
ITACA: An Integrated Toolbox for the Automatic Composition
and Adaptation of Web Services

Javier Cámara, José Antonio Martı́n, Gwen Salaün,
Javier Cubo, Meriem Ouederni, Carlos Canal, Ernesto Pimentel
Department of Computer Science, University of Málaga, Spain

{jcamara,jamartin,salaun,cubo,meriem,canal,ernesto}@lcc.uma.es

Abstract

Adaptation is of utmost importance in systems developed
by assembling reusable software services accessed through
their public interfaces. This process aims at solving, as au-
tomatically as possible, mismatch cases which may be given
at the different interoperability levels among interfaces by
synthesizing a mediating adaptor. In this paper, we present
a toolbox that fully supports the adaptation process, includ-
ing: (i) different methods to construct adaptation contracts
involving several services; (ii) simulation and verification
techniques which help to identify and correct erroneous be-
haviours or deadlocking executions; and (iii) techniques for
the generation of centralized or distributed adaptor proto-
cols based on the aforementioned contracts. Our toolbox
relates our models with implementation platforms, starting
with the automatic extraction of behavioural models from
existing interface descriptions, until the final adaptor im-
plementation is generated for the target platform.

1 Introduction

In today’s Web, services are everywhere. These can be
just accessed and used to fulfill basic requirements, or be
composed with other services to build bigger systems which
aim at working out complex tasks. To ease their reuse
and enable their automatic composition, services must be
equipped with rich interfaces enabling external access to
their functionality. Several interoperability levels can be
distinguished in interface description languages (i.e., sig-
nature, protocol, quality of service, and semantics). Com-
position of services is seldom achieved seamlessly because
mismatch may occur at the different interoperability levels
and must be solved. Software adaptation is the only way
to compose non-intrusively black-box components or ser-
vices with mismatching interfaces by automatically gener-
ating mediating adaptor services.

So far, most adaptation approaches have assumed inter-
faces described by signatures (operation names and types)
and behaviours (interaction protocols). Describing proto-
col in service interfaces is essential because erroneous ex-
ecutions or deadlock situations may occur if the designer
does not consider them while building composite services.
Deriving adaptors is a complicated task since, in order to
avoid undesirable behaviours, the different behavioural con-
straints of the composition must be respected, and the cor-
rect execution order of the messages exchanged must be
preserved while mismatch is corrected.

Most existing works on model-based behavioural adap-
tation (see for instance [2, 4, 15]) favour the full automa-
tion of the process. They are referred to as restrictive ap-
proaches because they try to solve interoperability issues
by pruning the behaviours that may lead to mismatch, thus
restricting the functionality of the services involved. These
techniques are limited since they are not able to fix subtle
incompatibilities between service protocols by remember-
ing and reordering events and data when necessary. A sec-
ond class of solution is referred to as generative approaches
(see for instance [3, 5, 7]). These avoid restricting service
behaviour, and support the specification of advanced adap-
tation scenarios. Generative approaches build adaptors au-
tomatically from an abstract specification, namely an adap-
tation contract, of how mismatch cases can be solved.

In this paper we present ITACA [1], an integrated tool-
box that fully supports generative adaptation (see Fig. 1 for
an overview of the process), which starts with the automatic
extraction of behavioural models from existing interface de-
scriptions either in Abstract BPEL or Windows Workflows
(WF). The toolbox enables automatic contract generation,
and also interactive contract specification. The latter relies
on a graphical notation and a computation of protocol sim-
ilarity which assists the designer by pointing out parts of
service protocols that can be matched together. Interactive
specification can be used either as an alternative, or in con-
junction with automatic generation. Simulation and verifi-
cation of the system’s execution based on a particular con-

Designer

Adaptor
Protocol

<vector id="vector_0">
<componentVector eventName="user"

eventType="OUT" index="client">
<dataItem

name="clientuserOUTusr"/>
</componentVector>

</vector>
<vector id="vector_1">

...

Adaptation Contract

Interactive Contract Specification +
Simulation and Verification (ACIDE)

Automatic Contract Specification
(DINAPTER)

TAUreqDoc!d:tdateTAU reqSpec!d:tdatereplyS?tkt:tid

user!usr:tstringpassword!pwd:tstring
replyD?tkt:tid

reqDoc!tkt:tidreqDoc?d:tdate reqSpec!tkt:tidavailability?tkt:tidavailability!d:tdatereqSpec?d:tdate
availability!tkt:tidavailability?d:tdate

login?usr:tstring,pwd:tstringc0c1 c2c3c4 c5 c6c7 d0d1
s0s1 s2s3 s4 s5

Service Interface Models
(Signature + Protocol STS)

Adaptor Protocol / Service
Wrapper Protocols Generation

((D)COMPOSITOR)

Adaptor Protocol Filtering
+ Service Deployment

(STS2BPEL)

Service Protocol+Signature
Extraction

(WSDL2SIG+ABPEL2STS/
AWF2STS)

Service Interfaces (Abstract BPEL+WSDL)

Deployed System
(BPEL Adaptor + Original Service

Implementations)

Service Interfaces (Abstract WF+WSDL)

Similarity
Computation

(SIM)

Figure 1. Adaptation process overview in ITACA

tract before adaptor generation is also possible. Finally, a
monolithic adaptor protocol or a set of distributed adapta-
tion wrapper protocols can be automatically generated and
deployed.

2 Overview of the Toolbox

2.1 Behavioural Interfaces

We assume that service interfaces are specified using
both a signature and a protocol. Signatures correspond
to operation names associated with arguments and return
types relative to the messages and data being exchanged
when the operation is called. Protocols are represented by
means of Symbolic Transition Systems (STSs), which are
Labelled Transition Systems (LTSs) extended with value
passing [17]. This formal model has been chosen because
it is simple, graphical, and provides a good level of ab-
straction to tackle verification, composition, or adaptation
issues [8, 9, 18]. At the user level, one can specify ser-
vice interfaces (signatures and protocols) using respectively
WSDL, and Abstract BPEL (ABPEL) or WF workflows
(AWF) [6].

WSDL2SIG. This tool parses WSDL descriptions of
Web services and generates the corresponding signatures.

ABPEL2STS/AWF2STS. This parser generates STSs
from service interfaces specified using ABPEL or AWF.

To ease the addition of other possible notations to de-
scribe service interfaces, we use as an intermediate step in
this parsing process an abstract Web services class (AWS).
Thus, one can add as a front-end another description lan-
guage with its parser to AWS, and take advantage of the
existing parser from AWS to our model (see Fig. 2).

Signature

Protocol

WSDL

Abstract
Web Service

ABPEL

AWF
...

Signature

STS

Interface
Model

Service
Interface

Figure 2. Behavioural interface extraction

2.2 Adaptation Contract Specification

In this section, we introduce specification techniques for
adaptation contracts. A contract matches operations re-
quired by service interfaces with those offered by others in
order to reconcile interface mismatch at the signature and
behavioural levels.

SIM. Understanding how two protocols differ helps to
build adaptation contracts by suggesting the best possible
operation matches to the user. To do so, we have imple-
mented a tool, SIM [16], which measures protocol similar-
ity. Such measure aims at pointing out differences between
two protocols, but also at detecting parts of them which turn
out to be similar. Our tool relies on a divide-and-conquer
approach to compute the similarity of service protocols (de-
scribed as STSs) from a set of four detailed similarity com-
parisons, namely for states, labels, depths and graphs. This
information can be used to guide the contract specification
process.

Dinapter. In order to alleviate the cumbersome task
of designing adaptation contracts and to avoid mistakes in
the specification (which may lead to undesirable behaviours

of the system), we implemented a tool aimed at the auto-
matic generation of contracts called Dinapter [12]. This
tool traverses the behaviour of the services and matches the
operations found based on the metrics returned by SIM.
Dinapter exploits these metrics to match compatible op-
erations and to adapt the minimum set of operations re-
quired for the deadlock-free composition of services. The
generated contracts successfully specify how to overcome
signature mismatch (i.e., different operation names and ar-
guments) and behavioural incompatibilities (i.e., message
splitting/merging, missing messages and message reorder-
ing) in such a way that all services are able to interact with
each other and reach a final state.

ACIDE. Automatic contract generation may produce so-
lutions leading to deadlock-free compositions unable to ful-
fill their intended goals. Therefore, ITACA incorporates
an Adaptation Contract Interactive Design Environment,
which aims at helping the designer in specifying a contract,
reducing the risk of errors introduced by manual specifi-
cation. In contrast with using textual notations where the
designer can write any (correct or incorrect) statement, our
tool uses a graphical notation which enables interactive and
incremental construction and checks on the contract. Thus,
any contract produced with the tool is syntactically correct
and consistent. In addition, the interactive environment is
able to:

– Assist the designer by pointing out the best matches be-
tween ports graphically using protocol similarity informa-
tion obtained from the SIM tool.

– Simulate the execution of the system step-by-step and de-
termine how the different behavioural interfaces evolve as
the different parts of the contract are executed, highlighting
active states and fired transitions on the graphical represen-
tation of interfaces. This helps the designer to detect the be-
havioural issues that might be raised during execution and
to understand if the behaviour of the system complies with
his/her design intentions.

– Automatically identify execution traces leading to dead-
lock or livelock. These can be replayed step-by-step us-
ing simulation to understand the cause of the incorrect be-
haviour.

It is worth observing that Dinapter and ACIDE mutually
improve their results when they are combined. On one hand,
when Dinapter receives adaptation constraints from the in-
teractive design environment, it is able to discard solutions
leading to deadlock-free compositions that may not fulfill
their intended goals (e.g., a client-supplier system which al-
ways aborts requests). On the other hand, the designer can
select parts of a contract automatically constructed by Di-
napter through the ACIDE environment.

2.3 Adaptor and Wrapper Generation

From a set of service protocols and a contract specifica-
tion, one can generate either an adaptor protocol (central-
ized view), or a set of adaptation wrapper protocols (dis-
tributed view). In the first case, the adaptor can be de-
ployed on a single machine. In the case of wrappers, they
can be distributed and deployed using middleware technolo-
gies, preserving a full parallelism of the system’s execution.
Adaptor and wrapper protocols are automatically generated
in two steps: (i) system’s constraints are encoded into the
LOTOS [11] process algebra, and (ii) adaptor and wrapper
protocols are computed from this encoding using on-the-fly
exploration and reduction techniques. The reader interested
in more details may refer to [13, 17].

(D)Compositor. This tool generates LOTOS code for
service interfaces, the adaptation contract, and some pro-
cesses indicating how to obtain distributed wrappers. Be-
yond simulation and verification techniques integrated in
ACIDE, the LOTOS encoding allows to check temporal
logic properties on the adaptor under construction using the
CADP model-checker, Evaluator [14].

Scrutator. This tool belongs to the CADP tool-
box [10], and returns adaptor and wrapper protocols (STSs)
corresponding to the LOTOS specification generated by
(D)Compositor. It removes remaining erroneous paths,
τ transitions and path similarities by applying state-of-the-
art exploration and reduction techniques while avoiding the
full state space generation corresponding to the LOTOS
specification. Adaptor and wrapper protocols are platform-
independent and we show in the next section how they can
be refined wrt. a specific platform.

2.4 Implementation

Our internal model (STS) can take into account some
additional behaviours (interleavings) that cannot be imple-
mented into executable languages (e.g., BPEL). To make
platform-independent adaptor protocols implementable wrt.
a specific platform, some filters are used with the purpose
of pruning parts of the protocol corresponding to these in-
terleavings and keep only executable paths.

STS2BPEL. In particular, to implement an adaptor
model as a BPEL orchestrator we proceed in two steps: (i)
filtering the interleaving cases that cannot be implemented
(e.g., several emissions and receptions outgoing from a
same state), and (ii) encoding the filtered model into the cor-
responding implementation language. Following the guide-
lines presented in [13], the adaptor protocol is implemented
using a state machine pattern. The main body of the BPEL
process corresponds to a global while activity with if state-
ments used inside it to encode adaptor states. Each if body

encodes transitions outgoing from the corresponding state.
Variables are used to store data passing through the adaptor
and the current state of the protocol.

3 Conclusions

Building systems by adapting a set of reusable software
services is an error-prone task which can be supported by
assisting developers with automatic procedures and tools.
In this work, we have presented what is, to the best of our
knowledge, the first toolbox that fully supports a generative
adaptation approach from beginning to end. ITACA sup-
ports the specification and verification of adaptation con-
tracts, automates the generation of adaptor protocols, and
relates our abstract models with implementation languages.

ITACA has been implemented in Python and Java, and
consists of about 51,000 lines of code. We have inten-
sively applied and validated our toolbox on many examples,
which range from synthetic ones used to experiment bound-
ary cases, to real-world case studies such as a travel agency,
rate finder services, on-line computer material store, library
management systems, SQL servers, and many other sys-
tems. Although our toolbox automates all the steps of the
adaptation process, contract specification may require hu-
man intervention to ensure that the goal of the composition
is fulfilled. However, experiments we have carried out show
that, even in this case, the techniques proposed in ITACA to
support the adaptation contract construction drastically re-
duce the time spent to build the contract and the number of
errors made during this process.

As regards future work, our main perspective is extend-
ing ITACA to take goal-oriented adaptation into account.
Our interactive environment would accept the graphical
specification of temporal logic formulas to be used next as
a guide to the adaptation process. In addition, we plan to
equip the toolbox with dynamic evaluation techniques as
well. In such a way, the user could be dynamically informed
about the satisfaction of a specified property during the con-
struction of adaptation contracts.

Acknowledgements. This work has been partially sup-
ported by the project TIN2008-05932 funded by the Span-
ish Ministry of Innovation and Science (MICINN), and
project P06-TIC-02250 funded by the Junta de Andalucı́a.

References

[1] ITACA’s Webpage. Accesible from Javier Cámara’s Web-
page.

[2] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHE-
SIS: A Tool for Automatically Assembling Correct and Dis-
tributed Component-based Systems. In Proc. of ICSE’07,
pages 784–787. IEEE Computer Society, 2007.

[3] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to
Component Adaptation. Journal of Systems and Software,
74(1):45–54, 2005.

[4] A. Brogi and R. Popescu. Automated Generation of BPEL
Adapters. In Proc. of ICSOC’06, volume 4294 of LNCS,
pages 27–39. Springer, 2006.

[5] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation
of Behavioural Mismatching Components. IEEE Transac-
tions on Software Engineering, 34(4):546–563, 2008.

[6] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A
Model-Based Approach to the Verification and Adaptation
of WF/.NET Components. In Proc. of FACS’07, volume 215
of ENTCS, pages 39–55. Elsevier, 2007.

[7] M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Al-
gebra and Visual Notation for Service Interface Adaptation.
In In Proc. of BPM’06, volume 4102 of LNCS, pages 65–80.
Springer, 2006.

[8] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for
Model-based Verification of Web Service Compositions and
Choreography. In Proc. of ICSE’06, pages 771–774. ACM
Press, 2006.

[9] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of WWW’04, pages 621–630. ACM
Press, 2004.

[10] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP
2006: A Toolbox for the Construction and Analysis of Dis-
tributed Processes. In Proc. of CAV’07, LNCS 4590, pages
158–163. Springer, 2007.

[11] ISO/IEC. LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour. International Standard 8807, ISO, 1989.

[12] J. A. Martı́n and E. Pimentel. Automatic Generation of
Adaptation Contracts. In Proc. of FOCLASA’08, ENTCS,
2008. To appear.

[13] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service
Protocols using Process Algebra and On-the-Fly Reduction
Techniques. In Proc. of ICSOC’08, LNCS, pages 84–99.
Springer, 2008.

[14] R. Mateescu and M. Sighireanu. Efficient On-the-
Fly Model-Checking for Regular Alternation-Free Mu-
Calculus. Science of Computer Programming, 46(3):255–
281, 2003.

[15] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-Automated Adaptation of
Service Interactions. In Proc. of WWW’07, pages 993–1002.
ACM Press, 2007.

[16] M. Ouederni. Measuring Similarity of Service Protocols.
Master Thesis, University of Málaga. Available on Meriem
Ouederni’s Webpage, Sept. 2008.

[17] G. Salaün. Generation of Service Wrapper Protocols from
Choreography Specifications. In Proc. of SEFM’08, pages
313–322. IEEE Computer Society, 2008.

[18] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and
Reasoning on Web Services using Process Algebra. IJBPIM,
1(2):116–128, 2006.

