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Abstract

Recent author’s results in the investigation of current-vortex sheets (MHD tangential dis-
continuities) are surveyed. A sufficient condition for the neutral stability of planar compressible
current-vortex sheets is first found for a general case of the unperturbed flow. In astrophysical
applications, this condition can be considered as the sufficient condition for the stability of
the heliopause, which is modelled by an ideal compressible current-vortex sheet and caused
by the interaction of the supersonic solar wind plasma with the local interstellar medium (in
some sense, the heliopause is the boundary of the solar system). The linear variable coeffi-
cients problem for nonplanar compressible current-vortex sheets is studied as well. Since the
tangential discontinuity is characteristic, the functional setting is provided by the anisotropic
weighted Sobolev spaces. The a priori estimate deduced for this problem is a necessary step to
prove the local-in-time existence of current-vortex sheet solutions of the nonlinear equations
of ideal compressible MHD. Analogous results are obtained for incompressible current-vortex
sheets. In the incompressibility limit the sufficient stability condition found for compress-
ible current-vortex sheets describes exactly the half of the whole parameter domain of linear
stability of planar discontinuities in ideal incompressible MHD.

1 Introduction

We consider the equations of magnetohydrodynamics (MHD) governing the motion of an ideal
(inviscid and perfectly conducting) compressible fluid. In the nonconservative form the MHD
equations read (see e.g. [11, 13]):

1
ρc2

dp

dt
+ div v = 0 , ρ

dv
dt
− (H,∇H) +∇q = 0 ,

dH
dt

− (H,∇)v + H div v = 0 ,
dS

dt
= 0 .

(1)

Here ρ = ρ(t,x) , v = v(t,x) = (v1, v2, v3) , H = H(t,x) = (H1,H2,H3) , p = p(t,x) , S = S(t,x)
are the density, the fluid velocity, the magnetic field, the pressure, and the entropy respectively,
q = p + |H|2/2 is the total pressure, c2 = ∂p/∂ρ is the square of the sound velocity, t is the
time, x = (x1, x2, x3) are space variables, and d/dt = ∂t + (v,∇) , ∂t = ∂/∂t, ∂j = ∂/∂xj . With
a state equation of medium, p = p(ρ, S) , we can consider (1) as a closed system for the vector
of unknowns U = U(t,x) = (p,v,H, S) . Moreover, system (1) should be supplemented by the
divergent constraint

div H = 0 , (2)
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that is just an additional requirement on the initial data U(0,x) = U0(x) . As is known, system
(1) is written in the form

A0(U)Ut +
3∑

k=1

Ak(U)Uxk
= 0 , (3)

with symmetric matrices Aα , and system (3) is symmetric hyperbolic if the following natural
assumptions (hyperbolicity conditions) hold:

ρ > 0 , c2 > 0 . (4)

Let Γ(t) = {x1− f(t,x′) = 0} be a smooth hypersurface in R×R3 (x′ = (x2, x3) are tangential
coordinates). We assume that Γ(t) is a surface of tangential discontinuity [13] (current-vortex
sheet) for solutions of the MHD system. This is the type of contact discontinuities for which the
normal component of the magnetic field is zero on Γ(t), and the tangential components of the
velocity and the magnetic field may undergo any jump on Γ(t):

H±
N = 0 , [vτ ] 6= 0 , [Hτ ] 6= 0

Here
HN = (H,N) , vN = (v,N) , vτ = (vτ1 , vτ2) , Hτ = (Hτ1 ,Hτ2) ,

vτi = (v, τ i) , Hτi = (H, τ i) , τ 1 = (fx2 , 1, 0) , τ 2 = (fx3 , 0, 1) ;

N = (1,−fx2 ,−fx3) is a space normal vector to Γ(t), [g] = g+ − g− denotes the jump for every
regularly discontinuous function g with corresponding values behind (g+ := g|x1−f(t,x′)→+0) and
ahead (g− := g|x1−f(t,x′)→−0) of the discontinuity front Γ . For current-vortex sheets, the general
MHD Rankine-Hugoniot conditions (see e.g. [11, 13, 4, 23]) are satisfied in the following way:

ft = v±N , H±
N = 0 , [q] = 0 . (5)

The initial boundary value problem for system (1) in the domains Ω±(t) := {x1 ≷ f(t,x′)} with
the boundary conditions (5) on the hypersurface Γ(t) is a free boundary value problem. Indeed,
the function f(t,x′) defining Γ is one of the unknowns of problem (1), (5) with the corresponding
initial data

f(0,x′) = f0(x′) , x′ ∈ R2 ; U(0,x) = U0(x) , x ∈ Ω±(0) . (6)

It is worth to note that for problem (1), (5), (6) the divergent constraint (2) as well as the boundary
conditions

H+
N = 0 , H−

N = 0 (7)

can be regarded as the restrictions only on the initial data (6). This fact was not formally proved
in [23] but this can be done by analogy with the proof in [24] for the case of incompressible MHD
(see below).

Definition 1.1 A piecewise smooth vector-function U(t,x) is called current-vortex sheet solution
of the MHD equations (1) if there exists a smooth hypersurface Γ such that U is a classical solution
of (1) on either side of Γ and conditions (5) hold at each point of Γ .

To prove the existence of current-vortex sheet solutions for the MHD equations it needs to reply
on the following question: does there exist a solution (U, f) of problem (1), (5), (6)? Because of
the general properties of hyperbolic conservation laws it is natural to expect only the local-in-
time existence of current-vortex sheet solutions. In this connection, the question on the nonlinear
Lyapunov’s stability of current-vortex sheet has no sense.

At the same time, the study of the linearized stability of current-vortex sheet solutions is not
only a necessary step to prove local-in-time existence but also is of independent interest in con-
nection with various astrophysical applications (see e.g. [18, 3, 19]). Piecewise constant solutions
of (1) satisfying (5) on a planar discontinuity are a simplest case of current-vortex sheet solutions.
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In astrophysics and geophysics the linear stability of a planar compressible current-vortex sheet
is usually interpreted as the macroscopic stability of the heliopause (see e.g. [19] and references
therein). The model of heliopause was suggested in [3], and the heliopause is in fact a current-
vortex sheet separating the interstellar plasma compressed at the bow shock from the solar wind
plasma compressed at the termination shock wave. That is, the heliopause is the model for the
boundary of the solar system.

We can show that for the constant coefficients linearized problem for planar current-vortex
sheets (see Sect. 3) the uniform Kreiss-Lopatinski condition [12, 16] is never satisfied [23]. That
is, planar current-vortex sheets are never uniformly stable and can be only neutrally (weakly)
stable or violently unstable. In the 1960–90’s, in a number of works (see [19] and references
therein) motivated by astrophysical applications (in particular, by applications to the heliopause)
the linear stability of planar compressible current-vortex sheets was examined by the normal modes
analysis. But, before the recent result in [23] neither stability nor instability conditions were found
for a general case of the unperturbed flow. The main difficulty in the normal modes analysis is
connected with the fact that the Lopatinski determinant is generically reduced to an algebraic
equation of the tenth degree depending on seven dimensionless parameters and one more inner
parameter determining the wave vector (see [23]). Moreover, the squaring was applied under the
reduction of the Lopatinski determinant to this algebraic equation and, therefore, it can introduce
spurious roots. For all these reasons both the analytical analysis and the full numerical study of
the Lopatinski determinant are unacceptable for finding the Lopatinski condition for compressible
current-vortex sheets. The alternative energy method suggested in [23] has first enabled to find
sufficient conditions for their weak stability.

Unlike the case of compressible current-vortex sheets, for planar current-sheets in incompressible
MHD the linear stability conditions can be straightforwardly found [22, 2]. At the same time, the
question on the local-in-time existence of incompressible current-vortex sheets remains open. First
results in this direction were recently obtained in [24].

A current-vortex sheet solution of the system of ideal incompressible MHD

dv
dt
− (H,∇H) +∇q = 0 ,

dH
dt

− (H,∇)v = 0 , div v = 0 (8)

is determined as a piecewise smooth solution U = (v,H) of (8) being a classical solution of (8) on
either side of a smooth hypersurface Γ and satisfying the jump conditions (5) at each point of Γ .
Here the magnetic field is measured in Alfvén velocity units and the pressure p was divided by the
density ρ (ρ ≡ const > 0). Other notations are the same as in (1). Generically, for current-vortex
sheets the density can be piecewise constant. But, since this gives no trouble, we suppose for
simplicity that it is the same constant (ρ+ = ρ− = ρ) on either side of Γ . We can show (see
[24]) that for the free boundary value problem (8), (5), (6) the divergent constraint (2) and the
boundary conditions (7) can be regarded as the restrictions only on the initial data (6).

2 A “secondary” symmetrization of the compressible MHD equations

The crucial role in obtaining the a priori estimate for the linearized problem associated to (1),
(5), (6) (see Sect. 3) is played by a new symmetric form [23] of the MHD equations that is a
kind of “secondary” symmetrization of the symmetric system (3). Using the linear analog of this
symmetrization one can get a conserved energy integral for the constant coefficients linearized
problem, dI(t)/dt = 0 (see Sect. 3), that implies the desired a priori estimate for planar compress-
ible current-vortex sheets, provided that I(t) > 0 . The last inequality gives a sufficient condition
of the linear stability of a planar compressible current-vortex sheet (the macroscopic stability of
the heliopause).

The mentioned “secondary” symmetrization is performed as follows. In view of the divergent
constraint (2), system (3) implies

PA0Ut +
3∑

k=1

PAkUxk
+ RdivH = 0 , (9)
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where the matrix P = P (U) and the vector R = R(U) are yet arbitrary. If we choose

P =




1
λH1

ρc2

λH2

ρc2

λH3

ρc2
0 0 0 0

λH1ρ 1 0 0 −ρλ 0 0 0
λH2ρ 0 1 0 0 −ρλ 0 0
λH3ρ 0 0 1 0 0 −ρλ 0

0 −λ 0 0 1 0 0 0
0 0 −λ 0 0 1 0 0
0 0 0 −λ 0 0 1 0
0 0 0 0 0 0 0 1




, R = −λ




1
0
0
0

H1

H2

H3

0




(the function λ = λ(U) is arbitrary), then system (9) is again symmetric:

A0(U)Ut +
3∑

k=1

Ak(U)Uxk
= 0 , (10)

where

A0 = PA0 =




1
ρc2

λH1

c2

λH2

c2

λH3

c2
0 0 0 0

λH1

c2
ρ 0 0 −ρλ 0 0 0

λH2

c2
0 ρ 0 0 −ρλ 0 0

λH3

c2
0 0 ρ 0 0 −ρλ 0

0 −ρλ 0 0 1 0 0 0
0 0 −ρλ 0 0 1 0 0
0 0 0 −ρλ 0 0 1 0
0 0 0 0 0 0 0 1




;

for the concrete form of the matrices Ak we refer to [23]. Note that λ
√

ρ is a dimensionless value,
and for λ = 0 system (10) coincides with (3).

The symmetric system (10) is hyperbolic if A0 > 0 (this also guarantees that det P 6= 0).
Direct calculations show that the last condition is satisfied if inequalities (4) hold together with
the additional requirement

ρλ2 <
1

1 + c2
A/c2

, (11)

where cA = |H|/√ρ. Of course, the hyperbolicity conditions for system (10) are much more
restrictive than the usual natural assumptions (4). It should be also noted that condition (11)
guarantees the equivalence of systems (1) and (10) on smooth solutions provided that λ(U) is a
smooth function of its variables (components of the vector U).

Proposition 2.1 Let the hyperbolicity conditions (4) and (11) hold for systems (1) and (10)
respectively, and the initial data for these systems satisfy the divergent constraint (2). Let λ =
λ(U) : R8 → R is a smooth enough function of their arguments. Assume [0, T ] is a time interval
on which both hyperbolic systems (1) and (10) have a unique classical solution. Then classical
solutions of the Cauchy problems for systems (1) and (10) coincide on the interval [0, T ] .

For the proof of Proposition 2.1 we refer to [23]. In principle, analogous assertion could be
proved for current-vortex sheet solutions of the MHD system.

The “incompressible” counterpart of symmetrization (10) reads [24]:

A0(U)Ut +
3∑

k=1

Ak(U)Uxk
+ b⊗∇q = 0 , (12)
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where

A0 =
(

1 −λ
−λ 1

)
⊗ I3 , Ak =

(
vk + λHk −Hk − λvk

−Hk − λvk vk + λHk

)
⊗ I3 , b =

(
1
−λ

)
;

λ = λ(U) is an arbitrary function, Ij is the unit matrix of order j . System (12) is equivalent to
(8) if det A0 6= 0 and coincides with (8) if λ = 0 . Moreover, the matrix A0 is positive definite
if |λ| < 1 . In [24] the “symmetric” form (12) of system (8) plays the crucial role for obtaining
“linearized” a priori estimates for problem (8), (5), (6). The condition |λ| < 1 being satisfied on
either side of a planar current-vortex sheet defines exactly the half of the whole parameter domain
[22, 2] of linear stability of incompressible current-vortex sheets (see Sect. 3).

3 Linear stability of planar current-vortex sheets

To work in fixed domains instead of the domains Ω±(t) we make, as usual (see e.g. [16]), the
following change of variables in R× R3 :

t̃ = t , x̃1 = x1 − f(t,x′) , x̃′ = x′ . (13)

Then, Ũ(t̃, x̃) := U(t,x) is a smooth vector-function for x̃ ∈ R3
± , and problem (1), (5), (6) is

reduced to the following problem (we omit tildes to simplify the notation):

L(U,F)U = 0 in [0, T ]× (R3
+ ∪ R3

−), (14)

v±N = ft , H±
N = 0 , [q] = 0 on [0, T ]× {x1 = 0} × R2, (15)

U|t=0 = U0 in R3
+ ∪ R3

−, f |t=0 = f0 in R2. (16)

Here

L = L(U,F) = A0(U)∂t + Aν(U,F)∂1 + A2(U)∂2 + A3(U)∂3, F = F(t,x′) = (ft, fx2 , fx3);

Aν = Aν(U,F) =
3∑

α=0

ναAα = A1(U)− ftA0(U)−
3∑

k=2

fxk
Ak(U) is the boundary matrix,

ν = (ν0, . . . , νn) = (−ft,N) is the space-time normal vector to Γ(t).
Since the boundary matrix Aν is singular at x1 = 0 (see [23]), compressible current-vortex

sheets are characteristic discontinuities. Note also that the boundary matrix is of constant rank 2
on the boundary x1 = 0. Unlike [8], where 2D compressible vortex sheets were analyzed, we make
here the straightening of variables that is standard for shock waves [16]. The change of variables
(13) is quite suitable for studying problem (14)–(16) by the energy method. However, for applying,
as in [8], Kreiss’ symmetrizer technique it needs to make another change of variables [10, 8]. For
the change of variable used in [10, 8] the boundary matrix will have constant rank in the whole
spaces R3

±, but not only on the boundary x1 = 0.
Let (Û(t,x), f̂(t,x′)) be a given vector-function, where Û = (p̂, v̂, Ĥ, Ŝ) is supposed to be

smooth for x ∈ R3
±. Then the linearization of (14)–(16) results in the following variable coefficients

problem for determining small perturbations (δU, δf) (below we drop δ):

L(Û, F̂)U + ĈU =
{
L(Û, F̂)f

}
Ûx1 in [0, T ]× (R3

+ ∪ R3
−), (17)

v±N = ft + v̂±2 fx2 + v̂±3 fx3 , H±
N = Ĥ±

2 fx2 + Ĥ±
3 fx3 , [q] = 0 if x1 = 0, (18)

and the initial data for the perturbation (U, f) coincide with (16). Here, F̂ = (f̂t, f̂x2 , f̂x2), vN =
(v, N̂) , HN = (H, N̂) , q = p+(Ĥ,H) , N̂ = (1,−f̂x2 ,−f̂x2), etc. The matrix Ĉ = Ĉ(Û, Ût,∇Û, F̂)
is determined as follows:

ĈU = (U,∇uA0(Û))Ût + (U,∇uAν(Û, F̂))Ûx1 +
3∑

k=2

(U,∇uAk(Û))Ûxk
,
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(U,∇u) :=
∑8

i=1 ui∂/∂ui, (u1, . . . , u8) := (p,v,H, S). Problem (17), (18), (16) is the genuine
linearization of (14)–(16) in the sense that we keep all the lower order terms in (17).

It should be noted that the differential operator in system (17) is a first order operator in f .
This fact can give some trouble in the application of the energy method to (17), (18), (16). To
avoid this difficulty we make the change of unknowns (see [1])

Ū = U− fÛx1 . (19)

In terms of the “good unknown” (19) problem (17), (18) takes the form

L(Û, F̂)Ū + ĈŪ + f∂1{L(Û, F̂)Û} = 0 in [0, T ]× (R3
+ ∪ R3

−), (20)




v̄±N = ft + v̂±2 fx2 + v̂±3 fx3 − (v̂N)±x1
f ,

H̄±
N = Ĥ±

2 fx2 + Ĥ±
3 fx3 − (ĤN)±x1

f ,
[q̄] = −f [q̂x1 ] if x1 = 0 ,

(21)

where v̄N = (v̄, N̂) , (v̂N)±x1
= (v̂N)x1 |x1→±0 , q̄ = p̄ + (Ĥ, H̄) , etc.

For the successful application of the energy method to (20), (21) it would be enough if the
operator in (20) had not involved first order terms in f (zero order terms in f give no trouble
while applying the energy method). Therefore, without loss of generality we can drop the term
f∂1{L(Û, F̂)Û} as well as the term ĈŪ appearing in (20). As the result, the linearized equations
associated to (14), (15) and obtained by dropping the lower order terms in (20) read:

L(Û, F̂)U = f in [0, T ]× (Rn
+ ∪ Rn

−), (22)



ft + v̂+
2 fx2 + v̂+

3 fx3 − (v̂N)+x1
f − v+

N

ft + v̂−2 fx2 + v̂−3 fx3 − (v̂N)−x1
f − v−N

Ĥ+
2 fx2 + Ĥ+

3 fx3 − (ĤN)+x1
f −H+

N

Ĥ−
2 fx2 + Ĥ−

3 fx3 − (ĤN)−x1
f −H−

N

[q] + f [q̂x1 ]




= g if x1 = 0 . (23)

Here we introduce the source terms f(t,x) = f±(t,x) for x ∈ Rn
± and g(t,x′) to make the interior

equations and the boundary conditions inhomogeneous (this is needed to attack the nonlinear
problem).

For planar discontinuities f̂(t,x′) is a linear function:

f̂(t,x′) = σt + (σ′,x′), σ = (σ, σ′) ∈ R3. (24)

Without loss of generality we can suppose that σ = 0. For the case of a piecewise constant solution,

Û =

{
Û+, x1 > 0,

Û−, x1 < 0,

equations (22), (23) have constant (“frozen”) coefficients:

Â±0 Ut +
3∑

k=1

Â±k Uxk
= 0 if x ∈ R3

±, (25)





ft = v±1 − v̂±2 fx2 − v̂±3 fx3 ,

H±
1 = Ĥ±

2 fx2 + Ĥ±
3 fx3 ,

[q] = 0 if x1 = 0 ,

(26)
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where Â±α := Aα(Û±) ; q = p + (Ĥ±,H) for x ∈ R3
± . Since the constant coefficients linearized

problem for compressible current-vortex sheets is of independent interest in connection with as-
trophysical applications mentioned in Sect.1, we do not introduce in (25), (26) artificial source
terms. At the same time, the a priori estimates proved in [23] for problem (25), (26) (see below)
can be easily generalized to the case of inhomogeneous problem (see also the next section, where
the variable coefficients inhomogeneous problem (22), (23) is considered).

We can show that compressible current-vortex sheets cannot be uniformly stable, i.e. the
following important proposition is true [23].

Proposition 3.2 For the initial boundary value problem (25), (26), (16), the uniform Kreiss-
Lopatinski condition is never satisfied.

Since problem (25), (26), (16) is a hyperbolic problem with characteristic boundary, there
appears a loss of control on derivatives in the normal (x1-)direction. Therefore, in the theorem
below we use the following “nonsymmetric” Sobolev norms for solutions of (25), (26), (16):

‖U(t)‖2
W̃ 1

2 (R3
±)

= ‖Un(t)‖2W 1
2 (R3

±) + ‖Utan(t)‖2
W 1,tan

2 (R3
±)

,

where Un = (q, v1,H1) , Utan = (v2, v3, H2,H3, S) ,

‖(·)(t)‖2
W 1,tan

2 (R3
±)

= ‖(·)(t)‖2L2(R3
±) + ‖(·)x2(t)‖2L2(R3

±) + ‖(·)x3(t)‖2L2(R3
±) .

Theorem 3.1 If Ĥ+ × Ĥ− 6= 0 , [v̂] 6= 0 , and

|[v̂]| < | sin(ϕ+ − ϕ−)|min
{

γ+

| sin ϕ−| ,
γ−

| sin ϕ+|
}

, (27)

where

γ± =
ĉ±ĉ±A√

(ĉ±)2 + (ĉ±A)2
, cosϕ± =

([v̂], Ĥ±)

|[v̂]| |Ĥ±|
,

then, for Problem (25), (26), (16), the Lopatinski condition is satisfied and the a priori estimates

‖U(t)‖
W̃ 1

2 (R3
+)

+ ‖U(t)‖
W̃ 1

2 (R3
−)

≤ C1

{
‖U0‖W̃ 1

2 (R3
+)

+ ‖U0‖W̃ 1
2 (R3

−)

}
,

(28)

‖f(t)‖W 1
2 (R2) ≤ ‖f0‖L2(R2) + C2

{
‖U0‖W̃ 1

2 (R3
+)

+ ‖U0‖W̃ 1
2 (R3

−)

}
(29)

hold for any t ∈ (0, T ) . Here T is a positive constant; C1 and C2(T ) are positive constants
independent of the initial data (16).

If Ĥ+ × Ĥ− = 0 , Ĥ± × [v̂] = 0 , [v̂] 6= 0 , and

|[v̂]| < max
{
max{γ+, γ−} , 2 min{γ+, γ−}} (30)

the a priori estimate (28) holds as well, but for the function f(t,x′) we have the weaker estimate

‖f(t)‖L2(R2) ≤ ‖f0‖L2(R2) + C3

{
‖U0‖W̃ 1

2 (R3
+)

+ ‖U0‖W̃ 1
2 (R3

−)

}
, (31)

where C3(T ) is a positive constant independent of (16).
For current sheets, i.e. for the case [v̂] = 0 the Lopatinski condition is always satisfied and

estimate (28) takes place. Furthermore, estimate (29) holds if Ĥ+ × Ĥ− 6= 0 , otherwise we have
the weaker estimate (31). For current sheets the case Ĥ+ × Ĥ− = 0 corresponds to the transition
to violent instability (the Lopatinski condition is violated if Ĥ+ × Ĥ− = 0 and |[v̂]|/ĉ+ ¿ 1).
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For the detailed proof of Theorem 3.1 we refer to [23]. The crucial point in the proof is that
(25) implies a symmetric system which is the linearization of system (10) about the piecewise
constant solution. This symmetric system accompanied with the boundary conditions (26) has the
conserved integral

I(t) =
∫

R3
+

(Â+
0 U,U) dx +

∫

R3
−

(Â−0 U,U) dx

for a certain choice of the constants λ± = λ(Û±), where Â±0 = A0(Û±) (see (10)). In view of
(11), for the most general case Ĥ+ × Ĥ− 6= 0 , [v̂] 6= 0 , the hyperbolicity conditions Â±0 > 0 give
the stability condition (27), that can be interpreted as the sufficient condition of the macroscopic
stability of the heliopause. Note also that the process of deducing the a priori estimates (28),
(29) can be formalized by introducing the notations of dissipative p-symmetrizers [25]. In fact, for
problem (25), (26) the dissipative (but not strictly dissipative [25]) 0-symmetrizer

S =
{

P (Û+), P (Û−),R(Û+),R(Û−)
}

(cf. (9)) has been constructed [23].
For incompressible current-vortex sheets, the variable coefficients linearized problem is the

initial boundary value problem for the system

L(Û, F̂)U + e⊗∇fq = f , div u = 0 in [0, T ]× (Rn
+ ∪ Rn

−), (32)

with the boundary conditions (23) and the initial data (16), where

e = (1, 0) , ∇f = N̂∂1 + e2∂2 + e3∂3 , ek = (0, δ2k, δ3k) , u = (vN, v2, v3) ,

Aα := Aα|λ=0 (see (12)), and other notations are the same as for compressible fluid.
The constant coefficients linearized problem for planar incompressible current-vortex sheets is

the problem for the system

Ut +
3∑

k=2

Â±k Uxk
+ e⊗∇q = 0 , div v = 0 , x ∈ R3

±, (33)

with the boundary conditions (26) and the initial data (16). The necessary and sufficient condi-
tions for the nonexistence of Hadamard-type ill-posedness examples for problem (33), (26) (linear
stability of a planar current-vortex sheet) were found in [22, 2] (see also [17] for the 2D case):

|[v̂]|2 < 2
{
|Ĥ+|2 + |Ĥ−|2

}
,

{∣∣Ĥ+ × [v̂]
∣∣2 +

∣∣Ĥ− × [v̂]
∣∣2

}
≤ 2

∣∣Ĥ+ × Ĥ−∣∣2 . (34)

Using the “symmetric” form (12), a priori estimates for problem (33), (26), (16) were obtained
in [24] for a part of the parameter domain (34).

Theorem 3.2 If Ĥ+ × Ĥ− 6= 0 , [v̂] 6= 0 , and

|[v̂]| < | sin(ϕ+ − ϕ−)|min
{ |H+|
| sin ϕ−| ,

|H−|
| sin ϕ+|

}
, (35)

where ϕ± are the same as in Theorem 3.1, then the a priori estimates (28), (29), and

‖∇q(t)‖L2(R3
+) + ‖∇q(t)‖L2(R3

−) ≤ C4

{
‖U0‖W̃ 1

2 (R3
+)

+ ‖U0‖W̃ 1
2 (R3

−)

}
(36)

hold for any t ∈ (0, T ) . If Ĥ+ × Ĥ− = 0 , Ĥ± × [v̂] = 0 , [v̂] 6= 0 , and

|[v̂]| < max
{
max{|H+|, |H−|} , 2min{|H+|, |H−|}} , (37)

then the a priori estimates (28), (36) hold as well, but for the function f(t,x′) we have the weaker
estimate (31).

For current sheets, i.e., for the case [v̂] = 0 , the a priori estimates (28), (36) always take place.
Furthermore, estimate (29) holds if Ĥ+ × Ĥ− 6= 0 , otherwise we have the weaker estimate (31).
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For the detailed proof of Theorem 3.2 we refer to [24]. Note that, in view of (34), the particular
case Ĥ+ × Ĥ− = 0 corresponds to transition to violent instability (ill-posedness). For a general
case when Ĥ+ × Ĥ− 6= 0 , we can show that the first inequality in (34) is redundant, and the
second inequality in (34) can be rewritten as follows:

|[v̂]| ≤
√

2 |Ĥ+| |Ĥ−| | sin(ϕ+ − ϕ−)|√
|Ĥ+|2 sin2 ϕ+ + |Ĥ−|2 sin2 ϕ−

. (38)

In the incompressibility limit, ĉ± = ∞, the sufficient stability condition (27) is reduced to inequality
(35) (for simplicity we consider the case ρ̂+ = ρ̂−). Moreover, if we introduce the dimensionless
parameters

x =
|[v̂]|2 sin2 ϕ+

|Ĥ−|2 sin2(ϕ+ − ϕ−)
, y =

|[v̂]|2 sin2 ϕ−

|Ĥ+|2 sin2(ϕ+ − ϕ−)
,

then in the xy-plane inequalities (35) and (38) determine the domains

D1 =
{
x > 0 , y > 0 , max{x, y} < 1

}
and D2 = {x > 0 , y > 0 , x + y ≤ 2}

respectively. It is clear that mes D1 = (1/2) mes D2 , and the domain D2\D1 is an “interlayer”
between the domain D1 of well-posedness (cf. Theorem 3.2) and the domain of ill-posedness:
{x > 0 , y > 0 , x + y > 2} .

As regards a possibility to prove a priori estimates for the “interlayer” domain D2\D1 , it
seems that this could be done by adapting Kreiss’s symmetrizer technique [12] to the nonhyperbolic
problem (33), (26), (16). In this connection, there appears an interesting problem on obtaining
“exponentially weighted” a priori estimates for nonhyperbolic initial boundary value problems like
(33), (26), (16).

4 The variable coefficients analysis

Since the original nonlinear problem (14)–(16) is a free boundary value problem, to prove local-
in-time existence by standard fixed-point argument we should gain the “additional derivative”
for the front perturbation f (see [4, 16]). As we can see from (28), (29), we do not have an
estimate for the second derivatives of f provided that U ∈ W̃ 1

2 (R3
+) ∩ W̃ 1

2 (R3
−). This is because

the uniform Lopatinski condition is violated and, therefore, it is principally impossible that the
boundary conditions were strictly dissipative. And so, we have the loss of the trace (U+

n ,U−
n ) in a

high norm, i.e., we are not able to include the norm ‖U+
n ‖W 1

2 (∂R3
+) +‖U−

n ‖W 1
2 (∂R3

−) in estimate (28)
(to estimate f in a high norm we need only the “noncharacteristic part” of the trace of (U+,U−)
whereas the loss of the trace for the “characteristic” unknown Utan even in a lower norm does not
give any trouble).

Since even for constant coefficients we have a loss of one derivative for f , the standard scheme
of proving the local-in-time existence theorem for the original nonlinear problem does not work for
current-vortex sheets. In this connection, another possibility to attack the nonlinear problem is
to use the so-called Nash-Moser technique (for hyperbolic problems see [1, 15, 10] and references
therein). To apply the Nash-Moser method for compressible current-vortex sheets it needs to carry
out an accurate analysis of the corresponding variable coefficients linearized problem. At the same
time, after performing the change of unknowns (19) the lower order terms in the interior equations
(20) can be neglected because they give no trouble while deducing a priori estimates. Thus, it is
enough to study problem (22), (23). The main difficulties in the variable coefficients analysis are
connected with lower order terms in the boundary conditions (23). Analogous remarks take place
for the nonhyperbolic problem (32), (23) for incompressible fluid.

For the basic state (Û, f̂) (it can be, in particular, an exact current-vortex sheet solution to
the MHD equations), we assume that

Û ∈ X4([0, T ],R3
+) ∩X4([0, T ],R3

−) , f̂ ∈ W 5
2 ([0, T ]× R2), (39)
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where

Xk([0, T ],R3
±) :=

k⋂

j=0

Cj([0, T ],W k−j
2 (R3

±)) , ‖ · ‖Xk
= max

t∈[0,T ]

k∑

j=0

‖∂j
t (·)(t)‖2

W k−j
2

.

Then, in view of Sobolev’s imbedding, we have

Û ∈ W 2
∞([0, T ]× R3

+) ∩W 2
∞([0, T ]× R3

−) , F̂ ∈ W 2
∞([0, T ]× R2) .

In view of (39), there exists a constant M > 0 such that

‖f̂‖W 5
2 ([0,T ]×R2) +

∑
±
‖Û‖X4([0,T ],R3

±) ≤ M .

For the constant coefficients linearized problem, in the a priori estimate (28) we have the so-
called loss of derivatives in the normal direction to the boundary. But, for constant coefficients it
was enough to use usual Sobolev norms. At the same time, in the variable coefficients analysis we
have to require a little bit more regularity for solutions. The natural functional setting is provided
by the anisotropic weighted Sobolev space Wm,σ

2 (:= Hm
∗ ; see e.g. [21] and references therein).

Following [21], we now give the definition of the spaces Wm,σ
2 (R3

±) . Let σ(x1) ∈ C∞(R+)∩C∞(R−)
is a monotone increasing function for x1 > 0 and monotone decreasing for x1 < 0 such that
σ(x1) = |x1| in a neighborhood of the origin and σ(x1) = 1 for |x1| large enough. Let us introduce
the so-called conormal derivative

∂α
∗ = (σ(x1)∂1)α1∂α2

2 ∂α3
3 .

Then, given m ≥ 1 , the function space Wm,σ
2 (Ω) (Ω = R3

+ or Ω = R3
−) is defined as the set of

functions u ∈ L2(Ω) such that ∂α
∗ ∂k

1u ∈ L2(Ω) if |α|+ 2k ≤ m . The space Wm,σ
2 (Ω) is normed by

‖u‖2W m,σ
2 (Ω) =

∑

|α|+2k≤m

‖∂α
∗ ∂k

1u‖2L2(Ω) .

For solutions of problem (22), (23) we use also the norms

|||U(t)|||2
W̃ m,σ

2 (R3
±)

= |||U(t)|||2W m,σ
2 (R3

±) + |||∂1Un(t)|||2
W m−1,σ

2 (R3
±)

,

where |||(·)(t)|||2
W k,σ

2
=

∑k
j=0 ‖∂j

t (·)(t)‖2
W k−j,σ

2
; Un = (q, vN, HN) is the “noncharacteristic part”

of U. We are now in a position to formulate the main result from [23] obtained for the variable
coefficients linearized problem for compressible current-vortex sheets. Note that unlike [23] we
formulate the theorem below for the inhomogeneous problem (22), (23) (arguments in [23] can be
easily extended to the case when f 6= 0 and g 6= 0).

Theorem 4.3 Let the basic state (Û, f̂) satisfies assumptions (39), the Rankine-Hugoniot con-
ditions (5), and the hyperbolicity conditions (4). Let also there exists a positive constant δ such
that

|ĥ+(t,x′)× ĥ−(t,x′)| ≥ δ > 0 (40)

for all t ∈ [0, T ] , x′ ∈ R2 and the condition

r(t,x) < b(t,x) (41)

holds for all t ∈ [0, T ] at each point x ∈ R3± such that û+(t,x′) 6= û−(t,x′) , where

ĥ = (ĤN, Ĥ2, Ĥ3) , û = (v̂N − f̂t, v̂2, v̂3) ,
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r(t,x) =
√

ρ̂(1 + ĉ2
A/ĉ2) , b(t,x) =

{
b+(t,x′) if x1 > 0 ,
b−(t,x′) if x1 < 0 ;

b±(t,x′) =
|ĥ±| | sin(ϕ+ − ϕ−)|

|[û]| | sinϕ∓| , cos ϕ±(t,x′) =
([û], ĥ±)

|[û]| |ĥ±| .

Then, for problem (22), (23) the a priori estimate
∑
±
|||U(t)|||

W̃ 1,σ
2 (R3

±)
+ ‖f‖W 1

2 ([0,T ]×R2)

≤ C

{∑
±

{
‖f±‖W 1

2 ([0,T ]×R3
±) + |||U0|||W̃ 1,σ

2 (R3
±)

}
+ ‖g‖W 2

2 ([0,T ]×R2) + ‖f0‖W 1
2 (R2)

} (42)

holds for any t ∈ [0, T ] . Here C = C(T,M) is a positive constant independent of the initial data
(U0, f0) .

For the detailed proof of Theorem 4.3 we refer to [23]. Inequality (41) appearing in this theorem
is the analogue of the stability condition (27) for variable coefficients. The a priori estimate (42)
is, in some sense, a base estimate, and to attack the original nonlinear problem we should deduce
estimates in higher order norms.

Corollary 4.1 Let all the assumptions of Theorem 4.3 are satisfied and

(Û, f̂) ∈
{ ⋂
±

s⋂

j=0

W j
∞([0, T ],W s−j,σ

2 (R3
±))

}
×W s+1

2 ([0, T ]× R2)

for some s ≥ 8 . Let 1 ≤ m ≤ s . Then, for problem (22), (23) the a priori estimate
∑
±
|||U(t)|||

W̃ m,σ
2 (R3

±)
+ ‖f‖W m

2 ([0,T ]×R2)

≤ C

{∑
±

{
‖f±‖W m,σ

2 ([0,T ]×R3
±) + |||U0|||W̃ m,σ

2 (R3
±)

}
+ ‖g‖W m+1

2 ([0,T ]×R2) + ‖f0‖W m
2 (R2)

}

holds for any t ∈ [0, T ] , where ‖f±‖2
W m,σ

2 ([0,T ]×R3
±)

=
∫ T

0
|||f±(t)|||2

W m,σ
2 (R3

±)
dt .

To prove Corollary 4.1 it needs to take into account the imbeddings W s,σ
2 ⊂ W

[s/2]
2 ⊂ W 4

2

(cf. (39)) and use the standard technique based on the application of the Gagliardo-Nirenberg
inequalities.

For incompressible current-vortex sheets, the technique of obtaining a priori estimates for prob-
lem (32), (23) is similar to that used in [23] for compressible current-vortex sheets. However, there
is, of course, an essential principal difference from the “hyperbolic” energy method utilized in [23].
As is known, for the system of incompressible MHD the total pressure q is an “elliptic” unknown.
Hence, the differentiation of system (32) with respect to t cannot help to prove the energy a priori
estimate. Instead of this, roughly speaking, we estimate ∇q through spatial derivatives of U and
then, from system (32), we obtain an estimate for Ut. Actually, since in our case the boundary is
a strong discontinuity, for the function q we have an elliptic boundary value problem that is like
diffraction problems [14]. It is true that the estimate for ∇q can be obtained directly from system
(32) (see [24] for details).

Let us now formulate the corresponding theorem proved in [24]. Let

Û ∈
1⋂

k=0

Ck
(
[0, T ],

⋂
±

W 4−k
2 (R3

±)
)

, f̂ ∈ C
(
[0, T ],W 4

2 (R2)
)
. (43)
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Moreover, we assume also that

∇q̂ ∈ C
(
[0, T ],W 1

∞(R3
+) ∩W 1

∞(R3
−)

)
(44)

and

∇q̂ ∈
1⋂

j=0

C
(
[0, T ]; W j

2

(
R+,W 1−j

∞ (R2)
) ∩W j

2

(
R−,W 1−j

∞ (R2)
))

. (45)

Theorem 4.4 Let the basic state (Û, f̂) satisfies assumptions (43)–(45). Let also conditions (40)
and (41) are fulfilled with r(t,x) ≡ 1 (other notations are the same as in Theorem 4.3). Then, for
problem (32), (23) the a priori estimate

∑
±

{
|||U(t)|||

W̃ 1,σ
2 (R3

±)
+ ‖f‖W 1

2 ([0,T ]×R2) + ‖∇q‖L2([0,T ]×R3
±)

}

≤ C

{∑
±

{
‖f±‖W 1

2 ([0,T ]×R3
±) + |||U0|||W̃ 1,σ

2 (R3
±)

}
+ ‖g‖W 2

2 ([0,T ]×R2) + ‖f0‖W 1
2 (R2)

} (46)

holds for any t ∈ [0, T ] .

As for problem (22), (23) (see Corollary 4.1), we can obtain estimates in higher order norms
for problem (32), (23). Note also that the a priori estimates (42) and (46) imply the uniqueness
of solutions of the original nonlinear problems for compressible and incompressible current-vortex
sheets respectively (see [24] for standard arguments).

5 Concluding remarks

In [23], the sufficient condition (27) for the neutral stability of planar compressible current-vortex
sheets is first found for a general case of the unperturbed flow. This condition can be interpreted as
the sufficient condition of the macroscopic stability of the heliopause [3, 19]. In the incompressibility
limit this condition describes exactly the half of the whole parameter domain of stability. The
variable coefficients linearized problem for nonplanar compressible current-vortex sheets has been
studied as well. Since the current-vortex sheet is a characteristic discontinuity, there appears a
loss of derivatives in the normal direction to the discontinuity front, and the natural functional
setting is provided by the anisotropic weighted Sobolev spaces [21]. Furthermore, since the uniform
Lopatinski condition is not satisfied, we have a loss of one derivative for the front perturbation as
well as for the source term in the boundary conditions.

To prove the local-in-time existence of current-vortex sheets solutions for compressible MHD it
needs, first, to prove the existence of solutions of the variable coefficients linearized problem (22),
(23) in the functional spaces indicated in the estimate in Corollary 4.1. To this end, it is necessary
to generalize recent results from [5] to the case of boundary conditions with variable coefficients,
when the boundary conditions are not strictly dissipative. Note that in [5] earlier results from [20]
for linear symmetric hyperbolic problems with characteristic boundary were extended to nonho-
mogeneous problems. Then, it seems that we can construct solutions of the nonlinear problem by
the Nash-Moser method.

At the same time, one can suggest an alternative programme based on Kreiss’ symmetrizer
technique and paradifferential calculus (and the Nash-Moser method as well). Such a programme
is now being realized for weakly stable shock waves and 2D vortex sheets (see [6, 7, 8]). Indeed, the
energy method applied in [23] for the constant coefficients problem for compressible current-vortex
sheets can be considered as an indirect test of the Kreiss-Lopatinski condition. Then, we should
construct Kreiss’ symmetrizer for this problem and follow the arguments from [6, 7, 8] for variable
coefficients.

As regards incompressible current-vortex sheets [24], the nonhyperbolic problem for them has,
of course, some peculiarities. But, in principle, with appropriate modifications the above remarks
for compressible current-vortex sheets can be made for this problem as well.
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At last, we note that for astrophysical applications it would be extremely important to gen-
eralize the sufficient stability condition (27) to improved heliopause models like, for example, the
multifluid neutral MHD model newly developed by astrophysicists (see [9] and references therein).
For possible future results, it is especially important that this MHD model is a system of hyperbolic
balance laws.
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