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Abstract—Although architecture-based self-adaptation has
been widely used, there is still little understanding about the
validity and tradeoffs of incorporating it into real-world software-
intensive systems which already feature built-in adaptation mech-
anisms. In this paper, we report on our experience in integrating
Rainbow, a platform for architecture-based self-adaptation, and
an industrial middleware employed to monitor and manage
highly populated networks of devices. Specifically, we reflect on
aspects such as the effort required for framework customization
and legacy code refactoring, performance improvement, and the
impact of architecture-based self-adaptation on system evolution.

I. INTRODUCTION

Architecture-based self-adaptation [7], [9], [10] is regarded
as a promising approach to building flexible and dependable
software systems able to autonomously adapt to changes in
the conditions prescribed by their environment at run-time.
Although there is previous experience in applying architecture-
based self-adaptation in practice [2], [5], [6], [8], the common
denominator for the existing case studies is that they deal with
target systems in which self-adaptive capabilities are designed
and incorporated from scratch. However, in practice, many
legacy systems have some adaptation mechanisms already
built-in (and often tightly coupled with the rest of the system).

Currently, there is little understanding about the feasibil-
ity and tradeoffs of implementing architecture-based self-
adaptation in such systems. This paper tackles this issue by
addressing two fundamental questions: (i) Can architecture-
based self-adaptation be applied to legacy systems that have
existing self-adaptation encoded in them?, and (ii) What is the
effort associated with improving adaptation behavior in such
systems using architecture-based self-adaptation?

To answer these questions, we report on our experience
in applying architecture-based self-adaptation to an industrial
middleware system developed at Critical Software called Data
Acquisition and Control Service (DCAS), which is used to
monitor and manage highly populated networks of devices in
renewable energy production plants.

For the implementation of our prototype we used Rain-
bow [7], a framework that provides a reusable infrastructure
for the engineering of self-adaptive capabilities to monitor,
decide, and act on situations that require system adaptation.

To achieve our goal, first, we removed built-in adaptation
mechanisms in DCAS in order to obtain a version that could

be integrated with Rainbow, thus allowing us to replicate on
our Rainbow-based prototype the adaptation behavior of the
original DCAS. Secondly, since DCAS was slow in recovering
its performance in situations in which devices were persistently
slow in reporting data, we assessed the difficulty of modifying
adaptation behavior using architecture-based self-adaptation
when using our Rainbow-based prototype.

The rest of this paper is organized as follows. Section II
provides a general description of DCAS. Section III briefly
describes the Rainbow approach for architecture-based self-
adaptation and summarizes applications to other case studies.
In Section IV, we describe the approach followed for the
integration of Rainbow and DCAS. Section V provides an
evaluation of different aspects regarding the process of inte-
gration and results obtained. Section VI concludes the paper
and indicates directions for future work.

II. DATA ACQUISITION AND CONTROL SERVICE (DCAS)

The Data Acquisition and Control Service (DCAS) is a
middleware from Critical Software that provides a reusable
infrastructure to manage monitoring and (non-automatic) con-
trol of highly populated networks of devices. In particular,
the middleware is designed to be seamlessly integrated with
Critical’s Energy Management System (csEMS)1, which is a
platform that provides asset management support for power
producing companies based on renewable energy sources. The
overall csEMS architecture aims at high scalability, flexibility
and customization with management capabilities that enable
the operation of control centers independently of the underly-
ing application (e.g., wind, solar, etc).

The basic building blocks in a DCAS-based system (Fig-
ure 1) are the following:
• Devices are equipped with one or more sensors to obtain

data from the application domain (e.g., from wind towers,
solar panels, etc.). Each one of these sensors has an
associated data stream from which data can be read.
There may be different types of devices connected to
the network, each type with its particular characteristics
(e.g., protocols, type of data collected, etc.). Each type
of device has an associated device profile that specifies

1http://solutions.criticalsoftware.com/products services/csems/
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Fig. 1. Architecture of a DCAS-based system

the rate at which the device should be polled for data, or
which are the expected value ranges for the data being
collected.

• Database server stores all the information collected from
devices, as well as, configuration data for the system (e.g.,
device profiles, etc.).

• Processor nodes pull data from the devices at a given
rate (configured in the device profile), and dispatch this
data to the database server. Each processor node executes
an instance of DCAS.

• Application server is connected to the database server
to obtain data, which can be presented to the operators
of the system or processed automatically by application
software. However, the DCAS service is application-
agnostic, so the application server will not be discussed
in the remainder of this document.

The main objective of DCAS is collecting data from the
connected devices at a rate as close as possible to the one
configured in their device profiles, supporting as many con-
nected devices as possible. To achieve this objective, a DCAS-
based system shall be able to scale up, making use of the
computational resources in the node(s) where it is running,
and scale out, supporting the deployment of several instances
of the service within the same system to extend the number
of connected devices.

A. DCAS Structure and Functionality

A different instance of DCAS runs in each of the processor
nodes of a DCAS-based system. The main components of the
service (shown in Figure 2) are the following:
• Service Engine is in charge of orchestrating all the flow

of data among the different components of the service.
• Polling Scheduler triggers the process to perform re-

quests to devices according to their scheduled time of
execution.

• Data Requester performs requests to devices.
• Data Persister stores the information obtained from

devices into the database.
• Alarmer raises alarms if the data coming from the

devices is corrupted (e.g., values out of expected range).
• Data Stream Manager manages the information regard-

ing the device response time (i.e., the elapsed time since
a particular device is polled until it responds) associated
with the different data streams of the devices.
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Fig. 2. DCAS service operation

Figure 2 illustrates the operation of an instance of DCAS:
1. When the Polling Scheduler determines that the scheduled

time for the execution of a request has arrived, the request
is dispatched to the Service Engine.

2. The Service Engine forwards the request to the Data
Requester.

3. The Data Requester:
3a. Communicates with the device, retrieving the requested

data and packing it into an item.
3b. Updates the elapsed time information of the stream

from which data has been read in step 3 (it is worth
reminding that a device can have one or more data
streams assigned from which data is read).

4. The item is dispatched by the Data Requester to the Service
Engine.

5. The Service Engine:
5a. Dispatches a copy of the item to the Data Persister.
5b. Dispatches a copy of the item to the Alarmer.

The information of a data stream is updated according to
the time elapsed since the request for data is performed by the
Data Requester, until a response is received from the device.
Moreover, the Polling Scheduler continuously updates the pri-
orities of the scheduled requests according to the information
updated in the Data Stream Manager (see step 0 in Figure 2).
Further details about this issue can be found in Section II-B1.

Two important components in DCAS for achieving the
desired quality goals are the Data Requester and the Polling
Scheduler, which are instrumental in the self-adaption mech-
anisms of DCAS. The following subsections describe these
components in more detail.

1) The Data Requester: The Data Requester is in charge
of retrieving data from connected devices. Internally, the Data
Requester contains a collection of sub-components called Data
Requester Processors (DRPs), which perform requests on
devices of a single type (Figure 3), and a primary queue from
which requests are distributed to the different DRPs (based on
the device type targeted by the request).

Each DRP contains an internal secondary queue in which
device-type specific requests are enqueued, and a collection of
processes, called Data Requester Processor Pollers (DRPPs),
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Fig. 3. Data requester operation

that dequeue requests from the secondary queue and retrieve
the data from the appropriate device according to the specific
contents of the request.

The sequence of events concerning the operation of the Data
Requester is as follows:

1. The service engine sends a request to the Data Requester,
which is enqueued in the primary queue.

2. A process called Data Requester Poller retrieves a request
from the primary queue, and forwards it to the appropriate
DRP. The request is enqueued in the secondary queue of
the DRP (if the queue is full, the request is discarded).

3. One of the DRPPs in the DRP dequeues the request from
the secondary queue and retrieves the data from the device.
The communication between the DRPP and the device is
synchronous, so the DRPP remains blocked until the device
responds or a timeout expires. This is the main bottleneck
regarding performance of DCAS.

4. When the data is received (or the timeout has expired), the
priority associated with data stream from which data was
read is updated on the data stream manager.

5. If data has been received, the DRPP packs it into a data
item and dispatches it to the service engine.

2) The Polling Scheduler: The Polling Scheduler is in
charge of starting the process to request data from devices
according to their scheduled time of execution. Internally,
the scheduler contains a collection of request queues, each

one specific to a particular polling rate of devices (or more
concretely, data streams - Figure 4). Hence, all the requests
to be performed on data streams with the same assigned
polling rate are located within the same queue (independently
of the type of the device to which they are associated). During
the initialization of the service, the information regarding the
polling rates of the different data streams is loaded from
preconfigured values in the database, and then distributed
across the different queues.

Each queue has an associated process called Polling Sched-
uler Poller (PSP), which cycles through the queue processing
requests in the following manner:

1. The PSP dequeues the first request of the queue.
2. The PSP clones the request retrieved from the queue and

dispatches the clone to the service engine.
3. The queue retrieves an updated value for the elapsed time

of the data stream targeted by the request and computes a
priority for it based on the retrieved value.

4. The PSP re-inserts the original request into the queue in
a new position that depends on the priority of the data
stream. The higher the priority of the data stream, the
closer to the first position of the queue the request will
be inserted. This guarantees that requests that correspond
to data streams with low priority (i.e., those associated with
devices that take more time to respond) get processed less
often, improving the overall performance of the service.
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B. Adaptation Mechanisms

In Section II-A, we have described the structure and func-
tionality of DCAS. In this section, we focus on the existing
adaptation mechanisms of DCAS that are aimed at maintain-
ing the performance of DCAS under different loads. These
adaptation mechanisms respond to failing devices, increased
number of devices, and changing data rates.

1) Rescheduling: The rescheduling mechanism affects the
Polling Scheduler, and is aimed at avoiding the degradation
of performance of the system caused by devices which fail to
respond in a timely manner (or do not respond at all) when
polled. In a nutshell, the mechanism consists in decreasing the
priority of the data streams associated with the failing devices,
so that they are polled less often (thus reducing the amount
of time that Data Requester Processor Pollers - or DRPPs -
remain blocked waiting for device data).

To illustrate the rescheduling process, we introduce the
following concepts:
• Device Response Time (DRT) is the time that takes for

a device to respond when polled by a DRPP.
• Sample Rate (SR) is the preconfigured value for the rate

at which a device is polled, and is fixed throughout the
execution of DCAS.

• Sample Rate Delay (SRD) is an increment that can be
added to the sample rate to poll devices less frequently.
When the execution of the DCAS service starts, the SRD
for all devices is equal to zero. Moreover, throughout the
execution of DCAS, all devices responding in a timely
manner should have an SRD equal to zero.

• Effective Sample Rate (ESR) is the rate at which devices
are effectively polled (ESR=SR+SRD).

Figure 5 illustrates the adaptation process followed for
rescheduling. The process starts by checking if the device
response time is above its effective sample rate:

Polling Scheduler

Service Engine

Request Queue 
(Polling Rate 1)

Request Queue 
(Polling Rate n)

. . .

Data Stream 
Manager

Fig. 4. Polling scheduler operation

• If the device response time is indeed above effective
sample rate, the algorithm checks if the number of
consecutive checks in which device response time for the
device has been above effective sample rate (represented
by counter CI) exceeds a threshold F (preconfigured
value). If the threshold F has not been crossed, then
counter CI is incremented. Otherwise, counter CI is reset
to zero and the sample rate delay for the device is
incremented 2 (thus resulting also in the increment of
the effective sample rate).

• If the device response time is below the effective sample
rate, the algorithm checks if the number of consecutive
checks in which device response time has been below
sample rate (represented by counter CD) exceeds thresh-
old F. If threshold F has not been crossed, counter CD
is incremented. Otherwise, counter CD is reset to zero,
and only if the sample rate delay is greater than zero, the
sample rate delay is decremented.
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Fig. 5. Flowchart of the rescheduling adaptation process

2) Scale Up: The scale up mechanism affects the behavior
of the Data Requester, and is aimed at improving the per-
formance of the system by exploiting as much as possible
the resources (CPU and memory) of the processor node in
which a DCAS service instance is running. This is achieved by

2The concrete details regarding the calculation to increment and decrement
the sample rate delay are not discussed in this document.
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adding or removing Data Requester Processor Pollers (DRPPs)
in the secondary queues of Data Requester Processors (DRPs)
as required. Concretely:
• If the size of the queue of the DRP remains close to

zero, the system is running as expected, so nothing needs
to be done. Indeed, if the queue size is consistently zero
after a fixed number of consecutive checks, the scale up
mechanism considers that there are active DRPPs which
probably are not necessary and starts removing them (one
at a time).

• If the queue size of the DRP increases consistently during
a fixed number of consecutive checks, scale up tries to
increase performance by adding new DRPPs.

It is worth observing that the addition of new DRPPs does
not always result in a proportional increment in the number
of requests processed per time unit since the system is limited
by the throughput of the devices being polled.

3) Scale Out: Scaling out is supported in DCAS only
as manual operation. When the system is unable to cope
with the given configured data rates while using maximum
computational resources, it writes an entry to the log in the
database in order to notify this event to a human operator.
Then, a new instance of the DCAS service must be manually
deployed, and devices re-attached across the different service
instances (i.e., processor nodes), according to the particular
situation. Each service instance is not aware of the existence
of others, but there is a basic mechanism implemented so that
each instance gets only the data streams it should process.
Specifically, data stream entries in the database include a
DCAS instance identifier (manually configured by the human
operator) indicating which service instance should process its
requests.

III. THE RAINBOW APPROACH

Rainbow is an architecture-based platform for supporting
self-adaptation of software systems, which has the following
distinct features: an explicit architecture model of the target
system, a collection of adaptation strategies, and utility pref-
erences to guide adaptation. Rainbow is aimed at reducing
engineering effort by incorporating an explicit representation
of adaptation knowledge.

The Rainbow framework (Figure 6) includes mechanisms
for: monitoring a target system and its environment (using
the observations for updating the architectural model of the
target system), detecting opportunities for improving the target
system’s quality of services (QoS), and deciding the best
course of adaptation based on the state of the target system.
The main components of the framework are:
• Architecture Evaluator evaluates the model to ensure

that the target system is operating within an acceptable
range, as determined by the architectural constraints. If
the evaluator determines that the system is not operating
within the accepted range, it triggers adaptation.

• Adaptation Manager chooses a suitable adaptation strat-
egy based on the current state of the target system
(reflected in the architectural model).

System
Layer

Architecture Layer

Target SystemTarget System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API ProbesEffectors

Gauges

Architecture
Evaluator

Fig. 6. The Rainbow framework

• Strategy Executor executes the adaptation strategy cho-
sen by the adaptation manager on the running target
system via effectors.

• Model Manager updates the architecture model using the
information observed in the running target system by the
monitoring mechanisms in the translation infrastructure
(probes and gauges).

Rainbow leverages the notion of architectural style [1] to
exploit commonalities between systems, providing reusable
infrastructures with explicit customization points that can be
applied to a wide range of systems: (i) the architecture model
of the target system customizes the model manager; (ii) archi-
tectural constraints related to adaptation goals customize the
architecture evaluator; (iii) style operators and their mappings
to target system effectors customize the strategy executor;
and (iv) utility preferences and a collection of adaptation
strategies with their associated cost-benefit impacts customize
the adaptation manager.

Providing this substantial base of reusable infrastructure
through customization has the advantage of reducing remark-
ably the cost of development.

Building upon the elements of the architectural style, Rain-
bow provides the Stitch [5] language to represent human
adaptation knowledge using three high-level concepts:
• Operator is the most primitive unit of execution and

represents a basic configuration command provided by the
target system (corresponding to a system-level effector).
They are defined in the architectural style of the system.

• Tactic is an abstraction that groups operators to form a
single step of adaptation. Tactics are used as primitive
actions, and have an associated cost/benefit impact on the
different quality dimensions.

• Strategy encapsulates an adaptation process, where each
step is the conditional execution of a tactic. Strategies
are characterized in Stitch as a tree of condition-action-
delay decision nodes, where delays correspond to a time-
window for observing tactic effects. System feedback
(through the dynamically-updated architectural model of
the system) is used to determine the next action (i.e.,
tactic) at every step during strategy execution.
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In previous work, we have applied Rainbow to several
different kinds of systems, and to adapt to maintain different
types of quality attributes. In terms of sytems, the most widely
reported has been the ZNN exemplar [6]. ZNN is an example
web server that uses open source, off-the-shelf web servers,
load balancers, and databases to implement a simple news
site. We have applied adaptation in this context for quality
attributes such as performance, cost, and information quality.
In addition to this, Rainbow has been applied to manage and
repair the archiving pipeline of a web-based voice talk show
and discussion group provider called TalkShoe. In this case,
Rainbow would report problems with the production of the
MP3 file recordings of the episode and report to a human
operator [4]. In both of these cases, self-repair was added
to these systems through Rainbow; there was no existing
control loop that managed the kinds of adaptations that we
implemented in Rainbow. The effort required for doing this
for ZNN was 92 man-hours, and for TalkShoe, 34 man-hours.
We will discuss these numbers in more detail in Section V.

IV. INTEGRATING RAINBOW AND DCAS

In this section, we describe the process followed for the inte-
gration of DCAS and Rainbow, describing: (i) the evolution of
DCAS, carried out to enable its integration with Rainbow; and
(ii) the customization of the different elements of the Rainbow
framework, including architectural model, operators, tactics,
and adaptation strategies.

A. Evolution of DCAS

Previous case studies in which Rainbow has been ap-
plied [5], [6] describe systems that typically feature compo-
nents that include public interfaces to access their functionality
(e.g., starting/stopping a web server, etc.). In contrast, im-
plementing the translation infrastructure between DCAS and
Rainbow required exposing part of the internal functionality
in DCAS through a public interface, enabling communica-
tion with Rainbow for extracting system information through
probes and effecting changes through system-level effectors.
To achieve this, we implemented a lightweight server com-
ponent embedded in DCAS that enables the exchange of
information between a running instance of the DCAS service
and Rainbow using TCP sockets. Figure 7 illustrates the
translation infrastructure used between Rainbow and DCAS.
Probes and effectors in Rainbow act as clients of the TCP
server, which acts as a mediator between them and the actual
probes and effectors embedded in DCAS:
• Probes embedded in DCAS keep the values of probed

variables updated in a data store local to the TCP server,
pushing updates whenever variables change (P1a and
P2a). Then, when a probe client in Rainbow requests the
value of a particular variable (P1b) , it is directly served
from the local data store to the probe client (P2b). This
approach was chosen due to the difficulty of invoking
the necessary operations to retrieve data in DCAS from
the TCP server. Specifically, information such as queue
sizes or number of active pollers in the data requester, as

Fig. 7. DCAS-Rainbow translation infrastructure

well as information relative to device data streams could
not be obtained from the TCP Server, so different parts of
DCAS code were instrumented to extract this information
and update it in the TCP server data store.

• Effectors clients in Rainbow send requests for command
execution to the TCP Server (E1), which forwards them to
the effector embedded in DCAS (E2). Next, the effector
executes the command (E3) and returns a response to the
TCP server that states whether execution was successful
(E4). Finally, the TCP server forwards the response to the
effector client in Rainbow (E5).

B. Customizing the Rainbow Framework

The typical DCAS-based system presents a blackboard
architecture in which the database server acts as a centralized
data manager into which processor nodes running DCAS write
information collected from network devices.

We can identify two quality objectives for the self-
adaptation of a DCAS-based system: (A) performance, and (B)
cost. Performance analysis suggests we monitor the requests
per second (rps) stored in the database server. Cost analysis
identifies the number of active pollers in data requesters as the
primary contributor to cost.

TABLE I
DCAS ARCHITECTURAL STYLE ELEMENTS

Type Property Operator
DeviceT sampleRateDelay changeSampleRateDelay

effectiveSampleRate (sampleRateDelay :int)
deviceResponseTime

ProcessorNodeT numPollers increasePollers()
queueSize decreasePollers()
queueStatus

DBServerT rps

Table I displays the major elements of the blackboard archi-
tectural style for DCAS, including architectural types, prop-
erties, and operators. Properties sampleRateDelay, effectiveSam-
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pleRate, and deviceResponseTime in DeviceT can be mapped to
the concepts discussed in Section II-B1. Property numPollers
in ProcessorNodeT corresponds to the number of active pollers
(DRPPs) in the Data Requester of a processor node, whereas
property queueSize corresponds to the size of its primary queue,
and queueStatus to the growth rate of the queue (negative values
indicate that the number of elements in the queue is shrinking).
Finally, property rps in DBServerT indicates the number of
requests per second stored.

The ProcessorNodeT.increasePollers() operator increases
the capability of a processor node by activating a
new Data Requester Processor Poller in its Data
Requester, while decreasePollers() deactivates it. The
DeviceT.changeSampleRateDelay(sampleRateDelay : int) operator
sets the effective sample rate of the data streams in a device
by setting the value of its sample rate delay.

Using these operators, we specified two pairs of tactics with
opposing effects. One pair adds (i) or removes (ii) pollers,
whereas the other pair increases (iii) or decreases (iv) the
sample rate delay of the streams associated with a device.
When performance is low, objective A suggests that the system
should activate additional pollers (using tactic (i) above) if the
processor node has not exhausted the resources assigned to
DCAS (memory and cpu), or otherwise increase the sample
rate delay of devices with higher response time using tactic
(iii). When rps remains close to the top of its expected
range, objective B suggests that the system should reduce cost
by deactivating pollers (using tactic (ii)) which may not be
required to maintain an acceptable level of performance in the
system.

Based on the tactics described above, we designed a baseline
set of strategies for system adaptation to balance the different
quality objectives in the system. This set of adaptation strate-
gies is able to reproduce the original adaptation behavior of
DCAS (as described in Section V-B1):

IncreasePerformance. When DCAS is experiencing low perfor-
mance (rps below threshold, rpsViolation), and the number of
active pollers is not above the number of data streams with
low responsiveness (!maxLazyStreams), activate a new poller if
queues are not shrinking, then if queues are still not shrinking
after 5 seconds, add another poller.

1 s t r a t e g y I n c r e a s e P e r f o r m a n c e
2 [ s t y l e A p p l i e s && r p s V i o l a t i o n && ! maxLazyStreams ]{
3 t 0 : ( ! q S h r i n k i n g )−>a d d P o l l e r ( )@[5000 /∗ms∗ / ]{
4 t 0 a : ( ! q S h r i n k i n g )−>a d d P o l l e r ( )@[10000 /∗ms∗ / ]{
5 t 0 b : ( q S h r i n k i n g )−>done ;
6 }
7 }
8 t 1 : ( q S h r i n k i n g ) −> done ;
9 }

ReduceCost. When DCAS detects small queue sizes (qViola-
tion2) and the minimum level of pollers has not been reached
(!minPollers), remove one poller. If queue sizes remain below
the threshold after 3 seconds, remove another poller.

1 s t r a t e g y ReduceCost
2 [ s t y l e A p p l i e s && q V i o l a t i o n 2 && ! m i n P o l l e r s ]{
3 t 0 : ( q V i o l a t i o n 2 )−>r e m o v e P o l l e r ( )@[3000 /∗ms∗ / ]{
4 t 0 a : ( q V i o l a t i o n 2 )−>r e m o v e P o l l e r ( )@[3000 /∗ms∗ / ]{
5 t 0 b : ( ! q S h r i n k i n g )−>done ;
6 }
7 t 0 c : ( ! q S h r i n k i n g )−>done ;
8 }
9 }

IncreaseDelay/DecreaseDelay. Increase/decrease sample rate de-
lay of all devices which exhibit response time above/below
(tViolation/tViolation2) one step.
1 s t r a t e g y I n c r e a s e D e l a y [ s t y l e A p p l i e s && t V i o l a t i o n ]{
2 t 0 : ( t V i o l a t i o n )−>i n c r e a s e S a m p l e R a t e D e l a y (M.

SRD INCREMENT)@[5000 /∗ms∗ / ]{
3 t 1 : ( ! t V i o l a t i o n )−>done ;
4 }
5 }
6 s t r a t e g y Dec rea seDe lay [ s t y l e A p p l i e s && t V i o l a t i o n 2 ]{
7 t 0 : ( t V i o l a t i o n 2 )−>d e c r e a s e S a m p l e R a t e D e l a y (M.

SRD INCREMENT)@[5000 /∗ms∗ / ]{
8 t 1 : ( ! t V i o l a t i o n 2 )−>done ;
9 }

10 }

Although this baseline set of adaptation strategies was able
to successfully replicate the adaptation behavior of DCAS,
we evolved them since, in some cases, this behavior is not
enough to recover system performance in a timely manner
(please refer to Section V-B1 for details). Specifically, we
modified IncreasePerformance to add pollers more aggressively
by shortening the observation delay between checks in queue
sizes, as well as increasing the number of pollers that can
be activated to a maximum that duplicates the number of
unresponsive data streams. The results of applying these
modifications are described in Section V-B2.

V. EVALUATION

In this section, we evaluate our modifications to DCAS in
two dimensions. Firstly, we report on the implementation effort
involved in (i) customizing Rainbow to apply it to DCAS,
(ii) modifying DCAS to remove its existing, hardcoded self-
adaptation mechanisms, and (iii) the effort in improving the
new adaptation strategies to make the adaptations more respon-
sive to problems. Secondly, we evaluate the performance of
the adaptations (i) to verify that replicating the adaptations in
DCAS with Rainbow provides similar adaptation performance,
and (ii) to measure the adaptation improvement in Rainbow.

A. Implementation Effort

1) Rainbow Customization: We tracked the activities car-
ried out during the customization of Rainbow. The overall
effort invested in customization including the modeling of
the system’s architecture (making use of Acme), scripting of
the adaptation (developing tactics and strategies in Stitch),
and development and testing of the translation infrastructure,
including probes, gauges, and effectors amounts to a total of
91 hours (approximately 2 1/3 work weeks).

Table II details the effort devoted to customization. It is
worth observing that more than half of the effort (59.1 %) was
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TABLE II
RAINBOW CUSTOMIZATION EFFORT FOR DCAS

Task Time %
Architecture modeling 20 21.9
Implementing client probes and gauges 22 24.1
Implementing client effectors 12 13.1
Scripting adaptation (tactics and strategies) 35 38.4
Miscelaneous configurations 2 2.1
Total 91 100

devoted to the development of the translation infrastructure
(probes, gauges, effectors) and the architecture model, whereas
the time devoted to scripting adaptation was 38.4%.

2) Evolution of DCAS: The overall time spent in readying
DCAS for Rainbow was 145 hours (approximately 3 2/3
work weeks). As can be observed in Table III, although the
implementation of the bulk of the translation infrastructure
(TCP Server) did not require much effort, about 55% of the
overall time was spent in developing probes and effectors. This
stems from the fact that most of the time needed for devel-
oping probes and effectors was devoted to code refactoring
and instrumentation required to enable access to the classes
and methods needed to obtain probe information and effect
changes in the system (please refer to Section IV-A).

TABLE III
DCAS EVOLUTION EFFORT

Task Time %
Implementing TCP server 15 10.3
Identifying and removing built-in adaptation 40 27.5
Implementing probes 45 31
Implementing effectors 35 24.1
Miscellaneous configurations 10 6.8
Total 145 100

3) Evolution of Rainbow-DCAS: Once we had a first ver-
sion of Rainbow-DCAS, which included a baseline set of
adaptation strategies that replicated DCAS adaptation behav-
ior, we evolved the set of adaptation strategies to improve the
performance of Rainbow-DCAS. Specifically, in the original
DCAS adaptations the system was slow to recover if devices
were persistently slow in reporting data.

TABLE IV
SIZE/SCATTERING OF DCAS ADAPTATION MECHANISMS

Item # SLOC # Classes
Rainbow-DCAS tactics 88 -
Rainbow-DCAS strategies 57 -
DCAS scale-up 93 2
DCAS rescheduling 115 6

Table IV shows the size of the alternative adaptation mech-
anisms implemented in Rainbow-DCAS and DCAS, as well
as the number of classes involved in each of the adaptation
mechanisms in the latter. The data shows that, although
there is not a substantial difference between the number of
lines of source code in Rainbow-DCAS and DCAS (145

lines of Stitch vs. 208 lines of C#), the implementation of
adaptation mechanisms in DCAS is scattered across different
classes, hampering the evolution of adaptation mechanisms.
However, in Rainbow-DCAS the specification of adaptation
is centralized, easing the modification of adaptation behavior.
Indeed, we found that the evolution of the baseline set
of adaptation strategies demanded time of an order of
magnitude of just minutes, not hours. This contrasts
with the effort required to evolve the original adaptation
mechanisms in DCAS, which typically demands about 2
man-days to tune when the middleware is deployed in a
new location. Moreover, modifying adaptation mechanisms
in Rainbow-DCAS requires just restarting the system after
modifying scripted strategies in Stitch, whereas in DCAS the
system has to be recompiled and redeployed (two processes
that demand additional infrastructure and time).

B. Experimental Evaluation

The aim of our experiments is assessing the validity of
architecture-based self-adaptation mechanisms in the context
of an application-agnostic middleware, comparing their perfor-
mance and efficiency with those achieved by DCAS built-in
adaptation mechanisms.

For our experimental setup, we deployed both versions of
DCAS across three different machines (Figure 8): dcas-db acts
as the backend database running on Oracle 10.2.0, dcas-main
acts as a processor node, running DCAS, and (dcas-devs) is
used to simulate the response of network devices from which
DCAS retrieves information (device response simulation is
implemented as a simple Web service whose response time
can be set in a configuration file). In the case of Rainbow-
DCAS (Figure 8, left), Rainbow’s master is deployed in a
separate machine (dcas-master). All machines run on Windows
XP Pro SP3 (DCAS is deployed as a Windows service), and an
Intel core i3 processor, with 1GB of memory.

dcas-main

dcas-db

dcas-devs

dcas-

master

dcas-maindcas-db dcas-devs

Fig. 8. Experimental setup: Rainbow-DCAS (left) and DCAS (right)

Our experiments include 100 data streams with a sample
rate of 1 second. The duration is 40 minutes (2400s), and
the pattern followed is: (i) 600s of normal activity to let the
system achieve a steady state; (ii) 600s of disturbance, during
which we induce low responsiveness in data streams (adding
a 2-second delay in the response time of 25% of the data
streams); and (iii) 1200s of normal activity.

To assess the effectiveness and flexibility of the Rainbow
approach in the context of DCAS, we carried out two sets of
experiments: (i) using a baseline set of adaptation strategies to
show that the adaptation behavior of DCAS can be replicated
using Rainbow, and (ii) using an evolved set of adaptation
strategies to improve adaptation behavior.
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Fig. 9. Performance (top) and number of active pollers (bottom)

1) Replicating DCAS Adaptation Behavior: Figure 9 de-
picts the performance (top) and cost (bottom) shown by the
different versions of DCAS during the execution of our exper-
iments. Comparing the performance of DCAS with Rainbow-
DCAS baseline, we can observe that after the disturbance
starts, performance drops in both cases and stays in low levels
until the disturbance is removed. Both implementations show a
spike in performance when the disturbance is removed, due to
the number of accumulated requests in the secondary queues
of Data Requester Processors. The removal of the delay in
data streams, along with the high number of available active

pollers to process the requests in the queues at that point
(t=1200s - Figure 9, bottom), causes the sudden increase
in performance, which goes back to expected levels almost
immediately when queue sizes are reduced back to normal
levels. Moreover, the activation of pollers in DCAS presents
a slight overshoot compared to the Rainbow-DCAS baseline.
This is explained by the longer time periods between the
consecutive queue size checks required to activate pollers (as
described in Section II-B2), compared to the higher frequency
of probe updates and shorter adaptation cycle time in Rainbow.

2) Improving Adaptation Behavior: Once we reproduced
the adaptation behavior of DCAS, we evolved the baseline
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TABLE V
RAINBOW CUSTOMIZATION EFFORT

Task DCAS ZNN TalkShoe
Architecture modeling 20 13 6
Implementing probes and gauges 22 49 8
Implementing effectors 12 7 5
Scripting adaptation 35 21 8
Miscelaneous configurations 2 2 8
Total 91 92 34

set of adaptation strategies to improve performance during
the disturbance period. Results show that Rainbow-DCAS
is able to recover faster than DCAS. Specifically, when
the disturbance period starts, the performance of both DCAS
and Rainbow-DCAS degrades initially, going from values in
the expected range (200-250 rps) to values in the range 0-
50. However, by t=800s, performance in Rainbow-DCAS has
been restored to normal levels. In contrast, DCAS does not
recover throughout the whole disturbance period, only going
back to normal once the disturbance is removed by time
t=1200s. Moreover, Rainbow-DCAS is faster in reacting to
the disturbance, since we modified the adaptation strategies to
activate pollers more aggressively when low responsiveness
appears in data streams. This comes at the cost of more active
pollers, but it is an acceptable solution given that the main
priority of the system is performance.

VI. CONCLUSIONS

In this paper, we have assessed the validity of architecture-
based self-adaptation in the context of real-world software-
intensive systems which already feature self-adaptation mech-
anisms. To achieve our goal, we independently developed a
prototype based on the Rainbow framework for architecture-
based self-adaptation of DCAS, an industrial middleware for
data acquisition and control in power plants.

Our results show that architecture-based self-adaptation
can successfully replicate the adaptation behavior required
from an industrial-class software-based system such as
DCAS. Regarding the overall distribution of the effort, ap-
proximately 60% was used to evolve DCAS for its integration
with Rainbow, whereas the remaining time was spent in
customizing Rainbow.

Table V compares the customization effort of Rainbow
required for the implementation of DCAS, ZNN, and Talk-
Shoe. Results show that the effort required to implement
Rainbow-DCAS is consistent with the numbers reported
in previous experiences with Rainbow, with an average
time spent in each one of the tasks that ranges between one
and two days. However, our DCAS prototype was developed
independently, only with scarce consulting provided by the
original developers of Rainbow and Critical Software, so
development time was partially spent in getting acquainted
with Rainbow and DCAS. Hence, we assume that subsequent
developments using Rainbow would require less effort.

Once the baseline set of adaptation strategies used to repli-
cate DCAS adaptation behavior was completed, incremental

changes to evolve and improve Rainbow-based adaptation
mechanisms demanded little time (on the order of minutes,
not hours).

According to our observations, we can conclude that, al-
though incorporating architecture-based self-adaptation in
an already adaptive system initially demands an additional
effort, this investment pays off by substantially reducing
effort in further system evolution (in particular considering
the fact that, typically, most of the overall effort is devoted to
system maintenance [3]).

Future work will deal with the evaluation of architecture-
based self-adaptation in other types of legacy software sys-
tems to assess the generality of our findings. In the con-
text of DCAS, we will tackle more sophisticated adaptation
mechanisms than those currently implemented in DCAS and
Rainbow-DCAS, which target scenarios with workloads that
feature a fixed number of data streams with varying condi-
tions (i.e., device response times). Scenarios with dynamic
workloads that might incorporate new devices at run-time
are not currently considered in DCAS, in which scale-out
is performed as a manual operation. Specifically, we aim
at using architecture-based self-adaptation to overcome the
current limitations of DCAS and report on implementing
automatic scale-out adaptation in Rainbow-DCAS.
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