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Summary

We study Alfvén discontinuities for the equations of ideal compressible magnetohydrodynamics

(MHD). By numerical testing of the Lopatinskii condition we find the parameter domains of vi-

olent instability of planar Alfvén discontinuities. We also show that Alfvén discontinuities can

be only weakly (neutrally) stable. The similar situation takes place for Alfvén discontinuities in

incompressible MHD flows whose linear stability was established long time ago. For planar in-

compressible Alfvén discontinuities we prove an energy a priori estimate that exhibits a big loss of

regularity.

1 Introduction

We consider the MHD equations governing the motion of an ideal (inviscid and perfectly conduct-

ing) compressible fluid. They can be written as the quasilinear system of conservation laws (see,

e.g. Reference [1]):




∂tρ + div (ρv) = 0 , ∂t(ρv) + div (ρv ⊗ v −H⊗H) +∇q = 0 ,

∂tH−∇× (v×H) = 0 ,

∂t

(
ρE + (1/2)(ρ|v|2 + |H|2)) + div

(
ρv(E + (1/2)|v|2 + pV ) + H×(v×H)

)
= 0 ,

(1)

where ρ = ρ(t,x) , v = v(t,x) = (v1, v2, v3) , H = H(t,x) = (H1,H2,H3) , p = p(t,x) are the

density, the fluid velocity, the magnetic field, and the pressure respectively, q = p + (1/2)|H|2

is the total pressure, E = E(ρ, S) is the internal energy, S = S(t,x) is the entropy, V = 1/ρ
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is the specific volume, t is the time, and x = (x1, x2, x3) are space variables. Equations (1) are

supplemented by the equation of state of the medium, E = E(ρ, S) . Then we have a closed system

of equations for the vector of unknowns U = U(t,x) = (p,v,H, S) . The equation

div H = 0 (2)

(that expresses the absence of magnetic charges) can be treated as an additional requirement for

the initial data U(0,x) = U0(x) .

It is known that the MHD equations (1), written (taking into account (2)) in the form

1
ρc2

dp

dt
+ div v = 0 , ρ

dv
dt
− (H,∇)H +∇q = 0 ,

dH
dt

− (H,∇)v + H div v = 0 ,
dS

dt
= 0

can be put in the form of a symmetric t-hyperbolic system in the sense of Friedrichs,

A0(U)∂tU +
3∑

k=1

Ak(U)∂kU = 0 , (3)

if the hyperbolicity condition A0 > 0 holds:

ρ > 0 , c2 > 0 .

Here c2 = ∂ρ(ρ2∂ρE) is the square of the sound speed, d/dt = ∂t + (v,∇) , ∂k = ∂/∂xk , and the

symmetric matrices Aα can be easily written down, in particular, A0 = diag (1/(ρc2), ρ, ρ, ρ, 1, 1, 1, 1).

Let Γ(t) = {x1 − f(t,y) = 0} be a smooth hypersurface in R × R3 , where y = (x2, x3) are

tangential coordinates. We assume that Γ(t) is a surface of strong discontinuity for solutions

of the MHD system. There are four types of MHD discontinuities (see, e.g. References [1, 2]).

Namely, in addition to MHD shock waves (j 6= 0 , [ρ] 6= 0) there are three types of characteristic

discontinuities: tangential discontinuities or current-vortex sheets (j = 0 , H+
N = 0), contact

discontinuities (j = 0 , H+
N 6= 0), and Alfvén or rotational discontinuities (j 6= 0 , [ρ] = 0). Here

[g] = g+ − g− denotes the jump for every regularly discontinuous function g with corresponding

values behind (g+ := g|x1−f(t,y)→+0) and ahead (g− := g|x1−f(t,y)→−0) of the discontinuity front,

j = j± = ρ±(v±N − ∂tf) is the mass flux across the discontinuity, vN = (v,N) , HN = (H,N) ,

and N = (1,−∂2f,−∂3f) is the vector normal to Γ(t) . Note that, in view of the MHD Rankine-

Hugoniot conditions [1], [j] = 0 and [HN] = 0 .

In this paper, we are interested in Alfvén discontinuities. Note that Alfvén discontinuities play

an important role in solving the MHD Riemann problem [1, 2] and, respectively, in numerical

simulations of compressible MHD flows (see, e.g. Reference [3]). For Alfvén discontinuities the

general MHD Rankine-Hugoniot conditions reduce to the equations (see [1]):




[p] = 0 , [S] = 0 , [HN] = 0 ,

[|H|2] = 0 ,

[
v − H√

ρ

]
= 0 , j+ = H+

N

√
ρ+ .

(4)
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Observe that H±
N 6= 0 (j 6= 0), and the condition [ρ] = 0 automatically follows from the first two

conditions in (4). That is, the density, the pressure, and the entropy are continuous. Moreover, the

vector of magnetic field rotates on the Alfvén discontinuity whereas its absolute value has no jump.

The Alfvén discontinuity is a characteristic discontinuity (see Section 2) but, as for shock waves,

the plasma crosses its front. For this reason Alfvén (or rotational) discontinuities are sometimes

called Alfvén shocks [2].

The initial boundary value problem for system (3) in the domains Ω±(t) := {x1 ≷ f(t,y)}
with the boundary conditions (4) on the hypersurface Γ(t) is a free boundary problem. Indeed,

the function f(t,y) defining Γ is one of the unknowns of problem (3), (4) with the corresponding

initial data

f(0,y) = f0(y) , y ∈ R2 ; U(0,x) = U0(x) , x ∈ Ω±(0) . (5)

As for the Cauchy problem, for problem (3)–(5) constraint (2) in the domains Ω±(t) can be regarded

as the restriction only on the initial data (5) (see Section 2 for the proof).

Definition 1.1 A weak solution U(t,x) of the MHD equations (3) is called solution with Alfvén

discontinuity if there exists a smooth hypersurface Γ(t) such that U is a classical solution of (1)

on either side of Γ and the jump conditions (4) (together with the requirement j 6= 0) hold at each

point of Γ .

Piecewise constant solutions of (3) satisfying (4) on a planar discontinuity (e.g. with the

equation x1 = 0) are simplest solutions with Alfvén discontinuity. Such solutions clearly exist but

if solutions that are close to them do not, then the flow with a planar Alfvén discontinuity is not

physically realizable as well (in the framework of ideal MHD). From the physical point of view, it is

also very important to know whether, under appropriate conditions, there exist solutions with an

arbitrary curved Alfvén discontinuity. To prove the existence of such weak solutions of the MHD

equations, one needs to answer the following question: does a solution (U, f) of problem (3)–(5)

exist?

Before any attempt to prove the local-in-time existence of solutions of the nonlinear free bound-

ary problem (3)–(5), a linearized problem associated with (3)–(5) should be considered. The lin-

earized problem for a planar discontinuity is a constant coefficient problem. We prove that the

uniform Kreiss-Lopatinskii condition [4, 5, 6, 7] is always violated for this problem, i.e. planar

Alfvén discontinuities can be only weakly (neutrally) stable. This is a direct consequence of the

fact that the symbol associated with the front of Alfvén discontinuity is not elliptic (see Section

3).

The present work is an extension of an earlier work by the present authors [8], where by testing

the Lopatinskii condition numerically, we have found the domains of violent instability of planar
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Alfvén discontinuities, i.e. the parameter domains of ill-posedness of the linearized problem. The

numerical results indicate that there is no instability outside these domains, which corresponds

to (weak) stability of the planar Alfvén discontinuity. The only previous work on the stability of

planar compressible Alfvén discontinuities is Reference [9]. The results of our calculations show,

in particular, that the conclusion in Reference [9] about the violent instability of planar Alfvén

discontinuities for the case of an asymptotically strong magnetic field was not quite correct. That

is, for this case Alfvén discontinuities are not always unstable and can be weakly stable for some

angles determining the rotation of the magnetic field on the discontinuity front. The conclusion

about instability in Reference [9] was caused by a difficulty associated with so-called glancing modes

[4, 10] in the MHD system. As we will see, glancing modes are indeed the source of difficulties in

the normal mode analysis for Alfvén discontinuities (see Section 3).

It should be underlined that the study of the stability of planar Alfvén discontinuities is of

independent interest in connection with astrophysical and geophysical applications such as, for ex-

ample, the model of magnetopause (see Reference [11] and references therein). The magnetopause

is a boundary of complex structure between the Earth’s magnetosphere and the solar wind. The

magnetopause structure is locally classified as closed (or nightside) and open (or dayside) magne-

topause. These types of magnetopause structure are usually treated as a current-vortex sheet and

an Alfvén discontinuity respectively [11]. Besides, the linear stability of a planar Alfvén disconti-

nuity is interpreted as the macroscopic stability of the open magnetopause. Note that a sufficient

condition for the weak stability of a planar compressible current-vortex sheet was recently found in

Reference [12] (see also Reference [13] and references therein for the case of incompressible fluid).

The question on the local-in-time existence of nonplanar weakly stable Alfvén discontinuities

still remains open. Until recent times even the general question on the possibility of the existence

of solutions of hyperbolic conservation laws with a surface of weakly stable discountinuity was

open, but now we know at least three examples of the positive answer to this question. The first

two examples are 2D supersonic vortex sheets and weakly stable shock waves in isentropic gas

dynamics. The existence of these weakly stable discountinuties was recently proved by Coulombel

and Secchi [14]. The third recent example is above mentioned compressible current-vortex sheets

whose local-in-time existence was shown by one of the present authors [15] provided that the

stability condition from Reference [12] is satisfied at each point of the initial discontinuity.

Since the symbol associated with the front of Alfvén discontinuity is not elliptic, weakly stable

Alfvén discontinuities are in some sense less stable than discontinuties studied in References [14]

and [15]. We show this on the example of Alfvén discontinuity in an incompressible fluid. The

linear stability of planar Alfvén discontinuities in incompressible MHD was proved long time ago

by Syrovatskii [16] (see also Section 4 and Appendix A). For incompressible Alfvén discontinuities

the symbol associated with the front is also not elliptic, i.e. stability is of weak type. The energy a
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priori estimate that we prove for the constant coefficients problem for planar incompressible Alfvén

discontinuities exhibits however a big loss of regularity (in particular, the loss of two derivatives

from the initial data). It is still unclear whether such an estimate can be generalized to the problem

with variable coefficients. It is quite possible that the “non-ellipticity of the front” is such a strong

thing that it can even prevent the existence of slightly curved discontinuities. This question needs

an additional investigation.

2 The linearized problem associated with (3)–(5)

2.1 The reduction to fixed domains

To deal with fixed domains rather that the time-dependent domains Ω±(t), we make the usual

change of variables [5]:

t̃ = t , x̃1 = x1 − f(t,y) , ỹ = y . (6)

Then, Ũ(t̃, x̃) := U(t,x) is a smooth vector-function for x̃ ∈ R3
±, and the initial boundary value

problem (3)–(5) is reduced to the following problem (we omit tildes to simplify the notation):

L(U,F)U = 0 in [0, T ]× (R3
+ ∪ R3

−) , (7)





[p] = 0 , [S] = 0 , [HN] = 0 ,
[|H|2] = 0 ,

[
v − H√

ρ

]
= 0 , ∂tf = v+

N −
H+

N√
ρ+

on [0, T ]× {x1 = 0} × R2, (8)

U|t=0 = U0 in R3
+ ∪ R3

−, f |t=0 = f0 in R2. (9)

Here

L = L(U,F) = A0(U)∂t + Aν(U,F)∂1 +
3∑

k=2

Ak(U)∂k , F = (∂tf, ∂2f, ∂3f) ,

Aν = Aν(U,F) =
3∑

α=0

ναAα = A1(U)−A0(U)∂tf −
3∑

k=2

Ak(U)∂kf,

ν = (ν0, . . . , ν3) = (−∂tf,N) is the space-time normal vector to Γ(t), and Aν is the so-called

boundary matrix.

The matrix A−1
0 Aν has the following eigenvalues, λ1 ≤ . . . ≤ λ8 (see, e.g. Reference [7] for the

planar discontinuity, f ≡ 0):

λ1,8 = (vN − ∂tf)∓ cf , λ2,7 = (vN − ∂tf)∓ ca , λ3,6 = (vN − ∂tf)∓ cs , λ4,5 = vN − ∂tf .

Here ca = HN/
√

ρ is the Alfvén velocity in the direction normal to the discontinuity front,

cf =
1√
2

√
b2 + c2 +

√
(b2 + c2)2 − 4c2

ac
2 , cs =

1√
2

√
b2 + c2 −

√
(b2 + c2)2 − 4c2

ac
2
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are the fast and slow magnetosonic velocities, b2 = |H|2/ρ . In view of the boundary conditions (8),

the Alfvén discontinuity moves with the Alfvén velocity ca . This implies λ2|x1=±0 = 0 . Hence,

the boundary matrix Aν is singular on the discontinuity front (detAν |x1=±0 = 0), and the Alfvén

discontinuity is a characteristic discontinuity.

As is known, in general cs ≤ ca ≤ cf . For the Alfvén discontinuity, taking into account the

condition j 6= 0 , one has the strict inequalities cs < ca < cf . Therefore, the matrix Aν |x1=−0

has only one negative eigenvalue, and the matrix Aν |x1=+0 has exactly six positive eigenvalues. In

other words, the hyperbolic system (7) in a neighborhood of the boundary x1 = 0 has one outgoing

characteric direction for x1 < 0 and six outgoing characteristic directions for x1 > 0. This means

that this system requires seven boundary conditions on the boundary x1 = 0 . Moreover, one more

boundary condition is needed for finding the front f . Thus, system (7) has the correct number of

boundary conditions in (8), i.e. the Alfvén discontinuity is evolutionary [1, 7].

Proposition 2.1 Let U is a solution with Alfvén discontinuity (see Definition 1.1) on the time

interval [0, T ] . If condition (2) holds for the initial data (5), then U also satisfies (2) in Ω±(t) for

all t ∈ [0, T ] .

Proof. Clearly, it is enough to prove the proposition for U written in the new variables (6). After

the change of variables (6) constraint (2) takes the form g = 0, where g = div B, B = (HN,H2, H3) .

The equation for H contained in (7) reads

∂tH + (u,∇)H− (B,∇)v + Hdiv u = 0 , (10)

where u = (vN − ∂tf, v2, v3) . After some algebra it follows from (10) that

∂tB−∇× (u×B) + udiv B = 0 . (11)

Acting on (11) by div , we obtain

∂tg + div(g u) = 0 , (12)

where the function u is piecewise smooth. Moreover, using the boundary conditions (8), from the

first equation in system (11) one gets (we omit calculations)

[g]|x1=0 = 0 .

Now if g|t=0 = 0, then, by the standard method of characteristic curves, we obtain from equation

(12) that g = div B = 0 for all t ∈ [0, T ] . ¤

2.2 The variable coefficients problem

Let (Ū(t,x), f̄(t,y)) be a given vector-function (basic state), where Ū = (p̄, v̄, H̄, S̄) is supposed

to be smooth for x ∈ R3
± . We also suppose that the basic state (Ū, f̄) satisfies (8) with a given
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function ρ̄(t,x) subject to the equation of state E = E(ρ, S). In particular, it follows from the

Gibbs relation that p̄ = ρ̄2∂ρE(ρ̄, S̄) . Moreover, we assume that ρ̄ > 0 , c̄2 > 0 , and H̄±
N 6= 0 ,

where c̄2 = ∂ρ(ρ2∂ρE)(ρ̄, S̄) , H̄N = (H̄, N̄) , N̄ = (1,−∂2f̄ ,−∂2f̄) , etc.

Then the linearization of (7)–(9) results in the following variable coefficients problem for per-

turbations (δU, δf) (below we drop δ):

L(Ū, F̄)U + C̄U =
{
L(Ū, F̄)f

}
∂1Ū in [0, T ]× (R3

+ ∪ R3
−) , (13)





[p] = 0 , [S] = 0 ,
[
(H̄,H)

]
= 0 ,

[HN] = [H̄2]∂2f + [H̄3]∂3f ,

[
v − H√

ρ̄
+

H̄
2ρ̄
√

ρ̄
ρ

]
= 0 ,

∂tf = v+
N −

H+
N√
ρ̄+

− w̄+
2 ∂2f − w̄+

3 ∂3f +
H̄+

N

2ρ̄+
√

ρ̄+
ρ+

on [0, T ]× {x1 = 0} × R2, (14)

and the initial data for the perturbation (U, f) coincide with (9). Here

F̄ = (∂tf̄ , ∂2f̄ , ∂3f̄) , vN = (v, N̄) , HN = (H, N̄) ,

ρ =
1
c̄2

p− ρ̄2∂2
ρSE(ρ̄, S̄)

c̄2
S , w̄k = v̄k − H̄k√

ρ̄
, k = 2, 3 .

The matrix C̄ = C̄(Ū, ∂tŪ,∇Ū, F̄) is determined as follows:

C̄U = (U,∇uA0(Ū))∂tŪ + (U,∇uAν(Ū, F̄))∂1Ū +
3∑

k=2

(U,∇uAk(Ū))∂kŪ ,

(U,∇u) :=
∑8

i=1 ui∂/∂ui , (u1, . . . , u8) := (p,v,H, S) .

The boundary conditions (14) can be put in the form

B̄F + M̄+U+ + M̄−U− = 0 ,

where F = (∂tf, ∂2f, ∂3f) , and the matrices B̄(Ū+, Ū−) and M̄±(Ū±, F̄) can be easily written

out if necessary. Problem (13), (14) is the genuine linearization of (7), (8) in the sense that we

keep all the lower order terms in (13).

It should be noted that the differential operator in system (13) is a first order operator in f .

To avoid this inconvenience and to simplify system (13) we make the change of unknowns [17]

U̇ = U− f∂1Ū .

In terms of this “good unknown” problem (13), (14) takes the form (we omit dots to simplify the

notation):

L(Ū, F̄)U + C̄U = −f∂1{L(Ū, F̄)Ū} in [0, T ]× (R3
+ ∪ R3

−), (15)

B̄F + M̄+U+ + M̄−U− + fQ̄ = 0 on [0, T ]× {x1 = 0} × R2 , (16)
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where Q̄ = M̄+(∂1Ū)+ + M̄−(∂1Ū)− . If we assume that a solution to problem (7)–(9) exists and

that the basic state (Ū, f̄) is this solution, then the right hand side of equation (15) vanishes.

Using arguments similar to those in the proof of Proposition 2.1 we come to the following

conclusion.

Proposition 2.2 Suppose that the basic state obeys the equation div B̄ = 0 for x ∈ R3
±, where

B̄ = (H̄N, H̄2, H̄3) . If the condition

div B = 0 , x ∈ R3
± ,

where B = (HN,H2,H3) , holds for the initial data of problem (15), (16), then this condition is

also satisfied for all t ∈ [0, T ] .

2.3 The problem with constant coefficients for a planar discontinuity

For planar discontinuities f̄(t,y) is a linear function: f̄(t,y) = σt + (γ,y), σ = (σ,γ) ∈ R3 .

Without loss of generality we suppose that σ = 0 . Consider a piecewise constant solution of

(3)–(5) for the planar Alfvén discontinuity with the equation x1 = 0 :

Ū =





Ū+ = (p̄, v̄+, H̄+, S̄) , x1 > 0 ,

Ū− = (p̄, v̄−, H̄−, S̄) , x1 < 0 ,
(17)

where, in view of (4), H̄± = (H̄1, H̄
±
2 , H̄±

3 ) , v̄± = (v̄1, v̄
±
2 , v̄±3 ) , and the constants are related by

[
H̄2

2 + H̄2
3

]
= 0 , v̄1 =

H̄1√
ρ̄

, [v̄] =
[H̄]√

ρ̄
. (18)

Constant ρ̄ is positive. Without loss of generality we suppose also that H̄1 > 0 .

The problem obtained by the linearization of (3), (4) on solution (17) coincides with problem

(13), (14) if the coefficients of (13), (14) are “frozen”, C̄ = 0 , and the right-hand side of equation

(13) vanishes. Moreover, Aν = A1 and N̄ = (1, 0, 0) , i.e. HN = H1 , H̄±
N = H̄1 > 0 , etc.

Following [9], we now make several useful simplifications of the linearized problem with constant

coefficients. First, we perform the Galilean transformation

t̃ = t , x̃1 = x1 , x̃k = xk −
(

v̄+
k −

H̄+
k√
ρ̄

)
t , k = 2, 3 ,

where, in view of (18), v̄−k − (H̄−
k /
√

ρ̄) = v̄+
k − (H̄+

k /
√

ρ̄) . Second, we reduce the problem to a

dimensionless form by introducing the following scaled values:

t̃′ =
t̃c̄

l
, x̃′ =

x
l

, p′ =
p

ρ̄c̄2
, v′ =

v
c̄

, H′ =
H

c̄
√

ρ̄
,

where l is a typical length. After performing the Galilean transformation and dropping the tildes

and primes the linearized interior equations have the form




d±p

dt
+ div v = 0 ,

d±v
dt

− (h±,∇)H +∇ (
p + (h±,H)

)
= 0 ,

d±H
dt

− (h±,∇)v + h±div v = 0 ,
d±S

dt
= 0 for x ∈ R3

± ,

(19)
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where d±/dt = ∂t + (h±,∇) , h± = (h1, h
±
2 , h±3 ) = H̄±/(c̄

√
ρ̄) . Third, since the function S(t,x) is

a solution of the separate problem

d±S

dt
= 0 for x ∈ R3

± , [S]|x1=0 = 0 , S|t=0 = S0(x) ,

the assumption that S0 ≡ 0 leads to S ≡ 0 . Even if S0 6= 0 , the presence of S does not play any

role in the normal mode analysis for the linearized problem with constant coefficients because it

just creates a separate “stable block” in the Lopatinskii determinant (see the next section). So,

without loss of generality we assume that S ≡ 0 .

After all the above simplifications, the linearized problem for planar Alfvén discontinuities

becomes:

∂tU +
3∑

k=1

Ā±k ∂kU = 0 if x ∈ R3
± , (20)





[p] = 0 , [(h,H)] = 0 , [H1] = [h2]∂2f + [h3]∂3f ,

[v −H + (1/2)ph] = 0 , ∂tf = v+
1 −H+

1 + (1/2)p+h+ if x1 = 0 .

(21)

With a little abuse of notation, U now denotes the vector of (scaled) perturbations (p,v,H) , and

the symmetric matrices Ā±k are given by

Ā±1 =




h1 1 0 0 0 0 0

1 h1 0 0 0 h±2 h±3

0 0 h1 0 0 −h1 0

0 0 0 h1 0 0 −h1

0 0 0 0 h1 0 0

0 h±2 −h1 0 0 h1 0

0 h±3 0 −h1 0 0 h1




,

Ā±i =




h±i 0 δ2i δ3i 0 0 0

0 h±i 0 0 −h±i 0 0

δ2i 0 h±i 0 δ2ih1 −δ3ih
±
3 δ2ih

±
3

δ3i 0 0 h±i δ3ih1 δ3ih
±
2 −δ2ih

±
2

0 −h±i δ2ih1 δ3ih1 h±i 0 0

0 0 −δ3ih
±
3 δ3ih

±
2 0 h±i 0

0 0 δ2ih
±
3 −δ2ih

±
2 0 0 h±i




, i = 2, 3 .

System (20) represents equations (19) without the last equation for S . The matrices Ā+
1 and Ā−1

have five positive eigenvalues, one negative and one zero eigenvalue (cf., Subsection 2.1). It is easy

to show that the constraint div H = 0 is again only an additional requirement on the initial data

for problem (20), (21) (cf. Propositions 2.1, 2.2).
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3 Stability of planar discontinuities

3.1 The reduced problem with noncharacteristic boundary

Problem (20), (21) is a problem for a linear symmetric hyperbolic system with characteristic

boundary. If by means of unitary transformations U± we reduce systems (20) to the form

∂tR +
3∑

k=1

B±
k ∂kR = 0 , x ∈ R3

± ,

then the Kreiss-Lopatinskii condition for (20), (21) could be introduced by a standard way proposed

in Reference [18] for the case of characteristic boundary, where U = U±R for x ∈ R3
± , U±U∗

± = I ,

B±
k = U∗

±Ā±k U± , and B±
1 = diag (0, b±, B±) are block diagonal matrices with the constants (cf.,

the eigenvalue λ1 from Subsection 2.1)

b± = h1 − 1√
2

√
1 + h2 +

√
(1 + h2)2 − 4h2

1 < 0 (h = |h+| = |h−|)

and symmetric positive definite 5× 5 matrices B± .

We prefer to proceed in a different way and adopt an idea from Reference [9]. This idea enables

us, in some sense, to reduce (20), (21) to a hyperbolic problem with noncharacteristic boundary

in which boundary conditions do not contain the front perturbation f at all. It should be noted

however that the price for using such a trick isthat matrices involved are no longer symmetric.

Namely, following Reference [9], from equation (19) we deduce the system




∂tp + div w = 0 , ∂tr + h2div w − (h±,∇(h±,w)) = 0 ,

∂tw + 2(h±,∇)w − h±(h±,∇p) +∇(p + r) = 0 for x ∈ R3
± ,

(22)

where

r = (h±,H) , w = (w1, w2, w3) = v −H + ph± for x ∈ R3
± .

In the derivation of (22), we used the constraint div H = 0 . System (22) is supplemented with the

boundary conditions

[p] = 0 , [r] = 0 , [w − (1/2)ph] = 0 at x1 = 0 (23)

following from (21). Problem (22), (23) can be put in the form

∂tW +
3∑

k=1

B±k ∂kW = 0 if x ∈ R3
± , G+W+ + G−W− = 0 if x1 = 0 ,

with W = (p, r,w) and corresponding matrices B±k and G± .

In Reference [9] the equivalence of problems (20), (21) and (22), (23) was proved in the sense

that knowing a solution W of (22), (23) we can define the functions vk , Hk , and f (actually, using

integration [9]) in such a way that (U, f) is the solution of (20), (21). However, problem (22), (23)

10



containing no front f looses some important information about the original problem (20), (21). In

particular, an exact relation between the Lopatinskii conditions for problems (20), (21) and (22),

(23) is unclear.

Therefore, unlike Reference [9], we proceed as follows. We consider the systems

∂tV +
3∑

k=1

A±k ∂kV = 0 for x ∈ R3
± (24)

formed by the equations

∂tz + (h1 − h±2 )∂2w2 + ∂3(h1w3 − h±3 w2) = 0 , (25)

∂tH1 + ∂1H1 + ∂2

(
h1w2 − h±2 w1 + z + (h±2 − h1)p

)

+∂3(h1w3 − h±3 w1) +
1

h±3
∂3

(
r − h1H1 − h±2 (z + (h±2 − h1)p)

)
= 0 ,

(26)

and (22), where

V = (z,H1,W) , z = H2 + (h1 − h±2 )p for x ∈ R3
± .

We assume that (h+
3 )2 + (h−3 )2 6= 0 . Otherwise, since h2 − h2

1 6= 0 (for h2 − h2
1 = 0 solution (17)

is continuous), with corresponding changes in (25) and (26) we choose z = H2 + (h1 − h±3 )p (if

(h+
2 )2 + (h−2 )2 6= 0) or z = Hl + (h1 − h+

l )p for x1 > 0 and z = Hm + (h1 − h−m)p for x1 < 0 (if

(h+
m)2 + (h−l )2 6= 0), where l = 2 and m = 3 or l = 3 and m = 2 . The boundary conditions for

(24) read: 



[H1] = [h2]∂2f + [h3]∂3f , ∂tf = w+
1 − (h1/2)p+ ,

[p] = 0 , [r] = 0 , [w − (1/2)ph] = 0 ,
(27)

or in the matrix form

BF + M+Y+ + M−Y− = 0 ,

with F = (∂tf, ∂2f, ∂3f) , Y = (H1,W), and corresponding matrices M± .

The change of unknowns T : U → V is, of course, invertible. But, since we used the constraint

div H = 0 while obtaining equations (22) from (20), we need to show the equivalence of problems

(20), (21) and (24), (27) (in the usual sense). For this purpose, we should prove the following

statement.

Proposition 3.1 If the equation

∂1H1 + ∂2

(
z + (h±2 − h1)p

)
+

1
h±3

∂3

(
r − h1H1 − h±2 (z + (h±2 − h1)p)

)
= div H = 0 (28)

for x ∈ R3
± holds for the initial data for problem (24), (27), then V also satisfies (28) for all t > 0 .
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Proof. It follows from the relation U = T −1V that

H2 = z + (h±2 − h1)p , H3 =
r − h1H1 − h±2 H2

h±3
, v = w + H− ph± for x ∈ R3

± .

Then equation (26) implies

∂tH1 − (h±,∇Ω1) + h1div Ω + div H = 0 , x ∈ R3
± , (29)

where Ω = (Ω1,Ω2, Ω3) = w − (1/2)ph± for x ∈ R3
± . From (29) we obtain

∂t[H1]− [h2]∂2Ω1 − [h3]∂3Ω1 + [div H] = 0 at x1 = 0 ,

where Ω1|x1=0 = Ω+
1 = Ω−1 . In view of the first two conditions in (27), the last equation yields

[g]|x1=0 = 0 , (30)

where g = div H . From (25), (26), and (22) we have

∂tH− (h±,∇)w + h±div w + a±div H = 0 , x ∈ R3
± , (31)

where a± = (1, 0,−h1/h±3 ) . Acting on (31) by div , we get

∂tg + div (g a±) = 0 , x ∈ R3
± , (32)

Finally, (28), (30), and (32) imply g = 0 for all t > 0 . ¤

Thus, instead of problem (20), (21) we can consider the equivalent problem (24), (27). Clearly,

system (24) is still hyperbolic but no longer symmetric. The boundary matrices A±1 have the form:

A±1 =




0 0 0

0 1 0

0 0 B±1


 ,

where 0 is the row (or column) null vector, and the 5 × 5 matrices B±1 have one negative and

four positive eigenvalues (this follows from the properties of the matrices Ā±1 in (20) and can be

also checked directly). That is, the function z is a “characteristic unknown” of problem (24),

(27). Moreover, the separate subproblem (22), (23) is a hyperbolic problem with noncharacteristic

boundary. Note also that the boundary conditions in (23) are standard (like those in [4, 18]) in

the sense that they do not contain the unknown front f .

3.2 The Lopatinskii condition for problem (24), (27)

We apply the Fourier-Laplace transform to problem (24), (27). Namely, we apply a Laplace

transform in t with the dual variable s = η + iξ , where η > 0 , ξ ∈ R , and a Fourier transform
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in y with the dual variable ω = (ω2, ω3) ∈ R2 . The transforms of V and f are denoted by

V̂ = (ẑ, Ĥ1,Ŵ) = (ẑ, Ŷ) and f̂ respectively.

We arrive at

sẑ = ia±(ω) · Ŵ , x1 ∈ R± , (33)

dĤ1

dx1
= i

(
h±2
h±3

ω3 − ω2

)
ẑ +

(
i
h1

h±3
ω3 − s

)
Ĥ1 + ib±(ω) · Ŵ , x1 ∈ R± , (34)

dŴ
dx1

= M±(s, iω)Ŵ , x1 ∈ R± (35)

(without loss of generality we consider the case (h+
3 )2 + (h−3 )2 6= 0), where

M±(s, iω) = −(B±1 )−1(sI + iω2B±2 + iω3B±3 ) ,

and the vectors a±(ω) and b±(ω) are not used in what follows. Substituting (33) into (34), we

obtain the following system of ordinary differential equations:

dŶ
dx1

= P±(s, iω)Ŷ , x1 ∈ R± , (36)

where

P±(s, iω) =



−s + i(h1/h±3 )ω3

c±(ω)
s

+ ib±(ω)

0 M±(s, iω)


 ,

c±(ω) = (ω2 − (h±2 /h±3 )ω3)a±(ω) . The matrices P± have a simple pole at s = 0 . In principle,

for hyperbolic problems with characteristic boundary [18] fractional roots of |ω|/s can occur as

eigenvalues of P± but, as we can see, this is not the case for Alfvén discontinuities. Applying a

Fourier-Laplace transform to (27) results in the boundary conditions for (36):

b(s, iω)f̂ + M+Ŷ+ + M−Ŷ− = 0 , (37)

where b(s, iω) = (i[h2]ω2 + i[h3]ω3, s,0) .

First of all, it should be noted that in the boundary conditions (27) the symbol associated

with the front f is not elliptic. Roughly speaking, it means that the vector F cannot be expressed

through V+ and V− . More precisely, there is a point (η0, ξ0, ω0) ∈ R+ such that b(s0, iω0) = 0 ,

where R+ = R4
+ \ {0} (i.e. <s0 = η0 ≥ 0 , |s0|2 + |ω0|2 6= 0) . In our case,

s0 = 0 , ω0 = α (−[h3], [h2]) , α 6= 0 . (38)

Since b is not elliptic, the front cannot be eliminated from (37), i.e. there is no matrix N(s, iω)

such that

N(s, iω)b(s, iω) =


 g(s, iω)

0


 ,
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with

min
(η,ξ,ω)∈R+

|g(s, iω)| > 0 .

Therefore, we have to introduce the Lopatinskii condition for the original boundary conditions (37)

containing the front. The Lopatinskii condition is satisfied for problem (24), (27) if for all fixed

(s, ω) with η > 0 the only bounded solution of problem (36), (37) is the trivial solution Ŷ = 0 ,

f̂ = 0 .

To write down the Lopatinskii condition in a precise (algebraic) form [4, 5, 6, 7] we now consider

the characteristic equations for the eigenvalues λ± (λ±0 , λ±1 , . . . , λ±5 ) of the matrices P± :

det(P±(s,ω)− λ±I) = 0 .

These equations imply the dispersion relations

(
s + λ± − i(h1/h±3 ) ω3

)
det(sI + λ±B±1 + iω2B±2 + iω3B±3 ) = 0 . (39)

The first multiplier in (39) gives

λ±0 = −s + i(h1/h±3 ) ω3 .

Concerning the second multiplier in (39), for the hyperbolic systems (22) with noncharacteristic

boundary we apply Hersh’s lemma [19] to arrive at the following proposition (for the case of

characteristic boundary see Reference [18]).

Proposition 3.2 For all fixed (s, ω) with η > 0 the matrix M+(s, iω) has four eigenvalues λ+

with <λ+ < 0 and one eigenvalue with <λ+ > 0 . The same property takes place for the eigenvalues

λ− of the matrix M−(s, iω) .

Hence, we can reduce the matrices P± to the form

P± = Λ±




λ±0 0 0

0 D± 0

0 0 λ±5


 (Λ±)−1

with nonsingular matrices Λ±(s, iω) , where for η > 0 all the eigenvalues of the 4× 4 matrices D±

lie in the left half-plane (<λ±k < 0 , k = 1, 4) and <λ±5 > 0.

Since we are seeking bounded solutions, Ŷ(x1) is as follows:

Ŷ(x1) = Λ+




eλ+
0 x1c0

eD
+x1C+

0


 for x1 > 0 ,

Ŷ(x1) = Λ−


 0

eλ−5 x1c5


 for x1 < 0 ,

(40)
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where C+ = (c1, . . . , c4) , ci (i = 0, 5) are constants. Clearly, the first columns in the matrices

Λ± are the eigenvectors (1,0) for the eigenvalues λ±0 . More precisely, the matrices Λ± have the

following structure:

Λ± =


 1 g±/s

0 T±


 , M± = T±


 D± 0

0 λ±5


 (T±)−1 ,

for some g±(s, iω) (we do not need explicit formulae for g±(s, iω)).

The constants c0, . . . , c5 , f̂ are linked by the relations

c0 +
1
s

g+


 C+

0


− 1

s
g−


 0

c5


 = i([h2]ω2 + [h3]ω3)f̂ ,

sf̂ = ( −h1/2 0 1 0 0 ) T̃+C+ ,

(41)

G+T̃+C+ + G−γ5c5 = 0 (42)

following from (37). Here γ5 is the eigenvector for λ−5 (the last column in T−), and the matrix

T̃+ is formed by the first four columns, γ1 , . . . , γ4, of the matrix T+ which are the basis of the

eigenspace for λ+
1 , . . . , λ+

4 . Relations (41) and (42) can be put in the form

L(s, iω)




c0

f̂

C


 = 0 ,

where C = (C+, c5) ,

L(s, iω) =




1 −i([h2]ω2 + [h3]ω3)
a0(s, iω)

s

0 s a1(s, iω)

0 0 L(s, iω)


 , (43)

detL is the so-called Lopatinskii determinant, a0(s, iω) makes no contribution to detL, and the

column vector a1(s, iω) depends on the first and third components of the vectors γ1 , . . . , γ4 .

The Lopatinskii determinant det L has no singularities at s = 0 . It is clear that detL is the

Lopatinskii determinant for the reduced problem (22), (23). We are now in a position to introduce

the Lopatinskii condition for the whole problem (24), (27).

Definition 3.1 Problem (24), (27) satisfies the Lopatinskii condition if

detL(s, iω) 6= 0 (44)

for all η > 0 , (ξ, ω) ∈ R3 . Problem (24), (27) satisfies the uniform Lopatinskii condition if

requirement (44) is fulfilled for all η ≥ 0 , (ξ, ω) ∈ R3 , with |s|2 + |ω|2 6= 0 .
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It follows from the structure of the matrix L that det L(0, iω) = 0 . That is, the uniform

Lopatinskii condition is always violated. Actually, this is a direct consequence of the fact that

b(s, iω) is not elliptic. Indeed, problem (24), (27) has the solution V = 0, f = f̂ ei(ω0,y) associated

with the neutral mode (38) (see also Remark 3.2 below). Thus, we have proved the following

proposition.

Proposition 3.3 Planar Alfvén discontinuities are never uniformly stable. A planar Alfvén dis-

continuity is violently unstable if and only if the Lopatinskii condition for the reduced problem

(22), (23) is not satisfied, i.e. detL(s, iω) vanishes for some η > 0 , (ξ, ω) ∈ R3 .

Remark 3.1 In Reference [6] it was shown that if the uniform Lopatinskii condition is satisfied

for the linearized problem for Lax shock waves, then the symbol associated with the front of shock

wave is elliptic. The same is, of course, true for characteristic discontinuities and a corresponding

general proposition could be formulated as well.

Remark 3.2 The most general normal mode solution of problem (24), (27) corresponding to the

root s = 0 of the Lopatinskii determinant is

H1 = c0e
i((h1/h+

3 )ω3+(ω,y)) , W = 0 for x1 > 0 , Y = 0 for x1 < 0 , f = f̂ ei(ω,y) ,

where c0 = i([h2]ω2+[h3]ω3)f̂ , with surface waves of finite energy developing for the “characteristic

unknown” z :

z = const eγ±x1+i(ω±,y) for x ∈ R3
± ,

where <γ+ < 0 , <γ− > 0 , ω± = (ω±2 , ω±3 ) ∈ R2 , and h±2 ω±3 = h±3 ω±2 .

3.3 Normal mode analysis for the reduced problem (22), (23)

The test of the Lopatinskii condition (especially, the uniform Lopatinskii condition) is in general

a nontrivial linear algebraic problem even when we treat it numerically (see, e.g. Reference [20]).

Our present goal is to test the Lopatinskii condition for the reduced problem (22), (23). Since even

the roots λ± = λ±(s, iω) (λ±1 , . . . , λ±5 ) of the dispersion relations (cf. (39))

det(sI + λ±B±1 + iω2B±2 + iω3B±3 ) = 0 (45)

cannot be found analytically in the general case, we are not able to calculate the Lopatinskii

determinant detL in an explicit form. So, the only way to proceed is to find (for fixed s and ω)

and analyze the function G(s) = detL(s, iω) numerically.

To prepare problem (22), (23) for numerical testing of the Lopatinskii condition we make

some useful modifications of this problem proposed in Reference [9]. First, we introduce the new

dependent and independent variables

t′ = ht , r′ = (1/h)r , w′ = (1/h)w .
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Second, without loss of generality we suppose that

h± = hb±1 , b−1 = (cos θ, sin θ, 0) , b+
1 = (cos θ, sin θ cosφ, sin θ sinφ) ,

where 0 < θ < π/2 and 0 < φ < 2π . Introducing the orthonormal basis {b±1 ,b±2 ,b±3 } associated

with the vectors h± , we have

w′ =
3∑

k=1

w̃kb±k , w̃k = (w′,b±k ) for x ∈ R3
± ,

b+
2 = (− sin θ, cos θ cos φ, cos θ sin φ) , b+

3 = (0,− sin φ, cosφ) ,

b−2 = (− sin θ, cos θ, 0) , b−3 = (0, 0, 1) .

In particular, the last three boundary conditions in (23) are now written as
[

p

2
b1 −

3∑

k=1

w̃kbk

]
= 0 . (46)

Now, to simplify the notation, we drop the primes and tildes and denote by W = (p, r,w) the vector

(p, r′, w̃1, w̃2, w̃3) . Moreover, the matrices in the interior equations and the boundary conditions

are again denoted by B±k and G± respectively. Their explicit form is as follows:

B±k =




0 0 b±1k b±2k b±3k

0 0 0 b±2k b±3k

(β − 1)b±1k b±1k 2b±1k 0 0

βb±2k b±2k 0 2b±1k 0

βb±3k b±3k 0 0 2b±1k




, G− =




−1 0 0 0 0

0 −1 0 0 0

d1 0 d2 2d3 2d4

−d3 0 2d3 d5 d6

d4 0 −d4 −d6 d7




,

G+ = I , where β = 1/h2 = ρ̄c̄2/|H̄±|2 is the so-called value of plasma, b+
ik and b−ik are the kth

components of the vectors b+
i and b−i respectively (b±11 = cos θ , b−12 = sin θ , b+

12 = sin θ cos φ , etc.),

d1 =
1
2

sin2 θ(cos φ− 1) , d2 = −(cos2 θ + sin2 θ cosφ) , d3 =
1
2

cos θ sin θ(1− cos φ) ,

d4 = −1
2

sin θ sin φ , d5 = −(sin2 θ + cos2 θ cosφ) , d6 = − cos θ sin φ , d7 = cos φ .

Multiplying boundary conditions (46) by the vectors b+
1 , b+

2 , and b+
3 , we rewrite them in the

form

G+W+ + G−W− = 0. (47)

After some algebra we find the explicit form of the dispersion relations (45):

K±
2

{
βsK±

2

(
|ω|2 − (λ±)2

)
+ (K±

1 )2
(
|ω|2 − (λ±)2 + (K±

1 )2
)}

= 0 , (48)

where

K±
m = K±

m(s, iω, λ±) = s + mN± , m = 1, 2 , N± = N±(λ±, iω) = λ± cos θ + ig±1 (ω) sin θ ,
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g+
1 (ω) = ω2 cos φ + ω3 sin φ , g−1 (ω) = ω2 , N± =

√
β

(
h±, ξ±

)
, ξ± = (λ±, iω) .

In the sequel, we will also use the notations

g+
2 (ω) = −ω2 sin φ + ω3 cosφ , P± = P±(λ±, iω) = −λ± sin θ + ig±1 (ω) cos θ .

We are interested in the roots λ+
k (k = 1, 4) and λ−5 of (48) with <λ+

k < 0 and <λ−5 > 0 for

η > 0 (see the previous subsection). From the equation K+
2 = 0 , cf. (48), we find

λ+
1 = − s + ig+

1 (ω) sin θ

cos θ
.

The eigenvector for this eigenvalue (the first column in T̃+) is

γ1 = (0 , 0 , 0 , −ig+
2 (ω) , P+

1 (s, iω)) , (49)

where P+
1 (s, iω) = P+(λ+

1 , iω) . It is easily verified that γ1 = 0 if and only if |ξ+ ×h+| = 0 , with

λ+ = λ+
1 . This happens for the neutral mode s = s0 = −ig+

1 (ω)/ sin θ and the wave vector ω such

that g+
2 (ω) = 0 .

The eigenvalues λ+
2 , λ+

3 , λ+
4 , and λ−5 cannot be calculated analytically. But, assuming that

λ+
2 , λ+

3 , and λ+
4 are simple eigenvalues, we can analytically find the eigenvectors for them:

γk = (−h2a+
k N+

k , b+
k N+

k , (b+
k + h2a+

k )s , sP+
k N+

k , ig+
2 sN+

k ) , k = 2, 3, 4 ,

γ5 = (−h2a−5 N−
5 , b−5 N−

5 , (b−5 + h2a−5 )s , sP−5 N−
5 , iω3sN

−
5 ) ,

(50)

where

a±m = |ω|2 − (λ±m)2 + (K±
1,m)2 , b±m = |ω|2 − (λ±m)2 + (N±

m)2 , N±
m = N±(λ±m, iω) ,

P±m = P±(λ±m, iω) , K±
1,m = K±

1 (s, iω, λ±m) , m = 2, 5 .

That is, if η > 0 and the eigenvalues λ+
2 , λ+

3 , and λ+
4 are simple, then from (42) we can determine

the matrix L and find the Lopatinskii determinant detL , that depends on the functions λ+
k (s, iω)

(k = 2, 3, 4), λ−5 (s, iω) whose explicit form is unknown.

At the same time, there exist so-called glancing modes s at which some roots λ+ of (48) are

not simple. Two glancing modes can be analytically found and correspond to the case when

the “explicit” eigenvalue λ+
1 becomes double or triple. Indeed, it happens when in (48) either

simultaneously K+
2 = 0 and |ω|2 − (λ+)2 + (K+

1 )2 = 0 or simultaneously K+
2 = 0 and K+

1 = 0 .

The glancing mode for the first case is

s = s1 =
|g+

2 | cos θ − ig+
1

sin θ
.

If g+
2 (ω) 6= 0 , then <s1 > 0 , the eigenvalue λ+

1 is double, and

λ+
1 = − |g+

2 | − ig+
1 cos θ

sin θ
.
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But, if g+
2 (ω) = 0 , it becomes triple: λ+

1 = λ+
2 = λ+

5 = ig+
1 cos θ/ sin θ . Moreover, s1 = s0 and the

eigenvalue λ+
5 comes from the right half-plane:

λ+
5 = lim

δ→0

δ + ig+
1 cos θ

sin θ
, δ = |g+

2 (ω)| .

Remark 3.3 The limit case when λ+
1 is a triple eigenvalue for s = s0 corresponds to |ξ+×h+| = 0

(see above). The so-called nonglancing condition [10] requires that any eigenvalue λ± should be

simple as soon as |ξ± × h±| = 0 . This means that the nonglancing condition, which is satisfied

for MHD shock waves (see Appendix A in Reference [10]), is violated for Alfvén discontinuities.

The glancing mode for the second case when both K+
1 and K+

2 vanish is s = 0 . Clearly, the

eigenvalue λ+
1 = −ig+

1 sin θ/ cos θ is triple. Other glancing modes cannot be found analytically, but

the numerical analysis of the dispersion relation (48) (for λ+) for the case η > 0 shows that the

maximum number of glancing modes (together with the mode s = s1) is five. However, for pressure

dominated flows when β is large enough, in particular, for the incompressibility limit β →∞ there

exists only one glancing mode with η > 0 . This mode is s = s1 calculated above.

The Lopatinskii determinant detL computed for the eigenvectors (50), of course, vanishes at

glancing modes. But these modes are, generally speaking, fictitious roots of the equation detL = 0

when L is properly determined. For glancing modes associated with the “explicit” eigenvalue λ+
1

the basis of the eigenspace can be calculated analytically. In particular, for s = s1 with g+
2 6= 0

the geometric multiplicity of the double eigenvalue λ+
1 is one, and the corresponding eigenvector

γ1 and the adjoint vector γ2 can be easily found (we do not present them here).

Remark 3.4 In Reference [9] the Lopatinskii condition for the reduced problem (22), (23) was

analyzed for the limit case β → 0 of magnetically dominated flows. For this case the eigenvalues λ+
2 ,

λ+
3 , λ+

4 , and λ−5 can be found as series in the small parameter
√

β , where s = s′+s′′
√

β+s′′′β+. . . .

The Lopatinskii determinant was calculated in Reference [9] in the zero limit in
√

β : detL =

detL0 + O(
√

β) . But the root s′ = cos θ − ig+
1 (ω) sin θ of the equation detL0 = 0 exhibited in

Reference [9] as an unstable mode corresponds actually to a glancing mode and, therefore, s is a

fictitious zero of the Lopatinskii determinant.

Matrix L(s, iω) has the form

L =
(
γ1 γ2 γ3 γ4 G−γ5

)
,

where γk (k = 1, . . . , 5) are the column vectors given by (49), (50). In general, it is impossible to

find zeros of the function G(s) = detL(s, iω) analytically. Therefore, we do this numerically with

the help of MATLAB.
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3.4 Numerical results

Without loss of generality, we restrict out analysis to the case

ω = (ω2, ω3) = (cos ψ, sin ψ)

for ψ ∈ [0, π]. This means that |ω| = 1 and that ψ is the angle between the unit vector ω and the

x2 axis in the x2 − x3 plane.

We used the secant method for finding zeros of G(s) (in the upper half plane of complex variable

s) for fixed β, θ, φ and ψ. It turned out that unstable modes (Res > 0) exist for certain values of

θ and φ and all finite values of β. Unstable mode exist only within a narrow interval in ψ. Typical

curves of η ≡ Re(s) versus ψ are shown in Fig. 1.

Once we have found unstable modes, we computed the instability domain in the plane of

parameters θ and φ. To do this, we first fixed some values of β and θ and computed

ηm(β, θ, φ) = max
0≤ψ≤π

Re {s}.

for various values of ψ ∈ [0, π]. Typical curves of ηm versus φ are shown in Fig. 2.

We applied linear interpolation to find φ∗ at which ηm vanishes, this gave us the boundary

of the interval of instability in φ. Then we changed values of β and θ and repeated the whole

procedure again, and so on. The resulting instability domains in the φ-θ plane for some values of

β are shown in Fig. 3. For each curve in Fig. 3, the unstable domain is above the curve. Figure 3

shows that the Alfvén discontinuity is unstable in a wide range of φ as θ → π/2. When θ decreases

from π/2, the interval of values of φ for which the Alfvén discontinuity is unstable shrinks. At

certain θ = θ∗, this interval degenerates to a point, and there is no instability for 0 < θ ≤ θ∗. For

each fixed value of β, the maximum growth rate is attained when θ → π/2.

If β is increased from 0 to ∞ for given θ and φ, the growth rate increases from zero, attains

its maximum value at some β = β∗ and then decreases monotonically to zero as β →∞. Typical

curves for some fixed θ, φ and ψ are shown in Fig. 4. The case β = ∞ corresponds to the

incompressible fluid. It is shown in the next section that incompressible Alfvén discontinuities are

always stable, which agrees with our numerical results. In [9], the Lopatinskii determinant for

the reduced problem had been analyzed in the limit (β → 0) and its zero had been found. The

numerical calculations however show that this root of the Lopatinskii determinant corresponds to

a double root of the dispersion relation for λ+ and is therefore a fictitious zero of the Lopatinskii

determinant.

As was mentioned above, the maximum growth rate corresponds to the limit as θ → π/2. Note

that the limit case θ = π/2 corresponds to a particular case of a tangential discontinuity. Our

results suggest that this tangential discontinuity (that can be treated as the degenerate case of

Alfvén discontinuity) is unstable in the class of flows with Alfvén discontinuities.
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4 Incompressible Alfvén discontinuities

A solution with Alfvén discontinuity of the system of ideal incompressible MHD

dv
dt
− (H,∇H) +∇q = 0 ,

dH
dt

− (H,∇)v = 0 , div v = 0 (51)

is determined as a piecewise smooth solution U = (v,H) of (51) being a classical solution of (51)

on either side of a smooth hypersurface Γ and satisfying the jump conditions

[HN] = 0 , [v −H] = 0 , ∂tf = v+
N −H+

N , [q] = 0 (52)

at each point of Γ . Here the magnetic field is measured in Alfvén velocity units (H := H/
√

ρ̄ ,

ρ̄ ≡ const > 0) and the pressure p was divided by the density ρ̄ (p := p/ρ̄). Other notations are

the same as in Section 1. Applying arguments similar to those in the proof of Proposition 2.1 we

can show that for the free boundary value problem (51), (52), (5) the divergent constraint (2) can

be regarded as the restriction only on the initial data (5).

For incompressible MHD there are two types of strong discontinuities: current-vortex sheets

[13, 21] (j = 0 , H+
N = 0) and Alfvén discontinuities (j 6= 0 , [ρ̄] = 0). We omit the deduction of

(52) from the general jump conditions for incompressible MHD (see, e.g. Reference [21]) and just

refer to Reference [16]. Note that, unlike compressible Alfvén discontinuities, the pressure p can in

principle have a jump on the surface of incompressible Alfvén discontinuity, but the total pressure

q is, of course, continuous.

Consider a piecewise constant solution of (51), (52) for the planar Alfvén discontinuity with

the equation x1 = 0 :

(q̄, Ū±) = (q̄, v̄±, H̄±) for x1 ≷ 0 , (53)

where, in view of (52),

H̄± = (H̄1, H̄
±
2 , H̄±

3 ) , v̄± = (v̄1, v̄
±
2 , v̄±3 ) , v̄1 = H̄1 , [v̄k] = [H̄k] , k = 2, 3 .

Without loss of generality we suppose that H̄1 > 0 . Linearization of equations (51), (52) about

solution (53) yields the linear problem with constant coefficients:

∂tv + (H̄±,∇)w +∇q = 0 , ∂tH− (H̄±,∇)w = 0 , div v = 0 if x ∈ R3
± , (54)

[H1] = [h2]∂2f + [h3]∂3f , ∂tf = w+
1 , [w] = 0 , [q] = 0 if x1 = 0 . (55)

Here w = (w1, w2, w3) = v −H , and in the derivation of (54), (55), we performed the Galilean

transformation

t̃ = t , x̃1 = x1 , x̃k = xk −
(
v̄+

k − H̄+
k

)
t , k = 2, 3

(the tildes were removed).
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Taking into account the constraint div H = 0 , from (54), (55) we easily obtain the following

reduced problem in which boundary conditions do not contain the front f (cf. (22), (23)):

∂tw + 2(H̄±,∇)w +∇q = 0 , div w = 0 if x ∈ R3
± , (56)

[q] = 0 , [w] = 0 if x1 = 0 . (57)

Let us now consider the problem which contains (56), (57) as a separate subproblem and which

can be proved to be equivalent to the original problem (54), (55). The unknown for this problem

is V = (z2, z3,H1,W) , where zk = vk + Hk (k = 2, 3), W = (q,w) , and the interior equations

include

∂tzk + ∂kq = 0 , k = 2, 3 ,

∂tH1 + 2∂1H1 + ∂2z2 + ∂3z3

+(H̄1 − 1)(∂2w2 + ∂3w3)− H̄±
2 ∂2w1 − H̄±

3 ∂3w1 = 0 for x ∈ R3
±

(58)

and equations (56). The boundary conditions for (58), (56) are relations (55). The functions z2

and z3 are, in some sense, “incompressible” analogues of “characteristic unknowns” for hyperbolic

problems.

Since we used the constraint div H = 0 while deducing (56), (58) from (54), we need the

following proposition to show the equivalence of problems (54), (55) and (58), (56), (55).

Proposition 4.1 If the equations

∂1H1 +
1
2
∂2(z2 − w2) +

1
2
∂3(z3 − w3) = div H = 0 (59)

for x ∈ R3
± hold for the initial data for problem (58), (56), (55), then V also satisfies (59) for all

t > 0 .

The proof of Proposition 4.1 is similar to that of Proposition 3.1 and we drop it.

Applying a Fourier-Laplace transform to system (58), (56) we obtain the system of ordinary

differential equations in the form of (36) with Ŷ = (Ĥ1,Ŵ) and

P±(s, iω) =



−s

2
c(ω)

s
+ ib±(ω)

0 M±(s, iω)


 .

Here

c(ω) =
(−|ω|2/2 , 0

)
, b±(ω) =

1
2

(
0 , a±(ω) , (1− H̄1)ω2 , (1− H̄1)ω3

)
,

a±(ω) = H̄±
2 ω2 + H̄±

3 ω3 , the matrices M± have no singularities at s = 0 and are written out in

Appendix A.

Applying a Fourier-Laplace transform to the boundary conditions and omitting usual arguments

(see Subsection 3.2), we finally get the Lopatinskii determinant detL with the matrix L(s, iω) in
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the form of (43). The determinant of the matrix L(s, iω) is the Lopatinskii determinant for the

reduced problem (56), (57) and for its explicit form we refer to Appendix A. That is, we arrive at

the following proposition.

Proposition 4.2 Planar incompressible Alfvén discontinuities are never uniformly stable. They

are violently unstable if and only if detL(s, iω) = 0 for some η > 0 , (ξ, ω) ∈ R3 .

The linear stability of planar incompressible Alfvén discontinuities was shown in Reference [16]

by normal modes analysis (see also Appendix A). Moreover, in Appendix A we prove that the

reduced problem (56), (57) satisfies the uniform Lopatinskii condition, which is however violated

for the full problem (54), (55) (cf. Proposition 4.2). At the same time, the stability of planar

discontinuities is trivially proved because it follows from the conserved integral

I(t) = I(0) (60)

which can be easily obtained for problem (56), (57), where I(t) =
∑
± ‖w(t)‖2

L2(R3
±)

.

For the original problem (54), (55) the a priori estimate (60) is an estimate in a seminorm of

the solution U . Nevertheless, we now show that it enables us to deduce an energy estimate for a

norm of U as well as to estimate ∇q and the front f . This estimate is however very weak and we

present its deduction just to demonstrate that there is not much hope to prove an estimate for the

variable coefficients problem (see Remark 4.1 below).

Theorem 4.1 Solutions of (54), (55) obey the a priori estimates

∑
±
‖U(t)‖L2(R3

±) ≤ C1

∑
±

{
‖U(0)‖H2

tan(R3
±) + ‖∂tU(0)‖H1

tan(R3
±)

}
, (61)

∑
±
‖∇q‖L2([0,T ]×R3

±) ≤ C2

∑
±

{
‖U(0)‖H2

tan(R3
±) + ‖∂tU(0)‖H1

tan(R3
±)

}
, (62)

‖f(t)‖H1(R2) ≤ ‖f(0)‖H1(R2) + C3

∑
±

{
‖U(0)‖H2

tan(R3
±) + ‖∂tU(0)‖H1

tan(R3
±)

}
(63)

for any t ∈ (0, T ) . Here Ck = Ck(T ) (k = 1, 2, 3) are positive constants independent of the initial

data;

‖(·)(t)‖Hm
tan(R3

±) =
∑

|α|≤m

‖∂α
y (·)(t)‖2L2(R3

±) , ∂α
y = ∂α1

2 ∂α2
3 , α = (α1, α2) .

Proof. By tangential differentiation (with respect to y and t) of the first equation in (56) we easily

obtain the conserved integral

J(t) = J(0) , (64)

where

J(t) =
∑
±

{
‖w(t)‖2H2

tan(R3
±) + ‖∂tw(t)‖2H1

tan(R3
±)

}
.
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Multiplying the first equation in (56) by ∇q and taking into account the boundary conditions (57)

and the equation div w = 0 , we have

Q(t) =
∑
±
‖∇q(t)‖2L2(R3

±) = −
∑
±

∫

R3
±

{
div (q∂tw) + div (2q(H̄±,∇)w)

}
dx

= 2
∫

R2
q+

[
(H̄,∇w1)

]
dy = 2

∫

R2
q+

(
[H̄2]∂2w

+
1 + [H̄3]∂3w

+
1

)
dy

= −2[H̄2]
∫

R2
w+

1 ∂2q
+dy − 2[H̄3]

∫

R2
w+

1 ∂3q
+dy .

The boundary integral
∫

R2
w+

1 ∂2q
+dy = −

∑
±

∫

R3
±

(∂1w1∂2q + w1∂1∂2q)dx ,

where from (56) one has:

−∂1∂2q = ∂t∂2w1 − 2H̄1(∂2
2w2 + ∂2∂2w3) + 2H̄±

2 ∂2
2w1 + 2H̄±

3 ∂2∂3w1 , x ∈ R3
± .

Handling analogously the boundary integral
∫
R2 w+

1 ∂3q
+dy and applying the Young inequality, we

obtain

Q(t) ≤ c1

(
εQ(t) +

1
ε
J(t)

)
,

where ε > 0 is a constant. Here and below ci = ci(Ū+, Ū−, T ) (i = 1, 2, . . .) are positive constants.

Choosing ε small enough we get

Q(t) ≤ c2J(t) = c2J(0)

that yields (62).

It follows from (56) that

∑
±
‖∂1w(t)‖2L2(R3

±) ≤ c3(Q(t) + J(t)) ≤ c4J(0) . (65)

At last, multiplying the second equation in (54) by H and using then (64) and (65) we deduce the

estimate
∑
±
‖H(t)‖2L2(R3

±) ≤ c5J(0) . (66)

Using the equality v = w + H and inequality (66) we estimate the velocity v that gives (61).

Estimate (63) for the front f is trivially follows from the second boundary condition in (55) by

applying trace’s property for w1 and taking into account the equation div w = 0 . ¤

Remark 4.1 The a priori estimates (61)–(63) are very weak in many respects. Moreover, since q

is an “elliptic” unknown, the differentiation of the interior equations and the boundary conditions

with respect to t is an absolutely forbidden trick for the case of variable coefficients (see discussion
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in Reference [13]). At the same time, the main difficulty to carry over the a priori estimates to the

case of variable coefficients is, of course, the “non-ellipticity of the front.” We refer, for example,

to References [12, 13, 14] where the fact that the symbol associated with the front of discontinuity

was elliptic played the crucial role in the variable coefficient analysis for current-vortex sheets and

for 2D vortex sheets.

Appendix A

In this Appendix we show that the reduced problem (56), (57) for planar incompressible Alfvén

discontinuities satisfies the uniform Lopatinskii condition.

Rearranging the equations of system (56) and applying to them a Fourier-Laplace transform,

we obtain the system of ordinary equations in the form of (35) with Ŵ = (q̂, ŵ) and

M±(s, iω) =




0 −s− 2ia+ 2iH̄1ω2 2iH̄1ω3

0 0 −iω2 −iω3

− iω2

2H̄1
0 −s + 2ia±

2H̄1
0

− iω3

2H̄1
0 0 −s + 2ia±

2H̄1




,

where a±(ω) = H̄±
2 ω2 + H̄±

3 ω3 . The eigenvalues λ± of the matrices M± are easily calculated:

λ±1 = λ±2 = −s + 2ia±

2H̄1
, λ±3 = −|ω| , λ±4 = |ω| .

We need to find the bases of eigenspaces for λ+
1 , λ+

3 , and λ−4 . Supposing that η > 0 and

λ+
1 6= λ+

3 we calculate two eigenvectors γ1,2 for the double eigenvalue λ+
1 and the eigenvectors γ3

and γ4 for the simple eigenvalues λ+
3 and λ−4 :

γ1 = (0 , iω2 , −λ+
1 , 0) , γ2 = (0 , iω3 , 0 , −λ+

1 ) ,

γ3 = (s + 2ia+ − 2H̄1|ω| , |ω| , −iω2 , −iω3) , γ4 = (s + 2ia− + 2H̄1|ω| , −|ω| , −iω2 , −iω3) .

Here we also suppose that ω 6= 0 . This is natural assumption for the case of incompressible fluid.

Indeed, the Lopatinskii determinant formally vanishes for ω = 0 but this is just because the total

pressure q is an “elliptic” unknown and determined up to an arbitrary function of t . The fact that

the Lopatinskii determinant is zero for ω = 0 does not imply the existence of a 1D Hadamard-type

ill-posedness example for the “hyperbolic” unknown w . Since the Lopatinskii determinant is a

homogenous function with respect to (s,ω) , without loss of generality we suppose that |ω| = 1 .

In view of the boundary conditions (57), the matrix L whose determinant is the Lopatinskii

determinant is formed by the column vectors γ1 , γ2 , γ3 , and −γ4 . The Lopatinskii determinant
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is then easily computed:

detL = 2λ+
1

{
λ+

1

(
s + i(a+ + a−)

)
+ 2H̄1 + i(a− − a+)

}
.

The Lopatinskii determinant vanishes when either λ+
1 = 0 or the expression in curly braces is zero.

For the last case, omitting detailed calculations we find two roots:

s = s1 = 2(H̄1 − ia+) , s = s2 = −2H̄1 − i(a+ + a−) .

The “unstable” root s1 is actually a “glancing mode” for which λ+
1 = λ+

2 = λ+
3 = −1 (recall that

|ω| = 1). Analogously, for the neutral mode s = −2ia+ at which λ+
1 = 0 the vectors γ1 and γ2

become linearly dependent. If the vectors γ1,2,3 for the modes s = s1 and s = −2ia+ are calculated

properly (we drop calculations), it can be shown that in the first case detL = −2iH̄1 6= 0 and in

the second case detL = 4H̄1 + 2i(a− − a+) 6= 0 . Thus, the only genuine zero of the Lopatinskii

determinant is the stable root s = s2 . Hence, problem (56), (57) satisfies the uniform Lopatinskii

condition.
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Figure captions

Figure 1. Typical graphs of η =Re(s) as function of ψ.

Figure 2. ηm = max
ψ

Re(s) as function of φ.

Figure 3. Instability domain in φ-θ plane.

Figure 4. Re(s) as function of β1/2 for φ = π, ψ = π.
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Figure 1: Typical graphs of Re(s) as function of ψ.
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