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1 Hybrid temperature reconstruction by domain

This update document describes new versions of the hybrid temperature re-
constructions introduced in Cowtan and Way (2014) (henceforth CW14), and
builds upon a previous update of 06/01/2014 on the use of separate land and
ocean reconstructions.

Different source datasets are evaluated for both for the land surface air
temperature observations, and for the global proxy data used in the hybrid cal-
culation to complete the coverage. The impact of the choice of data source on
temperature trends over the 16 year period from 1997/01 to 2012/12 is exam-
ined. While one of the purposes of CW14 was to highlight the danger of drawing
conclusions about global climate change from such short term trends, the pe-
riod is nevertheless of considerable interest in the development and evaluation
of global mean surface temperature calculations. Rapid and localised warming
in regions of sparse observations represents a pathological test case, and the de-
tailed comparison of results across different calculations and data sources may
provide useful insights in improving the algorithms.

2 Source data

2.1 In situ temperature data

2.1.1 HadSST3 ocean data

The HadSST3 data from the Hadley centre is a gridded dataset of sea surface
temperatures from 1850 to the present (Kennedy et al., 2011). The gridded data
are not interpolated or infilled. The observational data are corrected according
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to estimates of bias for the given observational platform, including corrections
for bucket observations and engine room intake sensors, which may vary from
ship to ship.

2.1.2 CRUTEM4 land data

The CRUTEM data provide the land temperatures for use in the HadCRUT
temperature data. Both station records and gridded data are available. A recent
update (Jones et al., 2012) introduced many additional station records chosen
to address coverage issues in poorly sampled regions bringing land coverage to
an average of 70% over the study period. As a result the high latitude coverage
is good given the limitations of the observational network. Homogenisation of
the station records is primarily conducted by the record providers on the basis of
their records of changes in the station location or instrumentation. HadCRUT4
reprocesses the CRUTEM4 data by the introduction of terms to represent the
uncertainty in homogenisation, exposure and urban heat island corrections, re-
sulting in an ensemble of 100 land temperature realisations. CRUTEM4 cover-
age and trends for the 16 year study period are shown in Figure (U1a).

2.1.3 GHCN land data

The Global Historical Climatology Network-Monthly (GHCNM, version 3) pro-
vide both station records and gridded temperature data in a form suitable for
use in place of the CRUTEM4 data (Lawrimore et al., 2011). The coverage of
the gridded data is rather more limited than CRUTEM4, averaging 50% land
coverage over the study period, with fewer Arctic stations especially in Canada
and Siberia. However there are many additional stations which are present in
the GHCN station data but not in the gridded product. The GHCN station
data has been automatically homogenized with a pairwise comparison algorithm
(Williams et al., 2012). GHCN coverage and trends for the 16 year study period
are shown in Figure (U1b).

2.1.4 BEST land data

The Berkeley Earth Surface Temperature dataset (BEST) provide a new version
of the land temperature record using a greatly expanded list of weather stations,
automated station homogenisation and infilling of unobserved regions. Infilled
gridded data are provided. To obtain a globally complete record, the BEST
data would need to be further extrapolated over sea ice and then blended with
the extrapolated SST data, however extrapolation from a smoothed dataset is
inadvisable and could lead to artifacts. The land temperatures over Antarctica
and the blended data at lower latitudes may however be used for comparison
with the other datasets.
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2.2 Proxy data for hybrid reconstruction

2.2.1 UAH satellite data

The University of Alabama in Huntsville (UAH) lower troposphere (TLT) data
(Christy et al., 2007) were investigated in CW14 and found to provide a useful
predictor of land surface air temperature on the basis of the kriging statistics
of the difference data, cross validation tests (both globally averaged and local)
and skill in reconstructing reanalysis data. UAH trends for the 16 year study
period are shown in Figure (U2a).

2.2.2 MERRA reanalysis data

The MERRA reanalysis data (Rienecker et al., 2011) is derived from a weather
model which assimilates observations from satellites, ships and buoys, radioson-
des, and barometers on land. Since land-based temperature readings are missing
from this list the data may be used as a predictor of land surface air temper-
ature. Lindsay et al. (2014) report that MERRA outperforms other reanalysis
products in the Arctic and Screen and Simmonds (2012) report similar results
for the Antarctic. However the assimilation of additional data sources (such
as the NASA AIRS data from 2002) can cause inhomogeneities in reanalysis
records (Sturaro, 2003). MERRA trends for the 16 year study period are shown
in Figure (U2b).

3 Temperature reconstruction

Global reconstructions of both the land and ocean data are prepared accord-
ing to the methods described in the following sections. The reconstructed land
and ocean temperature fields are then blended according to the fraction of land
plus sea ice in each cell. The ice mask varies from month to month but is held
constant from year to year to avoid a potential bias due to the transforma-
tion of cells from ice to open ocean. Sea ice coverage is determined from the
HadISST data using the minimum of the sea ice concentration on the period
1981-2010 for each cell and each month. This is a change from the long recon-
struction described in the update of 06/01/2014 in which the median of the sea
ice concentration was used on the grounds that the minimum ice mask is more
representative over recent years. Note that the resulting ice mask gives a lower
ice cover than in any individual month in the reference period because the sum
of the minimums for each cell is lower than the minimum of the sum over all
cells.

HadCRUT4 places a lower bound of 25% on the land content of a cell so that
air temperature observations from small islands can influence the surrounding
ocean cell: this step is not used in the reconstructions described here.
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3.1 Sea surface temperature reconstruction

Sea surface temperatures (SSTs) are reconstructed by kriging for all of the
temperature reconstructions. While CW14 found a weak correlation between
the SSTs and the satellite data, the benefit of applying the hybrid calculation
is marginal especially at high latitudes where unobserved cells are most likely
to occur, so the simpler kriging calculation is used. The e-folding range of the
covariance function is a little over 900km - Table (U1).

3.2 Land temperature reconstructions

Three land reconstructions were produced for each source dataset, by kriging,
hybrid with the UAH data and hybrid with the MERRA data. In the case of
kriging, the e-folding range of the covariance function (which controls how far
temperatures may be extrapolated) is about 750km for the CRUTEM4 data
(Table U1). The range for the GHCNv3 data is somewhat longer; the reasons
for this difference are unclear.

3.2.1 UAH

The UAH data are used as asurface temperature proxy using a scale factor
s = 1, in accordance with CW14. Tests with middle troposphere data from
both UAH and STAR (Zou, 2013) produced less benefit when compared to the
UAH TLT data.

The e-folding range of the covariance function drops by about 200km in
comparison to kriging. The reduction in range arises from the fact that some
of slowly varying temperature signal has been subtracted from the data (CW14
equation 1), and as a result the remaining noise plays a greater role in shaping
the variogram.

3.2.2 MERRA

The kriging range for the MERRA hybrid calculation much lower than for the
other cases. This arises from from the fact that the MERRA data is a good pre-
dictor where observations are present, i.e. the differencing step takes out most
of the temperature signal from the data. As a result most of the reconstruc-
tive power is handed over from interpolation from existing stations to infilling
using the MERRA data. The MERRA reconstruction is therefore somewhat
independent of the other methods, and in consequence gives somewhat different
results.

4 Analysis

Temperature trends covering the period 1997/1 to 2012/12 are given in Table
(U2) for kriging, hybrid with UAH and hybrid with MERRA reconstructions
based on both the HadCRUT4 land ensemble and the GHCN gridded land data.
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Trends are given for the whole planet and for three latitude bands covering
the Arctic, lower latitudes and Antarctic. Global temperature series for all 6
reconstructions are also shown in Figure (U3).

The HadCRUT4 kriging and MERRA hybrid reconstructions give similar
global trends. The MERRA hybrid gives higher trends in the Arctic and at lower
latitudes. However it shows no trend over Antartica, as a result of a cooling
trend over the Antarctic sea ice which is absent from the other reconstructions,
as well as lower trends over the Antarctic continent. The UAH hybrid shows a
greater trend in Antarctica (which is the most sparsely sampled region of the
planet) but is otherwise similar to the kriging reconstruction.

The GHCN reconstructions show a lower global trend, primarily due to a
reduced trend in the Arctic. This arises in part from the sparsity of Arctic
stations in the GHCN data, and can be reproduced in the HadCRUT4 data
by reducing coverage to match the GHCN data. The hybrid reconstructions
mitigate this lack of coverage, with the UAH hybrid showing the greatest trend.
However there are also differences in the temperature data arising from the
additional GHCN homogenisations; these will be discussed in a future update.

The BEST data for the study period support a warming trend over the
Antarctic continent (in contrast to the MERRA hybrid). As already noted this
data may not be extended over sea ice due to the problem of extrapolation from
smoothed data. However the BEST data suggest a lower trend of 0.03◦C/decade
in the low/mid latitude band - if this is correct it would lead to a downward
adjustment of around 0.01◦C/decade in the results presented here and in CW14.

The map series for the three HadCRUT4 based reconstructions are shown in
Figure (U4). The similarity between the kriging and UAH hybrid reconstruc-
tions is clear, however the faster Antarctic warming in the UAH hybrid is also
apparent.

As previously noted the MERRA reconstruction differs somewhat in that
the e-folding range of the kriging covariance function is substantially reduced.
The effect of the e-folding range can be seen by comparing the trend maps for
the 3 reconstructions, particularly in Antarctica. The kriging reconstruction
is smoothest and determined solely by the station values. The UAH recon-
struction shows some features not in the kriging reconstruction. The MERRA
reconstruction shows many localised features, and the stations only influence
a rather limited region around them. The MERRA hybrid also produces very
rapid warming in the unobserved region in southern Africa, which is rejected by
all of the other temperature reconstructions.

A potential weakness of the MERRA reconstruction is that the barometer
and radiosonde observations tend to be concentrated in the same regions as the
in situ temperature observations. If the radiosonde data play a dominant role
in determining surface temperature in the model then it is possible that the
skill of the MERRA data in the observed regions does not transfer to skill in
reconstructing unobserved regions. Comparison of Figures (U2b) and (U4a,b)
suggests that the MERRA trends for Africa and South America require further
investigation (however these appear to arise from trends over the whole study
period rather than discontinuities associated with the introduction of new data
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sources). For this reason the UAH hybrid is currently favoured, although the
results obtained using the MERRA data as a proxy provide an interesting insight
into the behaviour of the hybrid calculation.
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Table U1: Range (i.e. e-folding distance) in km of the covariance function used
in the kriging step of the infilling or hybrid calculation for different data and
methods.

Data/method Kriging range (km)
HadSST3 krig 917
CRUTEM4 krig 753
CRUTEM4 UAH 556
CRUTEM4 MERRA 339
GHCNMv3 krig 915
GHCNMv3 UAH 714
GHCNMv3 MERRA 442
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Table U2: Temperature trends over the 16 year period 1997/1-2 012/12 in ◦C
decade−1 for the whole planet and three latitude bands. The 60S-60N latitude
band covers 86.6% of the planet; the other two bands cover 6.7% each.

Data/method Trend (◦C decade−1)
Global 60N-90N 60S-60N 90S-60S

CRUTEM4 krig 0.114 0.951 0.040 0.239
CRUTEM4 UAH 0.124 0.958 0.042 0.351
CRUTEM4 MERRA 0.112 0.994 0.051 0.013
GHCNMv3 krig 0.092 0.705 0.043 0.124
GHCNMv3 UAH 0.107 0.757 0.046 0.244
GHCNMv3 MERRA 0.099 0.825 0.051 0.001
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CRUTEM4 data

GHCNMv3 data
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Figure U1: Temperature trends on the 16 year period 1997/01-2012/12 for the
source datasets.
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UAH data

MERRA data
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Figure U2: Temperature trends on the 16 year period 1997/01-2012/12 for the
proxy datasets.
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Figure U3: Temperature series for kriging, and UAH hybrid and MERRA hybrid
reconstructions starting from the CRUTEM3 and GHCNMv3 in situ data.
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Kriging reconstruction

Hybrid UAH reconstruction

Hybrid MERRA reconstruction
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Figure U4: Temperature trends on the 16 year period 1997/01-2012/12 for
kriging, and UAH hybrid and GHCN hybrid reconstructions starting from the
CRUTEM4 in situ data.
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