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Abstract

We study the behaviour of a layer of an electrically conducting inviscid incompressible fluid in a high-frequency
alternating magnetic field. We derive nonlinear asymptotic equations governing the evolution of the fluid layer in
the high-frequency limit. As a test for the model, we consider the linearised stability problem for an infinite planar
free surface of a layer of finite depth.
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1. Introduction

Alternating electromagnetic fields are used in a number of metal processing techniques to levitate, stir
and confine liquidmetals.Theeffect of electromagnetic fieldson the free surfaceof electrically conducting
fluids has received considerable attention in the literature[2–5,7,8]. The simplest problem that has been
studied by many authors (see, e.g.,[2]) is the stability of a planar horizontal free surface of a conducting
fluid in the presence of a horizontal alternating magnetic field. The field induces electric current in the
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fluid which, in turn, produces the Lorentz force acting on the fluid. At high frequency, the magnetic field
penetrates only a shallow surface layer of the fluid. If we ignore finite thickness of this surface layer and
regard it as a surface (of zero thickness), we arrive at themodel where the fluid is perfectly conducting and
where there is a current sheet at the free surface leading to an appropriate jump in tangent magnetic field.
This idealized problem had been studied by Ladikov[4] who concluded that a high-frequency rotating
magnetic field can stabilise a levitating layer of a liquid metal. Garnier andMoreau[3] had considered the
linearised stability of a planar horizontal interface between a nonconducting fluid occupying half-space
and carrying a uniform alternating magnetic field and an infinitely deep layer of a fluid of finite electric
conductivity. They considered the limit of high frequency of the applied magnetic field and averaged the
Lorentz force over the period. The result of their study demonstrated that the magnetic field is stabilising.
Ramos and Castellanos[7] had taken into account viscosity of the fluid in a similar stability problem
with a plane perfectly conducting cover at some distance from the interface. Parametric resonance at
moderate frequency of the applied magnetic field has been studied by Cherepanov[1] in the case of
perfectly conducting but viscous fluid and by Fautrelle and Sneyd[2] for a fluid with finite conductivity.
Most papers on the subject deal with the linearised stability problems in two limit cases: either the

fluid is perfectly conducting or its conductivity is not only finite but large enough.Another approximation
employed in many papers is that, while studying the linearised stability in high-frequency limit, an ad hoc
procedure of averaging the Lorentz force is employed. Although the procedure seems to be physically
reasonable, it is desirable to obtain the averaging procedure using some regular technique. It is the aim
of the present paper to obtain the nonlinear equations that describe asymptotic behaviour of a layer of an
inviscid fluid of finite electric conductivity in an arbitrary periodic magnetic field in the high-frequency
limit.
The plan of the paper is as follows. In Section 2, we formulate the problem. In Section 3, we derive an

asymptotic form of the governing equations using the method of multiple scales. Section 4 deals with the
linearised stability of a planar free surface in the framework of the asymptotic model obtained in Section
3. Finally, in Section 5, we discuss the results.

2. Formulation of the problem

Consider a layer of a conducting inviscid fluid. The layer is bounded by a rigid perfectly conducting
planez = −H and a free surface

z = �(x, y, t) (1)

and extends to infinity inx andy direction. In the space above the layer (z > �(x, y, t)) there is vacuum
(or a nonconducting gas of small density), and a periodic (in time) alternating magnetic field is applied
at infinity (asz → ∞). In the vacuum region, the magnetic fieldB(x, t) is irrotational

B = ∇�, ∇2� = 0 for z > �(x, y, t), (2)

∇� → B∞(�t) asz → ∞, (3)

whereB∞(�t) is a periodic function oft with period 2�/� with zero mean value,

B
∞ = �

2�

∫ 2�/�

0
B∞(�t)dt = 0.
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We assume thatB∞ is parallel to the horizontal plane, i.e.B∞ · ez = 0. The evolution of the magnetic
field and the velocity of the fluidv(x, t) in the layer is governed by the standard equations of magneto-
hydrodynamics:

vt + (v · ∇)v = −1

�
∇p − gez + 1

�
(j × B), (4)

Bt = ∇ × (v × B) − �∇ × (∇ × B), (5)

∇ · v = 0, ∇ · B = 0. (6)

Herep(x, t) is the pressure,� the density of the fluid,g the gravity constant,� the magnetic diffusivity.
We employ the usual assumption that� and� are constants.
Boundary conditions at the rigid perfectly conducting boundaryz = −H are

v · n = 0, (7)

B3 = 0, (8)

B1z = 0, B2z = 0 at z = −H . (9)

Conditions (9) follow from the requirement that the tangent components of the electric field vanish at the
boundary.
Boundary conditions at the free surface of the fluid include the continuity of the magnetic field

B = ∇� at z = �(x, y, t), (10)

the kinematic condition

�t + v · ∇� = v3 at z = �(x, y, t) (11)

and the condition of continuity of normal stress, which, in view of (10), can be written as

p = −��, (12)

where� is the surface tension and� is the mean curvature of the free surface, given by

� = (1+ �2x)�yy + (1+ �2y)�xx − 2�x�y�xy

(1+ �2x + �2y)
3/2 . (13)

We consider fluid flowswhich are either periodic inxandywith periodsL1 andL2 or decaying at infinity.
In the former case, we assume that the mean depth of the layer isH, so that

〈�〉 = 1

L1L2

∫ L1

0

∫ L2

0
�(x, y, t)dx dy = 0. (14)

In the latter case,H is the layer depth at infinity and, hence,�(x, y, t) → 0 as
√

x2 + y2 → ∞.
Now it is convenient to rewrite the problem (2)–(12) in dimensionless variables. Let

t = T t̃, x = Lx̃, v = L

T
ṽ, B = B0B̃, p = �

L2

T 2 p̃, (15)
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whereTandLare somecharacteristic scales for timeand length,B0=(|B∞|2)1/2 is the characteristic scale
for magnetic field,̃t , x̃, ṽ, B̃ andp̃ are the corresponding dimensionless quantities. Now, we substitute
formulas (15) into (2)–(12) and drop ‘tildes’ to simplify the notation. As a result, we have

∇2� = 0 for z > �(x, y, t), (16)

∇� → B∞(�̃t) asz → ∞, (17)

vt + (v · ∇)v = −∇p − g̃ez + 	(j × B), (18)

Bt = ∇ × (v × B) − �̃∇ × (∇ × B), (19)

∇ · v = 0, ∇ · B = 0. (20)

Here�̃ is the dimensionless frequency,g̃=gT 2/L the dimensionless gravity constant,	=B2
0T

2/�L2 the
squared ratio of theAlfven velocity to the characteristic velocity of the fluid,�̃=�T/L2 the dimensionless
magnetic diffusivity.
Boundary conditions (7)–(11) remain the same, while the dynamic condition (12) takes the form

p = −�̃�, (21)

where�̃ = �T 2/�L3 is the dimensionless surface tension and� is given by Eq. (13).
The characteristic scalesT andL can be chosen in a number of different ways. We chooseL = 
 and

T = √
�
/B0, where
 = √

�/� is the electromagnetic skin depth. It follows that

	 = 1, �̃ =
√

�
�

B0
, �̃ = �̃, g̃ = �g


B2
0

, �̃ = �

B2
0

.

3. Asymptotic model for �̃ → ∞

Our aim is to obtain an asymptotic form of the above problem for large�̃. We assume that̃g, �̃ and
the dimensionless depth of the layerh = H/
 are fixed. Note that since
 → 0 as� → ∞, the last
assumption implies that finite values ofh correspond toH ∼ 
 andH → 0 as� → ∞, while h = ∞
corresponds to a fixed value ofH. Both cases will be covered by the same asymptotic model.
To derive the asymptotic form of the governing equations, we employ the method of multiple scales.

Let � = 1/�̃, � = �̃t . We seek a solution of (16)–(21), (7)–(12) in the form

v = v(x, t, �), B = B(x, t, �), p = p(x, t, �), � = �(x, t, �), � = �(x, y, t, �).

Substitution of these equations into (11), (18), (19) yields

v� = −�[vt + (v · ∇)v + ∇p + g̃ez − j × B], (22)

B� + ∇ × (∇ × B) = −� [Bt − ∇ × (v × B)] (23)

for −h < z < �(x, y, t, �), and

�� + �[�t + v · ∇� − v3] = 0 (24)
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at z = �(x, y, t, �). We assume that for small� the solution has the form

v = v0(x, t, �) + �v1(x, t, �) + O(�2),
B = B0(x, t, �) + �B1(x, t, �) + O(�2),
p = p0(x, t, �) + �p1(x, t, �) + O(�2),
� = �0(x, t, �) + ��1(x, t, �) + O(�2),
� = �0(x, t, �) + ��1(x, t, �) + O(�2). (25)

Substituting these expansions into Eqs. (22)–(24), we obtain in the leading order in� (terms proportional
to �0)

v0� = 0, (26)

B0� + ∇ × (∇ × B0) = 0 for − h < z < �0(x, y, t, �); (27)

�0� = 0. (28)

In the leading order, Eqs. (16) and (20) yield

∇2�0 = 0 for z > �0(x, y, t, �), (29)

∇ · v0 = 0, ∇ · B0 = 0 for − h < z < �0(x, y, t, �). (30)

It follows from (26) and (28) thatv0 and�0 do not depend on fast time�, i.e.

v0 = v0(x, t), �0 = �0(x, y, t).

At any fixed (slow) timet, Eqs. (27), (29) and (30) together with boundary conditions

∇�0 → B∞(�) asz → ∞, (31)

B0 = ∇�0 at z = �0(x, y, t), (32)

B3 = 0, B1z = 0, B2z = 0 at z = −h (33)

represent a closed problem for�0(x, t, �) andB0(x, t, �). It can be shown that any periodic solution of
this problem has zero mean value, i.e.

B0(x, t) = 1

2�

∫ 2�

0
B0(x, t, �)d� = 0.

Thus, in the leading order we have high-frequency oscillating magnetic field and slowly varying velocity
and free surface.
To determinev0(x, t) and�0(x, t), we must employ the first-order approximation (terms proportional

to �). We have the following equations forv1 and�1:

v1� = −[v0t + (v0 · ∇)v0 + ∇p0 + g̃ez − j0 × B0], (34)

�1� = −[�0t + v0 · ∇�0 − v03] at z = �0(x, y, t, �). (35)
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We seek periodic (in�) solutions. On averaging Eqs. (34) and (35), we obtain

v0t + (v0 · ∇)v0 + ∇p0 + g̃ez − j0 × B0 = 0, (36)

�0t + v0 · ∇�0 − v03= 0 at z = �0(x, y, t), (37)

where

j0 × B0 = 1

2�

∫ 2�

0
j0(x, t, �) × B0(x, t, �)d�, p0 = 1

2�

∫ 2�

0
p0(x, t, �)d�.

Eq. (36) must be supplemented with the incompressibility condition∇ · v0 = 0 and boundary conditions

p0 = −�̃�0 at z = �0(x, y, t), (38)

v03= 0 at z = −h. (39)

From here on, we forget about the derivation of the model and work only with the asymptotic equations.
It is convenient to change the notation

v0 → v, B0 → B, �0 → �, p0 → p, �0 → �.

With this notation the complete asymptotic problem has the form

∇2� = 0 for z > �(x, y, t), (40)

∇� → B∞(�) asz → ∞; (41)

B� + ∇ × (∇ × B) = 0, (42)

∇ · B = 0 for − h < z < �(x, y, t); (43)

B = ∇� at z = �(x, y, t), (44)

B3 = 0, B1z = 0, B2z = 0 at z = −h; (45)

vt + (v · ∇)v = −∇p − g̃ez + j × B, (46)

∇ · v = 0 for − h < z < �(x, y, t); (47)

�t + v · ∇� = v3, (48)

p = −�̃� at z = �(x, y, t), (49)

v3 = 0 at z = −h. (50)

In Eq. (49),� is given by (13).
As wasmentioned above, the fast (or ‘magnetic’) part of the problem, given by Eqs. (40)–(45), depends

on ‘slow time’ t only via the equation of free boundary and is otherwise completely separated from the
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slow (or ‘fluid’) part of the problem. Therefore, the ‘magnetic’ problem (40)–(45) can be solved indepen-
dently for each�(x, y, t). Then, on substitutingB[�(x, y, t)] in Eq. (46), we obtain the closed problem
for v, p and�.

4. Stability of planar free-surface

Here we consider the stability of the exact solution of the asymptotic equations (40)–(50) that corre-
sponds to a steady planar free-surface.

4.1. Basic state

The basic state whose stability is studied is produced by the alternating magnetic field at infinity,
given by

B∞(�) = (q1 cos�, q2 sin�,0),

whereq1 andq2 are real constants such that(q21 + q22)/2= 1. In the basic state,

� = 0, v = 0, p = P(z), B = B0(z, �), � = B∞ · x. (51)

The magnetic fieldB0(z, �) is the periodic (in�) solution of the following problem

B0
� + ∇ × (∇ × B0) = 0, ∇ · B0 = 0 for − h < z <0;

B0 = B∞(�) at z = 0, B0
3 = B0

1z = B0
2z = 0 at z = −h.

It can be written in the form

B0 = Re

[
ch[(z + h)]

ch[h] ei�a
]
, (52)

where

 = 1+ i√
2

, a = q1ex − iq2ey . (53)

The pressure in the basic state is given by

P(z) = −g̃z − 1
2|B0(z, �)|2 + 1

2|B0(0, �)|2. (54)

4.2. Linearised stability problem

Let nowb(x, t, �) and∇�(x, t, �) be the perturbation magnetic field in the fluid and in the vacuum
region, respectively,v(x, t) andp(x, t) the perturbation velocity and the perturbation pressure, and let
z = �(x, y, t) represent the perturbed free surface. We assume thatb(x, t, �), ∇�(x, t, �), v(x, t), p(x, t)

and�(x, y, t) are small, so that their evolution is governed by the following linearised equations and
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boundary conditions:

∇2� = 0 for z >0, (55)

∇� → 0 asz → ∞; (56)

b� + ∇ × (∇ × b) = 0, (57)

∇ · b = 0 for − h < z <0; (58)

b + B0
z� = ∇� at z = 0, (59)

b3 = 0, b1z = 0, b2z = 0 at z = −h; (60)

vt = −∇p + j × B0 + J0 × b, (61)

∇ · v = 0 for − h < z <0; (62)

�t = v3, (63)

p + Pz� = −�̃(�xx + �yy) at z = 0; (64)

v3 = 0 at z = h. (65)

We seek solutions of (55)–(65) in the form

b(x, �, t) = Re(b̂(z, �, t)ei(k1x+k2y)), v(x, t) = Re(v̂(z, t)ei(k1x+k2y)), etc.

Substitution of these into (55)–(65) yields

�̂zz − k2�̂ = 0 for z >0, (66)

�̂ → 0 asz → ∞; (67)

b̂� = b̂zz − k2b̂, (68)

ik · b̂ + b̂3z = 0 for − h < z <0; (69)

b̂ = −B0
z �̂ − ∇�̂ at z = 0, (70)

b̂3 = 0, b̂1z = 0, b̂2z = 0 at z = −h; (71)

v̂t = −∇� + (B0 · ∇)b̂ + (b̂ · ∇)B0, (72)

ik · v̂ + v̂3z = 0 for − h < z <0; (73)

�̂t = v̂3, (74)

�̂ = −Pz�̂ + k2�̂ + B0 · b at z = 0, (75)

v̂3 = 0 at z = −h. (76)

Herek = (k1, k2,0), k = |k|, � = p̂ + B0 · b.
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4.3. ‘Magnetic’ part of the linearised problem

General solution of Eq. (66) satisfying condition (67) has the form

�̂(z, t, �) = A(t, �)e−kz.

Substituting this into the boundary condition (70), we find that

k · b̂ = −k · B0
z �̂ − ik2A, b̂3 = −kA at z = 0.

These conditions and Eq. (69) allow us to eliminatek · b̂ andA and obtain the boundary condition forb̂3
alone:

b̂3z + kb̂3 = ik · B0
z �̂ at z = 0. (77)

Also, we have

b̂3 = 0 at z = −h (78)

and

b̂3� = b̂3zz − k2b̂3 for − h < z <0. (79)

The periodic solution of the problem (77)–(79) is given by

b̂3 = i�̂(t)Re

(
(k · a) th[h]sh[�(z + h)]

ch(�h)[� + k th(�h)] ei�
)
, (80)

where� = √
k2 + i, and the square root branch is chosen in such a way thatRe� >0. In what follows we

do not need̂b1 andb̂2 and, therefore, we do not give the corresponding expressions here.

4.4. ‘Fluid’ part of the linearised problem

Consider now Eqs. (72)–(76). Taking scalar product of Eq. (72) with ik and using Eq. (73), we find
that

� = 1

k2
[−v̂3zt + i((k · B0)b̂3z − (k · B0

z)b̂3)]. (81)

Substitution of this formula into thez-component of Eq. (72) results in the equation

v̂3tzz − k2v̂3t = iQ, (82)

where

Q = ((k · B0)b̂3z − (k · B0
z)b̂3)z − k2(k · B0)b̂3.

Nowwe assume thatQ(z, t) is a known function and solve Eq. (82), subject to condition (76). This yields

v̂3t = i

k

∫ z

−h

sh[k(z − s)]Q(s, t)ds + C sh[k(z + h)] (83)
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with arbitrary constantC. Then, this constant is determined from the boundary condition (74):

C = 1

sh(kh)

(
�̂t t + i

k

∫ 0

−h

sh(kz)Q(z, t)ds

)
. (84)

From (81) and (83), we can obtain an expression for�(z, t). Finally, substitution of�(z, t) into (75) and
certain manipulations give us the following equation for�̂(t):

�̂t t + �2�̂ = i(1+ th(kh)) (k · B0)b̂3|z=0 − 2iI (k),

where

I (k) = 1

ch(kh)

∫ 0

−h

(k · B0
z)b̂3 ch[k(z + h)]dz

and�2= �̃k3+ g̃k is the frequency of capillary-gravity waves. Then, after taking account of formula (80)
for b̂3 and some manipulations, we arrive at the following equation:

�̂t t + �2�̂ + |k · a|2
2

F(k)�̂ = 0, (85)

where

F(k, h) = Re

{
 th(h)(th(kh)[k + � th(�h)] − ∗ th(∗h))

�[� + k th(�h)]
}
. (86)

For any givenh, functionF(k, h) is positive for anyk�0. Asymptotic behaviour ofF(k, h) for largek
isF = (1/k)Re{ th(h)} + O(k−2). For largeh, F(k, h) reduces to the formula of Garnier and Moreau
[3]:

F(k, h) → F0(k) =
√√

k4 + 1+ k2 +
(
1− √

2k
) √√

k4 + 1− k2

2
√

k4 + 1

ash → ∞.
It follows from (85) that the plane free surface is always stable provided that

�2
eff = �2 + |k · a|2

2
F(k) >0.

This is always true if̃g >0, i.e. when the vacuum region is above the fluid layer. Moreover, the magnetic
field always improves the stability and the most stable regime corresponds to a rotating magnetic field
whenB∞(�) = (cos�, sin�,0) anda = ex − iey . It turns out that the rotating magnetic field can also
provide stable levitation of a fluid layer. Indeed, ifg̃ <0, then

�2
eff = �̃k3 − |g̃|k + k2

2
F(k).

In this case, there always exists a critical valuek∗ such that�2
eff(k) >0 for k > k∗ and�2

eff(k) <0 for
k < k∗. This means that only perturbations with sufficiently long wavelength can result in instability.
Therefore, a layer which extends to infinity inx andy directions cannot be stabilised by the magnetic
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field, while a layer of finite size in bothx andy directions can be stabilised provided thatL >2�/k∗,
whereL is the horizontal size of the layer.
Note that a nonrotating magnetic field cannot stabilise a levitating fluid layer. For example, ifB∞(�)=

(cos�,0), thena = ex and

�2
eff = �̃k3 − |g̃|k + k21

2
F(k).

Evidently, there always are perturbations withk2 �= 0 which result in�2
eff <0. The physical mechanism

of no stabilising effect in this case is that there exist perturbations which do not bend the magnetic field
lines. If the magnetic field is rotating, i.e. botha1 anda2 nonzero, then no such perturbations exist, and
the field is stabilising.

5. Conclusion

We have considered free surface flows of a layer of a conducting inviscid fluid in the presence of
a periodic (in time) magnetic field and derived the asymptotic form of the governing equations in the
limit of high frequency of the applied magnetic field. The ‘magnetic’ part of the model that describes the
high-frequency periodic magnetic field is separated from the ‘fluid’ part that governs slow evolution of
the free surface. Earlier, Garnier and Moreau[3] and others (see, e.g.,[7]) have used similar arguments in
linearised stability analysis of a planar interface between two fluids with different electric conductivities.
In contrast with those papers, our asymptotic equations arenonlinearand obtained using a well-defined
formal procedure.As a test for the asymptoticmodel, we have studied the linearised stability of the infinite
planar free surface of a layer of finite depth and have found that the effect of a rotating magnetic field is
stabilising and, moreover, that a layer of finite depth and finite horizontal size can, in principle, levitate
in the presence of a rotating magnetic field. Our results are in agreement with the results by Garnier and
Moreau[3], and this provides certain justification of the model.
The domain of applicability of the model follows from our key assumption that the dimensionless

frequency of the alternating magnetic field�̃ goes to infinity. This requires that̃� = (���)1/2/B0?1.
Another assumption was that in our model the viscosity of the fluid is neglected. This is justified if the
magnetic Prandtl numberPm = �/� is very small (� is the kinematic viscosity of the fluid). Indeed, if we
take account of viscosity, the right-hand side of Eq. (18) would contain the viscous term�̃∇2v, where�̃
is the dimensionless viscosity, given by

�̃ = �

√
�

B0

= �

�
�̃.

It follows that the viscous term does not affect the leading terms of the asymptotic expansion of Section 3
and can therefore be ignored provided thatPm=o(1/�̃).As has been argued in[3], the above assumptions
can, in principle, be satisfied in laboratory experiment.
Though the asymptotic equations obtained here are much simpler than the original equations, they

still represent a very complicated nonlinear problem which, in the absence of the magnetic field, reduces
to the initial-boundary-value problem describing nonlinear capillary-gravity waves on the free surface
of an inviscid fluid. Possibly, somewhat simpler asymptotic equations can be obtained for flow regimes
whose characteristic length scale is much larger than the electromagnetic skin depth
. In this case,
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the magnetic field is confined to a shallow surface layer, and equations of boundary-layer type can be
obtained. This is the subject of a continuing investigation. Another important open problem concerns the
effect of viscosity on free surface flows of a conducting fluid generated by a high-frequency alternating
magnetic field. Qualitative analysis of Moffatt[6] shows that for sufficiently large but finite Reynolds
numbers the net effect of a rotating magnetic field is to induce an effective stress just inside the shallow
layer on the free surface. Construction of an asymptotic model of this phenomenon is another topic for a
further investigation.
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