit, yet they can be inferred from the typing of arguments
(made explicit here) in STS labels.
Example. In this paper, we use as running example an on-
line medical management system which handles patient ap-
pointments. As it can be observed in Figure 3, we reuse
three services in this new system, and we give an example of
user requirements implemented in a client. This Client can
first log on to a server by sending respectively his/her user
name (user!) and password (password!). Then, depend-
ing on his/her preferences (internal choice specified with
τ transitions in the client protocol), the client can ask for
an appointment either with a general practitioner (reqDoc!)
or a specialist doctor (reqSpec!), and then receive an ap-
pointment identifier. Service Serverdoc first receives the
client user name and password (login?). Next, this ser-
vice receives a request for an appointment with a general



(s
τ−−→ s′) ∈ T

〈s, E〉 τ−−→b 〈s′, E〉
(TAU)

(s
a!v−−−→ s′) ∈ T v′ = ev(v, E)

〈s, E〉 a!v′−−−→b 〈s′, E〉
(EM)

(s
a?x−−−→ s′) ∈ T

〈s, E〉 a?x−−−→b 〈s′, E〉
(REC)

i, j ∈ {1..n} i 6= j

〈si, Ei〉 a!v−−−→b 〈s′i, Ei〉 〈sj , Ej〉 a?x−−−→b 〈s′j , Ej〉
type(x) = type(v) E′

j = Ej ® 〈x, v〉
{as1, .., 〈si, Ei〉, .., 〈sj , Ej〉, .., asn} a!v−−−→c {as1, .., 〈s′i, Ei〉, .., 〈s′j , E′

j〉, .., asn}
(COM)

Figure 2. Operational Semantics of STS

CLIENT
user!usr:tstring

password!pwd:tstring

τ τ

reqDoc!d:tdate reqSpec!d:tdate

replyS?tkt:tidreplyD?tkt:tid

c0

c1

c3

c2

c6c5c4

login?
usr:tstring
pwd:tstring

reqDoc?d:tdate

reqDoc!tkt:tid

s0

s1

s2

SERVERDOC

DATABASE

availability!tkt:tid

availability?d:tdate

d0 d1

login?
usr:tstring
pwd:tstringreqSpec!tkt:tid reqSpec?d:tdate

availability?tkt:tid availability!d:tdate

s0
s1

s2

s3

s4

SERVERESP

Final state Initial state

Figure 3. Client, server and database be-
havioural interfaces

practitioner (reqDoc?) and replies (reqDoc!). Service
Serveresp first receives the client user name and password
(login?), followed by a request for an appointment with a
specialist doctor (reqSpec?). After checking doctor avail-
ability for the given date, an appointment identifier is re-
turned (reqSpec!) to the client. Service Database can re-
ceive and reply requests for a specialist doctor’s availability
for a given date (availability?/availability!).

We intend to compose these services into a working sys-
tem where the client can request an appointment with a
general practitioner, and optionally request an appointment
with a specialist doctor, provided that there is a previous ap-
pointment with the general practitioner (i.e., the client can-
not directly schedule an appointment with the specialist).

3 Contract Specification and Adaptor Gener-
ation

In this section, we first present our contract specifica-
tion language that specifies how to work out mismatch sit-

uations, and briefly discuss the generation of adaptor proto-
cols from such descriptions.

3.1 Contract Specification Language

While building a new system by reusing existing ser-
vices, behavioural interfaces do not always fit one an-
other, and these interoperability issues have to be faced and
worked out. Mismatches may be caused by different mes-
sage names, a message without counterpart (or with several
ones) in the partner, message arguments differently ordered
or distributed across different messages, etc. The presence
of mismatch results in a deadlocking execution of several
services [3, 7]. This is easily detected by exploring all the
interactions of the set of service STSs obtained by applica-
tion of the rule COM presented in Section 2.

Adaptors are automatically built from an abstract de-
scription, called adaptation contract, of how mismatch situ-
ations can be solved. In this paper, we use vectors and a vec-
tor LTS as adaptation contract specification language [19].
A vector contains a set of events (message, direction, set
of parameters). Each event is executed by one service and
the overall result corresponds to an interaction between all
the involved services. Vectors express correspondences be-
tween messages, like bindings between ports, or connectors
in architectural descriptions. In this paper, we consider a bi-
nary communication model, therefore vectors are always re-
duced to one event (when a service evolves independently)
or two (when services communicate). Furthermore, vari-
ables are used as placeholders in message parameters. The
same variable names appearing in different labels (possibly
in different vectors) relates sent and received arguments in
the messages. Finally, since we want our adaptation pro-
cess to be hierarchical and compositional, a vector may be
observable (prefix o) or not (prefix c). Such vectors can
also be referred, respectively, as open and closed (this issue
is discussed in further detail in Section 4).

Definition 2 ((Compositional) Vector) A (compositional)



vector v for a set of service STSs (Ai, Si, Ii, Fi, Ti), i ∈
{1, . . . , n} is an element of {{o, c} × Aj} ∪ {{c} ×
Aj × Ak} with j, k ∈ {1, . . . , n}. Such a vector is noted
o : 〈sj : l〉, c : 〈sj : l〉, or c : 〈sj : l, sk : l′〉 where sj , sk

are service identifiers, and l, l′ are labels on the alphabets
of services Aj , Ak, j 6= k where message parameters are
substituted by placeholders relating the arguments.

In addition, the contract notation includes an LTS with
vectors on transitions (vector LTS or VLTS). This is used
as a guide in the application order of interactions specified
by vectors. VLTSs go beyond port and parameter bindings,
and express more advanced adaptation properties (such as
imposing a sequence of vectors or a choice between some
of them). If the application order of vectors does not mat-
ter, the vector LTS contains a single state and all transitions
looping on it.

Definition 3 (Adaptation Contract) An adaptation con-
tract for a set of services STSi, i ∈ {1, .., n}, is a couple
(V, LTSv) where V is a set of vectors for services STSi,
and LTSv is a vector LTS.

Example. Figure 4 displays the set of vectors used to solve
mismatch among our interfaces. For illustration purposes,
we focus on the initial part of the composition, where we
want to connect the general practitioner server (Serverdoc)
with the client, and make authentication work correctly. For
this, we need two vectors, respectively vuser and vNloginD,
in which we solve existing mismatches by relating differ-
ent message names (login and password), specifying the
independent evolution of user!, and connecting correctly
exchanged data parameters using placeholders U and P
(please refer to Figure 5 to see how placeholders connect
parameters). The rest of the vectors in the contract work in
a similar fashion, relating the remaining parts of the inter-
faces.

Regarding the specification of additional constraints on
the composition, we can observe in the bottom part of Fig-
ure 4 that the Vector LTS for the contract constrains the
interaction of the Client, Serverdoc, and Serveresp in-
terfaces by imposing the request for an appointment with
a general practitioner (vNreqD) always before the pos-
sible request of an appointment with a specialist doctor
(vNreqS). This is achieved by excluding vNreqS from the
possible transitions in state 0, and including the transition
(0, vNreqD, 1). It is worth observing that by default, all
vectors available in the contract (V ) are executable in both
states of the VLTS, and only specific vectors are removed
in order to constrain the composition. Building the VLTS in
such an abstract way simplifies its specification since tran-
sitions for all vectors do not have to be specified one by
one.

V = {vuser = c :〈c :user!U〉,
vNloginD = c :〈sd : login?U, P; c :password!P〉,
vNreqD = c :〈c : reqDoc!D; sd : reqDoc?D〉,
vNrespD = c :〈c : replyD?T; sd : reqDoc!T〉,
vNloginS = c :〈se : login?U, P〉,
vNreqS = c :〈c : reqSpec!D2; se : reqSpec?D2〉,
vNrespS = c :〈c : replyS?T2; se : reqSpec!T2〉,
vavailReq = c :〈se :availability!D3; d :availability?D3〉,
vavailResp = c :〈se :availability?T3; d :availability!T3〉 }

0 1

V
vNreqD

V \{vNreqD,vNreqS}

Figure 4. Adaptation contract for our exam-
ple: vectors (top) and vector LTS (bottom)

3.2 Generation of Adaptor Protocols

Being given a set of service interfaces, and an adaptation
contract, an adaptor protocol can be generated using tech-
niques presented in [14]. An adaptor is a third-party compo-
nent that is in charge of coordinating the services involved
in the system with respect to the set of constraints defined
in the contract. Consequently, all the services communicate
through the adaptor, and this one is able to compensate mis-
matches by making required connections as specified in the
contract. All protocols (adaptor and services) interact wrt.
the rule COM presented in Fig. 2.

From adaptor protocols, either a central adaptor can be
implemented, or several service wrappers can be gener-
ated to distribute the adaptation. In the former case, the
implementation of executable adaptors from adaptor proto-
cols can be achieved for instance using Pi4SOA technolo-
gies [1], or techniques presented in [14] and [8] for BPEL
and Windows Workflow Foundation, respectively. In the
latter case, each wrapper constrains the functionality of its
service to make it respect the adaptation contract specifica-
tion [20].

Example. Figure 5 shows a small portion of the adaptor
protocol generated from the two vectors vuser = c : 〈c :
user!U〉 and vNloginD = c : 〈sd : login?U,P; c :password!P〉
presented above. This makes service Serverdoc and the
Client interact correctly. We emphasize that the adaptor
synchronizes with the services using the same name of mes-
sages but the reversed directions, e.g., communication be-
tween login? in Serverdoc and login! in the adaptor.
Furthermore, the adaptor always starts a set of interactions
formalised in a vector with the receptions user? or pass-



login?usr,pwd

SERVERDOC

user!usr

CLIENT

password!pwd

user?U

ADAPTOR

password?P

login!U,P

login?usr,pwd

login!U,P

user!usr

password!pwd

user?U

password?P

related by placeholder U

related by placeholder P

Figure 5. Example of adaptation for authenti-
cation mismatches

word? (which correspond to emissions on service inter-
faces), and next handles the emissions (login!).

The full adaptor protocol for our example contains 33
states and 42 transitions. It is worth observing that this
adaptor has a moderate size and complexity since constrain-
ing the composition using a VLTS helps also to reduce the
size of the final adaptor by imposing sequentiality on the
different actions, thus reducing interleaving. In order to il-
lustrate this fact, we can mention that if the composition
of the different services in our example had not been con-
strained by the vector LTS, the adaptor generated using the
same set of bindings without the VLTS contains 132 states
and 199 transitions.

4 Hierarchical Service Composition and
Adaptation

Real scenarios for service reuse and adaptation often in-
volve several interacting services. This increases the com-
plexity of adaptation, hindering the task of the developer.
In this section, we present a divide-and-conquer approach
that simplifies the adaptation process by building contracts
incrementally. This approach is used as foundation for the
graphical notation for service hierarchy and contracts pre-
sented in Section 5. Hence, in addition to being able to
specify the system incrementally, the complexity of the ap-
proach described in this section is hidden to the designer
since contracts and hierarchy are automatically obtained
from their graphical description in our approach.

In particular, our incremental approach is based on the
notion of composite service, which corresponds to a hier-
archy of connected services. By encapsulating interactions
through composite hierarchical services, the developer can
focus on the construction of a contract for a particular adap-
tation sub-problem at a time. This encapsulation has im-
portant advantages in terms of design, development and de-
bugging. In particular, service composites may be indepen-
dently developed, tested, and modularly replaced by new
elements as requirements change.

Definition 4 (Composite Service) A composite service is
a couple (SI,C) where:

• SI is a set of (composite or basic) service interfaces
(i.e., an Id-indexed set of STSs Si, i ∈ Id).

• C = (V = Vint ∪ Vext, LTSv) is an adaptation con-
tract for the set of services in SI:

– Vint is a set of vectors of the form c : 〈ll, lr〉.
It represents internal bindings between the com-
posite sub-services.

– Vext is a set of vectors of the form o : 〈l〉. It rep-
resents ports on the composite subservices which
remain open to the environment and therefore are
exposed through the composite public interface.

– LTSv is a vector LTS with its alphabet defined
in V .

Example. In our online medical management system, ser-
vices Serverdoc, Serveresp, and Database are bundled
within a composite Service, which interacts with the Client
(Figure 6, left). In the remainder of this paper, we will in-
formally refer in the context of our example to the scope of
the Service composite as bottom level of the hierarchy, and
the global scope of the system containing the Client and the
Service as top level:

SERVERESPSERVERDOC c

o o

SERVICE

CLIENTc c

DATABASE
vloginDO
vreqDO
vrespDO

vloginSO
vreqSO
vrespSO

vavailReq
vavailResp

vuser 
vloginD 
vreqD
vrespD

vloginS
vreqS
vrespS

SERVERESPSERVERDOC

CLIENT

DATABASE

vavailReq
vavailResp

vuser 
vNloginD 
vNreqD
vNrespD

vNloginS
vNreqS
vNrespS

Figure 6. Service hierarchy and bindings (left)
and flattened structure and bindings (right)

The bottom level contract bindings (Vbot, internal to
the Service composite interface) allow the interaction of
Serveresp and Database services (through closed vectors
vavailReq, vavailResp), and enable us to export the rest of the
ports in Serverdoc and Serveresp for external interaction
with the client (open vectors). At the top level, we define
the interaction of the Client with the Service composite
interface. It is worth observing that the top level of a hierar-
chy consists of an implicit composite which contains all the
interfaces on the global scope of the system and a contract
relating them where all bindings are represented by closed
vectors, since no ports have to be exported to an upper level.
¥



Expressing hierarchical relationships among interfaces
in composites is not enough to achieve composability. Par-
ticularly, if we want to replace a part of a service hierarchy
(composite service) by a black-box service (thus making its
implementation transparent to the rest of the system), we
must provide:

1. An internal implementation for the composite service.
This is obtained by generating an adaptor from c-
vectors using the techniques referenced in Section 3.2.
Adding this adaptor enables the involved services to
interoperate while leaving ports corresponding to o-
vectors open to the environment.

2. A behavioural interface for the composite service. An
STS behavioural interface can be obtained for a com-
posite service by generating the interleaving of the
parts of service protocols in SI where labels cor-
respond to open ports (those ports contained in o-
vectors).

SERVERESPSERVERDOC

SERVICE

CLIENT

A1

A2

DATABASE SERVERDOC

CLIENT

A

DATABASE SERVERESP

Figure 7. Alternative architectures

As an alternative to generating the implementation of
composite services and composing them incrementally with
the rest of the system, in some cases it is interesting to gen-
erate a centralized adaptor for a service hierarchy, since this
reduces the number of adaptors (then components) in the
system (Figure 7, right). In order to enable the generation
of centralized adaptors, we propose an algorithm to auto-
matically merge all the partial contracts at different levels
of a service hierarchy, returning a single or flat adaptation
contract which involves all the interacting services in the hi-
erarchy. A hybrid approach can also be taken by applying
the flattening process to a restricted part of a service hierar-
chy, reducing the overall number of adaptors in the system
without compromising parallelism in parts where its preser-
vation must be enforced.

Example. Figure 7 shows two alternative system architec-
tures: (left) an adaptor which leaves o-vectors open to the
environment (A1) is first generated for service composite
Service, and another adaptor (A2) is generated in a second
step to enable interoperability between Service and Client
and; (right) a centralized adaptor enables the interaction of
all the services after applying contract flattening. ¥

The obtention of a flat adaptation contract is achieved
by recursively merging contracts of adjacent levels n and
n + 1 in the service hierarchy (Algorithm 1). This contract
merging process implements a depth-first traversal, since
the contracts inside of any particular sub-composite of the
hierarchy must be merged before proceeding to an upper
level. The algorithm returns a single adaptation contract in-
volving all the services in the hierarchy.

Algorithm 1 flat contract
Returns a single contract for a composite service.
inputs Composite service CI = (SI, C)
output Flat adaptation contract FC

1: FC = C
2: for all i∈SI do
3: if is composite(i) then
4: FC = merge contracts(flat contract(i), FC)
5: end if
6: end for
7: return FC

Function is composite(i) returns True if i is a compos-
ite service. Function merge contracts merges two con-
tracts Cint and Cext of adjacent levels in the hierarchy, re-
turning a single contract C for both levels:

merge contracts(Cint = (Vint, LTSvi), Cext = (Vext, LTSve)) =

(merge vectors(Vint, Vext), free product(LTSvi, LTSve))

Specifically, two contracts are merged by:
1. Merging the sets of vectors in the two contracts of levels
n and n + 1 in the hierarchy (Algorithm 2). This algorithm
first adds to V all the c-vectors from Vint (bottom level),
and in a second step, a set of vectors which results from
merging o-vectors in Vint with vectors in Vext (top level)
which overlap in one (open or observable) label. Finally,
the rest of the unmatched (not merged) vectors in Vext are
added to V .
2. The resulting VLTS for the merged contract is obtained
by computing the free product [2] of the bottom and top
level VLTSs (LTSvi and LTSve, respectively), where tran-
sitions containing merged vectors (Algorithm 2, lines 7, 11)
have been previously relabeled.

Now, we define more formally the different functions we
use in Algorithm 2. First, we introduce function id(l =
e!(v1 . . . vn)) = e!, id(l = r?(x1 . . . xn)) = r?, which re-
turns a unique identifier for each label (by using its name
and direction). We extend this function to obtain a set
of unique label identifiers from a label set in function
ids({l1, . . . , ln}) = {id(l1)} ∪ · · · ∪ {id(ln)}. Function
obs(v = e : 〈ll, lr〉) = e determines if a vector is observ-
able from outside the scope of its composite.

Example. After applying the aforedescribed contract merg-
ing process to the service hierarchy in our example, we ob-
tain the flat contract described in Section 3 (Figure 4). All



Algorithm 2 merge vectors
Merges two set of vectors of adjacent hierarchical levels.
inputs Bottom level vector set Vint, Top level vector set Vext

output Vector set V

1: Observable := {v ∈ Vint|obs(v) 6= c}
2: V := Vint\Observable
3: V auxext := Vext

4: for all vo = o : 〈so : lo〉 ∈ Observable do
5: if ∃vext = c : 〈sext1 : lext1, sext2 : lext2〉 ∈ Vext, id(lo) ∈

ids({lext1, lext2}) then
6: (ln, sn) := (l, s) ∈ {(sext1, lext1), (sext2, lext2)}, id(l) 6=

id(lo)
7: vn := c : 〈so : lo, sn : ln〉
8: V auxext := V auxext\{vext}
9: V := V ∪ {vn}

10: else if ∃vext = o : 〈sext : lext〉 ∈ Vext, id(lo) = id(lext)
then

11: vn := o : 〈so : lo〉
12: V auxext := V auxext\{vext}
13: V := V ∪ {vn}
14: end if
15: end for
16: V := V ∪ V auxext

17: return V

bindings in a flat contract are always represented by closed
vectors. Moreover, the bindings resulting from an actual
merge of vectors which overlap in the non-flat initial con-
tracts are labeled with an N (e.g., vNloginD, vNreqS , etc.).
Figure 6 (right) shows a simplified graphical representation
of the bindings in the flat contract. Figure 4 also depicts the
VLTS for the flat contract obtained by performing the free
product of the two input VLTSs. It is worth observing that
before this free product is performed, transitions on the in-
put VLTSs are relabeled with the names of merged vectors
(e.g., vloginD → vNloginD, etc.).

5 Interactive Contract Specification

In order to make the contract design as simple and user-
friendly as possible, we advocate interactive specification
techniques to support the designer through this process. To
this purpose, we first propose a notation to graphically make
explicit bindings between ports. We also overview a proto-
col similarity measure which is used to suggest some port
connections to the designer.

Graphical notation. The graphical notation for a service
interface includes a representation of its protocol (STS) and
a collection of ports. Each label on the STS corresponds
to a port in the graphical description. Ports include a data
port for each parameter contained in the parameter list of
the label. Correspondences between the different service
interfaces are represented as port bindings (c-vectors) and
data port bindings (solid and dashed lines, respectively).
Starting from the graphical representation of the interfaces,

OUT Port

IN Port

Open Port

Port Cap

Data Binding

Port Binding

Data Port

Figure 8. Graphical notation: ports and bind-
ings

the designer builds a contract by successively connecting
ports and data ports. This results in the creation of bindings
which specify how the interactions should be carried out. It
is also possible to add a port cap (c-vector with a single la-
bel) on a port in order to indicate that it does not have to be
connected anywhere. Our graphical notation considers hi-
erarchical relations among interfaces as well (see Section 4
for the underlying principles). Thus, a port can be open
(o-vector), and it will appear in the external interface of the
composite service to which it belongs. Figure 8 summarizes
ports and bindings used in our notation.

Protocol similarity. Comparing two protocols helps to
build adaptation contracts by suggesting the best possible
interface matches to the user. To do so, we define a similar-
ity measure which aims at pointing out mismatches between
two protocols, but also at detecting parts of them which turn
out to be similar. Our similarity measure accepts as input
two service protocols described as STSs and results in a
matrix where each entry corresponds to a similarity score
for a couple of states (si, sj) with si and sj belonging re-
spectively to the two STS sets of states. This score for each
couple of states ranges between 0 and 1, and is computed
from a set of four detailed similarity comparisons, namely
for states, labels, depths and graphs. The whole similarity
measuring process is not presented here for lack of space,
but the reader may refer to [18] for more details.

Example. Let us focus on the graphical representation of
the database service in our example (Figure 9 gives a graph-
ical description in our ACIDE tool). It can be observed that
it contains a port for the reception of the availability request
with a data port attached for the date, and another port for
the emission of the availability response with a data port
attached for the ticket identifier issued for the given date.
Moreover, the figure depicts the hierarchy of services in our
example, where the Serverdoc, Serveresp and Database
interfaces are placed inside a composite interface (Service)
and interact on a set of bindings defined between their ports.
It is worth noticing that the Serverdoc and Serveresp in-
terfaces have several open ports connected to the external
interface of Service.

As regards similarity measures, while connecting the ex-
ternal interface of the Service composite with the ports on
the Client interface, ports user or password can be com-
pared with the ports on Serverdoc. The best match is login
(0.8) for both of them, therefore we choose binding pass-



Figure 9. Graphical contract specification for our running example in ACIDE

word with login, and then add a cap to user, but connect
its data port usr to the user data port required by login.
Similarity measures also allow to automatically generate
port bindings for labels that perfectly match, saving time
to the developer who would otherwise have to relate man-
ually ports which are obviously similar. For instance, the
two ports on the Database interface perfectly match with
the availability ports on Serveresp, so they can be auto-
matically bound together based on that information.

6 Validation and Verification of Adaptation
Contracts

In this section, we propose a set of verification tech-
niques to check that the adaptation contract makes the in-
volved services work correctly. This helps the designer to
understand if the behaviour of the system complies with
his/her design intentions. These techniques are completely
automated, and include four kinds of checks: (i) static
checks on the contract wrt. STS service interfaces in-
volved, (ii) simulation of the system execution, (iii) trace-
checking to find potential deadlocking executions and infi-
nite loops, and (iv) verification of temporal logic formulas
using model-checking.

Static analysis. In the first place, our approach implements

a set of static checks on the contract under specification.
These include determining if all labels used in vectors are
defined in service interfaces, finding out if all service iden-
tifiers appearing in vectors belong to one of the interfaces
involved in the composition, checking if connected param-
eters have the same type, etc. Although these checks will
detect all common errors that occur when a contract is man-
ually written, they are not enough since they do not focus
on the interactions between the services and the adaptor de-
fined by the contract, missing out the behavioural issues that
might be raised during execution.

Simulation. In order to solve this problem, our approach
first includes a simulation algorithm, which extends the
composition engine we presented in [6] with value-passing.
This algorithm simulates the execution of the system step-
by-step and determines how the different behavioural inter-
faces evolve as different vectors in the contract are executed.
Simulation can be run in two different modes:

• Safe mode. Only safe vectors (i.e., a vector for which
a global termination state of the system exists after its
execution) can be selected at each step of the simula-
tion. To determine if a vector is safe, the simulation
algorithm relies on a depth-first search, stopping either
if a final state for the whole system (the vector is safe
and the search ends), or a deadlock state is found (the



search backtracks and tries another path). If no final
state for the whole system has been found at the end of
the search, the vector is not safe.

• Unsafe mode. All applicable vectors can be selected.
Although this allows the application of vectors lead-
ing to deadlock states (i.e., a vector for which a global
termination state of the system does not exist after its
execution), this possibility is interesting in order to ob-
serve and understand potential flaws in the contract un-
der specification.

Moreover, we propose two different semantics for o-
vectors:

• Closed. When an unbound open port (o-vector) is en-
countered by the simulation algorithm, the service can-
not further evolve and the system deadlocks.

• Open. In this case, the service evolves independently
on the open port, and simulation continues.

Trace-checking. We also propose some automated tech-
niques to check traces generated using our simulation en-
gine (unsafe, closed mode). In order to achieve this, many
random execution traces are first generated, and then tra-
versed to detect those leading to deadlock situations or infi-
nite loops.

Model-checking. Last, our approach integrates process al-
gebra encoding techniques presented in [14] to verify tem-
poral logic properties on the system under construction. To
do so, some LOTOS code is automatically generated for
each STS service, and for the adaptation constraints spec-
ified in the contract. Finally, some properties can be speci-
fied by the designer in a modal µ-calculus and verified using
the CADP model-checker [15].

7 Tool Support and Experimental Results

The different contributions we have presented before in
this paper are fully implemented in a prototype tool named
ACIDE (Adaptation Contract Interactive Design Environ-
ment – see Fig. 9). ACIDE has been validated on many ex-
amples, which range from small ones to experiment bound-
ary cases, to real-world examples such as a travel agency,
rate finder services, on-line computer material store, library
management systems, a SQL server, and other systems.

Experimental study setup. With the assistance of twelve
volunteers, we conducted a small experimental study which
helped us to determine how our approach to adaptation con-
tract specification behaves in terms of required development
effort and accuracy, compared to manual contract specifi-
cation. Specifically, tests were conducted by handing over

to users adaptation problems which consisted of the graph-
ical description of the behavioural interfaces to be reused
in the composition, and a short specification in natural lan-
guage of what was the intended functionality of the sys-
tem. Users were asked to perform contract specification ei-
ther by: (i) directly typing on a text file or writing down
on a piece of paper the contract without further assistance,
or (ii) making use of our interactive contract specification
techniques (ACIDE).

For our study we used different adaptation problems that
were either borrowed from research papers, or obtained
from our own archive of adaptation problems. Table 1 sum-
marizes the problems used for our study, which are orga-
nized according to increasing size and complexity. We also
include the number of interfaces involved and ports to con-
nect, as well as the overall size of the protocols as a total
number of states and transitions. The table also includes
the experimental results (time required to solve the problem
and number of errors in the specified contract) for each of
the examples using manual (M) and interactive (I) contract
specification.

Experimental results. (i) Efficiency. Figure 10 shows the
results of our experiments. As it can be observed on the
top part of the figure, there is a remarkable difference in the
amount of time required to solve the different problems be-
tween manual and interactive specification, which showed
a reduction of 53% on the time required, compared to man-
ual specification. (ii) Accuracy. We measure as errors the
number of bindings created between ports which were ei-
ther wrong or useless for the resulting contract. In the case
of manual specification we also take into account syntactic
errors (our tool-supported approach avoids them). In Fig-
ure 10 (bottom), it can be noticed that the number of errors
in problem solutions is lower in our approach (a reduction
of 59% in the number of errors compared to manual spec-
ification). This difference is negligible for small cases, but
increases with the complexity of the problem. It is worth
noticing that there is a small difference between the two ap-
proaches in the case of easyrest-005. This is explained by
the low number of mismatches this problem presents rela-
tive to its size, something that makes the manual specifica-
tion for this particular problem less prone to errors.

8 Related Work

Existing works dedicated to model-based behavioural
adaptation are often classified in two families, namely re-
strictive and generative approaches. Restrictive approaches,
e.g., [5, 3, 17], are fully automated and try to solve inter-
operability issues by pruning the behaviours that may lead
to mismatch. These techniques do not allow to fix subtle
incompatibilities between service protocols. On the other



Time (s) Errors
Problem Interf. Ports States Trans. M I M I
ftp-002 2 9 11 11 338 222 1.77 1.5

client-sup-002 2 12 15 16 480 248 0.33 0.5
which-004 2 17 16 19 486 146 2.95 0.75

online-med-003 3 15 16 17 531 189 5 0
easyrest-005 4 17 22 24 689 310 3 1.66

pda-001 6 46 37 48 2160 1152 27.6 10.66

Table 1. Problem size and experimental results for the two tested approaches.

hand, generative approaches, e.g., [4, 9, 19, 7, 14], are also
able to accommodate protocols, for instance by reordering
messages and their parameters when required, or by sup-
porting the specification of advanced adaptation scenarios.
In the rest of this section, we compare our proposal with
existing generative approaches.

Brogi et al. [4] present a methodology for generative be-
havioural adaptation where component behaviors are speci-
fied with a subset of the π-calculus and composition specifi-
cations with name correspondences. An adaptor generation
algorithm is used to refine the given specification into a con-
crete adaptor which is able to accommodate both message
name and protocol mismatch. More recently, [7, 14] pro-
posed state-of-the-art adaptation approaches that are gen-
erative and support adaptation policies and system proper-
ties described by means of regular expressions or LTSs of
vectors. However, in these works, no support is proposed
to help the designer during the contract specification task,
which is therefore achieved manually.

As regards interactive contract specification, [9] intro-
duces an approach to service interface adaptation using a
visual language based on an algebra over behavioural in-
terfaces. A graphical editor taking as input pairs of be-
havioural interfaces allows to link them through interface
transformation expressions. The output of this tool can be
used as input for a service mediation engine which inter-
prets the information in order to perform composition. Al-
though this approach provides the means to define interface
transformation expressions graphically, it does not support
the incremental specification of adaptation since it only con-
siders pairs of provided-required interfaces. Moreover, our
approach provides systematic contract verification mecha-
nisms and protocol similarity measures which help to guide
the specification of adaptation using the graphical notation.

In [19], the authors focus on systems where components
or services may enter and leave at any time, such as per-
vasive ones, and propose an incremental approach for the
integration and adaptation of software components. This
proposal simplifies the design process by building the sys-
tem incrementally, and thus avoids the costly computation
of global adaptors. Two algorithms are proposed respec-
tively for the addition and suppression of a component. In

the first case, a local adaptor is generated, and in the sec-
ond case, some reconfigurations are applied to preserve the
consistency of the system. This work shares some similari-
ties with our proposal, such as the incremental process and
the generation of local adaptors. However, [19] relies on a
very simple model (LTS without value passing), and advo-
cates for a manual writing of the adaptation contract.

To sum up, our solution to design graphically adapta-
tion contracts goes far beyond existing related work, since
we combine in a unique environment new protocol similar-
ity results to guide the construction, hierachical structuring
to divide the composition and adaptation in smaller pieces,
and verification techniques to detect possible design errors.
Last but not least, our proposal is completely supported by
a prototype tool we implemented.

9 Concluding Remarks

Manual specification of adaptation contracts is a cum-
bersome and error-prone task which can be simplified by
assisting the designer. In this work, we have presented an
interactive approach which speeds up the contract specifi-
cation process and reduces the risk of mistakes in the spec-
ification. Our solution relies on compositional and graphi-
cal notations, similarity measures which help the designer
to identify similar parts of protocols, and some verification
mechanisms which range from static checks in contracts to
trace and model-checking techniques. Our approach is fully
supported by a prototype tool we implemented and applied
to many case studies.

As regards future work, we first plan to extend our so-
lution to take goal-oriented adaptation into account. Our
interactive environment would accept the graphical speci-
fication of temporal properties to be used next as a guide
to the adaptation process. We will also propose some tech-
niques to dynamically evaluate such properties. Thus, once
a formula is specified, the user is informed about the sat-
isfaction of this property during the contract construction.
A second perspective aims at enhancing our approach with
techniques dedicated to the automatic generation of adap-
tation contracts [13]. Although these approaches are often



100

600

1100

1600

2100

2600

ftp-002 client-sup-
002

which-004 online-
med-003

easyrest-
005

pda-001

T
im

e
(s

)

Manual
Interactive

0

5

10

15

20

25

30

ftp-002 client-
sup-002

which-
004

online-
med-003

easyrest-
005

pda-001

Er
ro
rs

Figure 10. Experimental results: Time
elapsed (top) and accuracy (bottom)

costly in terms of computational complexity, and do not per-
mit generative adaptation, they can be helpful to automate
the computation of parts of the contract which correct sim-
ple mismatch cases.
Acknowledgements. This work has been partially sup-
ported by the project TIN2008-05932 funded by the Span-
ish Ministry of Innovation and Science (MICINN).

References

[1] Pi4SOA Project. www.pi4soa.org.

[2] A. Arnold. Finite Transition Systems. International Series in Com-
puter Science. Prentice-Hall, 1994.

[3] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHE-
SIS: A Tool for Automatically Assembling Correct and Distributed
Component-based Systems. In Proc. of ICSE’07, pages 784–787.
IEEE Computer Society, 2007.

[4] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Com-
ponent Adaptation. Journal of Systems and Software, 74(1):45–54,
2005.

[5] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters.
In Proc. of ICSOC’06, volume 4294 of LNCS, pages 27–39. Springer,
2006.

[6] J. Cámara, G. Salaün, and C. Canal. Composition and Run-time
Adaptation of Mismatching Behavioural Interfaces. Journal of Uni-
versal Computer Science, 14(13):2182–2211, 2008.

[7] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation of Be-
havioural Mismatching Components. IEEE Transactions on Soft-
ware Engineering, 34(4):546–563, 2008.

[8] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-
Based Approach to the Verification and Adaptation of WF/.NET
Components. In Proc. of FACS’07, volume 215 of ENTCS, pages
39–55. Elsevier, 2007.

[9] M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebra
and Visual Notation for Service Interface Adaptation. In In Proc.
of BPM’06, volume 4102 of LNCS, pages 65–80. Springer, 2006.

[10] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-
based Verification of Web Service Compositions and Choreography.
In Proc. of ICSE’06, pages 771–774. ACM Press, 2006.

[11] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Ser-
vices. In Proc. of WWW’04, pages 621–630. ACM Press, 2004.

[12] M. Hennessy and H. Lin. Symbolic Bisimulations. Theor. Comput.
Sci., 138(2):353–389, 1995.

[13] J. A. Martin and E. Pimentel. Automatic Generation of Adaptation
Contracts. In Proc. of FOCLASA’08, ENTCS. Elsevier. To appear.

[14] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Proto-
cols using Process Algebra and On-the-Fly Reduction Techniques. In
Proc. of ICSOC’08, volume 5364 of LNCS, pages 84–99. Springer,
2008.

[15] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-
Checking for Regular Alternation-Free Mu-Calculus. Science of
Computer Progr., 46(3):255–281, 2003.

[16] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Pro-
cesses. Theor. Comput. Sci., 114(1):149–171, 1993.

[17] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati. Semi-Automated Adaptation of Service Interactions. In
Proc. of WWW’07, pages 993–1002. ACM Press, 2007.

[18] M. Ouederni. Measuring Similarity of Service Protocols. Master
Thesis, University of Málaga. Available on Meriem Ouederni’s Web-
page, September 2008.

[19] P. Poizat and G. Salaün. Adaptation of Open Component-based Sys-
tems. In Proc. of FMOODS’07, volume 4468 of LNCS, pages 141–
156. Springer, 2007.

[20] G. Salaün. Generation of Service Wrapper Protocols from Choreog-
raphy Specifications. In Proc. of SEFM’08, pages 313–322. IEEE
Computer Society, 2008.

[21] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning
on Web Services using Process Algebra. International Journal of
Business Process Integration and Management, 1(2):116–128, 2006.

[22] D. M. Yellin and R. E. Strom. Protocol Specifications and Compo-
nents Adaptors. ACM Transactions on Programming Languages and
Systems, 19(2):292–333, 1997.


