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I. Introduction

In this note, we consider the stability of steady magnetohydrodynamic flows of an ideal
incompressible fluid to small three-dimensional perturbations. We exploit the approach
first proposed by Bernstein et al (see Ref. 1) for analysis of the stability of magnetostatic
equilibria and later generalized by Frieman and Rotenberg (see Ref. 2) to the case of
steady MHD flows.

The idea of the method is to construct a quadratic in perturbations functional
which is conserved by the linearized equations. This has been done by Frieman and
Rotenberg who obtained the conserved energy functional for a general steady basic
state. Though this result is known for almost forty years now, not many stability
criteria seem to have been obtained with its help. So far, it is known only that the
energy integral for linearized equations is non-negative definite for some magnetostatic
equilibria (in this case it reduces to the second variation obtained in Ref. 1) and for a
relatively trivial situation when in the basic state the magnetic field H(x) corresponds to
a stable magnetostatic equilibrium and the velocity is given by U(x) = λH(x) where λ
is constant and |λ| < 1 (see e.g. Ref. 3), so that again the energy functional is effectively
reduced to that corresponding to a magnetostatic equilibrium. It is therefore interesting
to find out whether there are any non-trivial steady MHD flows that are stable to three-
dimensional perturbations and that are not reducible to any magnetostatic equilibrium.

This question is addressed in the paper. Our analysis results in explicit stability
criteria for two classes of non-trivial steady MHD flows. Namely, we obtain sufficient
conditions for stability to small three-dimensional perturbations of (i) steady flows with
H = H0(x, y)ez and U = λ(x, y)H where H0(x, y) and λ(x, y) are arbitrary functions,
and of (ii) general two-dimensional steady flows.

The plan of the paper is as follows. In section 2 we first formulate the linearized
stability problem for an arbitrary steady state, and then, following the procedure of
Ref. 2, we obtain the energy integral which is conserved by the linearized equations. In
section 3 we analyse the properties of this integral invariant and formulate the stability
criteria.

II. Basic equations

Consider an incompressible, inviscid and perfectly conducting fluid contained in a do-
main D with fixed boundary ∂D. Let u(x, t) be the velocity field, h(x, t) the magnetic
field (in Alfven velocity units), p(x, t) the pressure (divided by density), and j = ∇× h
the current density. Then the governing equations are:

∂u/∂t + (u · ∇)u = −∇p + j× h , (1)
ht = (h · ∇)u− (u · ∇)h ≡ [u,h] , (2)
j = ∇× h , ∇ · u = ∇ · h = 0 . (3)

Equation (2) implies that h is frozen in the fluid, its flux through any material surface
being conserved. We suppose that the boundary ∂D is perfectly conducting and that
the magnetic field h does not penetrate through ∂D. The boundary conditions are then

n · u = 0 , n · h = 0 on ∂D . (4)
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We suppose further that at t = 0, the fields u and h are smooth and satisfy (3) and (4),
but are otherwise arbitrary. (Throughout the paper the term ‘smooth’ means smooth
enough so as to justify all our mathematical manipulations.)

Let
u = U(x) , h = H(x) (5)

be a steady solution of the problem (1)-(4) whose stability will be studied. We shall refer
to this solution as the basic state. Let u′(x, t) and h′(x, t) be infinitesimal perturbation
to the basic state (5). Linearized equations governing the evolution of u′(x, t) and
h′(x, t) are

u′t + (u′ · ∇)U + (U · ∇)u′ = −∇p′ + j′ ×H + J× h′ , ∇ · u′ = 0 , (6a)
h′t = [u′,H] + [U,h′] , ∇ · h′ = 0 in D ; (6b)
u′ · n = h′ · n = 0 on ∂D . (6c)

From here on, ‘primes’ will be omitted to simplify the notations. Following Ref. 2, we
introduce the Lagrangian displacement ξξξ(x, t) of a fluid particle (i.e. the displacement
at the time t of a fluid particle in perturbed flow relative to its position x (at the time
t) in unperturbed flow) satisfying the equation

u = ξξξt + [ξξξ,U] . (7)

Equations (6b) and (7) have a consequence that

(h− [ξξξ,H])t = [U, (h− [ξξξ,H])] .

It follows that if the relation
h = [ξξξ,H] (8)

is satisfied at t = 0 then it holds for any t > 0. This allows us to introduce a special class
of isomagnetic perturbations as such perurbations that satisfy the relation (8). And only
such perturbations will be considered.

Substitution of (7), (8) in (6a) yields the following equation for the Lagrangian
displacement ξξξ:

ξξξtt + 2(U · ∇)ξξξt = K̂ξξξ −∇α , (9)

where K̂ is symmetric operator defined by the formula

K̂ξξξ ≡ U× curl[ξξξ,U] + [ξξξ,U]×ΩΩΩ−H× curl[ξξξ,H]− [ξξξ,H]× J , (10)

and where
α ≡ p′ + U · [ξξξ,U]

is a function which is determined from obvious conditions

∇ · ξξξ = 0 in D , ξξξ · n = 0 on ∂D . (11)

Eq. (9) represents the ‘incompressible version’ of the equation obtained by Frieman and
Rotenberg (Ref. 2).
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III. Sufficient conditions for stability

Taking a dot-product of Eq. (9) with ξξξt and integrating over D, we obtain

d

dt

∫

D

(
1
2ξξξ2

t − 1
2ξξξ · K̂ξξξ

)
dV = 0 ,

i.e. the quadratic integral

E ≡
∫

D

(
1
2ξξξ2

t − 1
2ξξξ · K̂ξξξ

)
dV (12)

is conserved by linearized equations and may be interpreted as the energy of the lin-
earized problem.

Evidently, E as a quadratic functional of ξξξt and ξξξ is positive definite if the ‘potential
energy’

W ≡ − 1
2

∫

D
ξξξ ·K̂ξξξ dV = 1

2

∫

D

(
[ξξξ,H]2+[ξξξ,H]·(J×ξξξ)−[ξξξ,U]2−[ξξξ,U]·(ΩΩΩ×ξξξ)

)
dV (13)

is positive definite. Positive definiteness of E, in turn, means that E can be taken as a
norm to measure the deviation of perturbed flow from unperturbed one, and the con-
servation of E by (9), (11) implies the stability of the basic state to small perturbations.
However, as we shall show, the functional W is never (strictly) positive definite.

First we note that for a particular class of perturbations (satisfying generalized
isovorticity condition 4) the corresponding integral invariant (of the linearized problem)
is indefinite in sign provided that there is a region in the flow domain where U and ΩΩΩ
are both non-zero and non-parallel to H (see Ref. 3). Moreover, in a somewhat different
from Ref. 3 and Ref. 4 variational approach of Hameiri (see Ref. 5), the corresponding
Lyapunov functional is indefinite in sign if U is not parallel to H or |U| > |H| somewhere
in D. In our case the same arguments as in Refs. 3 and 5 show that W is indefinite in
sign if there is a region in the flow domain where U is non-zero and non-parallel to H.
Indeed, in this region one can choose a function ξξξ(x) which rapidly oscillates along U
and slowly varies in H-direction, and which vanishes outside the region. For such a ξξξ,
the leading term in W has the form

W ∼ − 1
2

∫

D

(
(U · ∇)ξξξ

)2

dV

and is obviously negative, so that W can take negative values.
Consider now the situation when U is parallel to H everywhere in D. In this case,

W is never strictly positive definite: for any ξξξ = g(x, t)H(x) with arbitrary function
g(x, t) the functional W vanishes. Thus, W may be at most a positive semi-definite
functional. Suppose now that W is positive semi-definite. The solutions of Eqs. (9),
(11) such that W = 0 may, in principle, grow with time. Nevertheless, it follows from the
conservation of E and from the non-negativeness of W that |ξξξ| cannot grow faster than
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linearly with time. It is also known that linear with time growth of ξξξ does not always
mean physical instability because the corresponding Eulerian velocity perturbation may
remain bounded (see e.g. Ref. 6). We shall not discuss this subtle question here. In
what follows we shall assume that the non-negativeness of W is sufficient for linear
stability7.

Consider now the functional W given by Eq. (13). Obviously, there are situations
when W is positive semi-definite. For instance, it is well-known that it is so for certain
magnetostatic equilibria (U ≡ 0) (see e.g. Ref. 8). On the other hand, the results of
Refs. 3, 5 and our simple arguments above indicate that for steady MHD flows with
non-parallel U and H the ‘potential energy’ (13) is never of definite sign. Therefore,
in what follows, we restrict ourselves to the case of flow and magnetic field everywhere
parallel, i.e. we suppose that in the steady state (5)

U(x) = λ(x)H(x) in D (14)

with some smooth function λ(x). From the incompressibility condition, we obtain

H · ∇λ = 0 . (15)

Eqs. (1), (14) and (15) have a consequence that

∇
(
P + 1

2H
2
)

= (1− λ2)(H · ∇)H . (16)

Also, we have

[ξξξ,U] = λ[ξξξ,H] +∇λ× (ξξξ ×H) = λ[ξξξ,H]−H(ξξξ · ∇λ) , (17)
ΩΩΩ× ξξξ = λJ× ξξξ − ξξξ × (∇λ×H) = λJ× ξξξ −∇λ(H · ξξξ) + H(ξξξ · ∇λ) . (18)

Substitution of Eqs. (17), (18) in (13) yields

W = 1
2

∫

D

{
(1− λ2)

(
[ξξξ,H]2 + [ξξξ,H] · (J× ξξξ)

)
− λ(ξξξ · ∇λ) ξξξ · (J×H)

+ λ(ξξξ · ∇λ)H · [ξξξ,H] + λ(H · ξξξ)∇λ · [ξξξ,H]
}

dV . (19)

It may be shown that

X ≡ λ(ξξξ · ∇λ)H · [ξξξ,H] + λ(H · ξξξ)∇λ · [ξξξ,H]

= (H · ∇)
(
λ(ξξξ · ∇λ)(ξξξ ·H)

)
− λ(ξξξ · ∇λ)(ξξξ · ∇)

(
1
2H

2
)
− λ(ξξξ · ∇λ)

(
ξξξ · (H · ∇)H

)
.

With help of this identity, Eq. (19) may be written in the form

W = 1
2

∫

D

{
(1− λ2)

(
[ξξξ,H]2 + [ξξξ,H] · (J× ξξξ)

)
− 2λ(ξξξ · ∇λ)

(
ξξξ · (H · ∇)H

)}
dτ . (20)

Now it is clear that the following stability criterion is valid.
Proposition 1. Steady MHD flow satisfying (14) is stable to small three-dimensional
perturbations provided that the quadratic functional W , given by eqn. (20), is non-
negative definite.

Below we consider three particular classes of steady MHD flows for which we for-
mulate sufficient conditions for stability in explicit form.

5



A. Flows reducible to magnetostatic equilibria. The simplest special class of flows (14)
for which W is non-negative definite is well-known (see e.g. Ref. 3). It comprises flows
with λ = const, |λ| < 1. Indeed, for such flows the quadratic functional (20) simplifies
to

W = (1− λ2)W0 , W0 ≡ 1
2

∫

D

(
[ξξξ,H]2 + [ξξξ,H] · (J× ξξξ)

)
dτ . (21)

The sign of W is thus determined by the value of λ and by the sign of W0.
Note that the integral W0 coincides with the well-known potential energy of Ref. 1

which is related to the stability of magnetostatic equilibria and which has been studied
by numerous authors (e.g. Ref. 8). Moreover, for steady flows (14) with constant λ Eq.
(16) reduces to the equation

J×H = ∇P̃ , P̃ ≡ 1
1− λ2

(P + 1
2U

2) ,

which evidently coincides with the equation describing a magnetoststic equlibrium with
the magnetic field H and the pressure P̃ . In other words, there is one-to-one correspon-
dence between steady flows (14) (with constant λ) and magnetostatic equilibria with
the same magnetic field and the modified pressure P̃ . Therefore, we conclude that for
any stable (in the sense of non-negative definite W0) magnetostatic equilibrium the cor-
responding steady flow of the form (14) with constant λ is also linearly stable provided
that |λ| < 1|.
B. Parallel flow and field. Let the flow domain D be an infinite cylinder (of arbitrary
cross-section) parallel to the z-axis. We suppose that in the basic state both the velocity
and the magnetic field are along the axis of the cylinder and depend only upon transverse
coordinates x, y, i.e.

H = H0(x, y)ez , U = λ(x, y)H . (22)

Then,
(H · ∇)H = 0

and
[ξξξ,H] = H0(ez · ∇)ξξξ − (ξξξ · ∇H0)ez ,

whence, after some algebra, we obtain

W = 1
2

∫

D
(1− λ2)H2

0

(
(ez · ∇)ξξξ

)2

dτ . (23)

Here, we suppose that the vector fields ξξξ and ηηη decay sufficiently rapidly as |z| → ∞,
so that the integral in (23) exists8. Thus, we have obtained the following:

Proposition 2. The steady state (22) is linearly stable provided that |λ(x, y)| ≤ 1 in
D.
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C. General two-dimensional basic state. Let the flow domain be the same as in the
previous example, and, in addition to the condition (14), suppose that both the velocity
and the magnetic field are independent of z and parallel to the x, y-plane. Then

H = ∇A× ez , U = Ψ′(A)H , A = A(x, y) (24)

where A is the flux function for the magnetic field and Ψ is the stream function for the
velocity. Note that, according to (14) and (24), λ = Ψ′(A).

In the basic state,
∇2A−Ψ′(A)∇2Ψ = G(A)

for some function G(A). After some manipulations, this equation may be rewritten in
the following equivalent form

(1− λ2)∇2A− λλ′H2 = G(A) , (25)

where λ′ ≡ dλ/dA = Ψ′′. Also, in the basic state (24),

J = −∇2Aez , (H · ∇)H = −∇2A∇A +∇(H2/2) . (26)

We assume that |∇A| 6= 0 in D and define a unit vector ννν

ννν ≡ ∇A/|∇A| . (27)

It may be shown by standard but tedious manipulations (see Appendix) that the integral
(20) for the basic state (24) takes the form

W = W1 + W2 , W1 = 1
2

∫

D
(1− λ2)

(
[ξξξ,H] + (ξξξ · ννν)J× ννν

)2

dτ

W2 = −
∫

D

(
(1− λ2)(J× ννν) · (H · ∇)ννν + λλ′|H|(ννν · (H · ∇)H)

)
(ξξξ · ννν)2dτ . (28)

Further transformation of W2 with the help of (25) and (26) results in

W2 = 1
2

∫

D
(1− λ2)

(
∇2A− λλ′

1− λ2
H2

)(
−∇2A +

∇A · ∇(H2)
2H2

)
(ξξξ · ννν)2dτ . (29)

The following statement is a direct consequence of (28), (29).
Proposition 3. The steady state (24) is stable to small three-dimensional perturbations
provided that the flow is sub-alfvenic, i.e. |λ| = |Ψ′(A)| < 1, and either of the inequalities

Φ(A)H2 ≤ ∇2A ≤ ∇A · ∇(H2)
2H2

, (30)

∇A · ∇(H2)
2H2

≤ ∇2A ≤ Φ(A)H2 (31)
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is satisfied, where

Φ(A) ≡ λλ′

1− λ2
.

Note that for plane parallel flow and magnetic field when H = H0(y)ex, U = λ(y)H
the integral W2 given by (29) is identically equal to zero, so that, in agreement with
Proposition 1, the stability condition reduces to the single condition |λ| < 1.

To clarify the conditions (30), (31), we consider the following simple example. Let
in the basic state (24)

H = H0(r)eθ , H0(r) = −A′(r) , U = λ(r)H for a ≤ r ≤ b . (32)

Then the condition (30) is equivalent to the inequalities

H0(r) ≥ 0 and H ′
0(r) +

1− χ(r)
r

H0(r) ≤ 0 for a ≤ r ≤ b , (33a)

while (31) simplifies to

H0(r) ≤ 0 and H ′
0(r) +

1− χ(r)
r

H0(r) ≥ 0 for a ≤ r ≤ b . (33b)

In Eqs. (33a,b), χ(r) ≡ rλ(r)λ′(r)/(1 − λ2). Clearly, either (33a) or (33b) is satisfied
provided that

H0(r)
(
H ′

0(r) +
1− χ(r)

r
H0(r)

)
≤ 0 for a ≤ r ≤ b . (34)

We may conclude that if inequality (34) is satisfied then the steady state (32) is linearly
stable.

IV. Conclusions

We studied the linear stability of steady magnetohydrodynamic flows of an incompress-
ible fluid. We have shown that there are non-trivial steady flows for which the integral
invariant (12) of the linearized problem (9), (11) is positive semi-definite. From this
fact we have concluded that these flows are linearly stable and formulated the appro-
priate stability criteria (Propositions 2 and 3). Strictly speaking (see the discussion
in the beginning of section III), our stability conditions ensure only that there are no
perturbations which grow with time faster than linearly. An important open question is
whether the linear growth of |ξξξ| implies the growth of physical fields such as the velocity
and the magnetic field. This is a problem for further investigation.
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Consider the integral

I = 1
2

∫

D
(1− λ2)

(
h2 + h · (J× ξξξ)

)
dτ , (A1)

which enters the expression (20) (recall that, according to (8), h = [ξξξ,H]). We start
with some transformations of this integral. First, following Ref. 1, we shall prove the
identity

2(J× ννν) · (H · ∇)ννν = J2 + (J× ννν) · (∇× (ννν ×H)) + H · (J× ννν)divννν , (A2)

where ννν is defined by (27).
It follows from (24), (27) that H · ννν = 0. Therefore,

0 = ∇(H · ννν) = (ννν · ∇)H + (H · ∇)ννν + H× (∇× ννν) + ννν × J .

Hence,

∇× (ννν ×H) + Hdivννν = (H · ∇)ννν − (ννν · ∇)H
= 2(H · ∇)ννν + H× (∇× ννν) + ννν × J .

Further, we have

Y ≡ J2 + (J× ννν) ·
(
∇× (ννν ×H) + Hdivννν

)

= J2 + (J× ννν) ·
(
2(H · ∇)ννν + H× (∇× ννν)− J× ννν

)

= 2(J× ννν) · (H · ∇)ννν + H ·
(
(∇× ννν)× (J× ννν)

)
= 2(J× ννν) · (H · ∇)ννν ,

whence the identity (A2) immediately follows.
Now we rewrite the integral (A1) in the form

2I =
∫

D
(1− λ2)

{(
h + (ξξξ · ννν)J× ννν

)2

− 2(ξξξ · ννν)2(J× ννν) · (H · ∇)ννν
}

dτ + I1 , (A3)

where

I1 =
∫

D
(1− λ2)

{
2(ξξξ · ννν)2(J× ννν) · (H·∇)ννν − 2h · (J× ννν)(ξξξ · ννν)

− (J× ννν)2(ξξξ · ννν)2 + h · (J× ξξξ)
}

dτ . (A4)

Substituting (A2) in (A4), we obtain

I1 =
∫

D
(1− λ2)

{(
(J× ννν) · (∇× (ννν×H))− J0|H|divννν

)
(ξξξ · ννν)2

− 2h · (J× ννν)(ξξξ · ννν) + h · (J× ξξξ)
}

dτ . (A5)
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Here J0 ≡ −∇2A and we have used eqns. (24), (26), (27).
Now let

ξξξ = (ξξξ · ννν)ννν + ξ̃ξξ , ξ̃ξξ = b ez + cH , (A6)

i.e. b = ξξξ · ez, c = (ξξξ ·H)/H2. Substitution of (A6) in (A5) results in

I1 =
∫

D
(1− λ2)

{(
(J× ννν) · (∇× (ννν ×H))− J0|H|divννν

)
(ξξξ · ννν)2

+ h · (J× ξ̃ξξ)− h · (J× ννν)(ξξξ · ννν)
}

dτ .(A7)

Using (8) and (A6), we obtain

Y1 ≡ (ξξξ · ννν)2(J× ννν) · (∇× (ννν ×H))− h · (J× ννν)(ξξξ · ννν)

= (ξξξ · ννν)(J× ννν) ·
(
(ξξξ · ννν)∇× (ννν ×H)−∇× (ξξξ ×H)

)

= (ξξξ · ννν)(J× ννν) ·
(
(ξξξ · ννν)∇× (ννν ×H)−∇×

(
(ξξξ · ννν)ννν ×H + b(ez ×H)

))

= −J0|H|
(
(ννν · ∇)

(ξξξ · ννν)2

2
+ (ξξξ · ννν)(ez · ∇b)

)
. (A8)

From (A6) and the condition divξξξ = 0, we have

ez · ∇b = −ννν · ∇(ξξξ · ννν)− (ξξξ · ννν)divννν −H · ∇c ,

whence
Y1 = J0|H|

(
(ξξξ · ννν)2divννν + (ξξξ · ννν)(H · ∇c)

)
. (A9)

On substituting this in eqn. (A7), we get

I1 =
∫

D
(1− λ2)

{
J0|H|(ξξξ · ννν)(H · ∇c) + h · (J× ξ̃ξξ)

}
dτ . (A10)

Consider now the integral

I2 ≡
∫

D
(1− λ2)h · (J× ξ̃ξξ)dτ .

Since J× ξ̃ξξ = J0c∇A, we have

I2 =
∫

D
(1− λ2)J0c∇A · (∇× (ξξξ ×H))dτ =

∫

D

(
∇((1− λ2)J0c)×∇A

)
· (ξξξ ×H)dτ

=
∫

D
(1− λ2)ξξξ ·

(
H×

(
∇(J0c)×∇A

))
dτ = −

∫

D
(1− λ2)(ξξξ · ννν)|H|

(
H · (J0c)

)
dτ .

Whence,

I1 =
∫

D
(1− λ2)|H|c(ξξξ · ννν)

(
H · ∇(∇2A)

)
dτ . (A11)
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From (25),
(1− λ2)(H · ∇)∇2A = λλ′

(
H · ∇(H2)

)
.

Eqn. (A11) can therefore be written as

I1 =
∫

D
λλ′|H|

(
H · ∇(H2)

)
c(ξξξ · ννν)dτ . (A12)

Now, taking account of eqns. (A1), (A3) and (A12), we can rewrite (20) in the form
W = W1 + R where

W1 = 1
2

∫

D
(1− λ2)

(
h + (ξξξ · ννν)J× ννν

)2

dτ

R = 1
2

∫

D

{
λλ′|H|

(
H · ∇(H2)

)
c(ξξξ · ννν)

− 2(1− λ2)(ξξξ · ννν)2(J× ννν) · (H · ∇)ννν − 2λλ′|H|(ξξξ · ννν)ξξξ · (H · ∇)H
}

dτ . (A13)

All that remains to be done is to show that R in (A13) coincides with the integral W2

given by (28). We have

−λλ′|H|(ξξξ · ννν)ξξξ · (H · ∇)H = −λλ′|H|(ξξξ · ννν)
(
(ξξξ · ννν)ννν + cH

)
· (H · ∇)H .

Substitution of this in the expression for R yields

R = −
∫

D

{
(1− λ2)(ξξξ · ννν)2(J× ννν) · (H · ∇)ννν + λλ′|H|(ξξξ · ννν)2ννν · (H · ∇)H

}
dτ .

After comparison of this formula with (28) we conclude that R is indeed the same as
W2.
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