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DISSIPATIVE SYMMETRIZERS OF HYPERBOLIC PROBLEMS
AND THEIR APPLICATIONS TO SHOCK WAVES AND

CHARACTERISTIC DISCONTINUITIES∗

YURI TRAKHININ†

Abstract. By introducing the notations of dissipative and strictly dissipative p-symmetrizers
of initial-boundary-value problems for linear hyperbolic systems we formalize the dissipative inte-
grals technique [A. Blokhin, Yu. Trakhinin, in Handbook of Mathematical Fluid Dynamics, Vol.
1, North-Holland, Amsterdam, 2002, pp. 545–652] applied earlier to shock waves and characteristic
discontinuities for various concrete systems of conservation laws. This enables us to prove the local
in time existence of shock-front solutions of an abstract symmetric system of hyperbolic conservation
laws, provided that the corresponding constant coefficients linearized problem has a strictly dissi-
pative p-symmetrizer. Our result does not, in particular, require the fulfillment of Majda’s block
structure condition. A p-symmetrizer is, in some sense, a “secondary” Friedrichs symmetrizer for
the symmetric system for the vector of p-derivatives of unknown functions, and the structure of
p-symmetrizer takes into account (if applicable) the set of divergent constraints for the original sys-
tem. After applying a p-symmetrizer, which is in general a set of matrices and vectors, the boundary
conditions for a resulting symmetric system are dissipative (or strictly dissipative). We give con-
crete examples of p-symmetrizers. Our main examples are strictly dissipative 2-symmetrizers for
shock waves in gas dynamics and magnetohydrodynamics. A general procedure for constructing a
p-symmetrizer does not however exist. But, if it was somehow constructed, then we do not need to
test the Lopatinski condition that is often connected with insuperable technical difficulties. As an
illustration, we refer to the author’s recent result [Yu. Trakhinin, Arch. Ration. Mech. Anal., 177
(2005), pp. 331–366] for compressible current-vortex sheets for which the construction of a dissipative
0-symmetrizer has first enabled the finding of sufficient conditions for their weak linearized stability.
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1. Introduction: Initial-boundary-value problems for quasi-linear hy-
perbolic systems. Consider a system of N conservation laws

∂tP0(U) +

n∑
j=1

∂jPj(U) = 0,(1.1)

where Pα = Pα(U) = (Pα
1 , . . . ,Pα

N ), U = U(t,x) = (u1, . . . , uN ), x = (x1, . . . , xn)
∈ R

n, ∂t := ∂/∂t, ∂j := ∂/∂xj . With the notation

div a :=

n∑
j=1

∂ja
j (a = a(t,x) = (a1, . . . , an) is a vector)

system (1.1) in componentwise form reads

∂tP0
i (U) + divPi(U) = 0, i = 1, N,
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where Pi = Pi(U) = (P1
i , . . . ,Pn

i ). Assuming that the flux functions Pα
i are smooth

enough (in practice, they are usually C∞), one can rewrite (1.1) as the quasi-linear
system

B0(U)Ut +

n∑
j=1

Bj(U)Uxj
= 0,(1.2)

with Bα = (∂Pα/∂U).
We will assume that system (1.1) may be supplemented (but not necessarily) by

a set of K divergent constraints

div Ψj(U) = 0, j = 1,K,(1.3)

where Ψj = Ψj(U) = (Ψ1
j , . . . ,Ψ

n
j ). For example, for the system of gas dynamics

one has no divergent constraints at all, whereas the system of magnetohydrodynamics
(MHD) is supplemented by the sole (K = 1) divergent constraint divH = 0 (see, e.g.,
[28]). We also refer, for instance, to Landau’s equations of superfluid [29] (see also
[11]) which are supplemented by the tree divergent constrains ∇× vs = 0 (vs is the
superfluid velocity [29, 11]).

Assumption 1.1. The divergent constraints (1.3) are the restrictions on the
initial data for system (1.1). That is, if (1.3) are satisfied initially, they hold for all
t > 0.

Remark 1.1. Assumption 1.1 is quite natural because it holds for all the physically
relevant models: MHD, Landau’s equations of superfluid, etc. (see, e.g., [11] for
further examples). In practice, (1.3)|t>0 is proved by applying the operator div to
appropriate subsystems of (1.1) and taking into account (1.3)|t=0. Of course, applying
div requires n ≤ N . The last assumption will be also made for other reasons (see
section 3).

Sometimes, by an appropriate choice of the vector of unknowns U a concrete sys-
tem of conservation laws can be written in the nonconservative form (1.2) with sym-
metric matrices Bα. For example, the systems of gas dynamics and MHD are written
as symmetric systems for the vectors of unknowns U = (p,v, S) and U = (p,v,H, S),
respectively. At the same time, it is not always possible to guess an appropriate vector
U for which a system of conservation laws, (1.1), can be rewritten as a symmetric
quasi-linear system. But, as was first shown by Godunov [23, 24], system (1.1) can be
always symmetrized if we know, a priori, an additional conservation law (“entropy”
conservation)

∂tΦ
0(U) + div Φ(U) = 0,

with Φ = Φ(U) = (Φ1, . . . ,Φn), which holds on smooth solutions of (1.1). That is,
one can find an invertible change of unknowns U → Q such that the system

A0(Q)Qt +

n∑
j=1

Aj(Q)Qxj = 0(1.4)

is symmetric: Aα = (Aα)∗, where

Aα =

(
∂Pα

∂Q

)
= Bα(U(Q))

(
∂U

∂Q

)
,
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i.e., Aα = BαJ
−1, with J = J(Q) = (∂Q/∂U). It should be noted that if system

(1.1) is accompanied by a set of divergent constraints (1.3), then these constrains
should be generically taken into account under Godunov’s symmetrization. For the
process of symmetrization itself we refer to [13] and references therein (note that, in
particular, Q = (∂Φ0/∂P0)).

It is worth noting that the symmetric system (1.4) can be rewritten as a quasi-
linear system for the original vector of unknowns U that is again symmetric. Indeed,
(1.4) clearly implies the system

A0(U)Ut +

n∑
j=1

Aj(U)Uxj = 0,(1.5)

where the matrices Aα = Aα(U) := J∗AαJ = J∗Bα are symmetric. Thus, the matrix

S = S(U) = J∗ =

(
∂Q

∂U

)∗

is the one (called Friedrichs symmetrizer) that symmetrizes system (1.2):

Aα = SBα = A∗
α.

Recall that the quasi-linear symmetric system (1.5) is symmetric hyperbolic in the
sense of Friedrichs [22] if A0(U) > 0 (or A0(U) < 0 if we multiply (1.5) by −1).

The main requirement for the local in time well-posedness of the Cauchy problem
for a quasi-linear system of conservation laws is the hyperbolicity condition that is
easily verified for symmetric systems. The local existence theorem for the Cauchy
problem for symmetric hyperbolic systems was independently proved by Vol’pert and
Khudyaev [47], Lax [30], and Kato [26] (see also [34]). In contrast with the Cauchy
problem, the conditions for well-posedness of initial-boundary-value problems for hy-
perbolic systems, in the generic case, cannot be easily found even for linearized prob-
lems with constant coefficients.

1.1. Standard boundary conditions. Let us first consider quasi-linear initial-
boundary-value problems with standard boundary conditions [40]:

L(U)U = 0 in [0, T ] × R
n
+,(1.6a)

M(t,x′,U)U = 0 on [0, T ] × {x1 = 0} × R
n−1,(1.6b)

U|t=0 = U0 in R
n
+,(1.6c)

where L = L(U) = A0(U)∂t +
∑n

j=1 Aj(U)∂j , and system (1.6a) is supposed to
be symmetric hyperbolic, and the matrix M is a d × N matrix. Here and below
R

n
± = {x1 ≷ 0, x′ ∈ R

n−1}, x′ = (x2, . . . , xn). Without loss of generality we consider
the problem in a half-space because the case of a smooth bounded domain Ω is reduced,
in some sense, to problem (1.6) by a finite partition of unity subordinated to an open
covering of Ω.

To prove a local (in time) existence theorem for problem (1.6) we should consider
the following linear problem associated to (1.6):

L(Û)U = f in [0, T ] × R
n
+,(1.7a)

M(t,x′, Û)U = g on [0, T ] × {x1 = 0} × R
n−1,(1.7b)

U|t=0 = U0 in R
n
+,(1.7c)

where Û is a given vector-function. Here we introduce the source terms f(t,x) and
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g(t,x′) to make the interior equations and the boundary conditions inhomogeneous
(this is needed to attack the nonlinear problem).

Recall that the boundary conditions (1.7b) are called dissipative if

−(A1U,U)|x1=0 ≥ 0 ∀ U ∈ kerM,(1.8)

where −A1 = −A1(Û) is the boundary matrix, M = M(t,x′, Û). They are strictly
dissipative if there exist a fixed constant γ > 0 such that

−(A1U,U)|x1=0 ≥ γ|V|2 ∀ U ∈ kerM,(1.9)

where V is the “noncharacteristic part” of the trace U|x1=0, i.e., the projection of
U|x1=0 orthogonal to kerA1|x1=0 (V = U for the case of noncharacteristic boundary,
i.e., when detA1|x1=0 �= 0). Recall also that the boundary conditions (1.7b) are called
maximally dissipative if they are dissipative and

dim kerM = # nonpositive eigenvalues of A1|x1=0 counting multiplicity(1.10)

(we use the definition from [39]). Property (1.10) means that the hyperbolic system
(1.7a) has the correct number of boundary conditions in (1.7b), i.e.,

d = # positive eigenvalues of A1|x1=0 counting multiplicity.

In the following we always assume that the number of boundary conditions is correct
and we therefore drop the word “maximally” when speaking about dissipative or
strictly dissipative boundary conditions.

For the inhomogenous boundary conditions (1.7b) inequality (1.9) implies that
there exists a fixed constant δ > 0 such that

−(A1U,U)|x1=0 ≥ δ|V|2 − δ−1|g|2(1.11)

for all U satisfying (1.7b). To deduce inequality (1.11) from (1.9) it needs to reduce
system (1.7a) to the form [35], A0Wt +

∑n
j=1 AjWxj

= . . . , where U = T W, Aα =
T ∗AαT , A1 = diag(D1,−D2, 0), Di > 0, (A1W,W) = (D1W1,W1)−(D2W2,W2),
and the boundary conditions (1.7b) are supposed to be rewritten in the form W1 =
SW2 + g̃. Analogous simple arguments show that the dissipativity hypothesis (1.8)
implies that there is a matrix B = B(t,x′) such that

−(A1U,U)|x1=0 ≥ (Bg,V) − γ|g|2(1.12)

for all U satisfying (1.7b), where γ is a constant, the matrix B can be, in principle,
explicitly written out (it depends on T , etc.).

If the boundary conditions (1.6b) are linear, i.e., M = M(t,x′), then the boundary
conditions for the associated linear problem (1.7) can be considered to be homogenous
(g=0) and the dissipativity hypothesis (1.8) is quite enough to prove a local existence
theorem for problem (1.6) by standard fixed-point argument. In this case, for the
linear problem (1.7) the basic estimate following from assumption (1.8) reads [40]

‖U(t)‖L2(Rn
+

) ≤ C
{
‖U0‖L2(Rn

+
) + ‖f‖L2([0,T ]×R

n
+

)

}
,

where C = C(T ) is a positive constant independent of the initial data and the source
terms. For linear boundary conditions on a noncharacteristic boundary the local W s

2 -
existence theorem for problem (1.6) was proved by Schochet [41] (see Appendix A
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of [41]), where s ≥ [n/2] + 2 as for the Cauchy problem [47, 30, 26]. The case of
characteristic boundary was considered by Secchi [42] (he has proved a local existence
theorem in anisotropic weighted Sobolev spaces [42]).

However, if the boundary conditions in (1.6b) are nonlinear, i.e., M depends on
U, then one has to consider inhomogenous boundary conditions in the linear problem
(1.7) (even if the original conditions (1.6b) were homogenous). The usual way (see,
e.g., [40]) to deal with inhomogenous boundary conditions suggests to subtract from
the solution a more regular function satisfying the boundary conditions, and reduce
problem (1.7) to one with homogenous boundary conditions. But, such a way leads to
the loss of “1/2 derivative” from g (see [40]). That is, the dissipativity hypothesis is
already not enough to achieve a nonlinear local existence result by standard iterations.

At the same time, when the boundary conditions in (1.6b) are nonlinear, but
conditions (1.7b) are strictly dissipative, using inequality (1.11), we can easily deduce
the basic a priori estimate (with no loss of derivatives)

‖U(t)‖L2(Rn
+

) ≤ C
{
‖U0‖L2(Rn

+
) + ‖f‖L2([0,T ]×R

n
+

) + ‖g‖L2([0,T ]×Rn−1)

}
(1.13)

and its higher order counterparts (see Appendix A in [43]). This enables one to prove
a local existence theorem for problem (1.6) by standard fixed-point argument. The
proof for the general problem (1.6) has not been written out somewhere, but we can
refer to [43] for a concrete example of problem (1.6). Note that the well-posedness of
the linear problem (1.7) with g �= 0 was proved in Appendix A of [43].

That is, when conditions (1.7b) are inhomogenous but strictly dissipative, an
unpleasant loss of derivatives is avoided by a direct approach to the original problem
(1.7) with inhomogenous boundary conditions (for problem (1.7) this was done in
Appendix A of [43]; see also section 4 for shock waves). If, however, conditions (1.7b)
are just dissipative (but not strictly dissipative), such a direct approach to the linear
problem (1.7) only enables us to obtain the a priori estimate with the loss of one
derivative from g:

‖U(t)‖W 1
2 (Rn

+
) ≤ C

{
‖U0‖W 1

2 (Rn
+

) + ‖f‖W 1
2 ([0,T ]×R

n
+

) + ‖g‖W 2
2 ([0,T ]×Rn−1)

}
.(1.14)

Here we suppose that the boundary is noncharacteristic. For the case of characteristic
boundary the counterpart of (1.14) indicates a loss of control on derivatives in the nor-
mal direction [39, 42, 16]. To deduce estimate (1.14) we should differentiate problem
(1.7) with respect to t and x′. Then, we take into account inequality (1.12) and inte-
grate by parts the boundary integral (see section 3 for the case of Rankine–Hugoniot
boundary conditions).

Remark 1.2. For the case of linearized Rankine–Hugoniot boundary conditions a
priori estimates with loss of derivatives were proved for shock waves and characteristic
discontinuities by Coulombel [17], Coulombel and Secchi [19], and the author [45]
(in [45] the a priori estimates are formally with no loss of derivatives because the
boundary conditions were supposed to be homogenous). For the case of standard
boundary conditions, cf. (1.7b), the a priori estimate (1.14) is a basic estimate, and
it is not difficult to obtain an estimate for higher order derivatives. But, of course,
it will be also with the loss of one derivative from g. This precludes one from using
fixed-point argument to prove a local existence theorem. It seems that the only way
to overcome the difficulty connected with the loss of derivatives phenomenon is the
employment of the Nash–Moser technique (for hyperbolic problems see [2, 31, 21]).
Recently, the Nash–Moser method was successfully used by Coulombel and Secchi
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[20] for two-dimensional (2D) compressible vortex sheets as well as for weakly stable
shock waves (see also preparatory results in this direction in [17, 18, 19]). There is
also a great hope to achieve a nonlinear local existence result for current-vortex sheets
[45] by using Nash–Moser iterations.

If the boundary conditions (1.7b) are not dissipative, this does not, of course,
mean that problem (1.7) is ill-posed. An alternative to the energy method was first
suggested by Kreiss [27] for the strictly hyperbolic case. Kreiss has proved that
problem (1.7) with constant (“frozen”) coefficients obeys an a priori L2,η-estimate
with no loss of derivatives if and only if the boundary conditions satisfy the uniform
Lopatinski condition [27] (‖ · ‖L2,η = ‖e−ηt(·)‖L2 , and η > 0 is sufficiently large).
This estimate follows from a symmetrizer construction (Kreiss symmetrizer) and is
carried over variable coefficients by using pseudodifferential calculus. That is, the
uniform Lopatinski condition is the sharp algebraic criterion of strong well-posedness
(well-posedness “with no loss of derivatives”).

Later Kreiss’ symmetrizer analysis was extended by Agranovich [1], Majda and
Osher [35], and Majda [32] to hyperbolic systems satisfying a so-called block struc-
ture condition, which holds in particular for hyperbolic symmetrizable systems with
constant multiplicities [1, 36]. In [32] Majda extends the Kreiss theory to the case of
Rankine–Hugoniot boundary conditions. Majda’s approach has been then improved
by Métivier [37] by using paradifferential calculus of Bony (see also discussion in sec-
tion 4). And recently Métivier and Zumbrun [38] have extended the Kreiss–Majda
theory to a class of hyperbolic symmetrizable systems with characteristics of variable
multiplicities. These systems at points of variable multiplicity should satisfy some
conditions [38] which hold in particular for the MHD system. Thus, if the symmetric
hyperbolic system (1.6a) meets either the Agronovich–Majda–Osher block structure
condition [1, 35] or the conditions of Métivier and Zumbrun [38], then the linear
problem (1.7) is strongly well-posed, provided that the boundary conditions (1.7b)
satisfy the uniform Lopatinski condition. In this case a local existence theorem for
the nonlinear problem (1.6) can be proved by analogy with the proofs in [33, 37].

At the same time, it should be noted that in practice the algebraic criterion given
by the Lopatinski condition often cannot be tested analytically. Sometimes one suc-
ceeds to check it numerically (see [44]), but, frequently, numerical calculations can
give only a very rough description of the condition for weak/strong well-posedness
because either the domain of parameters for the constant coefficients linearized prob-
lem is unbounded or the number of these parameters is too big. Usually this happens
for the case of Rankine–Hugoniot boundary conditions (see below), i.e., for shock
waves or characteristic discontinuities. For example, such a situation takes place for
compressible current-vortex sheets [45]. In this connection, there is no sense to reject
at once the energy method as soon as the boundary conditions are not dissipative.
The main purpose of the present paper is to formalize the so-called dissipative in-
tegrals technique (see [13]), which is a kind of “higher order” extension of the usual
energy method. Especially, this technique turned out to be effective for shock waves
in various hyperbolic models: gas dynamics, Landau’s equations of superfluid, MHD,
radiation hydrodynamics, etc. (see [13] and references therein). Let us now go on to
the case of Rankine–Hugoniot boundary conditions.

1.2. Rankine–Hugoniot boundary conditions. Consider system (1.1) in the
whole space R

n. Let

Γ(t) = {x1 − f(t,x′) = 0}
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be a smooth hypersurface in [0, T ] × R
n. We assume that Γ(t) is a surface of strong

discontinuity for solutions of (1.1). Let U(t,x) be a classical solution of (1.1) on
either side of Γ. As is known, U is a weak solution of (1.1) if and only if the Rankine–
Hugoniot jump conditions hold at each point of Γ:

ft[P0(U)] +

n∑
k=2

fxk
[Pk(U)] − [P1(U)] = 0,(1.15)

where [a] = a+ − a− = a|x1−f(t,x′)=+0 − a|x1−f(t,x′)=−0.
It should be noted that the initial-boundary-value problem for system (1.5) in

the domains Ω±(t) := {x1 ≷ f(t,x′)} with the boundary conditions (1.15) on the
hypersurface Γ(t) is a free-boundary-value problem. Indeed, the function f(t,x′)
defining Γ is one of the unknowns of problem (1.5), (1.15) with the corresponding
initial data

f |t=0 = f0 in R
n−1, U|t=0 = U0 in Ω+(0) ∪ Ω−(0).(1.16)

To work in fixed domains instead of the domains Ω±(t) we make the following
change of variables:

t̃ = t, x̃1 = x1 − f(t,x′), x̃′ = x′.

Then, Ũ(t̃, x̃) := U(t,x) is a smooth vector-function for x̃ ∈ R
n
±, and the initial-

boundary-value problem (1.5), (1.15), (1.16) is reduced to the following problem (we
omit tildes to simplify the notation):

L(U,F)U = 0 in [0, T ] × (Rn
+ ∪ R

n
−),(1.17a)

B(U+,U−)F − [P1(U)] = 0 on [0, T ] × {x1 = 0} × R
n−1,(1.17b)

U|t=0 = U0 in R
n
+ ∪ R

n
−, f |t=0 = f0 in R

n−1.(1.17c)

Here

L = L(U,F) = A0(U)∂t + Aν(U,F)∂1 +

n∑
k=2

Ak(U)∂k,

F = F(t,x′) = (ft,F
′), F′ = F′(t,x′) = ∇x′f, ∇x′ = (∂2, . . . , ∂n),

Aν = Aν(U,F) =

n∑
α=0

ναAα = A1(U) − ftA0(U) −
n∑

k=2

fxk
Ak(U),

ν = (ν0, . . . , νn) = (−ft,N) and N = (1,−F′) are, respectively, the space-time and
space normal vectors to Γ(t). The matrix B = B(U+,U−) is of order N × n and
determined from the relation

B(U+,U−)F = ft[P0(U)] +

n∑
k=2

fxk
[Pk(U)], U± := U|x1=±0.

After straightening of variables above the divergent constraints (1.3) take the
form

div ψj(U,F′) = 0 in [0, T ] × (Rn
+ ∪ R

n
−), j = 1,K,(1.18)
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where ψj = ψj(U,F′) = ((Ψj ,N),Ψ2
j , . . . ,Ψ

n
j ). Moreover, solutions of problem

(1.17) should satisfy the jump conditions

[(Ψj(U),N)] = 0 on [0, T ] × {x1 = 0} × R
n−1, j = 1,K,(1.19)

coming from (1.3). At the same time, taking into account Assumption 1.1 and Remark
1.1, it is natural to make the following assumption that should be true for all the
physically relevant models.

Assumption 1.2. The divergent constraints (1.18) are the restrictions on the ini-
tial data (1.17c), i.e., if (1.18) are satisfied initially, they hold for all t > 0. Equations
(1.17b) and (1.19) form a system of N independent boundary conditions.

To clarify Assumption 1.2 we can refer, for example, to MHD. Namely, in MHD
the jump condition ft[(H,N)] = 0 contained in the corresponding main system,
(1.17b), is implied by the equation [(H,N)] = 0 coming from the divergent con-
straint div H = 0. That is, in MHD the number of independent Rankine–Hugoniot
boundary conditions is equal to the number of conservation laws.

To prove the existence of solutions with a surface of strong discontinuity Γ(t) for
the system of hyperbolic conservation laws (1.1) one needs to reply to the following
question: does there exist a solution (U, f) to problem (1.17) at least locally in time?
The necessary (but not sufficient) condition for this is that the hyperbolic problem
(1.17) has the correct number of boundary conditions in (1.17b). In this connection,
it should be noted that, in contrast with the standard boundary conditions (1.6b),
one of the conditions in (1.17b) is needed for determining the function f(t,x′). For
noncharacteristic discontinuities, i.e., shock waves, the plane x1 = 0 is not a charac-
teristic boundary for system (1.17). That is, the boundary matrix Aν is nonsingular
at x1 = 0: detA±

ν �= 0, where A±
ν = Aν |x1=±0. As is known, for shock waves the

correct number of Rankine–Hugoniot boundary conditions is guaranteed by the Lax
shock conditions. They can be conveniently written in terms of the eigenvalues of the
boundary matrix Aν :

λk(A
+
ν ) < 0 < λk(A

−
ν ), λk−1(A

−
ν ) < 0 < λk+1(A

+
ν ),(1.20)

where λi(A
±
ν ) (i = 1, N , λ1 ≤ . . . ≤ λN ) are the eigenvalues of the matrices A±

ν and
k is a fixed integer number, 1 ≤ k ≤ N (an associated shock wave is called k-shock),
λ0 := −∞, λN+1 := +∞.

Let (Û(t,x), f̂(t,x′)) be a given vector-function, where Û is supposed to be
smooth for x ∈ R

n
±. Then the linearization of (1.17) results in the following variable

coefficients problem for determining small perturbations (δU, δf) (below we drop δ):

L(Û, F̂)U + ĈU =
{
L(Û, F̂)f

}
Ûx1 in [0, T ] × (Rn

+ ∪ R
n
−),(1.21a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)U

]
= 0 on [0, T ] × {x1 = 0} × R

n−1,(1.21b)

and the initial data for the perturbation (U, f) coincide with (1.17c). Here, F̂ =

(f̂t, F̂
′), F̂′ = ∇x′ f̂ , the matrix Ĉ = Ĉ(Û, Ût,∇Û, F̂) is determined as follows:

ĈU = (U,∇uA0(Û))Ût + (U,∇uAν(Û, F̂))Ûx1
+

n∑
k=2

(U,∇uAk(Û))Ûxk
,

(U,∇u) :=
∑N

i=1 ui∂/∂ui. Recall that S(U) is the Friedrichs symmetrizer mentioned
above, i.e., S−1Aν = Bν , where Bν =

∑n
α=0 ναBα. Problem (1.21a), (1.17c) is the
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genuine linearization of (1.17) in the sense that we keep all the lower order terms in
(1.21a).

It should be noted that the differential operator in system (1.21a) is a first order
operator in f . This fact can give some trouble in the application of the energy method
to (1.21a). To avoid this difficulty we make the change of unknowns (see [2])

Ū = U − fÛx1
.(1.22)

In terms of the “good unknown” (1.22) problem (1.21a) takes the form

L(Û, F̂)Ū + ĈŪ + f∂1{L(Û, F̂)Û} = 0 in [0, T ] × (Rn
+ ∪ R

n
−),(1.23a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)Ū

]
= −f

[
S−1(Û)Aν(Û, F̂)Ûx1

]
on [0, T ] × {x1 = 0} × R

n−1.
(1.23b)

Actually, to prove a local existence theorem for the nonlinear problem (1.17) with
strictly dissipative boundary conditions or having a strictly dissipative p-symmetrizer
(see section 2), it is not necessary to consider the genuine linearization (1.21a). It is
enough to keep only the principal part of the linearized equations, i.e., one can drop the
lower order terms in (1.23). At the same time, for the case when the loss of derivatives
takes place it needs to perform genuine linearization (“to find a differential”) for the
purpose of a possible use of the Nash–Moser method (see discussion in Remark 1.2).
The linearized equations associated to (1.17a), (1.17b) and obtained by dropping the
lower order terms in (1.23) read:

L(Û, F̂)U = f in [0, T ] × (Rn
+ ∪ R

n
−),(1.24a)

B(Û+, Û−)F −
[
S−1(Û)Aν(Û, F̂)U

]
= g on [0, T ] × {x1 = 0} × R

n−1.(1.24b)

Here we introduce the source terms f(t,x) and g(t,x′), where f(t,x) = f±(t,x) for
x ∈ R

n
±.

For problem (1.24) the definitions of dissipative and strictly dissipative boundary
conditions are analogous to those in (1.12) and (1.11). In particular, the homogenous
boundary conditions (1.24b) (g = 0) are dissipative if −[(AνU,U)]|x1=0 ≥ 0 for all U
satisfying (1.24b). Assuming that the front can be eliminated, i.e., the vector-function
F can be expressed through U+, U−, and g (see section 3 for more details), for shock
waves the counterparts of estimates (1.14) and (1.13) are the following:

‖f‖W 1
2 ([0,T ]×Rn−1) +

∑
±

‖U(t)‖W 1
2 (Rn

±) ≤ C

{
‖f0‖W 1

2 (Rn−1)

+
∑
±

{
‖U0‖W 1

2 (Rn
±) + ‖f±‖W 1

2 ([0,T ]×R
n
±)

}
+ ‖g‖W 2

2 ([0,T ]×Rn−1)

}(1.25)

(for dissipative boundary conditions),

‖f‖W 1
2 ([0,T ]×Rn−1) +

∑
±

‖U(t)‖L2(Rn
±) ≤ C

{
‖f0‖W 1

2 (Rn−1)

+
∑
±

{
‖U0‖L2(Rn

±) + ‖f±‖L2([0,T ]×R
n
±)

}
+ ‖g‖L2([0,T ]×Rn−1)

}(1.26)

(for strictly dissipative boundary conditions).
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Since the original nonlinear problem (1.17) is a reduced free-boundary-value prob-
lem, we should gain the “additional derivative” for the front perturbation f (cf. (1.26))
to use then fixed-point argument. In this sense the a priori estimate (1.25) indicates
the loss of one derivative not only from the source term g but also from the front f .
At the same time, Rankine–Hugoniot boundary conditions are usually not dissipative
(not to mention strict dissipativity). Nevertheless, the energy method can be still
applied to problem (1.17) under certain circumstances. The main idea is to obtain
from the linearized problem a problem for higher order derivatives of U so that this
problem has dissipative (or strictly dissipative) boundary conditions. Such an idea
was first realized by Blokhin [7, 9] for shock waves in gas dynamics. In the next section
we formalize this idea by introducing the notations of dissipative and strictly dissi-
pative p-symmetrizers and give concrete examples of p-symmetrizers. In section 3 we
consider the case of constant coefficients and deduce a priori estimates for Lax shock
waves whose linearized problems have a p-symmetrizer. In section 4 we carry these
estimates over variable coefficients and outline the proof of the local existence theorem
for the original nonlinear problem (1.17), provided that the corresponding constant
coefficients linearized problem has a strictly dissipative p-symmetrizer. For all the
linear results obtained earlier by the dissipative integrals technique for shock waves in
various concrete models (see [13] and references therein) this enables one to conclude
the local existence of shock-front solutions of the corresponding nonlinear systems.
Eventually, in section 5 we make concluding remarks and discuss open problems.

2. Dissipative p-symmetrizers: Definition and examples. We introduce
the notations of dissipative and strictly dissipative p-symmetrizers for linear hyper-
bolic initial-boundary-value problems with constant coefficients. We give the defini-
tion of these notations for the case of Rankine–Hugoniot boundary conditions. The
corresponding definition for the earthier case of standard boundary conditions (cf.
(1.6b)) is given analogously and does not need a separate treatment.

The constant coefficients linearized problem for planar discontinuities is of decisive
importance for the subsequent variable coefficients and nonlinear analysis. For planar
discontinuities f̂(t,x′) is a linear function:

f̂(t,x′) = σt + (σ′,x′), σ = (σ,σ′) ∈ R
n.(2.1)

For the case of a piecewise constant solution,

Û =

{
Û+, x1 > σt + (σ′,x′),

Û−, x1 < σt + (σ′,x′),

equations (1.24) have constant (“frozen”) coefficients:

L(Û±,σ)U = f± for x ∈ R
n
±,(2.2a)

B̂F −
[
Ŝ−1ÂνU

]
= g for x1 = 0,(2.2b)

where B̂ = B(Û+, Û−), Ŝ± = S(Û±), Â±
ν = Aν(Û

±,σ), Â±
α = Aα(Û±) are constant

coefficients matrices, and
[
Ŝ−1ÂνU

]
= (Ŝ+)−1Â+

ν U+ − (Ŝ−)−1Â−
ν U−, etc.

Assumption 2.1. The functions Ψi
j(U) in (1.3) are linear.

Assumption 2.1 is satisfied for most examples of constrained hyperbolic systems
we know. At the same time, this assumption is made only for simplicity of arguments
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below and can be easily removed. Assuming the linearity of Ψi
j(U), the linearized

constraints (1.18) after the change of unknowns (1.22) (below we drop the bars) read:

div ψj = 0, x ∈ R
n
±, j = 1,K,(2.3)

where ψj = ψj(U, F̂′) = ((Ψj , N̂),Ψ2
j , . . . ,Ψ

n
j ), N̂ = (1,−F̂′). For the case of

constant coefficients (2.2), N̂ = (1,−σ′).

2.1. The main definition. Given a nonnegative integer number p, we introduce
the notation

Wp := (∂α1

U, . . . , ∂αd

U),

with

d = Cp
n+p, |αi| = p, i = 1, d, αi �= αj for i �= j,

where ∂α := ∂α0
t ∂α1

1 · · · ∂αn
n , α = (α0, . . . , αn). In particular, W0 = U, W1 =

(Ut,Ux1
, . . . ,Uxn), W2 = (Utt,Utx1 , . . . ,Uxn−1xn

,Uxnxn
). Below we will usually

omit the index p, i.e., W := Wp.
Differentiating systems (2.2a) (if p �= 0) and taking into account relations (2.3),

one gets

P±L̃(Û±,σ)W +

K∑
j=1

∑
|α|=p

R±
j,αdiv

(
ψj(∂

αU,σ′)
)

= P±f̃±, x ∈ R
n
±,(2.4)

where

L̃(Û±,σ) = Id ⊗ L(Û±,σ), f̃± = (∂α1

f±, . . . , ∂αd

f±),

R±
j,α = Rj,α(Û±,σ) and P± = P (Û±,σ) are, respectively, vectors and nonsingular

matrices of order Nd. Here and below the subscript in Ij indicates the order of the
unit matrix Ij = I (sometimes we omit it). Systems (2.4) can be rewritten as follows:

L(Û±,σ)W = F±, x ∈ R
n
±,(2.5)

where

L = L(Û±,σ) = Â±
0 ∂t +

n∑
j=1

Â±
j ∂j , F± = F±(Û±,σ) = P±f̃±,

and Â±
i = Ai(Û

±,σ), i = 0, n, are matrices of order Nd (their explicit form is
determined from (2.4)).

Systems (2.5) are a kind of “secondary higher order” symmetrization of the sym-

metric systems (2.2a) if the matrices Â±
i are again symmetric. Moreover, to make

these matrices symmetric when writing out (2.5) one can take into account the trivial
relations like

∂i∂jU = ∂j∂iU, ∂i∂j∂kU = ∂j∂i∂kU = . . . = ∂k∂j∂iU, etc.,

which follow from the smoothness hypothesis (in R
n
±). Clearly, systems (2.5) are

not uniquely written out. It follows that a corresponding p-symmetrizer (see the
definition below) is not uniquely determined and, in principle, the problem can have
different p-symmetrizers. It is however quite natural and does not, of course, imply
the nonuniqueness of solutions to the problem.
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The boundary conditions for systems (2.5) are obtained by the tangential differ-
entiation (with respect to t and x′) of conditions (2.2b), and, furthermore, systems
(2.4) themselves differentiated p − 1 times and considered at x1 = 0 can be used as
boundary conditions. Unfortunately, the boundary conditions are difficult to present
in a concrete form, but it is clear that the right-hand parts in them depend on ∂α

t,x′g,

with |α| = p, and ∂βf±|x1=±0, with |β| = p − 1, where ∂α
t,x′ := ∂α0

t ∂α2
2 · · · ∂αn

n ,
α = (α0, α2, . . . , αn). The corresponding vector of right-hand parts formed by ∂α

t,x′g

and ∂βf±|x1=±0 is below denoted by G.
We are now in a position to give the definition of the (strictly) dissipative p-

symmetrizer.
Definition 2.1. The set of matrices and vectors

S = S(Û+, Û−,σ) :=
{
P+, P−,

{
R+

j,α

}
j=1,K,|α|=p

,
{
R−

j,α

}
j=1,K,|α|=p

}
(S := {P+, P−} if system (1.1) has no divergent constraints) is called the dissipative

p-symmetrizer of problem (2.2) if the matrices Â±
i in (2.5) are symmetric and there

is an open subset D of the state space G ⊂ R
N ×R

N ×R
n, a constant matrix B, and

a constant γ such that

Â+
0 > 0, Â−

0 > 0,(2.6)

and (cf. (1.12))

−
[
(Â1W,W)

]∣∣
x1=0

≥ (BG,W̃) − γ|G|2(2.7)

for all (Û+, Û−,σ) ∈ D and all W satisfying the boundary conditions for systems

(2.5), where W̃ = (W̃+,W̃−) and W̃± is the projection of W± orthogonal to kerÂ±
1

(for shock waves W̃± = W± = W|x1=±0).
The set S is called the strictly dissipative p-symmetrizer of problem (2.2) if it is

a dissipative p-symmetrizer of this problem and there is a fixed constant δ > 0 such
that

−
[
(Â1W,W)

]∣∣
x1=0

≥ δ|W̃|2 − δ−1|G|2.(2.8)

Remark 2.1. For 1-shocks Â−
ν > 0 (cf. (1.20)) and, therefore, the strictly dissi-

pative p-symmetrizer can be taken in the form

S =
{
P+, γI,

{
R+

j,α

}
j=1,K,|α|=p

, 0, . . . , 0
}
,

where the constant γ > 0 is large enough, P+, R+
j,α are such that the matrices Â+

α

are symmetric, Â+
0 > 0, and the relaxed condition (2.8),

−(Â+
1 W,W)|x1=+0 ≥ δ|W+|2 − δ−1

{
|G|2 + |W−|2

}
,

is fulfilled. Thanks to the choice of γ and the condition Â−
1 = γ(Id ⊗ Â−

ν ) > 0, the
last inequality implies (2.8) with an appropriate (and different) δ. That is, systems
(2.5) are symmetric hyperbolic and the boundary conditions for them are strictly
dissipative (cf. (1.11)).

Remark 2.2. The definition of the p-symmetrizer for the case of standard bound-
ary conditions is analogous to Definition 2.1. Note only that for problem (1.7) (with
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“frozen” coefficients) the p-symmetrizer has the form S =
{
P, {Rj,α}j=1,K,|α|=p

}
,

where P is a nonsingular matrix of order NCp
n+p, etc.

We now give some concrete examples of dissipative and strictly dissipative p-
symmetrizers. Without loss of generality we will consider homogenous interior equa-
tions and homogenous boundary conditions.

2.2. Example 1: The wave equation. Consider the initial-boundary-value
problem in the half-plane R

2
+ for the 2D wave equation:

utt = ux1x1
+ ux2x2 for x1 > 0,(2.9a)

ut + aux1 + bux2 = 0 for x1 = 0,(2.9b)

where a and b are real constants. As is known, the boundary conditions (2.9b) satisfy
the uniform Lopatinski condition in the half-strip

|b| < 1, a < 0.(2.10)

Problem (2.9) is easily reduced in the following problem for a symmetric hyper-
bolic system for the vector U = (u1, u2, u3) = (ut, ux1

, ux2
):

Ut + A1Ux1 + A2Ux2 = 0 for x1 > 0,(2.11a)

MU = 0 for x1 = 0,(2.11b)

with

A1 =

⎛⎝ 0 −1 0
−1 0 0
0 0 0

⎞⎠ , A2 =

⎛⎝ 0 0 −1
0 0 0
−1 0 0

⎞⎠ , M =
(

1 a b
)
.

In terms of the components of the vector U the trivial relation ux1x2 = ux2x1 satisfied
by classical solutions of (2.9) reads:

div Ψ(U) = 0, Ψ = (u3,−u2).(2.12)

Let us now forget about the connection between problems (2.9) and (2.11) (it is only
important that for (2.11) the uniform Lopatinski condition is also given by (2.10)).
Then (2.12) should be considered as a divergent constraint for the initial data for
(2.11). Indeed, one can easily show that if (2.12) is satisfied initially, it holds for
solutions of (2.11a) for all t > 0.

We now prove that (2.11) has a strictly dissipative 0-symmetrizer which can be
taken in the form S = {P,R}, with

P =

⎛⎝ p1 p2 p3

p2 p1 0
p3 0 p1

⎞⎠ , R =

⎛⎝ 0
−p3

p2

⎞⎠ , pi ∈ R,

and the parameter domain D (see Definition 2.1 and Remark 2.2) coincides with the
the domain of fulfillment of the uniform Lopatinski condition, (2.10). Indeed, applying
S to (2.11), (2.12) leads to the system

PUt + PA1Ux1 + PA2Ux2 + Rdiv Ψ = A0Ut + A1Ux1 + A2Ux2 = 0,(2.13)
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where A0 = P > 0 if p1 > 0 and p2
1 − p2

2 − p2
3 > 0. Also,

A1 =

⎛⎝ −p2 −p1 0
−p1 −p2 −p3

0 −p3 p2

⎞⎠ , A2 =

⎛⎝ −p3 0 −p1

0 p3 −p2

−p1 −p2 −p3

⎞⎠ .

Note that A0 = T ∗{I2 ⊗H}T (A0 > 0 if H > 0),

A1 = T ∗
{(

0 1
1 0

)
⊗H

}
T , A2 = T ∗

{(
1 0
0 −1

)
⊗H

}
T ,

T =
1√
2

⎛⎜⎜⎝
1 0 −1
0 −1 0
0 −1 0
1 0 1

⎞⎟⎟⎠ , H =

(
p1 − p3 −p2

−p2 p1 + p3

)
.

Omitting calculations, one has

−(A1U,U)|x1=0 = − ({S∗H + HS}V2,V2) |x1=0,(2.14)

where

V = T U =

(
V1

V2

)
, V1|x1=0 = SV2|x1=0, S =

⎛⎝ 2a

1 − b

b + 1

b− 1
1 0

⎞⎠ .

All the eigenvalues of the matrix S lie in the left half-plane (�λi(S) < 0), provided
that the uniform Lopatinski condition (2.10) holds. In this case the Lyapunov matrix
equation [5]

S∗H + HS = −G(2.15)

has a unique solution H for any symmetric matrix G, and if G > 0, then H = H∗ > 0.
Assuming that G = G∗ > 0 and taking into account the relation V = T U and the
boundary conditions V1|x1=0 = SV2|x1=0, we have

−(A1U,U)|x1=0 = (GV2,V2) |x1=0 ≥ δ|U|x1=0|2,

where δ > 0 is a constant depending on the norms of the matrices G, S, and T . Thus,
S is the strictly dissipative 0-symmetrizer.

Remark 2.3. The constants p1, p2, and p3 are found explicitly from (2.15) through
the elements of the matrix G = {gij}i,j=1,2. In particular,

p2 = −g22
1 − b

2(1 + b)
< 0

(g22 > 0 since G > 0). The condition p2 �= 0 and the inequality p2
1−p2

2−p2
3 > 0 imply

that detA1 �= 0, i.e., the boundary x1 = 0 is noncharacteristic for system (2.13). This
could seem strange because for system (2.11a) the boundary is characteristic, but
systems (2.11a) and (2.13) are equivalent (since detP �= 0). This is, however, quite
natural because we should take into account the divergent constraint (2.12). Indeed,
with condition (2.12) problem (2.11) has not a so-called loss of control on derivatives
in the normal direction. Namely, the x1-derivative of the “characteristic part” u3

of U is estimated from (2.12). That is, problem (2.11) being formally a hyperbolic
problem with characteristic boundary has the features of noncharacteristic problems.
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Remark 2.4. The symmetrization of the multidimensional wave equation [8, 10]
(n ≥ 3) with strictly dissipative boundary conditions can be formalized in terms of
the construction of a strictly dissipative 0-symmetrizer as well. In particular, for the
case n = 3 the matrix P has the form

P =

⎛⎜⎜⎝
p1 p2 p3 p4

p2 p1 0 0
p3 0 p1 0
p4 0 0 p1

⎞⎟⎟⎠ , pi ∈ R, p2
1 − p2

2 − p2
3 − p2

4 > 0.

We refer also to [13] where such a 0-symmetrizer for the 3D wave equation is used for
constructing a strictly dissipative 2-symmetrizer for relativistic gas dynamical shock
waves. For simplicity, in Examples 3 and 4 below we consider the 2D case for shock
waves in gas dynamics and MHD, and the structure of 2-symmetrizers for them is
based on a symmetrization of the 2D wave equation which is different from (2.13).
For the 3D case for gas dynamical and MHD shock waves we refer to [8, 10, 14] (see
also further discussion in the end of section 2).

2.3. Example 2: Compressible current-vortex sheets. For tangential dis-
continuities (current-vortex sheets) in MHD of ideal compressible fluid, the constant
coefficients linearized problem has the form of problem (2.2) (see [45]) with

Â±
0 = diag

(
1

ρ̂±(ĉ±)2
, ρ̂±, ρ̂±, ρ̂±, 1, 1, 1, 1

)
,

Â±
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

1 0 0 0 0 Ĥ±
2 Ĥ±

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 Ĥ±
2 0 0 0 0 0 0

0 Ĥ±
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Â±
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̂±2
ρ̂±(ĉ±)2

0 1 0 0 0 0 0

0 ρ̂±v̂±2 0 0 −Ĥ±
2 0 0 0

1 0 ρ̂±v̂±2 0 0 0 Ĥ±
3 0

0 0 0 ρ̂±v̂±2 0 0 −Ĥ±
2 0

0 −Ĥ±
2 0 0 v̂±2 0 0 0

0 0 0 0 0 v̂±2 0 0

0 0 Ĥ3 −Ĥ±
2 0 0 v̂±2 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Â±
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̂±3
ρ̂±(ĉ±)2

0 0 1 0 0 0 0

0 ρ̂±v̂±3 0 0 −Ĥ±
3 0 0 0

0 0 ρ̂±v̂±3 0 0 −Ĥ±
3 0 0

1 0 0 ρ̂±v̂±3 0 Ĥ±
2 0 0

0 −Ĥ±
3 0 0 v̂±3 0 0 0

0 0 −Ĥ±
3 Ĥ±

2 0 v̂±3 0 0
0 0 0 0 0 0 v̂±3 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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U = (p,v,H, S), Û± = (p̂±, 0, v̂±2 , v̂±3 , 0, Ĥ±
2 , Ĥ±

3 , Ŝ±), and the boundary conditions

ft = v±1 − v̂±2 fx2 − v̂±3 fx3 , [q] = 0,(2.16a)

H±
1 = Ĥ±

2 fx2 + Ĥ±
3 fx3

(2.16b)

at x1 = 0. Here q = p + (Ĥ±,H) for x ∈ R
3
±, Ĥ± = (0, Ĥ±

2 , Ĥ±
3 ), p̂± = p(ρ̂±, Ŝ±),

(ĉ±)2 = pρ(ρ̂
±, Ŝ±) > 0, and p = p(ρ, S) is the state equation of gas, ρ̂± > 0 is the

unperturbed density for x1 ≷ 0, etc. (see [45]). As in [45], without loss of generality

we suppose that σ = 0 (see (2.1)), i.e., Â±
ν = Â±

1 and consider the homogenous
problem (f± = 0 and g = 0).

Remark 2.5. Since det Â±
1 = 0, the boundary x1 = 0 is characteristic, i.e.,

current-vortex sheet is a characteristic discontinuity. For shock waves the correct
number of boundary conditions is guaranteed by the Lax conditions (1.20). For the
general case, the number of boundary conditions should be equal to

1 +
∑
±

# positive eigenvalues of ±A±
ν counting multiplicity.

That is, for current-vortex sheets the correct number of boundary conditions is three.
At first sight, problem (2.2a), (2.16) is overdetermined. On the other hand, one can
show that for the original nonlinear problem the boundary conditions (H±,N) = 0
(see [45]) can be regarded as the restrictions only on the initial data. This was shown
in [46] for the case of incompressible MHD, but this proposition can be easily proved
for compressible current-vortex sheets as well. Of course, this fact can be analogously
(and easier) proved for the linear problem. That is, for problem (2.2a), (2.16) the
boundary conditions (2.16b) are just the restrictions on the initial data.

Unlike, for example, MHD shock waves or Alfvén discontinuities [13, 44], for
current-vortex sheets the Lopatinski determinant can be explicitly written out. At
the same time, it is reduced to an algebraic equation of the tenth degree depending
on seven dimensionless parameters and one more inner parameter determining the
wave vector (see [45]). Moreover, the squaring was applied under the reduction of
the Lopatinski determinant to this algebraic equation and, therefore, it can introduce
spurious roots. For all these reasons both the analytical analysis and the full numer-
ical study of the Lopatinski determinant are unacceptable for finding the Lopatinski
condition. Although, one can analytically show that the uniform Lopatinski condi-
tion is never satisfied for problem (2.2a), (2.16), i.e., planar current-vortex sheets can
be either violently unstable or weakly (neutrally) stable (see [45]). The alternative
energy method suggested in [45] has first enabled one to find sufficient conditions for
their weak stability.

The method in [45] can be now described in terms of the notation of dissipative
symmetrizer. In fact, in [45] the dissipative 0-symmetrizer S = {P+, P−,R+,R−}
was suggested for problem (2.2a), (2.16), where P± = P (Û±), R± = λ(Û±)R(Û±),

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
λH1

ρc2
λH2

ρc2
λH3

ρc2
0 0 0 0

λH1ρ 1 0 0 −ρλ 0 0 0
λH2ρ 0 1 0 0 −ρλ 0 0
λH3ρ 0 0 1 0 0 −ρλ 0

0 −λ 0 0 1 0 0 0
0 0 −λ 0 0 1 0 0
0 0 0 −λ 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, R = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
H1

H2

H3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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λ = λ(U) is a function, and the constants λ± = λ(Û±) are chosen below. Actually,
the application of {P,R} to the original nonlinear MHD system gives a new symmetric
form [45] of the MHD equations with the hyperbolicity condition, A0(U) = PA0 > 0,

ρλ2 <
1

1 + c2A/c
2
,(2.17)

where cA = |H|/√ρ (see [45]).
Note that for current sheets, i.e., for the case when [v̂] = 0 (v̂± = (0, v̂±2 , v̂±3 )) the

boundary conditions (2.16) are dissipative:[
(Â1U,U)

]∣∣
x1=0

= 2q+[v1] = 2q+
(
[v̂′],∇x′f

)
= 0,

where v̂′± = (v̂±2 , v̂±3 ). That is, for current sheets one has the identical 0-symmetrizer

S = {I, 0, I, 0} (λ± = 0). Suppose now that [v̂] �= 0 and Ĥ+ × Ĥ− �= 0 (for the

particular case Ĥ+ × Ĥ− = 0 we refer to [45]). The matrices Â±
1 (cf. (2.5)) have the

form

Â±
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 −λ± 0 0 0

1 0 0 0 0 Ĥ±
2 Ĥ±

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−λ± 0 0 0 0 −λ±Ĥ±
2 −λ±Ĥ±

3 0

0 Ĥ±
2 0 0 −λ±Ĥ±

2 0 0 0

0 Ĥ±
3 0 0 −λ±Ĥ±

3 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, by virtue of (2.16),[
(Â1U,U)

]∣∣
x1=0

= 2q+[v1 − λH1] = 2q+
(
[v̂′ − λĤ′],∇x′f

)
,

where Ĥ′± = (Ĥ±
2 , Ĥ±

3 ).

The constants λ± are chosen so that [v̂′ − λĤ′] = 0:

λ± = − |[v̂]| sinϕ∓

|Ĥ±| sin(ϕ+ − ϕ−)
, cosϕ± =

([v̂], Ĥ±)

|[v̂]| |Ĥ±|
.

For such λ± the boundary conditions for system (2.5) are dissipative and, therefore,

S is the dissipative (but not strictly dissipative) 0-symmetrizer, provided that Â±
0 =

A0(Û
±) > 0. In view of (2.17), the last conditions for the chosen λ± read:

|[v̂]| < | sin(ϕ+ − ϕ−)|min

{
γ+

| sinϕ−| ,
γ−

| sinϕ+|

}
,(2.18)

where γ± = ĉ±ĉ±A/
(
(ĉ±)2 + (ĉ±A)2

)1/2
. Inequality (2.18) represents the sufficient con-

dition for the neutral stability of compressible current-vortex sheets. This condition
is of importance for various astrophysical applications such as, for example, the he-
liopause model [4]. As was shown in [45, 46], in the incompressibility limit inequality
(2.18) describes exactly half of the parameter domain of neutral stability.
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2.4. Example 3: Gas dynamical shock waves. The system of gas dynamics
is an unconstrained hyperbolic system, and gas dynamical shock waves are known
to be 1-shocks. Therefore, while constructing a strictly dissipative symmetrizer one
can suppose that P− = γI (see Remark 2.1) and, clearly, R±

j,α = 0. Keeping in

mind the observation about P−, without loss of generality the perturbation ahead
the planar 1-shock can be assumed to be equal to zero: U = 0 for x1 < 0. That
is, for gas dynamical shocks the constant coefficients linearized problem (see (2.2))
is formulated in the half-space R

n
+ and the strictly dissipative p-symmetrizer for it is

just a matrix: S = P+.
For the 2D case (n = 2) and in dimensionless values the constant coefficients

linearized problem for gas dynamical shock waves has the form of (2.2) with U|x1<0 =

0 and Â+
0 = diag(1,M2,M2, 1),

Â+
ν = Â+

1 =

⎛⎜⎜⎝
1 1 0 0
1 M2 0 0
0 0 M2 0
0 0 0 1

⎞⎟⎟⎠ , Â+
2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠
(without loss of generality σ = 0, f± = 0, and g = 0). Here M = v̂+

1 /ĉ+ is the

Mach number behind the shock (in view of the Lax shock conditions, M < 1), Û± =

(p̂±, v̂±1 , 0, Ŝ±), (ĉ±)2 = (ρ2Eρ)ρ(ρ̂
±, Ŝ±) > 0, and E = E(ρ, S) is the state equation

of gas, etc. (see, e.g., [13]). The vector U = (p, v1, v2, S) is the vector of perturbations

in dimensionless values [13] and Â+
α = D(Û+)∗Aα(Û+)D(Û+), where D(Û+) is a

diagonal matrix reducing system (2.2a)|x1>0 to a dimensionless form.
The boundary conditions in a dimensionless form and after eliminating the func-

tion f(t, x2) read [13]:

v1 + b1p = 0, (v2)t = b2px2 , S = b3p,(2.19)

where

b1 =
a + 1

2M2
, b2 =

(a− 1)R

2M2
, b3 = 1 − a

M2
, a =

h−R + 1

h/M2 −R + 1
,

R = ρ̂+/ρ̂−, h = (2ES/(ρEρS))(ρ̂+, Ŝ+). As is known (see [13, 34] and references
therein), the boundary conditions (2.19) satisfy the uniform Lopatinski condition,
i.e., planar gas dynamical shock waves are uniformly stable if and only if

M2(R + 1) − 1

M2(R− 1) + 1
< a < 1.(2.20)

The energy method enabling one to deduce an a priori estimate with no loss of
derivatives for (2.2a), (2.19), provided that the uniform Lopatinski condition (2.20)
holds, was suggested by Blokhin [6]. We now formalize this method by writing out
a strictly dissipative 2-symmetrizer for this problem (for the 3D case we refer to [13]
and references therein). The construction of this symmetrizer is based on a certain
symmetrization of the wave equation for the pressure perturbation p implied by the
acoustics system:

∂̃2
t p− ∂̃2

1p− ∂̃2
2p = 0,(2.21)
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where

∂̃t =
M

b2
∂t, ∂̃1 = ∂1 −

M2

b2
∂t, ∂̃2 =

1

b
∂2, b =

√
1 −M2 ∈ R+.

Using the boundary conditions (2.19) and the acoustics system itself, one can obtain
the following boundary condition for (2.21):

M2(1 + b1)ptt − b2ptx1 + M2b2px2x2 = 0, x1 = 0.(2.22)

Problem (2.21), (2.22) is “symmetrized” as follows (see [13] for details):

B0Yt + B1Yx1 + B2Yx2 = 0 for x1 > 0,(2.23)

MY = 0 for x1 = 0,(2.24)

where

Y =

⎛⎝ Y1

Y2

Y3

⎞⎠ , Y1 = ∂̃t

⎛⎝ ∂̃tp

∂̃1p

∂̃2p

⎞⎠ , Yi = ∂̃i−1

⎛⎝ ∂̃tp

∂̃1p

∂̃2p

⎞⎠ , i = 2, 3,

B0 =
M

b2
T ∗

{(
1 −M

−M 1

)
⊗H

}
T , B1 = T ∗

{(
0 1
1 0

)
⊗H

}
T ,

B2 =
1

b
T ∗

{(
1 0
0 −1

)
⊗H

}
T , T =

1√
2

⎛⎜⎜⎝
1 0 −1
0 −1 0
0 −1 0
1 0 1

⎞⎟⎟⎠⊗I3,

H =

(
P1 − P3 −P2 − P4

−P2 + P4 P1 + P3

)
, M =

(
M1 M2 M3

)
,

M1 =

⎛⎝ 1 2 0
0 0 0
0 1 0

⎞⎠ , M2 =

⎛⎝ −2 −1 0
0 0 −1
0 −Mb1 0

⎞⎠ , M3 =

⎛⎝ 0 0 −1
0 1 0

0 0 −b0

⎞⎠ ,

Pk (k = 1, 3) are arbitrary symmetric matrices of order 3, P4 is an arbitrary antisym-
metric matrix of order 3, and b0 = Mb1 + (M3b2/b

2).
Referring for detailed arguments to [13], one gets (cf. (2.14))

−(B1Y,Y)|x1=0 = − ({S∗H + HS}V2,V2) |x1=0,

where

V = T Y =

(
V1

V2

)
, V1|x1=0 = SV2|x1=0, S =

(
S1 −S2

I3 0

)
,

S1 = 2(M1 −M3)
−1M2, S2 = (M1 −M3)

−1(M1 + M3).

One can show that all the eigenvalues of the matrix S lie strictly in the left half-plane
(�λi(S) < 0, i = 1, 6) if and only if the uniform Lopatinski condition (2.20) holds. In
this case the Lyapunov matrix equation in the form of (2.15) has the unique solution
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H = H∗ > 0 for any symmetric and positive definite matrix G. Moreover, since
H > 0, the matrix B0 > 0. The assumption G > 0 yields

−(B1Y,Y)|x1=0 = (GV2,V2) |x1=0 ≥ C1|X+|2,

where

X = (ptt, ptx1 , ptx2 , px1x1 , px1x2 , px2x2), X+ = X|x1=0, Y = KX,

K is a 9 × 6 matrix which can be explicitly written out, and C1 = C1(G) > 0 is
a constant depending on the norm of the matrix G (as well as on the norms of the
matrices S, T , and K).

In fact, we have constructed the strictly dissipative 1-symmetrizer for the sub-
problem, (2.21), (2.22), for the vector (pt, px1

, px2
). We are now ready to describe

the strictly dissipative 2-symmetrizer for the whole problem, (2.2a), (2.19). It has the
form

S = P+ = I24 + N ∗K∗B0KN
(
I6 ⊗ (Â+

0 )−1
)
,

where N is the projector of W = W2 = (Utt,Utx1 , . . . ,Ux2x2) on X, i.e., X = NW.

It is clear that Â+
0 = P+(I6⊗Â+

0 ) > 0. Indeed, (Â+
0 W,W) = ((I6⊗Â+

0 )W,W)+
(B0Y,Y) > 0 for all W �= 0. Concerning condition (2.8), one has

−(Â+
1 W,W)|x1=0 = −((I6 ⊗ Â+

1 )W,W)|x1=0 − (B1Y,Y)|x1=0.

Using the boundary conditions (2.19) and the acoustics system it is not difficult to
show that W|x1=0 = BX|x1=0, where B is a 24 × 6 matrix with elements depending

on the coefficients of (2.19) and the matrices Â+
α . Therefore, there exists a positive

constant C2 such that

−((I6 ⊗ Â+
1 )W,W)|x1=0 ≥ −C2|X+|2.

Analogous arguments show that |X+|2 ≥ C3|W+|2 with a constant C3 > 0. On the
other hand, by an appropriate choice of the matrix G (i.e., the choice of matrices Pi)
one can achieve that C1 − C2 > 0. Hence,

−(Â+
1 W,W)|x1=0 ≥ (C1 − C2)|X+|2 ≥ δ|W+|2,

where δ = (C1 −C2)C3 > 0. Thus, S is indeed the strictly dissipative 2-symmetrizer.

2.5. Example 4: Fast MHD shock waves. As gas dynamical shock waves,
fast MHD shock waves are also 1-shocks (see, e.g., [13]). That is, the constant coef-
ficient linearized problem for fast MHD shocks in 2D (for 3D see [14]) and in dimen-
sionless values has the form of the problem for gas dynamical shock waves formulated
above, with Â+

0 = diag(1,M2,M2, 1, 1, 1),

Â+
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0 0
1 M2 0 0 h2 0
0 0 M2 0 −h1 0
0 0 0 1 0 0
0 h2 −h1 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , Â+
2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0 0 0
0 0 0 −h2 0 0
1 0 0 h1 0 0
0 −h2 h1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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Û± = (p̂±, v̂±1 , v̂±2 , Ĥ±
1 , Ĥ±

2 , Ŝ±), v̂+
2 = 0, hi = Ĥ+

i /(ĉ
√
ρ̂), U = (p, v1, v2, H1, H2, S),

etc. (see [12, 13]). The boundary conditions read

v1 + b1p = q1fx2
, ft = b2p + q2fx2

, v2 = b3fx2
+ q3p,

H2 = h2b0ft − h2v1 + h1v2, H1 = h2b0fx2
, S = b4p + q4fx2

,
(2.25)

where the coefficients bi are explicitly written out in [12, 13] for the case of a polytropic
gas and a weak magnetic field, q =

√
h2

1 + h2
2 � 1 (for the general case, q ∈ (0,+∞),

see [44]), the coefficients qi = O(q2) for q � 1, and b0 = 1 − (Ĥ−
2 /Ĥ+

2 ) ∈ (0, 1) (for

parallel shocks, Ĥ±
2 = 0, b0 := 0).

The energy method suggested in [12] is based on the fact that the magnetoacous-
tics system implies the wave equation with an additional “magnetic” term:

∂̃2
t p− ∂̃2

1p− ∂̃2
2p +

q

b2
�Q = 0(2.26)

(notations are the same as in (2.21)), where Q = (b,H), H = (H1, H2), and b =
(−h1/q, h2/q) (|b| = 1). Then, the counterpart of system (2.23) reads

B0Yt + B1Yx1 + B2Yx2 +
q

b2

⎛⎝ P1

P2

P3

⎞⎠�Q = 0 for x1 > 0,(2.27)

where Q = (∂̃tQ, ∂̃1Q, ∂̃2Q). Moreover, for the function p we can obtain a counterpart
of the boundary condition (2.22) (see [12, 14]) which implies (2.24) with the matrices
Mi being slightly different from the corresponding matrices in gas dynamics for the
case q � 1 (the norms of the differences are of order O(q2)).

The crucial role in deducing the a priori estimate [12] for (2.2a), (2.25) is played
by the important fact that the term⎛⎝Y,

⎛⎝ P1

P2

P3

⎞⎠�Q

⎞⎠ =
3∑

i=1

(Yi, Pi�Q)

can be represented in a divergent form,

3∑
i=1

(Yi, Pi�Q) = (R0W,W)t + (R1W,W)x1 + (R2W,W)x2 ,(2.28)

where W = W2, and the quadratic forms (RαW,W) are explicitly written out in
[12, 13] (if necessary, the symmetric matrices Rα of order 36 can be written out as
well). While obtaining representation (2.28) the divergent constraint divH = 0 and
the magnetoacoustics system itself were essentially used.

The strictly dissipative 2-symmetrizer for fast MHD shock waves has the form

S =
{
P+, {R+

1,α}|α|=2

}
,

with

P+ = I36 + N ∗K∗B0KN
(
I6 ⊗ (Â+

0 )−1
)

+ P+
0 , {R+

1,α}|α|=2 = {R1, . . . ,R6}.

Here N is the projector of W on X, the matrices K and B0 and the vector X are the
same as for gas dynamical shocks, the matrix P+

0 and the vectors Ri, which are of
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order O(q) for q � 1, can be explicitly written out by analyzing representation (2.28).
Moreover,

(Â+
0 W,W) = ((I6 ⊗ Â+

0 )W,W) + (B0Y,Y) +
2q

b2
(R0W,W),

−(Â+
1 W,W)|x1=0 = −

((
I6 ⊗ Â+

1 +
2q

b2
R0

)
W,W

) ∣∣∣∣∣
x1=0

−(B1Y,Y)|x1=0.

It is clear that for H > 0 and q � 1 the matrix Â+
0 > 0. For the case of a weak

magnetic field (q � 1) and a polytropic gas, one can show that all the eigenvalues of

the matrix S lie strictly in the left half-plane. That is, −(Â+
1 W,W)|x1=0 ≥ δ|W+|2,

where the constant δ > 0 for q � 1 (see [12, 13] for more details). Thus, S is indeed
the strictly dissipative 2-symmetrizer of (2.2a), (2.25) for the case of a weak magnetic
field and a polytropic gas. Concerning the case of a general equation of state, the
same is true if we require the fulfillment of (2.20) that is in fact the uniform Lopatinski
condition for fast MHD shocks for q � 1.

Remark 2.6. In principle, for the general case, q ∈ (0,+∞), we can try to find

the conditions for Û± guaranteeing the fulfillment of the requirements Â+
0 > 0 and

−B∗Â+
1 B > 0, where W+ = BX+. Then, S is the strictly dissipative 2-symmetrizer,

provided that these conditions hold. However, rather cumbersome calculations should
be unfortunately performed to find the mentioned conditions. At the same time, if
they are possible to be found at least numerically, for fixed parameters Û±, then it is
interesting to compare them with the uniform stability domain for fast MHD shock
waves. This domain was found in [44] by numerical testing of the uniform Lopatinski
condition with the help of an algorithm suggested for 1-shocks.

2.6. Further examples. For gas dynamical shock waves we have presented a
strictly dissipative 2-symmetrizer for the 2D case. For the 3D case the structure of
the 2-symmetrizer is different, but the process of construction of this symmetrizer is
also based on using a symmetrization of the wave equation. The same structure has
the strictly dissipative 2-symmetrizer for shock waves in relativistic gas dynamics (see
[13]) and in nonrelativistic radiation hydrodynamics [3]. For shock waves in relativistic
radiation hydrodynamics [15] the structure of the strictly dissipative 2-symmetrizer
is a little bit more complicated; however, it refers to a symmetrization of the wave
equation as well.

It is interesting to note that, for instance, the system of Landau’s equations of
superfluid [29] is a constrained hyperbolic system, but the relations ∇ × vs = 0 are
not used under the construction of the strictly dissipative 2-symmetrizer for shock
waves in this model (see [11] and references therein), i.e., R±

j,α = 0. Unfortunately,
there is not a general method to construct a (strictly) dissipative p-symmetrizer. For
most concrete examples p = 2 and they are based on using different symmetrizations
of the wave equation. So, Definition 2.1 was given for p ≥ 0, but we will privately
suppose that p = 0 or p = 1 or p = 2 (actually, we do not know examples with p ≥ 3).
Moreover, for the physical cases n = 2 and n = 3 (2D and 3D) the existence of a
strictly dissipative p-symmetrizer with p ≥ 3 implies a weaker local existence theorem
for the nonlinear problem (in the generic case, for a symmetrizer with p ≥ [n/2] + 2
one obtains a weaker nonlinear result, see section 4).

Observe that in [10] also a strictly dissipative 1-symmetrizer was in fact con-
structed for gas dynamical shock waves. But in this case the domain D (see Definition
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2.1) is only a subdomain of the whole domain of the uniform Lopatinski condition. Al-
though, it should be noted that for nonlinear analysis (see section 4) a 1-symmetrizer
has no advantages in comparison with a 2-symmetrizer.

3. The constant coefficients linear analysis. In the rest of the paper we con-
sider shock waves and only make certain remarks concerning the case of characteristic
discontinuities.

Assumption 3.1. For the boundary conditions (2.2b), rank B̂ = n, i.e., the

vectors [P0(Û)], [Pk(Û)], k = 2, n, are linearly independent.
It follows from Assumption 3.1 that n ≤ N and there is a nonsingular matrix

M = M(Û+, Û−) of order N such that

MB̂ =

(
In
0

)
.

Let

M =

(
MI

MII

)
,

where MI and MII are matrices of order n×N and (N −n)×N , respectively. Then
the boundary conditions (2.2b) can be divided into the two groups

F = MI
[
Ŝ−1ÂνU

]
+ MIg, x1 = 0,(3.1)

−MII
[
Ŝ−1ÂνU

]
= MIIg, x1 = 0.(3.2)

Note that by cross differentiation one can, in principle, eliminate the front f from
relations (3.1). Such a procedure results in first order boundary conditions (see, e.g.,
(2.19)).

Assumption 3.1 is quite natural because, as was proved in [37], it is fulfilled
for uniformly stable shock waves, i.e., when (2.2) satisfies the uniform Lopatinski
condition. Moreover, as was shown in [17], Assumption 3.1 is also fulfilled for weakly
stable shocks under some additional supposition. At the same time, for example,
for gas dynamical and MHD shock waves Assumption 3.1 is always satisfied if only
R = ρ̂+/ρ̂− �= 1.

Theorem 3.1. Suppose the Lax shock conditions (1.20) and all the assumptions
above are fulfilled. Suppose also that (2.2) has a strictly dissipative p-symmetrizer.
Then, the a priori estimate∑

±

{
|||U(t)|||Wp

2 (Rn
±) + ‖U±‖Wp

2 ([0,T ]×Rn−1)

}
+ ‖f‖Wp+1

2 ([0,T ]×Rn−1)

≤ C

{∑
±

{
‖f±‖Wp

2 ([0,T ]×R
n
±) + |||U0|||Wp

2 (Rn
±)

}
+‖g‖Wp

2 ([0,T ]×Rn−1) + ‖f0‖Wp+1
2 (Rn−1)

}(3.3)

holds for any t ∈ (0, T ). Here T is a positive constant, C = C(T ) is a positive constant
independent of the initial data and the source terms,

|||(·)(t)|||2Wk
2

:=

k∑
j=0

‖∂j
t (·)(t)‖2

Wk−j
2

.
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If (2.2) has a dissipative (but not strictly dissipative) p-symmetrizer, the following
weaker a priori estimate holds∑

±

{
|||U(t)|||W r

2 (Rn
±) + ‖U±‖W r−1

2 ([0,T ]×Rn−1)

}
+ ‖f‖W r

2 ([0,T ]×Rn−1)

≤ C

{∑
±

{
‖f±‖W r

2 ([0,T ]×R
n
±) + |||U0|||W r

2 (Rn
±)

}
+‖g‖W r+1

2 ([0,T ]×Rn−1) + ‖f0‖W r
2 (Rn−1)

}
,

(3.4)

where r = 1 for p = 0 and r = p for p ≥ 1.
Proof. We will not prove estimate (3.3) in detail since arguments to do this are

quite standard. By virtue of (2.6), (2.8), it follows from (2.5) that

I1(t) +

∫ t

0

∫
Rn−1

(
|W+|2 + |W−|2

)
dx′dt

≤ C1

{
I1(0) + J(T ) +

∫ t

0

I1(s)ds

}
,

(3.5)

where

I1(t) =
∑
±

‖W(t)‖2
L2(Rn

±), J(T ) = ‖g‖2
Wp

2 ([0,T ]×Rn−1) +
∑
±

‖f±‖2
Wp

2 ([0,T ]×R
n
±).

Here and below Ci = Ci(Û
+, Û−,σ), i = 1, 2, 3, . . . , appearing under the analysis of

(2.2) are positive constants.
If p �= 0, we use the elementary inequality

I0(t) ≤ I0(0) +

∫ t

0

I(s)ds(3.6)

coming from the trivial identity

d

dt
I0(t) = 2

∑
±

∫
R

n
±

(Y,Yt) dt,

where I(t) = I0(t) + I1(t), Y = (W0, . . . ,Wp−1), p ≥ 1,

I0(t) =
∑
±

|||U(t)|||2
Wp−1

2 (Rn
±)
.

Inequalities (3.5) and (3.6) yield

I(t) ≤ C1

{
I(0) + J(T ) +

∫ t

0

I(s)ds

}
.

Applying Gronwall’s lemma, one gets

I(t) ≤ C2(I(0) + J(T )), 0 ≤ t ≤ T.(3.7)

From trace’s property one has∫ t

0

∫
Rn−1

(
|Y+|2 + |Y−|2

)
dx′dt ≤

∫ t

0

I(s)ds.(3.8)
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Adding up (3.5) and (3.8) and taking into account estimate (3.7), we obtain∑
±

‖U±‖2
Wp

2 ([0,T ]×Rn−1) ≤ C3(I(0) + J(T )).(3.9)

Using (3.9), the boundary conditions (3.1), and an elementary inequality for f like
that in (3.6) for U, we estimate the front perturbation f :

‖f‖2
Wp+1

2 ([0,T ]×Rn−1)
≤ C4

{
I(0) + J(T ) + ‖f0‖2

Wp+1
2 (Rn−1)

}
.(3.10)

Estimates (3.7), (3.9), and (3.10) imply the desired a priori estimate (3.3).
Let us now assume (2.2) has a dissipative (but not strictly dissipative) p-symmet-

rizer. If p = 0 we differentiate system (2.5) with respect to t and x′ and obtain a
symmetric hyperbolic system for the vector (Ut,Ux2 , . . . ,Uxn). Using this system
for the case p = 0 or system (2.5) for p ≥ 1 and taking into account (2.6) and (2.7),
we obtain the inequality

I1(t) +

∫ t

0

∫
Rn−1

(B̂G, Z̃)dx′dt ≤ C4

{
I1(0) + J(T ) +

∫ t

0

I1(s)ds

}
,(3.11)

where B̂ is a constant matrix, Z̃ = (Z+,Z−), Z = (∂tWr−1, ∂2Wr−1, . . . , ∂nWr−1)
(r = 1 for p = 0 and r = p for p ≥ 1). Other notations are the same as in (3.5), but
for the case of 0-symmetrizer W := W1, p = 1 in J , and the vector G is formed by
∂α
t,x′g (|α| = 1) and f±|x1=±0. While obtaining (3.11) we used the relations

Ux1 = −(Â±
ν )−1Â±

0 Ut −
n∑

k=2

(Â±
ν )−1Â±

k Uxk
+ (Â±

ν )−1f±, x ∈ R
n
±

(recall that we consider shock waves and, therefore, det Â±
ν �= 0).

To estimate the boundary integral in the left-hand side of inequality (3.11) we
carry out standard manipulations with derivatives. For example, with the terms like
u+
x2
g and u+

x2
h+ appearing in this integral we proceed as follows:∫

Rn−1

u+
x2
g dx′ = −

∫
Rn−1

u+gx2
dx′,∫

Rn−1

u+
x2
h+ dx′ = −

∫
R

n
+

(ux2h)x1 dx =

∫
R

n
+

(ux1hx2 − ux2hx1) dx,

where u = ∂αuj , h = ∂βfk, g = ∂γ
t,x′gk, |α| = |β| = r − 1, |γ| = r, and gk and fk are,

respectively, components of the vectors g and f+. Analogous standard arguments
were also applied in [45] to treat lower order terms in the boundary integral for
the variable coefficients linearized problem for current-vortex sheets. Observe that
while estimating integrals like

∫ t

0

∫
Rn−1 u

+
t h

+ dx′dt we should be more careful because
terms in the form ∂t{· · ·} do not disappear under the integration over the domain
[0, t]× (Rn

+∪R
n
−) (for corresponding simple arguments see [45]). As a result, omitting

details, from (3.11) we deduce estimate (3.4).
Remark 3.1. Using

Ut = −(Â±
0 )−1Â±

ν Ux1 −
n∑

k=2

(Â±
0 )−1Â±

k Uxk
+ (Â±

0 )−1f±, x ∈ R
n
±,
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one can reduce estimates (3.3) and (3.4) to those with the norms ‖(·)(t)‖ instead of
the norms |||(·)(t)||| .

Corollary 3.2. If the symmetric hyperbolic system (1.5) meets either the block
structure condition [1, 35] or the conditions of Métivier and Zumbrun [38] and problem
(2.2) for the case of Lax shocks has a strictly dissipative p-symmetrizer, then in the
parameter domain D the boundary conditions (2.2b) satisfy the uniform Lopatinski
condition.

Proof. First of all, following arguments like those used in [34] for strictly dissi-
pative boundary value problems, one can easily obtain an analogue of estimate (3.3)
when the exponentially weighted W s

2,η-norms (with s = p and s = p + 1) are used
instead of the usual Sobolev norms, where

‖ · ‖W s
2,η

:=
∑
|α|≤s

ηs−|α|‖e−ηt∂α(·)‖L2
.

For the case when system (1.5) satisfies the block structure condition [1, 35, 32], it
was proved in [32] (see also [37]) that such an estimate (with s = 0 and s = 1) holds
for problem (2.2) if and only if this problem meets the uniform Lopatinski condition.
This result was recently extended by Métivier and Zumbrun to the case of variable
multiplicities provided that some additional conditions [38] hold. It is clear that the
L2,η-estimate (with the W 1

2,η-norm for f) implies W s
2,η-estimates (see [37]). Hence,

the boundary conditions (2.2b) satisfy the uniform Lopatinski condition.
Remark 3.2. If the linear problem (2.2) meets the uniform Lopatinski condition

and the symmetric hyperbolic system (1.5) satisfies either the block structure condi-
tion [1, 35] or the conditions of Métivier and Zumbrun [38], then the solution to (2.2)
obeys an a priori L2-estimate [32, 37]. That is, if p > 0, the result of Theorem 3.1 ob-
tained for the linearized problem by the energy method is weaker than that in [32, 37]
obtained by Kreiss’ symmetrizer analysis in the sense that in estimate (3.3) we require
more regularity for U. However, if p < [n/2] + 2, for the original nonlinear problem
the energy method gives the same result (see Theorem 4.1) as the technique used in
[32, 37]. Since p < [n/2] + 2 for all the known concrete examples of p-symmetrizers,
we will suppose that this condition is satisfied.

Remark 3.3. In [45] the a priori estimates for the linearized problem for current-
vortex sheets were written out for the case of the homogenous problem (f± = 0 and
g = 0). For the case of the nonhomogenous problem (2.2a), (2.16) (with the source
term g in (2.16)), the a priori estimate

∑
±

{
|||U(t)|||

W̃ 1
2 (R3

±)
+ ‖V±‖L2([0,T ]×R2)

}
+ ‖f‖W 1

2 ([0,T ]×R2)

≤ C

{∑
±

{
‖f±‖W 1

2 ([0,T ]×R
3
±) + |||U0|||W̃ 1

2 (R3
±)

}
+‖g‖W 2

2 ([0,T ]×R2) + ‖f0‖W 1
2 (Rn−1)

}

can be deduced, provided that the sufficient neutral stability condition (2.18) holds.
Here V (= (q, v1, H1), see [45]) is the “noncharacteristic part” of U,

|||U(t)|||2
W̃ s

2 (Rn
±)

= |||V(t)|||2W s
2 (Rn

±) +
∑
|α|≤s

‖(∂α
t,x′U)(t)‖2

L2(Rn
±).
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For the general case of characteristic discontinuities, if we require that in (3.1)

MI
[
Ŝ−1ÂνU

]
= M1V

+ + M2V
−(3.12)

with corresponding matrices Mi, i.e., the vector-function F can be expressed by the
“noncharacteristic parts” V± of the traces U±, then in the counterparts of estimates
(3.3) and (3.4) the W̃ s

2 (Rn
±)-norms are used instead of the W s

2 (Rn
±)-norms, and we

can control only the “noncharacteristic” traces V±. If assumption (3.12) does not
hold, we have weaker a priori estimates. For example, this is so for current-vortex
sheets if Ĥ+ × Ĥ− = 0. For this case, the a priori estimate indicates already the loss
of two derivatives from the front f (see [45]).

4. Local existence of shock-front solutions. The local existence theorem for
the nonlinear problem (1.17) has been first proved by Blokhin [7, 9] for uniformly sta-
ble gas dynamical shock waves by the direct energy method. Recall that the linearized
constant coefficients problem for them has a strictly dissipative 2-symmetrizer (see
section 2). The functional setting in the theorem from [7, 9] (see also [13]) is provided
by the usual Sobolev spaces W s

2 , where s ≥ 3. The analogous theorem, but in the
exponentially weighted Sobolev spaces W s

2,η, where s is large enough, was proved by
Majda [33] for Lax shocks by Kreiss’ symmetrizer technique [27] and using pseudo-
differential calculus, provided that the symmetric hyperbolic system satisfies the block
structure condition [1, 35, 32].

Recently, the theorem from [33] (see also [34]) was considerably improved by
Métivier in [37], where the nonlinear local existence theorem was formulated in the
form of Blokhin’s theorem from [7, 9, 13] (see below). Actually, the theorem proved
in [37] is valid for shock waves for which the linearized problem admits constructing
Kreiss’ symmetrizer. That is, the class of hyperbolic symmetrizable systems covered
by this theorem is wider than that of systems satisfying the block structure condi-
tion. Moreover, taking into account the recent result in [38] mentioned above, the
local existence theorem from [37] (see also [7, 9, 13]) takes place for the hyperbolic
symmetrizable systems satisfying either the block structure condition or Métivier and
Zumbrun’s conditions [38]. That is, for Lax shock waves for which the assumption of
Corollary 3.2 is fulfilled we have the following theorem (cf. [7, 9, 13, 37]).

Theorem 4.1. Let that the linearized constant coefficients problem (2.2) has a
strictly dissipative p-symmetrizer. Suppose the initial data (1.17c) satisfy the hyper-
bolicity condition A0 > 0 (for x ∈ R

n
±), the Lax shock conditions (1.20), and the

compatibility conditions (see [37]). Suppose also that (U0|x1>0,U0|x1<0, f0) ∈ D for
all x ∈ R

n
± (see Definition 2.1). Then, for all

(U0, f0) ∈
{
W s

2 (Rn
+) ∩W s

2 (Rn
−)

}
×W s+1

2 (Rn−1),

where s ≥ [n/2] + 2 , there is a sufficiently short time T > 0 such that (1.17) has a
unique solution

(U, f) ∈ Zs
T =

{
Xs([0, T ],Rn

+) ∩Xs([0, T ],Rn
−)

}
×W s+1

2 ([0, T ] × R
n−1),

where

Xk([0, T ],Rn
±) :=

k⋂
j=0

Cj([0, T ],W k−j
2 (Rn

±))

with the norm ‖ · ‖Xk
= max

t∈[0,T ]
|||(·)(t)|||Wk

2
.
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It seems that for most physical examples of hyperbolic symmetrizable systems
either the block structure condition or the “nonglancing” condition of Métivier and
Zumbrun [38] is satisfied. Moreover, we still do not know any concrete example of
a strictly dissipative p-symmetrizer for a hyperbolic system for which both of these
conditions are violated. Therefore, in view of Corollary 3.2, construction of a strictly
dissipative p-symmetrizer can be considered as an indirect test of the uniform Lopatin-
ski condition. That is, as soon as such a symmetrizer is found, we have Theorem 4.1.
In the light of this, there is now no practical sense for proving Theorem 4.1 directly
by the energy method (as was earlier done in [7, 9, 10] for gas dynamical shocks), i.e.,
without referring to [37, 38] and Corollary 3.2.

We connect further perspectives of the method of p-symmetrizers with “nonstan-
dard” problems, in particular, for characteristic discontinuities for which the structure
of the Lopatinski determinant cannot be analyzed for technical reasons (see discussion
in section 5). At the same time, to demonstrate how the energy method works for
Lax shock waves for the case of variable coefficients and for the original nonlinear
problem, we now outline the proof of Theorem 4.1. The main attention will be given
to the deduction of an a priori estimate for the variable coefficients linearized problem
(1.24), (1.17c). After that, to show the existence of solutions to (1.24), (1.17c) we
comment how to go back from the system for p-derivatives with strictly dissipative
boundary conditions to the original problem (1.24), (1.17c). At last, the proof of
the existence of solutions to the nonlinear problem (1.17) follows from a fixed-point
argument and we sketch it in the end of this section.

In the following we suppose that p < [n/2]+2 (see Remark 3.2). We just observe
that if we prove Theorem 4.1 by the energy method, then for the case p ≥ [n/2] + 2
we have to assume that s ≥ max{[n/2] + 2, p + 1}. We underline once more that we
do not know concrete examples of p-symmetrizers with p ≥ [n/2] + 2.

We first analyze the variable coefficients linear problem (1.24). We introduce the
norm of (u(t,x), ϕ(t,x′)) ∈ R

N × R:

N k
T (u, ϕ) :=

∑
±

{
‖u‖Xk([0,T ],Rn

±) + ‖u±‖Wk
2 ([0,T ]×Rn−1)

}
+ ‖ϕ‖Wk+1

2 ([0,T ]×Rn−1),

where k is a nonnegative integer number. Fix an integer s ≥ [n/2] + 2 and consider

(Û, f̂) ∈ Zs
T with a time T > 0. Assume that there is a constant M > 0 such that

N s
T (Û, f̂) ≤ M.(4.1)

Theorem 4.2. Given an integer m ≥ p, suppose that problem (1.24) with “frozen”
coefficients

(Û|x1>0, Û|x1<0, F̂) = (Û+, Û−,σ)

has a strictly dissipative p-symmetrizer (p < [n/2] + 2) and (Û, f̂) ∈ Zs
T , with s =

max{m, [n/2] + 2}. Suppose also that the Lax shock conditions (1.20) and inequality
(4.1) are fulfilled. Then, the following a priori estimate holds for the initial-boundary-
value problem (1.24), (1.17c):

Nm
T (U, f) ≤ C(T,M)

{∑
±

{
‖f±‖Wm

2 ([0,T ]×R
n
±) + |||U0|||Wm

2 (Rn
±)

}
+‖g‖Wm

2 ([0,T ]×Rn−1) + ‖f0‖Wm+1
2 (Rn−1)

}
.

(4.2)
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Here and below C = C(T,M), Ci = Ci(T,M), i = 1, 2, 3, . . ., are positive constants
independent of the data and depending on T and M .

Proof. The methods for deducing the a priori estimate (4.2) are standard and
based on the application of the Gagliardo–Nirenberg inequalities (see, e.g., [34])

‖∂αu‖L2p(Ω) ≤ ck‖u‖1−1/p
L∞(Ω)‖u‖

1/p

Wk
2 (Ω)

,
1

p
=

|α|
k
,(4.3)

‖∂αu‖Lp(Ω) ≤ ck‖u‖1−r
L2(Ω)‖u‖

r
Wk

2 (Ω),
|α|
k

< r < 1,
1

p
=

1

2
+

|α| − rk

dim Ω
,(4.4)

where ck > 0 is a constant, 2 < p < ∞. The domain Ω can be, for example, R
n, R

n
±,

[0, T ] × R
n
±, or [0, T ] × R

n−1 (in general, Ω is a Lipschitz domain).
Inequalities (4.3) and (4.4) imply a number of calculus inequalities (see, e.g.,

[47, 34]). In particular, using (4.3) and (4.4), one can obtain the inequality

‖uv‖Wk
2 (Ω) ≤ ck‖u‖W q

2 (Ω)‖v‖Wk
2 (Ω), q = max

{[n
2

]
+ 1, k

}
(4.5)

(here dim Ω = n). In Appendix B of [41] the following generalization of the last
inequality was proved:

|||(uv)(t)|||Wk
2 (Ω) ≤ ck|||u(t)|||W q

2 (Ω)|||v(t)|||Wk
2 (Ω),(4.6)

where Ω is a space domain (e.g., Ω = R
n
±). It is clear that the analogous inequality

holds when x1 is fixed instead of t:

〈〈〈uv(x1)〉〉〉k ≤ ck〈〈〈u(x1)〉〉〉q 〈〈〈v(x1)〉〉〉k,(4.7)

where

〈〈〈(·)(x1)〉〉〉k :=

k∑
j=0

‖∂j
1(·)(x1)‖2

Wk−j
2 ([0,T ]×Rn−1)

.

One can also get the more special inequality

‖(∂α1u1 · · · ∂αlul)(∂
β
t,x′v)(x1)‖L2([0,T ]×Rn−1)

≤ ck‖v(x1)‖Wk
2 ([0,T ]×Rn−1)

l∏
i=1

〈〈〈ui(x1)〉〉〉q,
(4.8)

where |α1|+ · · ·+ |αl|+ |β| = k. To prove (4.8) we should follow arguments analogous
to those from Appendix B of [41], and the proof is based mainly on the application
of (4.4).

Let us obtain the system satisfied by the vector Wβ = ∂β
t,x′W, with |β| ≤ m− p.

It follows from (1.24a) that

L(Û, F̂)(∂αi

∂β
t,x′U) = f±iβ if x ∈ R

n
±,(4.9)

where

f±iβ = ∂αi

∂β
t,x′f

± − [∂αi

∂β
t,x′ , L(Û, F̂)]U.
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Here and below we use the notation of commutator: [a, b]c := a(bc) − b(ac). From
systems (4.9) with i = 1, d we construct the system for Wβ (cf. (2.4), (2.5)):

L(Û, F̂)Wβ = F±
β , x ∈ R

n
± ,(4.10)

where

L = L(Û, F̂) = A0(Û, F̂)∂t +

n∑
j=1

Aj(Û, F̂)∂j , f̃±β = (f±1β , . . . , f
±
dβ),

F±
β = P (Û, F̂)f̃±β −

K∑
j=1

∑
|α|=p

Rj,α(Û, F̂)
[
∂α∂β

t,x′ , N̂
]
∂1Ψj(U),

the matrices P (Û, F̂) and the vectors Rj,α(Û, F̂) form the strictly dissipative p-
symmetrizer S if we “freeze” their coefficients, and the matrices Ai (i = 0, n) with
“frozen” coefficients are the same as in (2.5).

For system (4.10) with variable coefficients, the counterpart of condition (2.8) is

−
[
(A1(Û, F̂)Wβ ,Wβ)

]∣∣
x1=0

≥ δ
(
|W+

β |2 + |W−
β |2

)
− δ−1g2,(4.11)

where g2 is a sum of terms in the form

|Gk(Û
+, Û−, F̂)∂α

t,x′g|2, |Gl(Û
+, Û−, F̂)∂γf±|x1=±0|2,

|Gl0(Û
+, Û−, F̂)∂γU±|2, and |Gl0(Û

+, Û−, F̂)∂γ
t,x′F|2,

with

Gi(Û
+, Û−, F̂) = ∂α1 û+

i1
· · · ∂αj û+

ij
∂αj+1 û−

ij+1
· · · ∂αr û−

ir

×∂
αr+1

t,x′ F̂ir+1
· · · ∂αq

t,x′ F̂iqH(Û+, Û−, F̂),

|α1| + . . . + |αq| = i , 0 ≤ q ≤ 2N + n,

k + |α| ≤ m, l + |γ| ≤ m− 1, l0 + |γ| ≤ m, |γ| ≤ m− 1

(for constant coefficients, cf. (2.8), k = l = 0 and there are no lower order terms,

i.e., Gl0 ≡ 0). Here F̂ij is a component of the vector F̂ (F̂ij = f̂t or F̂ij = f̂xk
),

H(Û+, Û−, F̂) is a matrix which elements are determined by the elements of the
matrices A0, Aν , and Ak (k = 2, n) and their derivatives up to order m with respect
to U and F.

Since arguments below are standard we are quite brief in the rest of the proof.
In view of (4.11), using arguments as in (3.6), (3.8) and applying energy methods to
(4.10), we deduce the inequality

Itan(t) +

∫ t

0

Itr
tan(s)ds ≤ C1(T,M)

{
I(0) + J(t) +

∫ t

0

I(s)ds

}
,(4.12)
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where

Itan(t) =
∑
±

⎧⎨⎩|||U(t)|||2Wp
2 (Rn

±) +
∑

|β|≤m−p

‖Wβ‖2
L2(Rn

±)

⎫⎬⎭ ,

Itr
tan(t) =

∑
±

⎧⎨⎩
p∑

j=0

|||∂j
1U

±(t)|||2
Wp−j

2 (Rn−1)
+

∑
|β|≤m−p

‖W±
β ‖2

L2(Rn−1)

⎫⎬⎭ ,

∂j
1U

± := ∂j
1U|x1=±0, I(t) =

∑
±

|||U(t)|||2Wm
2 (Rn

±),

J(t) = ‖g‖2
L2([0,t]×Rn−1) +

∑
±

∑
|β|≤m−p

‖F±
β ‖2

L2([0,t]×Rn).

The commutator [∂αi

∂β
t,x′ , L(Û, F̂)]U is a sum of terms Gk(Û, F̂)∂αU, where Gk

are determined as Gi above (but not on the boundary), k + |α| ≤ m + 1, k ≥ 1, and
|α| ≥ 1. Since k ≥ 1 and |α| ≥ 1, applying (4.6) with k = m−1 and using elementary
inequalities like ∑

|α1|+...+|αl|≤k

‖∂α1v1 · · · ∂αlvl‖L2 ≤ const‖v1 · · · vl‖Wk
2
,

one estimates the commutator∑
±

∥∥ [∂αi

∂β
t,x′ , L(Û, F̂)]U

∥∥2

L2([0,t]×Rn−1)
≤ C2(T,M)

∫ t

0

I(s)ds.

Then, estimating analogously other terms in F±
β , one gets

∑
±

∑
|β|≤m−p

‖F±
β ‖2

L2([0,t]×Rn−1) ≤ C3(T,M)

{∑
±

‖f±‖2
Wm

2 ([0,T ]×R
n
±) +

∫ t

0

I(s)ds

}
.

To estimate the L2-norm of g we use inequality (4.7) at x1 = ±0 and trace’s
property. As a result, one has

‖g‖2
L2([0,t]×Rn−1) ≤ C4(T,M)

{
‖g‖2

Wm
2 ([0,T ]×Rn−1)

+
∑
±

‖f±‖2
Wm

2 ([0,T ]×R
n
±) +

∫ t

0

(
I(s) + ‖F(s)‖2

Wm−1
2 (Rn−1)

)
ds

}
.

Expressing F by U± and g ((3.1) for variable coefficients is applied) and using trace’s
property, from (4.12) one obtains

Itan(t) +

∫ t

0

Itr
tan(s)ds ≤ C5(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.13)

where

J1(T ) = ‖g‖2
Wm

2 ([0,T ]×Rn−1) +
∑
±

‖f±‖2
Wm

2 ([0,T ]×R
n
±).
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Applying energy methods to systems for the vectors ∂αU with |α| ≤ m and
reasoning as above one can easily obtain the inequality

I(t) −
∫ t

0

Itr(s)ds ≤ C6(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.14)

where

Itr(t) =
∑
±

m∑
j=0

|||∂j
1U

±(t)|||2
Wm−j

2 (Rn−1)
.

To get an inequality for I(t) when “+” stands in (4.14) instead of “−”, we use the
great advantage that the boundary conditions are strictly dissipative and, therefore,
one has the positive integral in the left-hand side of inequality (4.13). We should now

estimate the “full trace”
∫ t

0
Itr(s)ds by

∫ t

0
Itr
tan(s)ds.

Using the equations

Ux1 |x1=±0 = A−1
ν (Û, F̂)

{
f± −A0(Û)Ut −

n∑
k=2

Ak(Û)Uxk

}∣∣∣∣∣
x1=±0

,

one has that ∂αU± with |α| = m is a sum of terms Gk(Û
±, F̂)∂β

t,x′U± and Gl(Û
±, F̂)

×∂γf±|x1=±0, where k + |β| ≤ m and l + |γ| ≤ m − 1. Applying to these terms
inequalities (4.8) and (4.7) (at x1 = ±0), respectively, one gets the desired estimate∫ t

0

Itr(s)ds ≤ C7(T,M)

∫ t

0

Itr
tan(s)ds.(4.15)

Summing up (4.13) multiplied by 2C7 with (4.14) and using (4.15), we obtain

I(t) +

∫ t

0

Itr(s)ds ≤ C8(T,M)

{
I(0) + J1(T ) +

∫ t

0

I(s)ds

}
,(4.16)

where C8 = C6 + 2C5C7.
Throwing away the positive integral in the left-hand side of (4.16) and applying

Gronwall’s lemma yield

I(t) ≤ C9(T,M)
(
I(0) + J1(T )

)
, 0 ≤ t ≤ T.(4.17)

It follows from (4.16) and (4.17) that∑
±

‖U±‖2
Wm

2 ([0,T ]×Rn−1) ≤ C10(T,M)
(
I(0) + J1(T )

)
.(4.18)

At last, using the boundary conditions (3.1) (for variable coefficients) and applying
(4.5) with Ω = [0, T ] × R

n−1 and k = m, we get from (4.18) that

‖f‖2
Wm+1

2 ([0,T ]×Rn−1)
≤ C11(T,M)

{
I(0) + J1(T ) + ‖f0‖2

Wm+1
2 (Rn−1)

}
.(4.19)

Estimates (4.17)–(4.19) imply (4.2).
Remark 4.1. In [7, 9, 10], the estimate in the form of (4.2) was obtained for gas

dynamical shock waves by an accurate use of various Sobolev’s imbedding theorems.
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Unlike [7, 9, 10], the proof of Theorem 4.2 above relies on the Gagliardo–Nirenberg in-
equalities and is, therefore, closer to arguments of Metivier [37]. But, if Ω = [0, T ]×R

n
±

or Ω = [0, T ]×R
n−1 the constants in (4.3), (4.4) blow up as T → 0. This unpleasant

fact can prevent the proof of existence for the nonlinear problem. To overcome this
difficulty it was suggested in [37] to use some substitutes of the Gagliardo–Nirenberg
inequalities for which the constants are uniform with respect to T as T → 0 (we do
not want to go into details and just refer to [37]). Using such substitutes allows one
to prove some modifications of inequalities (4.5)–(4.8) which now include norms of
u(0) and v(0) (see [37]). Further arguments in the proof of Theorem 4.2 remain valid
(with little modification), and the constant C(T,M) in (4.2) is uniform with respect
to T as T → 0.

Consider the system

L̃(Û, F̂)Y + C(Û, F̂)Y = f̃±p−1,(4.20a)

L(Û, F̂)W = F±, x ∈ R
n
±,(4.20b)

where Y = (U,W1, . . . ,Wp−1), system (4.20a) is formed by (1.24a) and systems
obtained by the differentiation of (1.24a) with respect to t and x; the matrix C

can be explicitly written out, f̃±p−1 = (∂α1

f±, . . . , ∂αd0
f±), d0 = Cp−1

n+p−1, etc. (see
section 2); system (4.20b) coincides with (4.10) for |β| = 0. We supplement system
(4.20) with the boundary conditions (1.24b). All other boundary conditions follow
from (1.24b) and system (4.20) itself at x1 = 0.

System (4.20a) is equivalently rewritten as

A0(Û)Yt ∓ Yx1 +

n∑
k=2

Ak(Û)Yxk
+ C±(Û, F̂)W = f̃±p−1, x ∈ R

n
±,(4.21)

where C±W = CY+(Aν±I)Yx1 . The boundary matrix for system (4.21), (4.20b) is
diag(−I, Aν) for x1 > 0 and diag(I, Aν) for x1 < 0. Clearly, the boundary conditions
for system (4.21), (4.20b) are strictly dissipative (see (4.11) for |β| = 0).

Thus, system (4.21), (4.20b), that is equivalent to (4.20), has strictly dissipative
boundary conditions. The initial-boundary-value problem for system (4.21), (4.20b)
differs from one studied in Appendix A of [43] only by the presence of the unknown
function f in the boundary conditions. The compatibility conditions for (1.24) can
be written by analogy with those for standard boundary conditions in [40, 43]. The
existence of a smooth solution (U,W1, . . . ,Wp−1,W) ∈ Wm−p

2 to the problem for
system (4.21), (4.20b) is proved exactly in the same manner as in Appendix A of [43]
for linear hyperbolic problems with strictly dissipative boundary conditions. More-
over, the component U of this solution satisfies the original problem (1.24). Note also
that in [10] the existence of smooth solutions to the linearized problem for gas dynam-
ical shock waves was proved by approximation by grid functions. Such an approach
suggested by Godunov [25] for linear hyperbolic problems with strictly dissipative
boundary conditions and applied by Blokhin [10] to gas dynamical shock waves can
also be used for general Lax shocks under consideration. So, we have the following
existence theorem.
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Theorem 4.3. Let that all the assumptions of Theorem 4.2 are satisfied. Then,
for all the data

U0 ∈ Wm
2 (Rn

+) ∩Wm
2 (Rn

−), f0 ∈ Wm+1
2 (Rn−1),

f± ∈ Wm
2 ([0, T ] × R

n
±) , g ∈ Wm

2 ([0, T ] × R
n−1)

satisfying the compatibility conditions up to order m − 1, the initial-boundary-value
problem (1.24), (1.17c) has a unique solution (U, f) ∈ Zm

T that obeys the a priori
estimate (4.2).

Sketch of the proof of Theorem 4.1. The proof follows from a fixed-point argument
and we are quite brief here. For a time T > 0, a constant M > 0, and an integer
s ≥ [n/2] + 2, we define

K =
{

(Û, f̂) ∈ Zs
T

∣∣ N s
T (Û, f̂) ≤ M, Û(0,x) = U0(x), f̂(0,x′) = f0(x

′) ,

(U0, f0) ∈
{⋂

± W s
2 (Rn

±)
}
×W s+1

2 (Rn−1) is compatible to order s− 1
}
.

We do not specify here the compatibility conditions and just refer to [37].

Consider now the mapping Λ : (Û, f̂) → (U, f), where (U, f) satisfies the initial-
boundary-value problem (1.24), (1.17c) with f± ≡ 0 and

g =
[
P1(Û)

]
−

[
S−1(Û)Aν(Û, F̂)Û

]
.

Actually, with such a choice of g the linear conditions in (1.24b) are Newton’s approxi-
mation of the nonlinear boundary conditions (1.17b) (see discussion in [34]). Theorem
4.3 guarantees the existence of (U, f) ∈ Zs

T . Moreover, it follows from estimate (4.2)
that Λ(K) ⊂ K for appropriate choices of T and M (see Remark 4.1).

Consider (Ûi, f̂ i) ∈ K and let (U, f) = Λ(Ûi, f̂ i), i = 1, 2. For the differences
U1 − U2 and f1 − f2 we obtain problem (1.24) with the trivial initial data, the

coefficients (Û, f̂) = (Û1, f̂1),

f± =
(
L(Û2, F̂2) − L(Û1, F̂1)

)
U2, x ∈ R

n
±,

and a corresponding g (it can be easily written down as well). Applying estimate
(4.2) with m = s − 1 to this problem and using the mean-value theorem for f± and
g, one gets

N s−1
T (U1 − U2, f1 − f2) ≤ δN s−1

T (Û1 − Û2, f̂1 − f̂2),

where the positive constant δ = δ(T,M) < 1 for T sufficiently small (we do not
describe in detail the choice of T and M and just refer to standard arguments, for
example, in [34] for the Cauchy problem or in [41, 42] for initial-boundary-value
problems).

That is, the mapping Λ is a contraction in the low norm N s−1
T . Hence, there

exists a unique fixed point (U, f) = (Û, f̂) ∈ K which solves (1.17).

5. Concluding remarks. By introducing the notations of dissipative and strict-
ly dissipative p-symmetrizers we have formalized the energy method applied earlier
to strong discontinuities for concrete hyperbolic systems of conservation laws. We
have proved that if the constant coefficients linearized problem for Lax shocks has
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a strictly dissipative p-symmetrizer, then under natural assumptions this implies the
local in time existence of shock-front solutions of the original nonlinear system. This
result recovers Blokhin’s local existence theorem for gas dynamical shock waves [7, 9]
and enables one to conclude the local existence of shock-front solutions for various
concrete models (MHD [12], radiation hydrodynamics [3, 15], Landau’s equations
of superfluid [11], etc.) for which a priori estimates with no loss of derivatives for
constant coefficients linearized problems were earlier deduced by the energy method.

It seems that the result of Theorem 4.1 could be extended, under appropriate as-
sumptions, to the case of characteristic discontinuities. Note, however, that we do not
know any concrete example of a characteristic discontinuity for which one can con-
struct a strictly dissipative p-symmetrizer. Evidently, this is because all the known
characteristic discontinuities (vortex sheets, current-vortex sheets, Alfvén discontinu-
ities, etc.) can be only neutrally stable, i.e., the uniform Lopatinski condition is never
satisfied for them.

With regard to the case where the loss of derivatives phenomenon takes place,
i.e., when we are able to construct only a dissipative (but not strictly dissipative) p-
symmetrizer, a theorem for the variable coefficients linearized problem like Theorem
4.3 could be proved both for Lax shocks and characteristic discontinuities. In the
generic case, for characteristic discontinuities the functional setting is provided by the
anisotropic weighted Sobolev spaces Hs

∗ (see [42] and references therein). Concerning
the proof of a local existence theorem, it seems that the only way to overcome difficul-
ties connected with the loss of derivatives phenomenon is the use of the Nash–Moser
method (see discussion in Remark 1.2). Note that the existence of a dissipative (but
not strictly dissipative) p-symmetrizer implies the fulfillment of the (weak) Lopatinski
condition, i.e., the weak stability of a corresponding strong discontinuity. In partic-
ular, the existence of a dissipative p-symmetrizer for a planar Lax shock implies the
weak stability of this shock wave and, in view of the recent result of Coulombel and
Secchi [20] (see Remark 1.2), the nonlinear existence of nonplanar shock waves that
are close to the planar shock under consideration.

Unfortunately, there is not a general procedure to construct a p-symmetrizer.
At the same time, if it was somehow constructed, we do not need to examine the
Lopatinski condition, which is often untestable analytically (numerical testing is usu-
ally not so simple either). The requirements for a set S to be a (strictly) dissipative
p-symmetrizer suggest sufficient or, sometimes, necessary and sufficient conditions
for the fulfillment of the (uniform) Lopatinski condition. In this connection, the
best example for illustration is the construction of the dissipative 0-symmetrizer for
current-vortex sheets [45] that first enabled the finding of wide sufficient conditions
for their neutral stability (i.e., sufficient conditions of the macroscopic stability of the
heliopause [4]).

For Lax shock waves, the construction of a strictly dissipative p-symmetrizer can
be interpreted as an indirect test of the uniform Lopatinski condition and, referring
then to [37, 38], we have at once the local existence theorem for the nonlinear problem.
However, to construct Kreiss’ symmetrizer for the case of characteristic discontinuities
it is necessary to know not only that the Lopatinski condition is satisfied but also how
it is satisfied, i.e., to know a detailed structure of the Lopatinski determinant (see
[19]). For example, for current-vortex sheets [45] we know sufficient conditions for the
fulfillment of the Lopatinski condition, but the structure of the Lopatinski determinant
cannot be analyzed because of insuperable technical difficulties. That is, the only way
to achieve a nonlinear result is to follow the energy method in the variable coefficients
and nonlinear analysis as well. In the light of this, we think that future perspectives of
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the method of p-symmetrizers are connected with “nonstandard” problems for which
either Kreiss’ symmetrizer technique does not work for technical reasons or the general
theory is still not developed (as, for example, for nonhyperbolic problems appearing
for incompressible fluids; see [46]).
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Linéaire, 21 (2004), pp. 401–443.

[18] J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math.
Pures Appl., 84 (2005), pp. 786–818.

[19] J.-F. Coulombel and P. Secchi, The stability of compressible vortex sheets in two space
dimensions, Indiana Univ. Math. J., 53 (2004), pp. 941–1012.

[20] J.-F. Coulombel and P. Secchi, Nonlinear compressible vortex sheets in two space dimen-
sions, Seminario Matematico, Brescia, preprint, 2005.



2024 YURI TRAKHININ

[21] J. Francheteau and G. Métivier, Existence de chocs faibles pour des systèmes quasi-
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