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ABSTRACT

The stability of Alfvén discontinuities for the equations of ideal compressible magnetohydrody-

namics (MHD) is studied. The Alfvén discontinuity is a characteristic discontinuity for the hy-

perbolic system of MHD equations but, as in the case of shock waves, there is a mass flux through

its front. The Lopatinskii condition for a planar Alfvén discontinuity is tested numerically, and

the domain in the space of parameters of the discontinuity where it is unstable is determined.

In fact, in this domain the Alfvén discontinuity is not only unstable: the initial-boundary-value

problem for corresponding linearized equations is ill-posed in the sense of Hadamard.
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I Introduction

Alfvén (or rotational) discontinuities represent a particular type of discontinuous solutions of

the equations of the ideal compressible magnetohydrodynamics. They naturally arise when one

tries to construct steady solutions of the magnetohydrodynamic (MHD) equations [1]. Alfvén

discontinuities play an important role in solving the MHD Riemann problem and, as a conse-

quence, in numerical simulations of compressible MHD flows [2]–[4]. They are used to model

flows of astrophysical plasma and interpret observations of the behaviour of Earth’s magneto-

sphere and interplanetary medium [5]–[8]. The simplest MHD flows with an Alfvén discontinuity

are piecewise constant solutions of the MHD equations with a planar discontinuity surface. Such

solutions exist but if solutions that are close to them do not, then flows with planar Alfvén dis-

continuities are not physically realizable. In this paper we study the linear stability of a planar

Alfvén discontinuity. Earlier, the stability of incompressible Alfvén discontinuities had been

studied in Reference 9 where it had been shown that they are always stable. Several authors

(see Refs. 5 and 6 and the literature cited therein) studied interaction of an Alfvén discontinu-

ity in a compressible medium with incident Alfvén and magnetosonic waves of small amplitude.

However, their results cannot be interpreted in terms of the instability of the Alfvén discontinu-

ity. Wu [10] had performed one-dimensional numerical simulations of the evolution of an Alfvén

discontinuity in the framework of viscous and resistive magnetohydrodynamics and concluded

that the dissipation results in instability of the discontinuity. However, his interpretation of the

numerical results as an evidence for instability of Alfvén discontinuities in viscous and resistive

magnetohydrodynamics is not indisputable (see, e.g., Ref. 11). In any case, the results of Ref.

10 say nothing about the stability of an Alfvén discontinuity in the framework of ideal magne-

tohydrodynamics. As far as we know, the only paper that directly deals with the stability of

Alfvén discontinuities in compressible MHD flows is Reference 12, where an incorrect conclusion

about instability of Alfvén discontinuities in the limit of magnetically dominated flows had been

made.

In this paper, we re-examine the problem and show that for certain values of the parameters the

Alfvén discontinuity is unstable and that the growth rate of the instability can be arbitrarily

large, so that the initial-boundary-value problem for corresponding linearized equations is ill-

posed in the sense of Hadamard. This implies that in unstable region of the parameter space

Alfvén discontinuities as smooth surfaces cannot exist for any finite, however short, time interval.

We conclude this introduction with mathematical formulation of the problem. Throughout the

paper we set the vacuum magnetic permeability µ0 = 1. Equations of the magnetohydrodynam-
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ics of an inviscid, compressible, perfectly conducting fluid can be written as

1
ρc2

dp

dt
+∇ · v = 0, (1)

ρ
dv
dt
− (h · ∇)h +∇

(
p +

h2

2

)
= 0, (2)

ht −∇× (v × h) = 0, (3)

∇ · h = 0, (4)
ds

dt
= 0. (5)

Here ρ = ρ(t,x) is the density, v = v(t,x) = (v1, v2, v3) the velocity, h = h(t,x) = (h1, h2, h3)

the magnetic field, p = p(t,x) the pressure, s the entropy per unit mass, t the time, x =

(x1, x2, x3) Cartesian coordinates, d/dt = ∂t + v · ∇ and c2 = ∂p/∂ρ is the square of the sound

speed. The equations (1)–(5) are supplemented by the equation of state of the fluid

p = p(ρ, s). (6)

Note that Eq. (4) can be treated as an additional constraint on in initial data: if (4) is satisfied

initially at t = 0, then, as a consequence of Eq. (3) it holds for all t > 0. Therefore, from now

on, we drop Eq. (4).

Let Γ(t) be a smooth surface of strong discontinuity for solutions of Eqs. (1)–(5). We assume

that it can be described by the equation

x1 = f(t, x2, x3). (7)

Let

n =
(1,−∂2f,−∂3f)√

1 + (∂2f)2 + (∂3f)2

be the unit normal to Γ, vn ≡ v · n, hn ≡ v · n, [g] = g+ − g− denote the jump of g across the

discontinuity surface (g± ≡ g|(x1−f(t,x2,x3))→±0), and let

j = ρ

(
vn − ft√

1 + (∂2f)2 + (∂3f)2

)

be the mass flux across the discontinuity. Note that the conservation of mass and the law that

the magnetic flux through an arbitrary closed surface is zero (the absence of magnetic charges)

imply that (see, e.g., Reference 2)

[j] = 0, [hn] = 0. (8)

There are four types of MHD discontinuities (see, e.g., References 2 and 3): MHD shock waves

([j] 6= 0, [ρ] 6= 0), tangential discontinuities or current-vortex sheets (j = 0, hn = 0), contact
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discontinuities (j = 0, hn 6= 0) and Alfvén (or rotational) discontinuities (j 6= 0, [ρ] = 0).

Discontinuities of the last three types are characteristic, i.e. the corresponding discontinuity

surfaces are the characteristic surfaces of Eqs. (1)–(5).

In this paper we are interested in Alfvén discontinuities. The jump conditions for an Alfvén

discontinuity are (see Reference 1)

[p] = 0, [s] = 0, [hn] = 0, [j] = 0,

[h2] = 0,
[
v − h√

ρ

]
= 0, j = hn

√
ρ. (9)

Note that hn 6= 0 if j 6= 0. The condition [ρ] = 0 automatically follows from the first two

conditions in (9). Thus, in Alfvén discontinuity, all thermodynamic quantities are continuous at

the discontinuity surface. The normal magnetic field and the normal velocity are also continuous.

The direction of the magnetic field vector has a jump at Γ(t), while its magnitude remains

unchanged, i.e. the magnetic field vector rotates about the normal to the discontinuity surface.

The basic state whose stability is investigated is the simplest piecewise constant solution of Eqs.

(1)–(5) given by

ρ = ρ0, s = s0, p = p0, v = V =
{

V+, x1 > 0

V−, x1 < 0
, h = H =

{
H+, x1 > 0

H−, x1 < 0
. (10)

The discontinuity surface is the plane x1 = 0, and the solution represents a planar Alfvén

discontinuity in the reference frame moving with the front. The jump conditions (9) imply that

[H1] = 0, V ±
1 =

H±
1√
ρ0

, [H2
2 + H2

3 ] = 0,

[
V2,3 − H2,3√

ρ0

]
= 0. (11)

The problem considered in the rest of the paper is the stability of the discontinuous MHD flow

given by Eq. (10).

II Stability analysis

A. Linearized problem. Let x1 = f̃(t, x2, x3) be the equation of the perturbed discontinuity

surface, and let ṽ, h̃, p̃ and s̃ be the perturbations of the corresponding quantities. Assuming

that the perturbations are small, we linearize Eqs. (1)–(5). As a result, we have

p̃t + V · ∇p̃ + ρ0c
2
0∇ · ṽ = 0,

ρ0 (ṽt + (V · ∇)ṽ)− (H · ∇)h̃ +∇
(
p̃ + H · h̃

)
= 0,

h̃t + (V · ∇)h̃− (H · ∇)ṽ + H∇ · ṽ = 0,

s̃t + V · ∇s̃ = 0 for x ∈ R3
±. (12)
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Here R3
+ (R3−) is the half space bounded by the plane x1 = 0 and corresponding to positive

(negative) x1. Since the equation for h̃ implies that

(∇ · h̃)t +∇ ·
(
V(∇ · h̃)

)
= 0,

the condition ∇ · h̃ = 0 is treated as a restriction on the initial data for h̃. Linearization of the

jump conditions (9) yields

[s̃] = [p̃] = 0, [h̃1] = [H2]∂2f̃ + [H3]∂3f̃ , [H · h̃] = 0,

ṽ1 − 1√
ρ0

(
h̃1 − ρ̃

2ρ0
H1

)
= f̃t +

(
V2 − H2√

ρ0

)
∂2f̃ +

(
V3 − H3√

ρ0

)
∂3f̃ ,

[
ṽ2 − 1√

ρ0

(
h̃2 − ρ̃

2ρ0
H2

)]
= 0,

[
ṽ3 − 1√

ρ0

(
h̃3 − ρ̃

2ρ0
H3

)]
= 0 at x1 = 0. (13)

Note that the entropy perturbation s̃(t,x) is a solution of a separate problem

s̃±t + V± · ∇s̃± = 0 for x ∈ R3
±, [s̃] = 0 at x1 = 0,

and cannot result in instability. Therefore, in what follows, we let

s̃(t,x) ≡ 0.

On applying the Galilean transformation

t′ = t, x′1 = x1, x′2 = x2 −
(

V2 − H2√
ρ0

)
t, x′3 = x3 −

(
V3 − H3√

ρ0

)
t,

to Eqs. (12) and (13) and introducing the dimensionless quantities

x =
x′1
L

, t =
c0

L
t′, p =

p̃

ρ0c2
0

, v =
ṽ
c0

, h =
h̃

c0
√

ρ0
, f =

f̃

L
,

we rewrite the linearized equations and boundary conditions in the form

pt + Ĥ · ∇p +∇ · v = 0,

vt + (Ĥ · ∇)(v − h) +∇
(
p + Ĥ · h

)
= 0,

ht − (Ĥ · ∇)(v − h) + Ĥ∇ · v = 0 for x ∈ R3
±, (14)

and

[p] = 0, [h1] = [Ĥ2]∂2f + [Ĥ3]∂3f, [Ĥ · h] = 0,

ft = v1 − h1 + Ĥ1
p

2
,

[
v2,3 − h2,3 + Ĥ2,3

p

2

]
= 0 at x1 = 0. (15)

Here Ĥ ≡ H/c0
√

ρ0.

5



B. Reduced problem. Equations (14) and boundary conditions (15) represent the hyperbolic

system of linear first-order equations for seven unknowns p, v, h with characteristic boundary.

Following Reference 12, we reduce this system to a hyperbolic problem with non-characteristic

boundary which does not involve the front perturbation f . Let

r = Ĥ · h, w = v − h + p Ĥ. (16)

Then, it follows from Eqs. (14) that p, r and w satisfy the equations

pt +∇ ·w = 0,

rt − (Ĥ · ∇)(Ĥ ·w) + Ĥ2∇ ·w = 0,

wt + 2(Ĥ · ∇)w − Ĥ(Ĥ · ∇p) +∇(p + r) = 0. (17)

The boundary conditions for p, r and w, obtained from Eqs. (15), are

[p] = 0, [r] = 0,
[
w − p

2
Ĥ

]
= 0 at x1 = 0. (18)

It is clear that if the reduced problem has an exponentially growing (with time) solution, then

so does the original problem, and this implies that the basic state is unstable. On the other

hand, it can be shown that if the reduced problem has no exponentially growing solutions, then

the basic state is stable [13]. Keeping this in mind, below we focus on the normal mode analysis

of the reduced problem (17)–(18).

It is convenient to introduce the dimensionless parameter

β =
1
|Ĥ|2 =

ρ0c
2
0

|H|2

and re-scale the dependent and independent variables as follows

t → β1/2t, w → β−1/2w, r → β−1r.

Also, let θ be the angle that the magnetic field makes with the normal to the front and φ the

angle of rotation of the magnetic field across the front of the Alfvén discontinuity, and let a±,

b±, c± be the orthogonal basis vectors in R3±, given by

a+ = (cos θ, sin θ cosφ, sin θ sinφ), a− = (cos θ, sin θ, 0),

b+ = (− sin θ, cos θ cosφ, cos θ sinφ), b− = (− sin θ, cos θ, 0),

c+ = (0,− sinφ, cosφ), c− = (0, 0, 1).
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Note that a+ and a− are parallel to H+ and H− respectively (see Fig. 1). Then w± can be

written as

w± = w±a a± + w±b b± + w±c c±,

and the reduced system becomes

pt + a · ∇wa + b · ∇wb + c · ∇wc = 0,

rt + b · ∇wb + c · ∇wc = 0,

wat + 2a · ∇wa + (β − 1)a · ∇p + a · ∇r = 0,

wbt + 2a · ∇wb + βb · ∇p + b · ∇r = 0,

wct + 2a · ∇wc + βc · ∇p + c · ∇r = 0 in R3
±;

[p] = 0, [r] = 0,
[(

wa − p

2

)
a + wbb + wcc

]
= 0 at x1 = 0, (19)

or, in matrix form,

Ut +
3∑

k=1

AkUxk
= 0 in R3

±, (20)

where U = (p, r, wa, wb, wc) and

Ak =




0 0 ak bk ck

0 0 0 bk ck

(β − 1)ak ak 2ak 0 0

βbk bk 0 2ak 0

βck ck 0 0 2ak




. (21)

Boundary conditions (18) can be written as

U+ = BU− at x1 = 0, (22)

where

B =




1 0 0 0 0

0 1 0 0 0
1−(a+·a−)

2 0 (a+ · a−) (a+ · b−) (a+ · c−)

− (b+·a−)
2 0 (b+ · a−) (b+ · b−) (b+ · c−)

− (c+·a−)
2 0 (c+ · a−) (c+ · b−) (c+ · c−)




.

C. Normal mode analysis. We seek solutions of the reduced problem in the form of normal

modes

U =
{

Û+ek(σt+λ+x1+i(q·x)), x1 > 0

Û−ek(σt+λ−x1+i(q·x)), x1 < 0
.
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Here k is a positive real constant (the magnitude of the wave vector in the plane parallel to the

front of the discontinuity), q = (0, cosψ, sinψ) (ψ is the angle between the wave vector and the

x2 axis), λ± are constants satisfying the conditions

Re(λ+) < 0 and Re(λ−) > 0, if Re(σ) > 0. (23)

Substituting these in Eqs. (20), we obtain

Â+U+
0 = 0, Â−U−

0 = 0,

where

Â± = σI + λ±A±1 + i
(
cosψA±2 + sinψA±3

)
. (24)

These linear systems have nontrivial solutions if

det Â+ = 0, det Â− = 0.

Hence, we obtain the dispersion relations for λ+ and λ−:

F+(λ+, σ) = 0, F−(λ−, σ) = 0.

where

F±(λ±, σ) = K±
1

{
βσK±

2

[
1− (λ±)2

]
+ (K±

1 )2
[
1− (λ±)2 + (K±

1 )2
]}

,

are polynomials of degree 5 in λ±. Here

K±
1 = σ + N±, K±

2 = σ + 2N±,

N+ = λ+ cos θ + i sin θ cos(φ− ψ), N− = λ− cos θ + i sin θ cosψ.

It can be shown using Hersh’s lemma [14] that if Re(σ) > 0, both polynomials have 4 roots with

Re(λ±) < 0 and 1 root with Re(λ±) > 0 (see Appendix). If these roots are simple, we have

four linearly independent solutions of the equation Â+U+
0 = 0 and one solution of the equation

Â−U−
0 = 0, satisfying condition (23). Let λ+

k (k = 1, 2, 3, 4) and λ− be the roots corresponding

to these solutions and let

U =

{ 4∑
k=1

CkÛ+
k ek(σt+λ+

k x1+i(q·x)), x1 > 0

C5Û−ek(σt+λ−x1+i(q·x)), x1 < 0
,

where C1, . . . , C5 are arbitrary constants. Substituting this in the boundary condition, we obtain

the linear system for C1, . . . , C5

QC = 0,
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where

Q =
(
Û+

1 Û+
2 Û+

3 Û+
4 −BÛ−

)
,

and C = (C1, C2, C3, C4, C5)t. (Here the superscript t denotes transposition.)

The existence of nontrivial solutions requires that

L(σ, β, θ, φ, ψ) = detQ = 0. (25)

L(σ, β, θ, φ, ψ) is called the Lopatinskii determinant [15]. For given β, θ, φ and ψ, equation (25)

is an algebraic equation for σ. If for given values of β, θ and φ which characterize the Alfvén

discontinuity, there is ψ (ψ ∈ (−π, π]) such that

Re {σ(β, θ, φ, ψ)} > 0,

then the corresponding Alfvén discontinuity is unstable, moreover, the growth rate can be ar-

bitrarily large (recall that the growth rate is kσ with arbitrary positive k), i.e. the linearised

problem is ill-posed in the sense of Hadamard.

In general, it is impossible to find zeros of the Lopatiskii determinant analytically. Therefore,

we did this numerically using MATLAB.

D. Numerical results. To find zeros of L(σ) for fixed β, θ and φ, we employed the secant

method. It turned out that unstable modes (Reσ > 0) exist for certain values of θ and φ and

all finite values of β. Typically, an unstable mode corresponds to a narrow interval in ψ (recall

that ψ is the angle between the positive direction of the x2 axis and the direction of the wave

vector in the x2-x3 plane). Typical curves of η ≡ Re(σ) versus ψ are shown in Fig. 2.

Once we have found unstable modes, we wanted to compute the instability domain in the plane

of parameters θ and φ. To do this, we first fixed some values of β and θ and computed

ηm(β, θ, φ) = max
0≤ψ≤π

Re {σ(β, θ, φ, ψ)}.

for various values of ψ ∈ [0, π]. Typical curves of ηm versus φ are shown in Figure 3.

We then used linear interpolation to find φ∗ at which ηm vanishes, this gave us the boundary

of the interval of instability in φ. Then we varied β and θ and repeated the whole procedure

again, and so on. The resulting instability domains in the φ-θ plane for some values of β are

shown in Figure 4. For each curve in Figure 4, the unstable region is above the curve. One can

see that the Alfvén discontinuity is unstable in a wide range of values of ψ as θ → π/2. When
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θ decreases from π/2, the interval of values of ψ for which the Alfvén discontinuity is unstable

shrinks. At certain θ = θ∗, this interval degenerates to a point, and there is no instability for

0 < θ ≤ θ∗. For each fixed value of β, the maximum growth rate is attained when θ → π/2.

When for given θ and φ we vary β from 0 to ∞, the growth rate increases form zero, attains its

maximum value at some β = β∗ and then decreases monotonically to zero as β → ∞. Typical

curves for some fixed θ, φ and ψ are shown in Fig. 5. Note that β = ∞ corresponds to the

incompressible fluid. It is well-known [9] and can be shown independently by the energy method

that incompressible Alfvén discontinuities are always stable, which agrees with our numerical

results. In Reference 12, the Lopatinskii determinant for the reduced problem had been analyzed

in the limit case of magnetically dominated flows (β → 0) and its zero had been found. It can be

shown however that the root of the Lopatinskii determinant found in Reference 12 corresponds to

a double root of the dispersion relation for λ+ and is therefore a fictitious zero of the Lopatinskii

determinant.

As was mentioned above, the maximum growth rate corresponds to the limit as θ → π/2. Note

that the limit case θ = π/2 corresponds to a particular case of a tangential discontinuity. Our

results suggest that this tangential discontinuity (that can be treated as the degenerate case of

Alfvén discontinuity) is unstable in the class of flows with Alfvén discontinuities.

III Conclusion

We have studied the stability of the planar Alfvén discontinuity to small perturbations and have

shown that, for certain values of the angle θ that the magnetic field makes with the normal to

the front and the angle φ of rotation of the magnetic field across the front, the planar Alfvén

discontinuity is unstable. Moreover, the growth rate can be made arbitrarily large, and this

means that the corresponding linearized initial-boundary-value problem is ill-posed in the sense

of Hadamard. This means that the corresponding Alfvén discontinuity cannot exist for any

finite, however short, time interval. We have determined numerically the instability domain in

the space of the parameters of the Alfvén discontinuity. We should point out here that, although

we did not find unstable modes outside the instability domain described above (and we believe

that the Alfvén discontinuity is stable there), we did not formally prove the stability of the

Alfvén discontinuity outside this instability domain.

We have found that the maximum growth rate corresponds to the limit case θ → π/2. In this

limit, the Alfvén discontinuity degenerates into a tangential discontinuity. Our results show that
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this tangential discontinuity is unstable to perturbations which belong to the class of flows with

Alfvén discontinuities.

It is unclear at the moment whether such a strong instability as described in this paper can be

suppressed by the effects of viscosity and/or resistivity or by the Hall effect. Although there are

examples which show the existence of viscous, resistive analogues of Alfvén discontinuities [16]

and the possibility of regularization of Alfvén discontinuities in the Hall magnetohydrodynamics

[17], nothing is known about the stability of these regularized solutions. One can speculate that

for sufficiently small viscosity and resistivity or sufficiently weak Hall effect, the instability found

in this paper would persist, but this is a problem for a further investigation.
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Appendix: Hersh’s lemma and the roots of polynomials F±

Here we show that polynomials F± have exactly 4 roots with Re(λ±) < 0 and 1 root with

Re(λ±) > 0 provided that

Re(σ) > 0. (26)

First we note that matrices A±1 are non-singular. Then we define matrices M± by the formulas:

M± =
(
A±1

)−1 (
σI + i

(
cosψA±2 + sin ψA±3

))
.

It follows from Eq. (24) and the definition of F± (F± = det Â±) that if µ± are eigenvalues of

M±, then λ± = −µ± are roots of F±. Hence, all we need to show is that, under the condition

(26), both M+ and M− have four eigenvalues with positive real part and one eigenvalue with

negative real part.

Hersh’s lemma [14] can be formulated as follows: let B1, B2 and B3 be real (n × n) matrices

and let B1 be non-singular with k positive and (n− k) negative eigenvalues. If for arbitrary real

ξ1, ξ2 and ξ3 the matrix ξ1B1 + ξ2B2 + ξ3B3 has only real eigenvalues, then for all σ satifying

(26) and all real η2, η3 the matrix

M(σ, η2, η3) = B−1
1 (σI + i(η2B2 + η3B3))

has k eigenvalues with positive real part and (n− k) with negative real part.
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It follows from Hersh’s lemma that the required property holds provided that (i) for arbitrary

real ξ1, ξ2 and ξ3 the matrices G± = ξ1A
±
1 + ξ2A

±
2 + ξ3A

±
3 have only real eigenvalues and (ii)

both A+
1 and A−1 have four eigenvalues with positive real part and one eigenvalue with negative

real part. Note that condition (i) is exactly the hyperbolicity condition for system (20). Below

we drop the superscripts “+” and “-” to simplify the notation. We have

G =




0 0 ξa ξb ξc

0 0 0 ξb ξc

(β − 1)ξa ξa 2ξa 0 0

βξb ξb 0 2ξa 0

βξc ξc 0 0 2ξa




,

where ξa = ξ · a, ξb = ξ · b, ξc = ξ · c and ξ = (ξ1, ξ2, ξ3). Eigenvalues of G are

2ξa, ξa ± 1
2

√
2(1 + β)(ξ2

a + ξ2
b + ξ2

c ) + 2
√

D, ξa ± 1
2

√
2(1 + β)(ξ2

a + ξ2
b + ξ2

c )− 2
√

D,

where

D = (β2 + 1)(ξ2
a + ξ2

b + ξ2
c )2 + 2β((ξ2

b + ξ2
c )2 − ξ4

a).

These eigenvalues are all real if D ≥ 0 and (1 + β)(ξ2
a + ξ2

b + ξ2
c )−√D ≥ 0, and it can be shown

that the last two inequalities are satisfied for all real ξa, ξb and ξc and all positive β.

Eigenvalues of A+
1 and A−1 are the same and given by

2cosθ, cosθ±1
2

√
2(1 + β) + 2

√
(1 + β)2 − 4β cos2 θ, cosθ±1

2

√
2(1 + β)− 2

√
(1 + β)2 − 4β cos2 θ.

It is not difficult to show that for arbitrary β > 0 and θ ∈ (0, π/2) all these eigenvalues are

real, four of them being positive and one, namely, cosθ− 1
2

√
2(1 + β) + 2

√
(1 + β)2 − 4β cos2 θ,

negative. This concludes the proof.
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Figure captions

Figure 1. Schematic diagram of the planar Alfvén discontinuity.

Figure 2. Typical graphs of Re(σ) as function of ψ.

Figure 3. ηm = max
ψ

Re(σ) as function of φ.

Figure 4. Instability domain in φ-θ plane.

Figure 5. Re(σ) as function of β1/2 for φ = π, ψ = π.
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Figure 1: Schematic diagram of the planar Alfvén discontinuity.
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Figure 2: Typical graphs of Re(σ) as function of ψ.

16



0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
β=0.5625

φ

R
e(

σ m
)

θ=0.999π/2

θ=0.8π/2

θ=0.95π/2

θ=0.9π/2
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Figure 5: Re(σ) as function of β1/2 for φ = π, ψ = π.
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