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Abstract

We prove the local-in-time existence of solutions with a surface of current-
vortex sheet (tangential discontinuity) of the equations of ideal compressible
magnetohydrodynamics in three space dimensions provided that a stability
condition is satisfied at each point of the initial discontinuity. This paper is
a natural completion of our previous analysis in [43] where a sufficient con-
dition for the weak stability of planar current-vortex sheets was found and
a basic a priori estimate was proved for the linearized variable coefficients
problem for nonplanar discontinuities. The original nonlinear problem is a
free boundary hyperbolic problem. Since the free boundary is characteristic,
the functional setting is provided by the anisotropic weighted Sobolev spaces
Hm
∗ . The fact that the Kreiss-Lopatinski condition is satisfied only in a weak

sense yields losses of derivatives in a priori estimates. Therefore, we prove
our existence theorem by a suitable Nash-Moser-type iteration scheme.

1. Introduction

1.1. Free boundary value problem for compressible current-vortex sheets

The equations of ideal compressible magnetohydrodynamics (MHD) take
the form of the system of conservation laws

∂tρ + div (ρv) = 0,

∂t(ρv) + div (ρv ⊗ v −H⊗H) +∇q = 0,
∂tH−∇× (v×H) = 0,

∂t

(
ρe + 1

2 |H|
2
)

+ div
(
(ρe + p)v + H×(v×H)

)
= 0,

(1)

where ρ, v = (v1, v2, v3), H = (H1,H2,H3), and p are the density, the fluid
velocity, the magnetic field, and the pressure respectively, q = p + 1

2 |H|
2 is
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the total pressure, e = E + 1
2 |v|

2 is the total energy, E = E(ρ, S) is the
internal energy, and S is the entropy. The Gibbs relation

TdS = dE − p

ρ2 dρ

implies that p = ρ2Eρ(ρ, S) and the temperature T = ES(ρ, S). Then, with
a state equation of medium, E = E(ρ, S), (1) is a closed system. As the
unknown we can fix, for example, the vector U = U(t,x) = (p,v,H, S),
where t is the time, x = (x1, x2, x3) are space variables, ∂t := ∂/∂t, and
∂j := ∂/∂xj .

System (1) is supplemented by the divergent constraint

div H = 0 (2)

on the initial data U(0,x) = U0(x). Taking into account (2), for smooth
solutions we can rewrite (1) in the equivalent form

1
ρc2

dp

dt
+ div v = 0, ρ

dv
dt
− (H,∇)H +∇q = 0,

dH
dt

− (H,∇)v + Hdiv v = 0,
dS

dt
= 0,

(3)

where c2 is the square of the sound velocity and d/dt = ∂t + (v,∇) (by
( , ) we denote the scalar product). Now ρ = ρ(p, S) is considered as a
state equation of medium and 1/c2 = ρp(p, S). Equations (3) read as the
symmetric quasilinear system

A0(U)∂tU +
n∑

j=1

Aj(U)∂jU = 0, (4)

where the symmetric matrices Aα can be easily written down, in particular,
A0 = diag (1/(ρc2), ρ, ρ, ρ, 1, 1, 1, 1). System (4) is symmetric hyperbolic if
the state equation ρ = ρ(p, S) satisfies the hyperbolicity condition A0 > 0:

ρ(p, S) > 0, ρp(p, S) > 0. (5)

We consider the MHD equations for t ∈ [0, T ] in the unbounded space
domain R3 and suppose that Γ (t) = {x1 − f(t,x′) = 0} is a smooth hyper-
surface in [0, T ] × R3, where x′ = (x2, x3) are tangential coordinates. We
assume that Γ (t) is a surface of strong discontinuity for the conservation
laws (1), i.e., we are interested in solutions of (1) that are smooth on either
side of Γ (t). To be weak solutions of (1) such piecewise smooth solutions
should satisfy the MHD Rankine-Hugoniot conditions

[j] = 0, [HN] = 0, j [vN] + [q] = 0, j [vτ ] = HN[Hτ ],

HN[vτ ] = j [Hτ/ρ] , j
[
e + 1

2 (|H|2/ρ)
]
+ [qvN −HN(H,v)] = 0

(6)
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at each point of Γ (see, e.g., [18,19]), where [g] = g+|Γ − g−|Γ denotes the
jump of g, with g± := g in Ω±(t) = {x1 ≷ f(t,x′)},

j = ρ(vN − ∂tf), vN = (v,N), HN = (H,N), N = (1,−∂2f,−∂3f),

vτ = (vτ1 , vτ2), Hτ = (Hτ1 ,Hτ2), vτi
= (v, τ i),

Hτi = (H, τ i), τ 1 = (∂2f, 1, 0), τ 2 = (∂3f, 0, 1),

HN|Γ := H±
N |Γ , and j := j±|Γ is the mass transfer flux across the disconti-

nuity surface.
From the mathematical point of view, there are two types of strong dis-

continuities: shock waves and characteristic discontinuities. Following Lax
[20], characteristic discontinuities, which are characteristic free boundaries,
are called contact discontinuities. For the Euler equations contact discon-
tinuities are contact also from the physical point of view, i.e., there is no
mass transfer across the discontinuity. However, in MHD the situation with
characteristic discontinuities is richer than in gas dynamics. Namely, besides
MHD shock waves (j 6= 0, [ρ] 6= 0) there are three types of characteristic dis-
continuities [4,5,18,19]: tangential discontinuities or current-vortex sheets
(j = 0, HN|Γ = 0), contact discontinuities (j = 0, HN|Γ 6= 0), and Alfvén or
rotational discontinuities (j 6= 0, [ρ] = 0). Current-vortex sheets and contact
MHD discontinuities are contact from the physical point of view (j = 0),
but Alfvén discontinuities are not.

The local-in-time existence of shock front solutions of the Euler equa-
tions was proved by Blokhin [3,4] and Majda [23,24], provided that the
uniform Kreiss-Lopatinski condition [17,22,4] is satisfied at each point of
the initial shock discontinuity (i.e., shock waves are uniformly stable). For
the 3D Euler equations contact discontinuities with a nonzero jump in the
velocity (vortex sheets) are always violently unstable [41,10]. For the 2D
isentropic Euler equations, Coulombel & Secchi [8] have recently proved
the existence of supersonic vortex sheets. In [8], using the result of [6], they
have also shown the existence of weakly stable shock waves in isentropic gas
dynamics.1

In MHD there are two types of Lax shocks: slow and fast shock waves
(see, e.g., [18,19]). A complete 2D stability analysis of fast MHD shock
waves was carried out in [42] for an ideal gas equation of state. Taking in-
to account the recent work of Métivier & Zumbrun [26] extending the
Kreiss–Majda theory [17,22] to a class of hyperbolic symmetrizable sys-
tems with characteristics of variable multiplicities (this class contains the
MHD system), uniformly stable fast MHD shock waves found in [42] ex-
ist locally in time. In this paper, we are interested in current-vortex sheets
and continue our analysis in [43] where a sufficient condition for the weak

1 The existence theorems in [8] were proved for a finite (not necessarily short)
time but under the condition that the initial discontinuity is close to a weakly
stable rectilinear (for 2D) or planar (for 3D) discontinuity. It seems that the as-
sumption that the initial data are close to a piecewise constant solution is technical
and could be removed, provided that the time of existence is sufficiently short.
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stability of compressible current-vortex sheets was first found for a gener-
al case of the unperturbed flow (see a discussion below). Concerning other
types of characteristic MHD discontinuities, contact MHD discontinuities
(HN|Γ 6= 0) are known to be always weakly stable [4] whereas Alfvén dis-
continuities are violently unstable for a wide range of flow parameters [15].

For current-vortex sheets, with the requirements j = 0 and HN|Γ = 0
the Rankine-Hugoniot conditions (6) give the boundary conditions

∂tf = v±N , H±
N = 0, [q] = 0 on Γ (t). (7)

Observe that the tangential components of the velocity and the magnetic
field may undergo any jump: [vτ ] 6= 0, [Hτ ] 6= 0.

Our final goal is to find conditions on the initial data

U±(0,x) = U±
0 (x), x ∈ Ω±(0), f(0,x′) = f0(x′), x′ ∈ R2, (8)

providing the existence of current-vortex sheet solutions to the MHD sys-
tem, i.e., the existence of a solution (U±, f) of the free boundary value
problem (1), (7), (8), where U± := U in Ω±(t), and U± is smooth in
Ω±(t). Because of the general properties of hyperbolic conservation laws it
is natural to expect only the local-in-time existence of current-vortex sheet
solutions. Therefore, the question on the nonlinear Lyapunov’s stability of
an ideal current-vortex sheet has no sense.

At the same time, the study of the linearized stability of current-vortex
sheets is not only a necessary step to prove local-in-time existence but also
is of independent interest in connection with various astrophysical applica-
tions. In particular, the ideal compressible current-vortex sheet is used for
modeling the heliopause, which is caused by the interaction of the supersonic
solar wind plasma with the local interstellar medium (in some sense, the he-
liopause is the boundary of the solar system). The generally accepted model
of heliopause was suggested by Baranov, Krasnobaev & Kulikovsky
[2], and the heliopause is in fact a current-vortex sheet separating the in-
terstellar plasma compressed at the bow shock from the solar wind plasma
compressed at the termination shock wave. Note that in December 2004
the spacecraft Voyager 1 has crossed the termination shock at the distance
of 93 AU from the Sun, and astrophysicists predict that it should reach
the heliopause in the next ten years. So, the mathematical modeling of the
heliopause in which current-vortex sheets play the key role becomes very
urgent.

Piecewise constant solutions of (1) satisfying (8) on a planar disconti-
nuity are a simplest case of current-vortex sheet solutions. In astrophysics
the linear stability of a planar compressible current-vortex sheet is usual-
ly interpreted as the macroscopic stability of the heliopause [32]. One can
show that for the constant coefficients linearized problem for planar current-
vortex sheets the uniform Kreiss-Lopatinski condition is never satisfied [43].
That is, planar current-vortex sheets can be only weakly stable or violently
unstable. In the 1960–90’s, in a number of works motivated by astrophysical
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applications (see [32] and references therein) the linear stability of planar
compressible current-vortex sheets was examined by the normal modes anal-
ysis. But, because of insuperable technical difficulties neither stability nor
instability conditions were found for a general case of the unperturbed flow.

In [43] we have proposed an alternative energy method that has first
enabled one to find a sufficient condition for the weak stability of planar
compressible current-vortex sheets. For the most general case when for the
unperturbed flow the tangential magnetic fields H′± = (H±

2 ,H±
3 ) are nonze-

ro and noncollinear this condition reads

G(U+,U−) > 0, (9)

where

G(U+,U−) = | sin(ϕ+ − ϕ−)|min
{

γ+

| sinϕ−|
,

γ−

| sinϕ+|

}
− |[v′]|,

v′± = (v±2 , v±3 ), γ± =
c±c±A√

(c±)2 + (c±A)2
, cos ϕ± =

([v′],H′±)
|[v′]| |H′±|

,

and cA = |H|/√ρ is the Alfvén velocity.2 Later on we will refer to (9) for
nonplanar current-vortex sheets and (9) will be assumed to be satisfied at
each point of Γ (t), but now, when we speak about planar discontinuities, all
the values in (9) are constants describing a piecewise constant solution of (1),
(8) (unperturbed flow). Without loss of generality the planar discontinuity
is supposed to be given by the equation x1 = 0, i.e., it follows from (8) that
for the piecewise constant solution v±1 = H±

1 = 0.
As was shown in [43], the case when the vectors H′+ and H′− are

collinear or one of them is zero corresponds to the transition to violent
instability. We exclude these critical cases from the consideration and with-
out loss of generality suppose that

H+
2 H−

3 −H+
3 H−

2 ≥ ε > 0, (10)

where ε is a fixed constant. Recall that if H′+ = H′− = 0 we have a planar
vortex sheet, which is always violently unstable in 3D.

1.2. Reduction to a fixed domain

The function f(t,x′) determining the discontinuity surface Γ is one of
the unknowns of the free boundary value problem (1), (7), (8). To reduce
this problem to that in a fixed domain we straighten, as usual (see, e.g.,

2 It is known that current sheets ([v′] = 0) are always weakly stable. To include
this particular case into (9) we set that, for example, ϕ+ := π/2 and ϕ− := 0 for
[v′] = 0. That is, (9) is automatically satisfied for the case [v′] = 0.
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[22,25]), the unknown front Γ . That is, the unknowns U± being smooth in
Ω±(t) are replaced by the vector-functions

Ũ±(t,x) := U±(t, Φ(t,±x1,x′),x′),

that are smooth in the fixed domain R3
+ = {x1 > 0, x′ ∈ R2} , where

Φ(t, 0,x′) = f(t,x′) and ∂1Φ > 0. In [43], as in [22], we used the simple
choice Φ(t,x) := x1+f(t,x′). Such a choice was suitable for our aims in [43],
where we have proved a basic a priori estimate for the variable coefficients
linearized problem, provided that the stable (in the sense of (9)) state about
which we linearize problem (1), (7) belongs to W 3

∞([0, T ]× R3
+).

In this paper, to avoid assumptions about compact support of the initial
data in the nonlinear existence theorem and work globally in R3

+ we use the
choice similar to that suggested by Métivier [25]:

Φ(t,x) := x1 + χ(x1)f(t,x′),

where χ ∈ C∞
0 (R) equals to 1 on [−1, 1], and ‖χ′‖L∞(R) < 1/2. Then,

the fulfillment of the requirement ∂1Φ > 0 is guaranteed if we consider
solutions for which ‖f‖L∞([0,T ]×R2) ≤ 1. The last is fulfilled if, without loss
of generality, we consider the initial data satisfying ‖f0‖L∞(R2) ≤ 1/2, and
the time T in our existence theorem is sufficiently small.

Dropping for convenience tildes in Ũ± and introducing the functions

Φ±(t,x) := Φ(t,±x1,x′) = ±x1 + Ψ±(t,x), Ψ±(t,x) := χ(±x1)f(t,x′),

we reduce (1), (7), (8) to the initial boundary value problem

L(U+, Ψ+) = 0, L(U−, Ψ−) = 0 in [0, T ]× R3
+, (11)

B(U+,U−, f) = 0 on [0, T ]× {x1 = 0} × R2, (12)

U+|t=0 = U+
0 , U−|t=0 = U−

0 in R3
+, f |t=0 = f0 in R2, (13)

where L(U, Ψ) = L(U, Ψ)U,

L(U, Ψ) = A0(U)∂t + Ã1(U, Ψ)∂1 + A2(U)∂2 + A3(U)∂3,

Ã1(U±, Ψ±) =
1

∂1Φ±

(
A1(U±)−A0(U±)∂tΨ

± −
3∑

k=2

Ak(U±)∂kΨ±
)

(∂1Φ
± = ±1 + ∂1Ψ

±), and (12) is the compact form of the boundary con-
ditions

∂tf − v+
N = 0, ∂tf − v−N = 0, [q] = 0 on [0, T ]× {x1 = 0} × R2,

with v±N = v±1 − v±2 ∂2f − v±3 ∂3f, [q] = q+|x1=0 − q−|x1=0.
There appear two natural questions. The first one: Why the boundary

conditions H+
N |x1=0 = 0 and H−

N |x1=0 = 0 have not been included in (12)?
And the second question: Why systems (1) and (4) are equivalent on current-
vortex sheet solutions, i.e., why system (1) in the straightened variables is
equivalent to (11)? The answer to these questions is given by the following
proposition.
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Proposition 1. Let the initial data (13) satisfy

div h+ = 0, div h− = 0 (14)

and the boundary conditions

H+
N |x1=0 = 0, H−

N |x1=0 = 0, (15)

where

h± = (H±
n ,H±

2 ∂1Φ
±,H±

3 ∂1Φ
±), H±

n = H±
1 −H±

2 ∂2Ψ
± −H±

3 ∂3Ψ
±

(H±
n |x1=0 = H±

N |x1=0). If problem (11)–(13) has a solution (U±, f), then
this solution satisfies (14) and (15) for all t ∈ [0, T ]. The same is true for
current-vortex sheet solutions of system (1).

The proof of Proposition 1 is given in Appendix A. Equations (14) are
just the divergent constraint (12) on either side of the straightened front.
Using (14), we can easily prove that system (1) in the straightened variables
is equivalent to (11). Concerning the boundary conditions H+

N |x1=0 = 0 and
H−

N |x1=0 = 0, we must regard them as the restrictions on the initial data
(13). Otherwise, the hyperbolic problem (11), (12), (15) does not have a
correct number of boundary and, in particular, its linearization does not
have the property of maximality [30]. Indeed, one can show (see [43] and
Section 2) that the boundary matrix on the boundary x1 = 0,

Aν |x1=0 = diag (Ã1(U+, Ψ+), Ã1(U−, Ψ−))|x1=0,

has two positive (“outgoing”) and two negative eigenvalues, and other eigen-
values are zeros. That is, the boundary x1 = 0 is characteristic, and since one
of the boundary conditions is needed for determining the function f(t,x′),
the correct number of boundary conditions is three (that is the case in (12)).

1.3. Main result and discussion

In this paper, our main goal is to prove the local-in-time existence of
solutions to problem (11)–(13), provided that the initial data (13) satisfy
the stability condition (9) at each point of the straightened front x1 = 0
together with all the other necessary conditions, see Theorem 1 below.

As usual, we will construct solutions to the nonlinear problem (11)–
(13) by considering a sequence of linearized problems. However, since for
current-vortex sheets the Kreiss-Lopatinski condition is satisfied only in a
weak sense, there appears a loss of derivatives phenomena and, therefore,
standard Picard iterations, which convergence is usually proved by fixed-
point argument, are inapplicable for our case. We overcome this principal
difficulty by solving our nonlinear problem by a suitable Nash-Moser-type
iteration scheme (see, e.g., [14]). For multidimensional hyperbolic conser-
vations laws, the Nash-Moser method was earlier used by Alinhac [1] to
prove the existence of rarefaction waves and by Francheteau & Métivier
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[11] to construct shock front solutions when the strength of the shock tends
to zero. Recently the Nash-Moser method was successfully exploited by
Coulombel & Secchi [8] for 2D compressible vortex sheets for the isen-
tropic Euler equations.

As in [8], the Nash-Moser procedure we shall use in this paper is not
completely standard. Exactly as in [8], some nonlinear constraints must be
satisfied at each step of the iteration scheme. Moreover, in comparison with
[8] we have the additional constraints (14) and (15), which actually make
most trouble. As vortex sheets, current-vortex sheets are characteristic free
boundaries that implies a loss of control on derivatives in the normal direc-
tion. But, the peculiarity of our problem consists in the fact that the loss
of control on normal derivatives cannot be compensated as it was done in
[8] (see also [38]) for gas dynamics by estimating missing normal derivatives
through a vorticity-type linearized equation. Therefore, in our case, as for
the MHD system in a fixed domain whose boundary is a regular magnet-
ic surface [27,33,36,46], the natural functional setting is provided by the
anisotropic weighted Sobolev spaces Hm

∗ (see the definition below).
In principle, for current-vortex sheets we could straighten the front as

was suggested in [8]. For the choice of Φ(t,x) used in [8] the boundary
matrix Aν would have constant rank in the whole space R3

+, but not only
on the boundary x1 = 0. Then, we could work in the usual Sobolev spaces
Hm with a certain anisotropy in the normal direction [30]. Here, we however
prefer to use the function space Hm

∗ because it provides a little bit more
regularity of solutions. Following [27–29,33–37,39,46], this space is defined
as follows:

Hm
∗ (R3

+) :=
{
u ∈ L2(R3

+) | ∂α
∗ ∂k

1u ∈ L2(R3
+) if |α|+ 2k ≤ m

}
,

where m ∈ N, ∂α
∗ = (σ∂1)α1∂α2

2 ∂α3
3 , and σ(x1) ∈ C∞(R+) is a monotone

increasing function such that σ(x1) = x1 in a neighborhood of the origin
and σ(x1) = 1 for x1 large enough. The space Hm

∗ (R3
+) is normed by

‖u‖2m,∗ =
∑

|α|+2k≤m

‖∂α
∗ ∂k

1u‖2L2(R3
+).

Following [34,37], we also define the space

L2
T (Hm

∗ ) =
m⋂

k=0

Hk([0, T ],Hm−k
∗ )

equipped with the norm

[u]2m,∗,T =
∫ T

0
|||u(t)|||2m,∗dt, where |||u(t)|||2m,∗ =

m∑
j=0

‖∂j
t u(t)‖2m−j,∗

For a multi-index α = (α0, α1, α2, α3) we shall also use the notation ∂α
? =

∂α0
t (σ∂1)α1∂α2

2 ∂α3
3 .

We are now in a position to state the main result of the present paper.
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Theorem 1. Let m ∈ N and m ≥ 12. Suppose the initial data (13), with

(U±
0 , f0) ∈ H2m+19

∗ (R3
+)×H2m+19(R2),

satisfy the hyperbolicity condition (5) and the divergent constraints (14) for
all x ∈ R3

+. Let the initial data at x1 = 0 satisfy the stability condition (9),
restriction (10), and constraints (15) for all x′ ∈ R2. Assume also that the
initial data are compatible up to order m + 9 in the sense of Definition 1
(see Section 4). Then, there exists a sufficiently short time T > 0 such that
problem (11)–(13) has a unique solution

(U±, f) ∈ L2
T (Hm

∗ (R3
+))×Hm([0, T ]× R2).

The main tool for proving the convergence of the Nash-Moser iteration
scheme is a so-called tame estimate [1,8] for the linearized problem. In [43],
the basic a priori estimate in H1

∗ for the linearized problem was obtained by
the energy method thanks to a new symmetric form of the MHD equations.
The energy method we used in [43] can be formalized as the construction
of a so-called dissipative 0-symmetrizer [45]. Here, to get the tame estimate
for the linearized equations we use the same idea as in [43]. Since we exploit
standard energy arguments and, unlike [7], do not use paradifferential cal-
culus in the linear variable coefficients analysis, we do not need to make the
technical assumption from [8] that the initial data are close to a piecewise
constant solution associated with a planar discontinuity.

Again, since we use the energy method, there is no problem at all to
prove the uniqueness of a solution to problem (11)–(13). Uniqueness follows
already from the basic H1

∗ estimate deduced in [43] and can be proved by
standard argument, exactly in the same manner as was done in [44] for
incompressible current-vortex sheets.3 With this short remark, we shall no
longer discuss the problem of uniqueness in this paper.

In Theorem 1, we have a big loss of derivatives from the initial data to
the solution. Actually, the number of lost derivatives could be two or even
three times less if we worked in the function space Hm

∗∗ (see [35]) instead of
Hm
∗ . In our case, the solution belongs to L2

T (Hm
∗∗) if its “noncharacteristic”

part U±
nc is such that ∂1U±

nc ∈ L2
T (Hm−1

∗ ), where

U±
nc = (q±,v±n ,H±

n ), v±n = v±1 − v±2 ∂2Ψ
± − v±3 ∂3Ψ

±.

However, we prefer to not follow this way, because it is connected with
extremely big technical difficulties, calculations, etc. In particular, for U±

nc
we need to estimate the errors of the Nash-Moser iteration separately.

3 Note that for the energy method the appearance of a zero-order term for the
front in the interior equations for the difference of solutions [44] (in terms of
a so-called “good unknown” of Alinhac [1], see Section 2) does not make any
trouble.
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Recall that condition (9) is only sufficient for stability. As was shown in
[43,44], in the incompressibility limit this condition describes exactly the
half of the whole parameter domain of stability of planar incompressible
current-vortex found by Syrovatskij [40] by the normal modes analysis.
For compressible current-vortex sheets, the main difficulty in the normal
modes analysis is connected with the fact that the Lopatinski determinant
is generically reduced to an algebraic equation of the tenth degree depending
on seven dimensionless parameters and one more inner parameter determin-
ing the wave vector (see [32,43]). Moreover, the squaring was applied under
the reduction of the Lopatinski determinant to this algebraic equation and,
therefore, it can introduce spurious roots. For all these reasons, the problem
on finding the necessary and sufficient condition of weak stability of planar
compressible current-vortex sheets is still open.

Remark 1. For current-vortex sheets one can also consider associated dif-
fusing (nonstationary) viscous profiles for the resistive viscous MHD equa-
tions.4 Since for these equations we can at least expect the existence of
global-in-time solutions, it is natural to study Lyupunov’s (long-time) sta-
bility of “viscous” compressible current-vortex sheets. Some numerical re-
sults in this direction can be found in [9].

The plan of the rest of the paper is the following. In Section 2 we for-
mulate the linearized problem and prove its well-posedness under suitable
assumptions on the basic state about which we linearize our nonlinear prob-
lem (11), (12). The main of these assumptions is the stability condition (9).
In Section 3, for the linearized problem we derive an a priori tame estimate
in the anisotropic weighted Sobolev spaces. In Section 4, we specify compat-
ibility conditions for the initial data and, by constructing an approximate
solution, reduce problem (11)–(13) to that with zero initial data. At last,
in section 5 we solve the reduced problem by a suitable Nash-Moser-type
iteration scheme.

2. Linearized problem associated to (11), (12)

2.1. The basic state

Let
(Û+(t,x), Û−(t,x), f̂(t,x′)) (16)

be a given vector-function, where Û± = (p̂±, v̂±, Ĥ±, Ŝ±) and f̂ are sup-
posed to be sufficiently smooth in

ΩT := (−∞, T ]× R3
+.

4 For a complete analysis of the existence and bifurcation of (stationary) viscous
profiles for MHD shock waves we refer to [12].
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Later on for the functions defined in ΩT the time interval [0, T ] appearing in
the definition of the norm [·]s,∗,T given in Section 2 is replaced by (−∞, T ].
Moreover, by Hs

∗(ΩT ) we will denote the space that coincides with the space
L2

T (Hs
∗(R3

+)) defined in Section 2 if we replace the time interval [0, T ] by
(−∞, T ].

We assume that the basic state (16) about which we shall linearize prob-
lem (11), (12) satisfies the hyperbolicity condition (5) in ΩT ,

ρ(p̂±, Ŝ±) > 0, ρp(p̂±, Ŝ±) > 0, (17)

the Rankine-Hugoniot conditions (12),

∂tf̂ − v̂+
N |x1=0 = 0, ∂tf̂ − v̂−N |x1=0 = 0, [q̂] = 0, (18)

and the stability condition (9) together with restriction (10) on ∂ΩT :=
(−∞, T ]× {x1 = 0} × R2,

G(Û+|x1=0, Û−|x1=0) > 0, (Ĥ+
2 Ĥ−

3 − Ĥ+
3 Ĥ−

2 )|x1=0 ≥ ε > 0, (19)

where q̂± = p̂± + 1
2 |Ĥ

±|2,

v̂±N = v̂±1 − v̂±2 ∂2f̂ − v̂±3 ∂3f̂ , [q̂] = (q̂+ − q̂−)|x1=0 .

Let also

Û+, Û− ∈ W 2
∞(ΩT ), f̂ ∈ W 3

∞(∂ΩT ),

‖Û+‖W 2
∞(ΩT ) + ‖Û−‖W 2

∞(ΩT ) + ‖f̂‖W 3
∞(∂ΩT ) ≤ K,

(20)

where K > 0 is a constant. Moreover, without loss of generality we assume
that ‖f̂‖L∞(∂ΩT ) < 1. This implies

∂1Φ̂
+ ≥ 1/2, ∂1Φ̂

− ≤ −1/2,

with

Φ̂±(t,x) := ±x1 + Ψ̂±(t,x), Ψ̂±(t,x) := χ(±x1)f̂(t,x′).

Observe that (20) yields

‖Ŵ‖W 2
∞(ΩT ) ≤ C(K),

where Ŵ := (Û+, Û−,∇t,xΨ̂
+,∇t,xΨ̂

−),∇t,x = (∂t,∇), and C = C(K) > 0
is a constant depending on K.

Later on, for the perturbation of the magnetic field we shall deduce
equations associated to the nonlinear constraints (14) and (15). However,
to do this it is not enough that these constraints are satisfied by the basic
state (16). We need actually that the equation for H± itself contained in
(11) is fulfilled for (16) (cf. (197) in Appendix A):

∂tĤ± +
1

∂1Φ̂±

{
(ŵ±,∇)Ĥ± − (ĥ±,∇)v̂± + Ĥ±div û±

}
= 0, (21)
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where

û± = (v̂±n , v̂±2 ∂1Φ̂
±, v̂±3 ∂1Φ̂

±), v̂±n = v̂±1 − v̂±2 ∂2Ψ̂
± − v̂±3 ∂3Ψ̂

±,

ĥ± = (Ĥ±
n , Ĥ±

2 ∂1Φ̂
±, Ĥ±

3 ∂1Φ̂
±), Ĥ±

n = Ĥ±
1 − Ĥ±

2 ∂2Ψ̂
± − Ĥ±

3 ∂3Ψ̂
±,

and ŵ± = û±−(∂tΨ̂
±, 0, 0). Assume that (16) satisfies (21). Then, it follows

from the proof of Proposition 1 (see Appendix A) that constraints (14) and
(15) are satisfied for the basic state (16) if they are true for it at t = 0:

div ĥ±|t=0 = 0, Ĥ±
N |x1=t=0 = 0, (22)

where Ĥ±
N = Ĥ±

1 − Ĥ±
2 ∂2f̂ − Ĥ±

3 ∂3f̂ .

2.2. The linearized equations

The linearized equations for (11), (12) read:

L′(Û±, Ψ̂±)(δU±, δΨ±) :=
d

dε
L(U±

ε , Ψ±
ε )|ε=0 = f± in ΩT ,

B′(Û+, Û−, f̂)(δU+, δU−, δf) :=
d

dε
B(U+

ε ,U−
ε , fε)|ε=0 = g on ∂ΩT

where U±
ε = Û± + ε δU±, fε = f̂ + ε δf , and

Ψ±
ε (t,x) := χ(±x1)fε(t,x′), Φ±ε (t,x) := ±x1 + Ψ±

ε (t,x),

δΨ±(t,x) := χ(±x1)δf(t,x).

Here, as usual, we introduce the source terms f±(t,x) and g(t,x′) to make
the interior equations and the boundary conditions inhomogeneous. To sim-
plify the notations we will below drop δ.

We easily compute the exact form of the linearized operators:

L′(Û±, Ψ̂±)(U±, Ψ±)

= L(Û±, Ψ̂±)U± + C(Û±, Ψ̂±)U± −
{
L(Û±, Ψ̂±)Ψ±} ∂1Û±,

B′(Û+, Û−, f̂)(U+,U−, f) =


∂tf + v̂+

2 ∂2f + v̂+
3 ∂3f − v+

N

∂tf + v̂−2 ∂2f + v̂−3 ∂3f − v−N

q+ − q−

 ,

where q± = p± + (Ĥ±,H±), v±N = v±1 − v±2 ∂2f̂ − v±3 ∂3f̂ , and the matrix
C(Û±, Ψ̂±) is determined as follows:

C(Û±, Ψ̂±)Y = (Y,∇yA0(Û±))∂tÛ± + (Y,∇yÃ1(Û±, Ψ̂±))∂1Û±

+(Y,∇yA2(Û±))∂2Û± + (Y,∇yA3(Û±))∂3Û±,
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(Y,∇yA(Û±)) :=
8∑

i=1

yi

(
∂A(Y)

∂yi

∣∣∣∣
Y=Û±

)
, Y = (y1, . . . , y8).

The differential operator L′(Û±, Ψ̂±) is a first order operator in Ψ±. This
fact can give some trouble in obtaining a priori estimates for the linearized
problem. Following [1], we overcome this difficulty by introducing the “good
unknown”:

U̇+ := U+ − Ψ+

∂1Φ̂+
∂1Û+, U̇− := U− − Ψ−

∂1Φ̂−
∂1Û−. (23)

In terms of unknown (23) the linearized interior equations take the form

L(Û±, Ψ̂±)U̇± + C(Û±, Ψ̂±)U̇± − Ψ±

∂1Φ̂±
∂1
{
L(Û±, Ψ̂±)

}
= f±. (24)

In principle, the zero-order terms in (24) do not give any trouble in the
application of the energy method for deducing a priori estimates. But, to
prove the existence of solutions to the linearized problem it is better to have
standard linear symmetric hyperbolic systems for U̇+ and U̇−. Therefore,
as in [1,8,11], we drop the zero-order term in Ψ± in (24) and consider the
effective linear operators

L′e(Û±, Ψ̂±)U̇± := L(Û±, Ψ̂±)U̇± + C(Û±, Ψ̂±)U̇±

= A0(Û±)∂tU̇± + Ã1(Û±, Ψ̂±)∂1U̇±

+A2(Û±)∂2U̇± + A3(Û±)∂3U̇± + C(Û±, Ψ̂±)U̇±

(25)

In the subsequent nonlinear analysis the dropped term in (23) will be con-
sidered as an error term at each Nash-Moser iteration step.

Concerning the boundary differential operator B′, in terms of unknown
(23) it reads:

B′e(Û, f̂)(U̇, f) := B′(Û, f̂)(U+,U−, f)

=


∂tf + v̂+

2 ∂2f + v̂+
3 ∂3f − v̇+

N − f ∂1v̂
+
N

∂tf + v̂−2 ∂2f + v̂−3 ∂3f − v̇−N − f ∂1v̂
−
N

q̇+ − q̇− + f(∂1q̂
+ − ∂1q̂

−)

 ,
(26)

where Û = (Û+, Û−), U̇ = (U̇+, U̇−), and v̇±N = v̇±1 − v̇±2 ∂2f̂ − v̇±3 ∂3f̂ . As
in [1,8,11] we keep the zero-order terms in f in (26). Note that the main
difficulties in deducing a priori estimates for the linearized problem by the
energy method are connected with these terms (see [43] and Section 3).
Introducing the notation

L′e(Û, Ψ̂)U̇ :=

(
L′e(Û+, Ψ̂+)U̇+

L′e(Û−, Ψ̂−)U̇−

)
, (27)
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with Ψ̂ = (Ψ̂+, Ψ̂−), we write down the linear problem for (U̇, f):

L′e(Û, Ψ̂)U̇ = f in ΩT , (28)

B′e(Û, f̂)(U̇, f) = g on ∂ΩT , (29)

(U̇, f) = 0 for t < 0, (30)

where f = (f+, f−) = (f+
1 , . . . , f+

8 , f−1 , . . . , f−8 ) and g = (g+
1 , g−1 , g2) vanish

in the past. Here, unlike [43], we consider the case of zero initial data,
that is usual assumption, and postpone the case of nonzero initial data to
the nonlinear analysis (construction of a so-called approximate solution, see
Section 4).

In Appendix A we prove the following proposition that will play an
important role in the proof of well-posedness of problem (28)–(30).

Proposition 2. Let for the basic state (16) all the assumptions above (in
particular, (21), (22)) are fulfilled. Then solutions of problem (28)–(30)
satisfy

div ḣ+ = r+, div ḣ− = r− in ΩT , (31){
Ĥ+

2 ∂2f + Ĥ+
3 ∂3f − Ḣ+

N − f ∂1Ĥ
+
N = g+

3 ,

Ĥ−
2 ∂2f + Ĥ−

3 ∂3f − Ḣ−
N − f ∂1Ĥ

−
N = g−3 , on ∂ΩT .

(32)

Here

ḣ± = (Ḣ±
n , Ḣ±

2 ∂1Φ̂
±, Ḣ±

3 ∂1Φ̂
±), Ḣ±

n = Ḣ±
1 − Ḣ±

2 ∂2Ψ̂
± − Ḣ±

3 ∂3Ψ̂
±

(Ḣ±
N |x1=0 = Ḣ±

n |x1=0), and the functions r± = r±(t,x), g±3 = g±3 (t,x′),
that vanish in the past, are determined by the source terms and the basic
state as solutions to the linear inhomogeneous equations5

∂ta
± +

1

∂1Φ̂±

{
(ŵ±,∇a±) + a±div û±

}
= F± in ΩT , (33)

∂tg
±
3 + v̂±2 ∂2g

±
3 + v̂±3 ∂3g

±
3 +

(
∂2v̂

±
2 + ∂3v̂

±
3

)
g±3 = G± on ∂ΩT , (34)

where a± = r±/∂1Φ̂
±, F± = (div f±h )/∂1Φ̂

±,

f±h = (f±n , f±6 , f±7 ), f±n = f±5 − f±6 ∂2Ψ̂
± − f±7 ∂3Ψ̂

±,

G± =
{
∂2
(
Ĥ±

2 g±1
)

+ ∂3
(
Ĥ±

3 g±1
)
− f±n

}∣∣
x1=0.

5 It follows from (18) that the interior equations (33) do not need boundary
conditions because ŵ±

1 |x1=0 = 0.
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2.3. Reduction to homogeneous boundary conditions

In [43], the basic a priori estimate for problem (28), (29) was obtained
for the case of nonzero initial data but the zero source terms f and g.
This was done thanks to the fact the boundary conditions for an equivalent
formulation of problem (28), (29) (it will be presented below) are dissipative.
There is no problem at all to generalize the estimate from [43] to nonzero
source terms. But we will lose derivatives from the source term g because
the boundary conditions are not strictly dissipative. Since we anyway lose
derivatives from g, we can use the classical argument (see, e.g., [31]) to deal
with inhomogeneous boundary conditions. It suggests to subtract from the
solution a more regular function satisfying the boundary conditions, and
reduce the problem to one with homogeneous boundary conditions. As is
known, if we work in usual Sobolev spaces such a way leads to the loss of
“1/2 derivative” from g.

However, because of the presence of constraints (14) and (15), that play
an important role in the energy method in [43], to prove the well-posedness
of the original linear problem (28)–(30) we have to modify a little bit the
above mentioned classical argument. Let there exists a solution (U̇, f) ∈
Hs
∗(ΩT ) × Hs(∂ΩT ) to problem (28)–(30), with a given s ∈ N. Consider

now a vector-function

Ũ = (p̃+, ṽ+, H̃+, S̃+, p̃−, ṽ−, H̃−, S̃−) ∈ Hs+2
∗ (ΩT )

that vanishes in the past and on the boundary ∂ΩT satisfies not only con-
ditions (29) (with f = 0) but also (32), (34) (with f = 0), where q̃±, ṽ±N ,
and H̃±

N are defined similarly to q̇±, v̇±N , and Ḣ±
N . Then, we define q̃±, ṽ±n ,

and H̃±
n in the interior domain ΩT by using a lifting operator

RT : Hs+1(∂ΩT ) −→ Hs+2
∗ (ΩT ) (35)

from the boundary to the interior:

q̃± = RT (q̃±|x1=0), ṽ±n = RT (ṽ±N |x1=0), H̃±
n = RT (H̃±

N |x1=0).

Such a lifting operator exists thanks to the trace theorem [28] for the spaces
Hm
∗ .

Let also ṽ±1 and H̃±
1 are such that

ṽ±n = ṽ±1 − ṽ±2 ∂2Ψ̂
± − ṽ±3 ∂3Ψ̂

±, H̃±
n = H̃±

1 − H̃±
2 ∂2Ψ̂

± − H̃±
3 ∂3Ψ̂

±.

Since we still have a freedom in the choice of “characteristic unknowns”
H̃±

2 and H̃±
3 , we can define them in such a way that they satisfy equations

(33) for a± = div h̃±/∂1Φ̂
±, where h̃± = (H̃±

n , H̃±
2 ∂1Φ̂

±, H̃±
3 ∂1Φ̂

±). The
rest components of Ũ, i.e., ṽ±2,3 and Ŝ± can be taken, for example, as zeros.

If U̇ = U̇\ + Ũ, then U̇\ satisfies

L′e(Û, Ψ̂)U̇\ = F in ΩT , (36)

B′e(Û, f̂)(U̇\, f) = 0 on ∂ΩT , (37)
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where
F = (F+

1 , . . . F+
8 , F−

1 , . . . F−
8 ) = f − L′e(Û, Ψ̂)Ũ.

Moreover, in view of equations (33) for a± = div h̃±/∂1Φ̂
±, conditions (32)

for Ũ (with f = 0), and (34), it follows from (36), (37) that equations (33)
and (34) are satisfied for a± = div ḣ\±/∂1Φ̂

± and g±3 = (Ĥ±
2 ∂2f +Ĥ±

3 ∂3f−
Ḣ\±

N − f ∂1Ĥ
±
N )|x1=0 with the zero right-hand sides (F± = G± = 0), where

ḣ\± and Ḣ\±
N are defined for U̇\ similarly to ḣ± and Ḣ±

N . Since U̇\ vanishes
in the past, the conditions

div ḣ\± = 0, (Ĥ±
2 ∂2f + Ĥ±

3 ∂3f − Ḣ\±
N − f ∂1Ĥ

±
N )|x1=0 = 0 (38)

hold for t < 0. Then, by standard method of characteristic curves we get
that equations (38) are satisfied for all t ∈ (−∞, T ].

Since [∂1(·)]s,∗,T ≤ [·]s+2,∗,T we get the estimate

[L′e(Û, Ψ̂)Ũ]s,∗,T ≤ C [Ũ]s+2,∗,T . (39)

Here and later on C is a constant that can change from line to line, and
sometimes we show the dependence of C from another constants. In parti-
cular, in this section we focus on the proof of well-posedness based on the a
priori estimate in H1

∗ obtained in [43], and for the case s = 1 the constant
C = C(K) in (39) depends on the constant K from (20). For the general
case s ≥ 1, if we use rough estimates, the constant C in (39) depends on
the W s+2

∞ norm of the basic state. However, to get a so-called tame a priori
estimate in Section 3 we will need more delicate estimates than (39). Such
estimates will be deduced by using Moser-type inequalities in Hs

∗ , and the
assumption for the basic state will be much weaker than W s+2

∞ . We postpone
this analysis to Section 3.

Then, taking into account (39), we have

[F]s,∗,T ≤ C
{
[f ]s,∗,T + ‖g‖Hs+1(∂ΩT ) + ‖(g+

3 , g−3 )‖Hs+1(∂ΩT )
}

.

Using (34), we easily estimate:

‖(g+
3 , g−3 )‖Hs+1(∂ΩT ) ≤ C‖(G+,G−)‖Hs+1(∂ΩT )

≤ C
{
[f ]s+2,∗,T + ‖(g+

1 , g−1 )‖Hs+2(∂ΩT )
}

.

Then, we finally get the estimate

[F]s,∗,T ≤ C
{
[f ]s+2,∗,T + ‖g‖Hs+2(∂ΩT )

}
. (40)

Dropping for convenience the indices \ in (36)–(38), we have the problem

L′e(Û, Ψ̂)U̇ = F in ΩT , (41)

B′e(Û, f̂)(U̇, f) = 0 on ∂ΩT , (42)

(U̇, f) = 0 for t < 0, (43)
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where the source term F defined above obeys estimate (40) and is such that
solutions to (41)–(43) satisfy the constraints

div ḣ+ = 0, div ḣ− = 0 in ΩT , (44)

{
Ĥ+

2 ∂2f + Ĥ+
3 ∂3f − Ḣ+

N − f ∂1Ĥ
+
N = 0,

Ĥ−
2 ∂2f + Ĥ−

3 ∂3f − Ḣ−
N − f ∂1Ĥ

−
N = 0, on ∂ΩT .

(45)

We thus have proved the following result.

Lemma 1. Let problem (41)–(43) is well-posed and its unique solution (U̇, f)
belongs to Hs

∗(ΩT ) × Hs(∂ΩT ) for F ∈ Hs
∗(ΩT ), where s ∈ N is a given

number. Then problem (28)–(30) is well-posed in the same function space
Hs
∗(ΩT )×Hs(∂ΩT ) for (f ,g) ∈ Hs+2

∗ (ΩT )×Hs+2(∂ΩT ).

Remark 2. As was already noted above, in this section we concentrate on
the case s = 1. For this case the assumption (20) is enough for the assertion
of Lemma 1. For s large enough for which we prove the tame estimate in
Section 3 we will assume that (Û,∇t,x′ f̂) ∈ Hs+2

∗ (ΩT ) ×Hs+2(∂ΩT ) (see
estimate (106) that is a “tame counterpart” of (40)).

2.4. Secondary generalized Friedrichs symmetrizer for the MHD system

From now on we focus on the proof of the well-posedness of problem
(41)–(43). Recall that solutions to this problem satisfy (44) and (45). In
[43], the basic a priori estimate in H1

∗ for problem (41), (42) (with F = 0
and nonzero initial data) was constructed thanks to a new symmetric form
of the MHD system. This symmetric form is the result of the application of
a secondary generalized Friedrichs symmetrizer S = (S,R) to system (4):

S(U)A0(U)∂tU +
3∑

j=1

S(U)Aj(U)∂jU + R(U) div H

:= B0(U)∂tU +
3∑

j=1

Bj(U)∂jU = 0.

(46)

We call this symmetrizer “secondary” because system (4) was already sym-
metric and the matrices Bα in (46) are again symmetric, and we call it
“generalized” because the symmetrizer S is not just a matrix, but it also
contains the vector R which appearance is due to taking into account the
divergent constraint (2).
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The concrete form of S and R found in [43] is as follows:

S =



1
λH1

ρc2

λH2

ρc2

λH3

ρc2 0 0 0 0

λH1ρ 1 0 0 −ρλ 0 0 0
λH2ρ 0 1 0 0 −ρλ 0 0
λH3ρ 0 0 1 0 0 −ρλ 0

0 −λ 0 0 1 0 0 0
0 0 −λ 0 0 1 0 0
0 0 0 −λ 0 0 1 0
0 0 0 0 0 0 0 1


, R = −λ



1
0
0
0

H1

H2

H3

0


,

where λ = λ(U) is an arbitrary function. For the concrete form of the
matrices Bj in (46) we refer to [43] and write down here only the matrix
B0:

B0 = SA0 =



1
ρc2

λH1

c2

λH2

c2

λH3

c2 0 0 0 0

λH1

c2 ρ 0 0 −ρλ 0 0 0

λH2

c2 0 ρ 0 0 −ρλ 0 0

λH3

c2 0 0 ρ 0 0 −ρλ 0

0 −ρλ 0 0 1 0 0 0
0 0 −ρλ 0 0 1 0 0
0 0 0 −ρλ 0 0 1 0
0 0 0 0 0 0 0 1



.

Clearly, systems (4) and (46) coincide for λ = 0.

Remark 3. The new symmetric form (46) for the MHD equations was
guessed in [43] by considering the magnetoacoustics system and using for it a
“compressible” counterpart of the so-called cross-helicity integral
d/dt

(∫
R3(v,H) dx

)
= 0 taking place for incompressible MHD. This gives a

new conserved integral for the linearized constant coefficient MHD equations
and, respectively, a concrete form of the matrix B0, etc.

The symmetric system (46) is hyperbolic if B0 > 0 (this also guaran-
tees that detS 6= 0). The last condition is satisfied if inequalities (5) hold
together with the additional requirement [43]

ρλ2 <
1

1 + (c2
A/c2)

. (47)

As was shown in [43], condition (47) guarantees the equivalence of systems
(4) and (46) on smooth solutions provided that λ(U) is a smooth function
of U. The analogous assertion can also be proved for current-vortex sheet
solutions, but we need it only for the linearized equations.
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Applying the symmetrizer S(Û) to system (41), i.e., multiplying (41) on
the left by the matrix S(Û) and adding to the result the vector

div ḣ+

∂1Φ̂+
R(Û+)

div ḣ−

∂1Φ̂−
R(Û−)

 ,

we get
B0(Û)∂tU̇ + B̃1(Û, Ψ̂)∂1U̇ + B2(Û)∂2U̇

+B3(Û)∂3U̇ + C̃(Û, Ψ̂)U̇ = F̃(Û),
(48)

where C̃(Û, Ψ̂) = S(Û)C(Û, Ψ̂), F̃(Û) = S(Û)F,

S(Û) = diag (S(Û+),S(Û−)), Bα(Û) = diag (Bα(Û+), Bα(Û−)),

C(Û, Ψ̂) = diag (C(Û+, Ψ̂+), C(Û−, Ψ̂−)),

B̃1(Û, Ψ̂) = diag (B̃1(Û+, Ψ̂+), B̃1(Û−, Ψ̂−)),

B̃1(U±, Ψ±) =
1

∂1Φ±

(
B1(U±)−B0(U±)∂tΨ

± −
3∑

k=2

Bk(U±)∂kΨ±
)
.

We now prove the equivalence of problems (41)–(43) and (48), (42), (43)
in the following sense.

Lemma 2. Let assumptions (17), (18), (20)–(22), and condition (47) are
fulfilled for the basic state (16). Assume also that problems (41)–(43) and
(48), (42), (43) have sufficiently smooth solutions. Then, solutions to these
problems coincide.

Proof. If inequalities (17) and condition (47) written for Û+ and Û− are
satisfied, then system (48) is hyperbolic, i.e., B0(Û) > 0. In particular, it
means that the matrix S(Û) is nonsingular. Clearly, we have only to prove
that from system (48) we can obtain system (41).

Let us multiply (48) on the left by the matrix S−1(Û). Taking into
account that S−1(Û±)R(Û±) = R(Û±), we write down the equation for
Ḣ± contained in the resulting system. The left-hand side of this equation
differs from that of (200) (see the proof of Proposition 2 in Appendix A)
only by the appearance of the additional term −λ(Û±)Ĥ±div ḣ± in the
expression in braces, whereas its right-hand side is (F±

5 , F±
6 , F±

7 ).
Reasoning then as in Appendix A, we can obtain linear homogeneous

equations for r± = div ḣ± (the left-hand sides of these equations coincide
with those of (33) for λ(Û±) = 0). By standard method of characteristic
curves we get (44). Hence, system (48) multiplied on the left by the matrix
S−1(Û) coincides with (41). �



20 Yuri Trakhinin

2.5. Well-posedness of the linearized problem

Let us introduce the new unknown V = (V+,V−), where

V± = (q̇±, v̇±n , v̇±2 , v̇±3 , Ḣ±
n , Ḣ±

2 , Ḣ±
3 , Ṡ±).

We have U̇ = JV, with J = diag (J+, J−),

J± =



1 0 0 0 −Ĥ±
1 −Ĥ±

τ1
−Ĥ±

τ2
0

0 1 ∂2Ψ̂
± ∂3Ψ̂

± 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ∂2Ψ̂

± ∂3Ψ̂
± 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

Ĥ±
τk

= (Ĥ±, τ±k ), k = 1, 2, τ±1 = (∂2Ψ̂
±, 1, 0) , and τ±2 = (∂2Ψ̂

±, 0, 1) .
Then, systems (41) and (48) are equivalently rewritten as

A0(Û, Ψ̂)∂tV +
3∑

k=1

Ak(Û, Ψ̂)∂kV +A4(Û, Ψ̂)V = F(Û, Ψ̂) (49)

and

B0(Û, Ψ̂)∂tV +
3∑

k=1

Bk(Û, Ψ̂)∂kV + B4(Û, Ψ̂)V = F̃(Û, Ψ̂) (50)

respectively, where Aα = JTAαJ, Bα = JTBαJ (α = 0, 2, 3),

A1 = JTÃ1J, B1 = JTB̃1J, F = JTF, F̃ = JTF̃,

A4 = JT{C + A0∂tJ + Ã1∂1J + A2∂2J + A3∂2J
}
,

B4 = JT{C̃ + B0∂tJ + B̃1∂1J + B2∂2J + B3∂2J
}
,

The matrices Aα = Aα(Û) and Ã1 = Ã1(Û, Ψ̂) are defined similarly to the
matrices Bα = Bα(Û) and B̃1 = B̃1(Û, Ψ̂) in (48).

The boundary matrix A1 in system (49) has the form

A1 = A+A(0), A = diag
( 1

∂1Φ̂+
E12,

1

∂1Φ̂−
E12

)
, A(0)|x1=0 = 0, (51)

where Eij is the symmetric matrix which (ij)th and (ji)th elements equal to
1 and others are zero. The explicit form ofA(0) is of no interest, and it is only
important that, in view of constraints (15) and (18) for the basic state (16),
A(0)|x1=0 = 0. Therefore, the boundary matrix A1 on the boundary x1 = 0,
A1|x1=0 = diag (E12,−E12), is of constant rank 4 and has two positive and
two negative eigenvalues.
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That is, (49) is a symmetric hyperbolic system with characteristic bound-
ary of constant multiplicity (in the sense of Rauch [30]). Moreover, we have
the correct number of boundary conditions in (42), that is two plus one, be-
cause the first or the second boundary condition in (42) is needed to find
f . It is also noteworthy that because of (44) not only q̇± and v̇±n but also
Ḣ+

n and Ḣ−
n are “noncharacteristic” unknowns. For the “noncharacteristic”

part of the vector V,

Vn := (V+
n ,V−

n ), V±
n = (q̇±, v̇±n , Ḣ±

n ), (52)

we expect to have a better control on the normal (x1-) derivatives.
Concerning the boundary matrix B1 in system (50), we will only need

its explicit form on the boundary:

B1|x1=0 = diag
(
B(Û+|x1=0),−B(Û−|x1=0)

)
, B(U) = E12 − λ(U)E15.

Let us now define the function λ = λ(U). Unlike [43], we shall assume that
the stability condition for variable coefficients is satisfied only on the bound-
ary at each point of the nonplanar current-vortex sheet. This is possible
thanks to the use of a kind of cut-off function for λ(U). Roughly speaking,
the hyperbolicity condition (47) can be imposed only on the boundary.

That is, our choice of λ differs a little bit from that in [43]:

λ(Û±) := η(x1)λ±(t,x′) (53)

where η(x1) ∈ C∞(R+) is such a rapidly decreasing function that η(0) = 1
and η(x1) = 0 for x1 > ε, with a sufficiently small constant ε; the functions
λ+ and λ− are chosen exactly as in [43], i.e., at each point (t,x′) ∈ ∂ΩT

we set λ±(t,x′) = 0 if the jump [v̂′](t,x′) = 0, and, otherwise, we choose
λ+(t,x′) and λ−(t,x′) such that

[v̂′ − λĤ′] = 0 (54)

(it is possible thanks to the second inequality in assumption (19)). Here
v̂′± = (v̂±2 , v̂±3 ), Ĥ′± = (Ĥ±

2 , Ĥ±
3 ), [v̂′] = (v̂′+ − v̂′−)|x1=0, [λ] = λ+ − λ−,

etc.
One can show that for the choice taken in (53), (54) condition (47)

guaranteeing (together with (17)) the hyperbolicity of the symmetric system
(48) (or (50) is satisfied on the boundary ∂ΩT for the basic state (16) if and
only if the stability condition in (19) holds at each point (t,x′) ∈ ∂ΩT .
By continuity of state (16) the stability condition in (19) is still satisfied
in a small neighborhood 0 ≤ x1 ≤ ε. Hence, thanks to the properties of
η(x1) and the fact that (47) holds for λ = 0, condition (47) is fulfilled for
state (16) in the whole domain ΩT if and only if the first inequality in (19)
holds, i.e., the stability condition (9) holds at each point of the straightened
unperturbed current-vortex sheet.

From now on we suppose that the function λ(U) is given (53), (54).
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Lemma 3. Let assumptions (17)–(22) are fulfilled for the basic state (16).
If we set formally that (∂1v̂

±
N )|x1=0 = (∂1Ĥ

±
N )|x1=0 = 0 (i.e., we omit the

zero-order terms in f in (42) and (45)), then the boundary conditions (42)
for the symmetric hyperbolic system (50) are maximally dissipative.

Proof. Recall that assumptions (17) and (19) imply that B0(Û) > 0 and,
hence, B0(Û, Ψ̂) > 0, i.e., the symmetric system (50) is hyperbolic. It follows
from the explicit form of the boundary matrix B1(Û, Ψ̂) at x1 = 0 that

(B1V,V)|x1=0 = 2[q̇(v̇N − λḢN)].

By virtue of (42), (45) and the artificial assumption about v̂±N and Ĥ±
N ,

[q̇(v̇N − λḢN)] = q̇+([v̂′ − λĤ′],∇x′f).

Then, thanks to (54)
(B1V,V)|x1=0 = 0,

i.e., the boundary conditions are dissipative and even conservative. More-
over, since the number of boundary conditions in (42) is correct, the pro-
perty of maximality is fulfilled. �

Remark 4. Because of the presence of zero-order terms in f in the bound-
ary conditions, it is impossible to get the classical L2 estimate (with no loss
of derivatives from F) for solutions of problem (41)–(43). The basic a priori
estimate in H1

∗ was proved in [43] by using the result of Lemma 3 and some
standard manipulations with lower-order terms appearing in the boundary
integral (by passing to the volume integral and integration by parts).

We are now in a position to prove the well-posedness of problem (41)–
(43).

Lemma 4. Let assumptions (17)–(22) are fulfilled for the basic state (16).
Let also there exists a constant K1 > 0 that ‖∂1Û‖W 2

∞(ΩT ) ≤ K1.6 Then for
all F ∈ H1

∗ (ΩT ) that vanish in the past problem (41)–(43) has a solution
(U̇, f) ∈ H1

∗ (ΩT ) × H1(∂ΩT ). Moreover, this solution obeys the a priori
estimate

|||U̇(t)|||1,∗ + ‖f(t)‖H1(R2) ≤ CeCt [F]1,∗,t (55)

for all t ∈ [0, T ]. Here C = C(K, K1) > 0 is a constant independent of the
data F.

Proof. The a priori estimate in H1
∗ was proved in [43] for the nonzero

initial data but for F = 0. Because of the result of Lemma 3 it is clear
that we can easily get the same estimate with no loss of derivatives from
the nonzero F. That is, we get the a priori estimate (55). To prove the
existence of solutions to problem (41)–(43) we use the idea of the works [29,

6 This additional assumption is automatically fulfilled under the conditions im-
posed on the basic state in the tame estimate in Section 3.
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34] where the existence of solutions of symmetric hyperbolic systems with
characteristic boundary of constant multiplicity was established by making
use of approximations via noncharacteristic regularization. In fact, problem
(41), (42) differs from that studied in [29,34] only by the the presence of the
unknown function f in the boundary conditions. Note also that, in view of
(43), we do not need to care for compatibility conditions for our problem.

As follows from Lemma 2, instead of (41) we can consider system (48)
that is equivalently rewritten as (50). Following [29,34], we now consider
the so-called noncharacteristic regularization of system (50):

B0∂tV +
3∑

k=1

Bk∂kV + B4V − ε∂1V = F̃ in ΩT , (56)

where ε is a small positive constant, the unknown is again denoted by V,
and for short we do not indicate the dependence of Bα and F̃ on the basic
state. For problem (56), (42) the boundary x1 = 0 is noncharacteristic, and
the number of boundary conditions in (42) is still correct, i.e., the property
of maximality takes place. From the problem (56), (42), (43) we can still
deduce constraints (44) and (45).

Actually, the boundary conditions (42) with the omitted zero-order terms
in f are not just maximally dissipative for system (56). They are even strict-
ly dissipative. Using this fact, we can easily treat the zero-order terms in f
and get even a L2 a priori estimate for (56), (42), (43). This estimate will be
however not uniform in ε. Therefore, we prefer to use the same arguments
as in [43] and get an a priori estimate for a prolonged system. Clearly, this
estimate is (see also [45])

|||U̇(t)|||1,∗ + ε|||U̇(t)|||H1(R3
+) + ε‖U̇|x1=0‖H1(∂Ωt)

+‖f(t)‖H1(R2) + ε‖f‖H2(∂Ωt) ≤ CeCt [F]1,∗,t.
(57)

In estimate (57) we control the trace of solution in the high norm and,
therefore, do not “lose derivatives from the front” f . This estimate is inter-
nally the same as was deduced in [25] for uniformly stable shock waves (see
also [45]). Taking into account the recent result in [26], we can still apply
Kreiss’ theory for the MHD system, that is a symmetric hyperbolic system
with variable multiplicities. Therefore, since estimate (57) is with no loss of
derivatives, it is equivalent to the fact that problem (56), (42) with frozen
coefficients satisfies the uniform Kreiss-Lopatinski condition.

Moreover, the boundary conditions (42) have almost the same form as
the linearized boundary conditions for uniformly stable shock waves. The
only difference that the boundary conditions (42) contain zero-order terms
in f . It is however not so important because we have only to modify a little
bit the definition of a dual problem for (56), (42). In this connection, we
refer to [8] where the presence of the mentioned zero-order terms was taken
into account under the definition of the dual problem. With the reference to
[25], we can now conclude that the uniformly stable problem (56), (42), (43)
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is well-posed in H1(ΩT )×H2(∂ΩT ) (actually, even in Hs(ΩT )×Hs+1(∂ΩT )
with s ≥ 1). Alternatively, for this problem, having estimate (57), we could
also straightforwardly use the classical argument of Lax & Phillips [21].

Now we pass to the limit for ε → 0. By passing to the limit in (56)
we can easily show the existence of (V, f) ∈ H1

∗ (ΩT ) × H1(∂ΩT ) that is
a solution to problem (50), (42), (43). Then, the corresponding (U̇, f) ∈
H1
∗ (ΩT )×H1(∂ΩT ) is a solution to (41)–(43). �

Taking into account Lemma 1 and estimate (40), from Lemma 4 we
conclude the following theorem.

Theorem 2. Let all the assumptions of Lemma 4 are fulfilled for the basic
state (16). Then for all (f ,g) ∈ H3

∗ (ΩT )×H3(∂ΩT ) that vanish in the past
problem (28)–(30) has a unique solution (U̇, f) ∈ H1

∗ (ΩT )×H1(∂ΩT ). This
solution obeys the a priori estimate

[U̇]1,∗,T + ‖f‖H1(∂ΩT ) ≤ C
{
[f ]3,∗,T + ‖g‖H3(∂ΩT )

}
, (58)

where C = C(K, K1, T ) > 0 is a constant independent of the data (f ,g).

Remark 5. Strictly speaking, the uniqueness of the solution to problem
(28)–(30) follows from estimate (58), provided that our solution belongs to
H2
∗ (ΩT )×H2(∂ΩT ). We do not present here a formal proof of the existence

of solutions having an arbitrary degree of smoothness, and we shall suppose
that the existence result of Theorem 2 is also valid for the function spaces
Hs
∗(ΩT )×Hs(∂ΩT ), with s ≥ 2. In this case exact assumptions about the

regularity of the basic state will be made in Section 3, where we prove a
tame a priori estimate in Hs

∗(ΩT )×Hs(∂ΩT ) with s large enough (see also
Remark 2 above).

3. Tame estimate for the linearized problem

We now want to derive a tame a priori estimate in Hs
∗ for problem (41)–

(43), with s large enough. This tame estimate being, roughly speaking,
linear in how norms (that are multiplied by low norms) will be with no loss
of derivatives from the source term F and with a fixed loss of derivatives
with respect to the coefficients, i.e., with respect to the basic state (16).
Then, using a “tame counterpart” of estimate (40) (see (106)) we shall get
a tame estimate for our main linear problem (28)–(30) with the loss of two
derivatives from (f ,g) (in the sense of Hs

∗(ΩT )×Hs(∂ΩT ) norms).
The main idea for deriving the tame estimate for (41)–(43) is the use of

the new symmetric form (46) of the MHD system (i.e., the use of a dissi-
pative 0-symmetrizer [45], see Lemma 3), and the main tool is the applica-
tion of Moser-type inequalities following from a corresponding Gagliardo-
Nirenberg inequality for the anisotropic weighted Sobolev space Hs

∗ . These
inequalities and necessary (for our goals) embedding theorems for Hs

∗ are
given in Appendix B. Since the Moser-type inequalities for Hs

∗ are different
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for even and odd s (see Appendix B), we first prove the tame estimate for
even s and then briefly discuss how to extend it (with minor modifications)
to the case when s is odd.

Later on, if even not exactly said, we suppose that all the assumptions
(17)–(22) are fulfilled for the basic state (16).

3.1. Estimate of the normal derivative of the “noncharacteristic” unknown

Let s is a positive even number. We first obtain an estimate of ∂1Vn

in Hs−1
∗ , where Vn is the “noncharacteristic” unknown (52). Taking into

account equations (44) and decomposition (51) for the boundary matrix A1

of system (49), we have

∂1Vn =


{K}1,2

−∂2(Ḣ−
2 ∂1Φ̂

+)− ∂3(Ḣ+
3 ∂1Φ̂

+)
{K}9,10

−∂2(Ḣ−
2 ∂1Φ̂

−)− ∂3(Ḣ−
3 ∂1Φ̂

−)

 , (59)

where {K}i,j ∈ R2 is the vector composed from the ith and the jth compo-
nents of the vector

K := Ã
(
F −A0∂tV −

3∑
k=2

Ak∂kV −A4V −A(0)∂1V
)
, (60)

with Ã = diag
(
(∂1Φ̂

+)E12, (∂1Φ̂
−)E12

)
(recall that ∂1Φ̂

± = ±1 + ∂1Ψ̂
±).

Using inequalities (204) and (205), we estimate the following terms con-
taining in the right-hand side in (60):

[ÃF ]2s−1,∗,t ≤ [ÃJTF]2s,∗,T

≤ C(K)
{

[F]2s,∗,T + ‖F‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
,

(61)

[ÃA4V]2s−1,∗,t ≤ C(K)
{

[V]2s,∗,t + ‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s+2,∗,T

)}
. (62)

Recall that Ŵ = (Û,∇t,xΨ̂) and C(K) is a positive constant depending on
the constant K from (20). Likewise, we estimate:

[ÃAj∂jV]2s−1,∗,t ≤ C[ÃAjV]2s,∗,t

≤ C(K)
{

[V]2s,∗,t + ‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
, j = 0, 2, 3.

(63)

Here and below ∂0 := ∂t and we shall use the notations Dβ = ∂α
? ∂k

1 , with a
multi-index β = (α, k) = (α0, . . . , α3, k) for which

〈β〉 := |α|+ 2k.



26 Yuri Trakhinin

Using again (204), (205), and the important fact that A(0)|x1=0 = 0, we
now estimate the last term in the right-hand side in (60):

[ÃA(0)∂1V]2s−1,∗,t ≤ C(Σ1 + Σ2), (64)

where
Σ1 =

∑
1≤〈β〉≤2

[Dβ(ÃA(0))∂1V]2s−1−〈β〉,∗,t,

Σ2 =
∑

〈β〉≤s−1

‖ÃA(0)D
β∂1V‖2L2(Ωt),

Σ1 ≤ C(K)
{

[∂1V]2s−2,∗,t + ‖U̇‖2W 1
∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
, (65)

Σ2 ≤ Σ′
2 + Σ′′

2 , (66)

Σ′
2 =

∑
〈β〉≤s−1

‖ηÃA(0)D
β∂1V‖2L2(Ωt)

=
∑

〈β〉≤s−1

∥∥∥∫ x1

0
∂1
(
ÃA(0)(t, ξ,x′)

)
dξ Dβ∂1V

∥∥∥2

L2(Ωε
t )

≤ C‖∂1(ÃA(0))‖2L∞(ΩT )

∑
〈β〉≤s−1

‖x1D
β∂1V‖2L2(Ωε

t )

≤ C(K)[V]2s,∗,t.

(67)

Σ′
2 =

∑
〈β〉≤s−1

‖(1− η)ÃA(0)D
β∂1V‖2L2(Ωt) ≤ C(K)[V]2s,∗,t, (68)

where Ωε
T := ΩT ∩ {x1 < ε} and the function η = η(x1) is the same as in

(53) (in particular, (1− η)|x1=0 = 0).
Combining (61)–(68), from (59) and (60) we get the following result.

Proposition 3. The estimate

[∂1Vn]2s−1,∗,t ≤ C(K)M(t), (69)

with
M(t) =

{
[V]2s,∗,t + ‖U̇‖2W 1

∞(ΩT )

(
1 + [Ŵ]2s+2,∗,T

)
+[F]2s,∗,T + ‖F‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
,

holds for problem (41)–(43) for all t ≤ T if s ≥ 2 is even.

Later on we will also need the following “layerwise” estimate of ∂1Vn.

Proposition 4. The estimate

|||∂1Vn(t)|||2s−1,∗ ≤ C(K)
(
|||V(t)|||2s,∗ +M(t)

)
(70)

holds for problem (41)–(43) for all t ≤ T , provided that s ≥ 2 is even.
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Proof. We again estimate separately all the terms in the right-hand side
of (60). For example, using the elementary inequality

|||u(t)|||2s−1,∗ ≤ C[u]2s,∗,t , (71)

we get
|||(ÃF)(t)|||2s−1,∗ ≤ C[ÃJTF]2s,∗,T

and then refer to (61). We first estimate ÃA(0)∂1V as follows:

|||(ÃA(0)∂1V)(t)|||s−1,∗ ≤ C(Σ1 + Σ2 + Σ3),

where
Σ1 =

∑
〈β〉≤s−1

‖(ÃA(0)D
β∂1V)(t)‖2L2(R3

+),

Σ2 =
∑

|β′|+〈β′′〉≤s−1
|β′|=1

‖(∂β′

? (ÃA(0))Dβ′′∂1V)(t)‖2L2(R3
+)

Σ3 =
∑
〈β〉=2

|||(Dβ(ÃA(0))∂1V)(t)|||2m−3,∗.

Then, by applying the same arguments as in (66)–(68), one gets

Σ1 ≤ C(K)|||V(t)|||2s,∗.

The second sum is easily estimated as

Σ2 ≤ C(K)|||∂1V(t)|||2s−2,∗ ≤ C(K)|||V(t)|||2s,∗

Using first (71) and then inequalities (204), (205), we estimate Σ3 from
above by C(K)M(t). The estimation of the rest terms in the right-hand
side of (60) is even simpler, and we get (70). �

3.2. Estimate of weighted derivatives

We now get an estimate of weighted derivatives, i.e., the terms in the
form DβV = ∂α

? ∂k
1V, with α1 6= 0 and 〈β〉 = |α|+2k ≤ s. To estimate such

terms we do not need boundary conditions. Observe that in the differential
operator ∂α

? we can replace (σ∂1)α1 by σα1∂α1
1 because the corresponding

norms are equivalent [29]. That is, we can suppose that ∂α
? = σα1∂α

t,x, where
∂α

t,x := ∂α0
t ∂α1

1 ∂α2
2 ∂α3

3 .

Proposition 5. The following estimate holds for problem (41)–(43) for all
t ≤ T : ∑

〈β〉≤s, α1 6=0

‖DβV(t)‖2L2(R3
+) ≤ C(K)M(t), (72)

where s ≥ 2 is even and M(t) is given in Proposition 3.
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Proof. By applying to system (49) the operator Dβ , using standard argu-
ments of the energy method, and taking into account the identity

σn∂m+1
1 = ∂1(σn∂m

1 )− nσ′σn−1∂m
1

and the fact that DβV|x1=0 = 0 (with α1 6= 0), one gets∫
R3

+

(A0D
βV, DβV)dx =

∫
Ωt

(
(divA DβV + 2R), DβV

)
dxdτ,

where

divA =
3∑

j=0

∂jAj (∂0 := ∂t), R = DβF + R0 + R1,

R0 = α1σ
′A1σ

α1−1∂α
t,x∂k

1V, R1 = −
3∑

j=0

[Dβ ,Aj ]∂jV −Dβ(A4V),

and we use the notation of commutator: [a, b]c := a(bc)−b(ac). SinceA0 > 0,
we come to the inequality

‖DβV(t)‖2L2(R3
+) ≤ C(K)

(
[V]2s,∗,t + ‖R‖2L2(Ωt)

)
. (73)

Using (204), (205), we easily estimate:

‖Dβ(A4V)‖2L2(Ωt)

≤ C(K)
{

[V]2s,∗,t + ‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s+2,∗,T

)}
,

(74)

‖DβF‖2L2(Ωt) ≤ C(K)
{

[F]2s,∗,T + ‖F‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
. (75)

In view of decomposition (51), reasoning as in (66)–(68) and utilizing esti-
mate (69), one has

‖R0‖2L2(Ωt)
≤ C(K)

{
[∂1Vn]2s−1,∗,t + ‖x1σ

α1−1∂α
t,x∂k

1V‖L2(Ωε
t )

+[V]2s,∗,t + ‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
≤ C(K)M(t).

(76)

The commutators can be preliminary estimated as follows:∥∥[Dβ ,Aj ]∂jV
∥∥2

L2(Ωt)
≤

∑
|α′|+〈β′〉≤s

|α′|=1

‖∂α′

? (Aj)Dβ′∂jV‖2L2(Ωt)

+C
∑
〈β′〉=2

[Dβ′(Aj)∂jV]2s−2,∗,t .

(77)
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Applying then (204), (205), for tangential derivatives, i.e., for the cases
j = 0, 2, 3 we have∥∥[Dβ ,Aj ]∂jV

∥∥2

L2(Ωt)
≤ C(K)

{
[V]2s,∗,t + ‖U̇‖2W 1

∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
.

Concerning the rest commutator (the case j = 1), to estimate the first
sum in (77) we use decomposition (51), reason as in (66)–(68) and (76),
and apply estimate (69). The second sum in (77) is easily estimated, as for
the cases j = 0, 2, 3, by making use inequalities (204), (205) (recall also
that [∂1(·)]s−2,∗,t ≤ [·]s,∗,t). That is, in view of (74), we finally obtain the
estimate

‖R1‖2L2(Ωt) ≤ C(K)M(t). (78)

At last, by summing up estimates (75), (76), (78) and recalling inequality
(73), one gets estimate (72). �

3.3. Estimate of nonweighted normal derivatives

Let us estimate nonweighted normal derivatives of V, i.e., the terms in
the form DβV, with α1 = 0 and k ≥ 1. Since for this case Dβ = ∂α

tan∂k
1

(∂α
tan := ∂α0

t ∂α2
2 ∂α3

3 ) and |β| = |α| + k ≤ s − k < s, we again do not need
boundary conditions for estimating such terms.

Proposition 6. The estimate∑
〈β〉≤s

α1=0, k≥1

‖DβV(t)‖2L2(R3
+) ≤ C(K)M(t) (79)

holds for problem (41)–(43) for all t ≤ T , with even s ≥ 2 and M(t) given
in Proposition 3.

Proof. Using the same arguments as in the proof of Proposition 5, we
obtain the inequality

‖DβV(t)‖2L2(R3
+) ≤ C(K)

(
[V]2s,∗,t + ‖R‖2L2(Ωt) + J (t)

)
,

where

J (t) =
∣∣∣∣∫

∂Ωt

(A1D
βV, DβV)|x1=0 dx′dτ

∣∣∣∣ = ∣∣∣∣∫
∂Ωt

[
Dβ q̇ Dβ v̇n

]
dx′dτ

∣∣∣∣
and the vector R is the same as in (73), with R0 = 0 (α1 = 0). Likewise,
as above we can get the estimate

‖R‖2L2(Ωt) ≤ C(K)M(t)

that yields
‖DβV(t)‖2L2(R3

+) ≤ C(K)(M(t) + J (t)). (80)
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To estimate the boundary integral we use (59), (60):

J (t) ≤ ‖∂α
tan∂k−1

1 K‖2L2(∂Ωt).

Since ∂i
jÃ|x1=0 = 0 (j = 0, 3), ‖Ã|x1=0‖ = 1, and A(0)|x1=0 = 0 we further

estimate as follows:

J (t) ≤ C
{

Σ1(t) + Σ2(t) + Σ3(t)

+‖∂α
tan∂k−1

1 (A4V)‖2L2(∂Ωt) + ‖∂α
tan∂k−1

1 F‖2L2(∂Ωt)

}
,

(81)

where
Σ1(t) =

∑
j=0,2,3

‖Aj∂
α
tan∂k−1

1 ∂jV‖2L2(∂Ωt),

Σ2(t) =
∑

j=0,2,3

∑
〈β′〉≥1

〈β′〉+〈β′′〉≤s−2

‖Dβ′Aj Dβ′′∂jV‖2L2(∂Ωt),

Σ3(t) =
∑

k′+k′′≤k
k′,k′′≥1

‖∂α
tan(∂k′

1 A(0) ∂k′′

1 V)‖2L2(∂Ωt).

The sums Σ2 and Σ3 are estimated by using the trace property and the
calculus inequalities (204), (205):

Σ2(t) ≤ C
∑

j=0,2,3
〈β′〉=1

(
[Dβ′Aj ∂jV]2s−3,∗,t + [∂1(Dβ′Aj ∂jV)]2s−3,∗,t

)
≤ C(K)

{
[V]2s,∗,t + ‖U̇‖2W 1

∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
,

(82)

Σ3(t) ≤ C
(
[∂1A(0)∂1V]2s−4,∗,t + [∂1(∂1A(0)∂1V)]2s−4,∗,t

)
≤ C(K)

{
[V]2s,∗,t + ‖U̇‖2W 1

∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
.

(83)

To estimate the sum Σ1 we pass to the volume integral and then inte-
grate by parts:

Σ1(t) = −
∑

j=0,2,3

∫
Ωt

∂1|Aj∂
α
tan∂k−1

1 ∂jV|2dxdτ

= −2
∑

j=0,2,3

∫
Ωt

{(
A2

j∂
α
tan∂k−1

1 ∂jV, Dβ∂jV
)

+
(
Aj∂

α
tan∂k−1

1 ∂jV, ∂1(Aj)∂α
tan∂k−1

1 ∂jV
)}

dxdτ = Σ̃1(t) + J0(t),

where
Σ̃1(t) = 2

∑
j=0,2,3

∫
Ωt

{(
A2

j∂
α
tan∂k−1

1 ∂2
j V, DβV

)
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+
(
{Aj∂j(Aj) + ∂j(Aj)Aj}∂α

tan∂k−1
1 ∂jV, DβV

)
−
(
Aj∂

α
tan∂k−1

1 ∂jV, ∂1(Aj)∂α
tan∂k−1

1 ∂jV
)}

dxdτ,

J0(t) = −2
∫

R3
+

(
A2

0∂
α
tan∂k−1

1 ∂tV, DβV
)
dx.

Since |α|+ 2 + 2(k − 1) ≤ s we easily obtain the estimate

Σ̃1(t) ≤ C(K)[V ]2s,∗,t, (84)

and by using the Young inequality, one gets

J0(t) ≤ C(K)
(
ε‖DβV(t)‖2L2(R3

+) +
1
ε
|||V(t)|||2s−1,∗

)
, (85)

where ε is a positive constant. In view of (71), it follows from (84), (85) that

Σ1(t) ≤ C(K)
(

ε‖DβV(t)‖2L2(R3
+) +

1
ε

[V]2s,∗,t

)
. (86)

The last two terms in the expression in braces in (81) are easily esti-
mated from above by C(K)M(t) by using the trace property and (204),
(205). Combining then (80)–(83) and (86) and choosing the constant ε small
enough, we get estimate (79). �

Remark 6. In fact, as in [29,34], our preparatory estimates (69), (72), and
(79) are with no loss of derivatives from the coefficients of the matrices Aj

and C. In these estimates the loss of two derivatives from the basic state (in
the sense of Hs

∗(ΩT )×Hs(∂ΩT ) norms) is caused only by the fact that the
matrix C (or A4) depends on the first-order derivatives of Ŵ. Recall that
the loss of one derivative in sense of usual Sobolev norms gives the loss of
two derivatives in Hs

∗ norms because [∂1(·)]s,∗,T ≤ [·]s+2,∗,T .

3.4. Estimate of nonweighted tangential derivatives

We now proceed to the case of nonweighted tangential derivatives (α1 =
0 and k = 0), i.e., we estimate the terms ∂α

tanV, with |α| ≤ s. This is the
most important case because we shall use the boundary conditions. This
gives the loss of two additional derivatives in comparison with estimates
(69), (72), and (79). That is, in the final tame estimate we will have the
“s + 4, ∗, T ” loss of derivatives from the coefficients. This loss is caused by
the presence of zero-order terms in f in the boundary conditions and the
fact that when these terms are omitted the boundary conditions (43) are
dissipative but not strictly dissipative for system (50) (see Lemma 3).
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Proposition 7. The following estimate holds for problem (41)–(43) for all
t ≤ T and even s ≥ 2:∑

|α|≤s

‖∂α
tanV(t)‖2L2(R3

+) ≤ C(K)
{

[V]2s,∗,t + ‖f‖2Hs−1(∂Ωt)

+‖U̇‖2W 1
∞(ΩT )

(
1 + [Ŵ ]2s+3,∗,T

)
+ ‖f‖2W 1

∞(∂ΩT )

(
1 + [Ŵ ]2s+4,∗,T

)
+[F]2s,∗,T + ‖F‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,T

)}
+ε C̃(K)

(
|||V(t)|||2s,∗ + |||f(t)|||2Hs−1(R2)

)
,

(87)

where ε is an arbitrary positive constant (it will be chosen later on), C̃(K)
is a positive constant depending on K and independent on ε,7 and Ŵ :=
(Û, Ψ̂).

Proof. First of all, in view of the elementary inequality∑
|α|≤s−1

‖∂α
tanV(t)‖2L2(R3

+) ≤ C[V]2s,∗,t, (88)

we only need to estimate the higher-order tangential derivatives (with |α| =
s). Taking into account Lemma 2 we can use system (48) or equivalently
(50) for obtaining estimate (87). Applying to system (50) the same “energy”
arguments as in the proofs of Propositions 5 and 6, we come to the inequality

‖∂α
tanV(t)‖2L2(R3

+) ≤ C(K)(M(t) + J (t)) (89)

for a multi-index α = (α0, α2, α3) with |α| = s, where

J (t) =
∣∣∣∣∫

∂Ωt

(B1∂
α
tanV, ∂α

tanV)|x1=0 dx′dτ

∣∣∣∣ .
By virtue of (42), (45) and the choice of λ in (54), the quadratic form in
the boundary integral is explicitly written as follows:

(B1∂
α
tanV, ∂α

tanV)|x1=0 =
[
(∂α

tanv̇N − λ∂α
tanḢN)∂α

tanq̇
]

= [a∂α
tanq̇]

+ [∂α
tanw ∂α

tanq̇] = [a∂α
tanq̇] + ∂α

tanw−
|x1=0 [∂α

tanq̇] + ∂α
tanq̇+

|x1=0 [∂α
tanw]

= [a∂α
tanq̇]− ∂α

tanw−
|x1=0∂

α
tan

(
[∂1q̂]f

)
− ∂α

tanq̇+
|x1=0∂

α
tan

([
∂1v̂N − λ∂1ĤN

]
f
)
,

where

a± =
∑

|α′|+|α′′|=s
|α′|≥1

∂α′

tanλ(Û±)∂α′′

tanH±
n , w± = v±n − λ(Û±)H±

n ,

7 The constant C(K) in (87) depends linearly on 1/ε, but this is of now impor-
tance for the subsequent application of (87).
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w±
|x1=0 = (v±N − λ±H±

N )|x1=0, [∂1q̂] = (∂1q̂
+)|x1=0 − (∂1q̂

−)|x1=0, etc.

That is, the boundary integral is estimated by lower-order terms8:

J (t) ≤
∑
±

4∑
i=1

J±
i (t), (90)

with

J±
1 (t) =

∣∣∣∣∫
∂Ωt

(
a±∂α

tanq̇±
)∣∣

x1=0 dx′dτ

∣∣∣∣ ,
J±

2 (t) =
∣∣∣∣∫

∂Ωt

(
∂α
tanw− ∂α

tan

(
f∂1q̂

±))∣∣
x1=0 dx′dτ

∣∣∣∣ ,
J±

3 (t) =
∣∣∣∣∫

∂Ωt

(
∂α
tanq̇+∂α

tan

(
f∂1v̂

±
n

))∣∣
x1=0 dx′dτ

∣∣∣∣ ,
J±

4 (t) =
∣∣∣∣∫

∂Ωt

(
∂α
tanq̇+∂α

tan

(
fλ(Û±)∂1Ĥ

±
n

))∣∣∣
x1=0

dx′dτ

∣∣∣∣ .
Since |α| = s ≥ 2, we have ∂α

tan = ∂`l∂
γ
tan, where ` = 2 or ` = 3 if

α0 6= s and ` = 0 otherwise, and γ = (γ0, γ2, γ3) is a multi-index with
|γ| = s− 1 ≥ 1. Consider the case α0 = s, i.e., ∂α

tan = ∂t∂
γ
tan. Passing to the

volume integral, integrating by parts, and using inequalities (69), (70) and
(71), we estimate J +

1 (t) as follows (we omit detailed calculations):

J +
1 (t) =

∣∣∣∣∣
∫

Ωt

(
∂ta

+∂1∂
γ
tanq+ − ∂1a

+∂α
tanq+) dxdτ −

∫
R3

+

a+∂1∂
γ
tanq+dx

∣∣∣∣∣
≤ C

(
[q+]2s,∗,t + [∂1q

+]2s−1,∗,t + ‖∂ta
+‖2L2(Ωt) + ‖∂1a

+‖2L2(Ωt)

+
1
ε
‖a+(t)‖2L2(R3

+) + ε|||∂1q
+(t)|||2s−1,∗

)
≤ C(K)M(t) + εC̃(K)|||V(t)|||2s,∗ .

Here and below ε is an arbitrary positive constant, C̃(K) is independent of
ε, and C(K) may depend linearly on 1/ε. Similarly, we estimate J−

1 (t), i.e.,
one has

J +
1 (t) + J−

1 (t) ≤ C(K)M(t) + εC̃(K)|||V(t)|||2s,∗, (91)

where clearly C̃(K) = 0 for the case α0 6= s.
The boundary integrals J±

2 (t), J±
3 (t), and J±

4 (t) are estimated in the
same way. Consider, for example, J +

3 (t):

J +
3 (t) ≤ J0(t) + Σ(t),

where

J0(t) =
∣∣∣∣∫

∂Ωt

(
f ∂α

tanq̇+ ∂α
tan∂1v̂

+
n

)∣∣
x1=0 dx′dτ

∣∣∣∣ ,
8 The higher-order boundary terms vanish thanks to the fact that the boundary

conditions are dissipative (in the sense of Lemma 3).
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Σ(t) =
∑

|α′|+|α′′|=s
|α′|≥1

∣∣∣∣∫
∂Ωt

(
∂α
tanq̇+ ∂α′

tanf ∂α′′

tan∂1v̂
+
n

)∣∣∣
x1=0

dx′dτ

∣∣∣∣ .
Then, we again pass to the volume integral and integrate by parts:

J0(t) =
∣∣∣∣∫

Ωt

(
(∂1∂`∂

α
tanv̂+

n ) f∂1∂
γ
tanq̇+ − (∂2

1∂α
tanv̂+

n ) f∂α
tanq̇+

−(∂1∂
α
tanv̂+

n ) ∂`f∂1∂
γ
tanq̇+

)
dxdτ

−(`− 2)(`− 3)
∫

R3
+

(∂1∂
α
tanv̂+

n ) f∂1∂
γ
tanq̇+dx

∣∣∣∣,
where ` and γ are the same as above. Here we do not pass from f to Ψ+ while
passing to the volume integral because we can then estimate f in the W 1

∞
norm. We see that the biggest loss of derivatives from the coefficients in the
estimate of J0(t) will be caused by the term ∂2

1∂α
tanv̂+

n and is “s + 4, ∗, T ”.
Omitting detailed calculations, we get the estimate

J0(t) ≤ C(K)
(
M(t) + ‖f‖2W 1

∞(∂ΩT )

(
1 + [Ŵ ]2s+4,∗,T

))
+ εC̃(K)|||V(t)|||2s,∗.

To estimate the sum Σ(t) we use the fact that |α′| ≥ 1. It allows to
write down ∂α′

tanf = ∂γ′

tan(∂jf), with |γ′| ≤ s − 1 and j = 0 or j = 2 or
j = 3. Then we use the important fact that the boundary conditions (42),
(45) can be resolved for ∇t,x′f .9 Indeed, thanks to the second inequality in
(19) conditions (45) are resolved for ∂2f and ∂3f , and then from the first
or the second boundary condition in (42) we find ∂tf . We write the result
in the compact form

∇t,x′f =
1
κ

G(Û, f̂)Vn
∣∣
x1=0, (92)

where κ = κ(Û|x1=0) = (Ĥ+
2 Ĥ−

3 −Ĥ+
3 Ĥ−

2 )|x1=0 ≥ ε > 0 for all (t,x′) ∈ ∂ΩT

and the matrix G depends smoothly on Û|x1=0, ∂1Û|x1=0, and ∇t,x′ f̂ .
That is, from (92) we express ∂jf through the trace of the “noncharac-

teristic” unknown Vn and then substitute the result ∂α′

tanf = ∂γ′

tan(. . .) into
the sum Σ(t). Then, Σ(t) is the sum of the terms like

(∂α
tanq̇+ ∂γ′

tan(b̂ Ḣn)∂α′′

tan∂1v̂
+
n )|x1=0, (∂α

tanq̇+ ∂γ′

tan(b̂ Ψ+)∂α′′

tan∂1v̂
+
n )|x1=0,

etc., with |γ′| + |α′′| = s − 1 (recall that |α| = s), where b̂ is a coefficient
of the matrix G. We use then the same arguments as in the estimation of
J±

1 (t) and J0(t). Omitting the details, we just calculate the biggest loss
of derivatives from the coefficients in the estimate of Σ(t). While passing
to the volume integral this loss will be caused by the term ∂α′′

tan∂2
1 v̂+

n . For

9 Using the terminology of paradifferential calculus, we can say that the symbol
associated to the front is elliptic [7,25].
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|α′′| = s−1 it gives the “s+3, ∗, T ” loss of derivatives from the coefficients.
As a result, we estimate Σ(t) and, consequently, J +

3 (t) from above by the
right-hand side in (87). Similarly, we handle J−

3 (t), J±
2 , and J±

4 . At last,
with the reference to (88)–(91), we obtain the desired inequality (87). �

3.5. Estimate of the front

To close the estimate obtained by combining inequalities (72), (79), and
(87) we need also to estimate the front perturbation f in Hs−1(R2). But, in
view of (92), by using the trace theorem [28] (or, alternatively, by passing
to the volume integral and applying (69)) we are able to estimate ∇t,x′f in
Hs−1(∂Ωt) as well.

Proposition 8. The following estimates hold for problem (41)–(43) for all
t ≤ T and even s ≥ 2:

|||f(t)|||2Hs−1(R2) ≤ C(K)
{

[V]2s,∗,t + ‖f‖2Hs−1(∂Ωt)

+‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s,∗,t

)
+ ‖f‖2W 1

∞(∂ΩT )

(
1 + [Ŵ]2s+2,∗,t

)}
,

(93)

‖∇t,x′f‖2Hs−1(∂ΩT ) ≤ C(K)
{

[V]2s,∗,T

+‖U̇‖2L∞(ΩT )

(
1 + [Ŵ]2s+2,∗,T

)}
.

(94)

Proof. By using standard “energy” arguments for the first boundary con-
dition in (42), one gets

|||f(t)|||2Hs−1(R2) ≤ ‖v̇+
n |x1=0‖2Hs−1(∂Ωt)+‖f‖

2
Hs−1(∂Ωt)+

∑
|α|≤s−1

‖Gα‖2L2(∂Ωt),

where

Gα = ∂α
tan(f∂1v̂

+
N)−

3∑
j=2

(
[∂α

tan, v̂+
j ]∂jf + (1/2)∂j v̂

+
j ∂α

tanf
)
.

Applying the Moser-type calculus inequalities in the usual Sobolev space
Hs−1(∂Ωt) (counterparts of (204) and (205)) for Gα and using the trace
theorem in Hs

∗ (cf. (35)), we obtain estimate (93). From (92) we derive esti-
mate (94) by applying the trace theorem in Hs

∗ and the calculus inequalities
(204) and (205). �
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3.6. Tame estimates for problems (41)–(43) and (28)–(30)

Propositions 5–8 yield the following result.

Proposition 9. Problem (41)–(43) obeys the a priori estimate

[U̇]2s,∗,T + ‖f‖2Hs(∂ΩT ) ≤ C(K)TeC(K)TN (T ) (95)

for even s ≥ 2, with

N (T ) = [F]2s,∗,T +
(
‖U̇‖2W 1

∞(ΩT ) + ‖f‖2W 1
∞(∂ΩT )

+‖F‖2L∞(ΩT )

)(
1 + [Û]2s+4,∗,T + ‖f̂‖2Hs+4(∂ΩT )

)

Proof. Summing up inequalities (72), (79), (87), and (93) and choosing the
constant ε in (87) small enough, we obtain

I(t) ≤ C(K)
(
N (T ) +

∫ t

0
I(τ)dτ

)
, (96)

where

I(t) = |||V(t)|||2s,∗ + |||f(t)|||2Hs−1(R2) (I(0) = 0, cf. (43)).

Since only the biggest loss of derivatives from the coefficients will play the
role for obtaining the final tame estimate, we have roughened inequality
(96) by choosing the biggest loss. Applying Gronwall’s lemma to (96), one
gets

I(t) ≤ C(K) eC(K)TN (T ).

Taking into account (43) and integrating the last inequality over the interval
[0, T ], we come to the estimate

[V]2s,∗,T + ‖f‖2Hs−1(∂ΩT ) ≤ C(K)TeC(K)TN (T ). (97)

Recall that U̇ = JV. Consider the decomposition J(Ŵ) = I + J0(Ŵ).
Since J0(0) = 0 we can use the calculus inequality (206). Applying (204)
and (206), we obtain

[U̇]2s,∗,T = [V + J0V]2s,∗,T ≤ C(K)
(
[V]2s,∗,T + ‖U̇‖2L∞(ΩT )[Ŵ]2s,∗,T

)
≤ C(K)[V]2s,∗,T + TC(K)‖U̇‖2L∞(ΩT )[Ŵ]2s+1,∗,T .

(98)

Here we also used Sobolev’s embedding in one space dimension:

[Ŵ]2s,∗,T ≤ T‖Ŵ‖2L∞([0,T ],Hs
∗(R3

+)) ≤ TC[Ŵ]2s+1,∗,T
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(since V|t<0 = 0 we can suppose that the norm [Ŵ]2s,∗,T appearing in (98)
is the norm in the space L2

T (Hs
∗) but not in the space Hs

∗(ΩT )). Inequalities
(97) and (98) imply

[U̇]2s,∗,T + ‖f‖2Hs−1(∂ΩT ) ≤ C(K)TeC(K)TN (T ). (99)

Similarly to (98) we also get the inequality

[V]2s,∗,T ≤ C(K)[U̇]2s,∗,T + TC(K)‖U̇‖2L∞(ΩT )[Ŵ]2s+1,∗,T (100)

Clearly, (94), (100), and (99) yield the desired estimate (95). �

With estimate (95) we are now in a position to prove the tame estimate
for problem (41)–(43).

Theorem 3. Let T > 0 and s is an even number, s ≥ 6. Assume that the
basic state (Û, f̂) ∈ Hs+4

∗ (ΩT ) × Hs+4(∂ΩT ) satisfies assumptions (17)–
(22) and

[Û]10,∗,T + ‖f̂‖H10(∂ΩT ) ≤ K̂, (101)

where K̂ > 0 is a constant. Assume also that F ∈ Hs
∗(ΩT ) vanishes in the

past. Then there exists a positive constant K0, that does not depend on s and
T , and there exists a constant C(K0) > 0 such that, if K̂ ≤ K0, then there
exists a unique solution (U̇, f) ∈ Hs

∗(ΩT )×Hs(∂ΩT ) to problem (41)–(43)
that obeys the following a priori tame estimate for T small enough:

[U̇]s,∗,T + ‖f‖Hs(∂ΩT ) ≤ C(K0)
{

[F]s,∗,T +

+[F]6,∗,T
(
[Û]s+4,∗,T + ‖f̂‖Hs+4(∂ΩT )

)}
.

(102)

Proof. Taking into account Lemma 4 and Remark 5, we have the well-
posedness of problem (41)–(43) in Hs

∗(ΩT )×Hs(∂ΩT ). Applying Sobolev’s
embedding (207) (the second inequality in (207)), from (95) with s ≥ 6 we
get

[U̇]s,∗,T + ‖f‖Hs(∂ΩT ) ≤ C(K)T 1/2eC(K)T
{

[F]s,∗,T +

(
[U̇]6,∗,T + ‖f‖H6(∂ΩT ) + [F]6,∗,T

)(
[Û]s+4,∗,T + ‖f̂‖Hs+4(∂ΩT )

)}
,

(103)

where we have absorbed some norms [U̇]6,∗,T and ‖f‖H6(∂ΩT ) in the left-
hand side by choosing T small enough. Considering (103) for s = 6 and
using (101), we obtain for T small enough that

[U̇]6,∗,T + ‖f‖H6(∂ΩT ) ≤ C(K0)[F]6,∗,T . (104)

It is natural to assume that T < 1 and, hence, we can suppose that the
constant C(K0) does not depend on T . Inequalities (103) and (104) imply
(102). �
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Corollary 1. Let all the assumptions of Theorem 3 are satisfied. Let also
the data (f ,g) ∈ Hs+2

∗ (ΩT ) × Hs+2(∂ΩT ) vanish in the past. Then there
exists a unique solution (U̇, f) ∈ Hs

∗(ΩT )×Hs(∂ΩT ) to problem (28)–(30)
that obeys the a priori tame estimate

[U̇]s,∗,T + ‖f‖Hs(∂ΩT ) ≤ C(K0)
{

[f ]s+2,∗,T + ‖g‖Hs+2(∂ΩT )

+
(
[f ]8,∗,T + ‖g‖H8(∂ΩT )

)(
[Û]s+4,∗,T + ‖f̂‖Hs+4(∂ΩT )

)} (105)

for T small enough.

Proof. Utilizing the Moser-type inequalities (204) and (205), we easily de-
rive the refined variant of the estimate (39)

[L′e(Û, Ψ̂)Ũ]s,∗,T ≤ C(K)
{

[Ũ]s+2,∗,T + ‖Ũ‖W 1
∞(ΩT )

(
1 + [Ŵ]s+2,∗,T

)}
from which, by applying the second inequality in (207), we get the estimate

[L′e(Û, Ψ̂)Ũ]s,∗,T ≤ C(K)
{

[Ũ]s+2,∗,T + [Ũ]6,∗,T [Ŵ]s+2,∗,T

}
.

By using this estimate, one gets (cf. (40))

[F]s,∗,T ≤ C(K)
{

[f ]s+2,∗,T + ‖g‖Hs+2(∂ΩT )

+
(
[f ]8,∗,T + ‖g‖H8(∂ΩT )

)
[Ŵ]s+2,∗,T

}
.

(106)

Assumption (101) and inequality (106) yield

[F]6,∗,T ≤ C(K0)
(
[f ]8,∗,T + ‖g‖H8(∂ΩT )

)
. (107)

At last, using (106) and (107), from (102) we get estimate (105). �

Consider now the case when s is an odd number. We can repeat all the
previous arguments of this section using inequalities (208) and (209) instead
of inequalities (204)–(207). Then, for odd s in the counterpart of the a priori
estimate (95) we will have W 1,tan

∞ and W 2,tan
∞ norms (see Appendix B)

instead of L∞ and W 1
∞ norms respectively. We finally obtain the following

tame estimate for odd s.

Corollary 2. Let s is an odd number, s ≥ 7. Assume also that

[Û]11,∗,T + ‖f̂‖H11(∂ΩT ) ≤ K̂

and all the remaining assumptions of Theorem 3 and Corollary 1 are ful-
filled. Then the a priori tame estimate

[U̇]s,∗,T + ‖f‖Hs(∂ΩT ) ≤ C(K0)
{

[f ]s+2,∗,T + ‖g‖Hs+2(∂ΩT )

+
(
[f ]9,∗,T + ‖g‖H9(∂ΩT )

)(
[Û]s+4,∗,T + ‖f̂‖Hs+4(∂ΩT )

)} (108)

hold for problem (28)–(30) for T small enough.
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Let us just collect the results of Corollaries 1 and 2 and formulate the
main theorem for problem (28)–(30).

Theorem 4. Let T > 0 and s ∈ N, with s ≥ 6. Assume that the basic state
(Û, f̂) ∈ Hs+4

∗ (ΩT )×Hs+4(∂ΩT ) satisfies assumptions (17)–(22) and

[Û]11,∗,T + ‖f̂‖H11(∂ΩT ) ≤ K̂, (109)

where K̂ > 0 is a constant. Let also the data (f ,g) ∈ Hs+2
∗ (ΩT )×Hs+2(∂ΩT )

vanish in the past. Then there exists a positive constant K0, that does not
depend on s and T , and there exists a constant C(K0) > 0 such that, if
K̂ ≤ K0, then there exists a unique solution (U̇, f) ∈ Hs

∗(ΩT ) ×Hs(∂ΩT )
to problem (28)–(30) that obeys the a priori tame estimate

[U̇]s,∗,T + ‖f‖Hs(∂ΩT ) ≤ C(K0)
{

[f ]s+2,∗,T + ‖g‖Hs+2(∂ΩT )

+
(
[f ]s0,∗,T + ‖g‖Hs0 (∂ΩT )

)(
[Û]s+4,∗,T + ‖f̂‖Hs+4(∂ΩT )

)} (110)

for a sufficiently short time T , where s0 = 8 if s is even and s0 = 9 if s is
odd.

4. Compatibility conditions and approximate solution

4.1. The compatibility conditions for the initial data (13)

Suppose the initial data (13),

(U±
0 , f0) = (p±0 , v±1,0, v

±
2,0, v

±
3,0,H

±
1,0,H

±
2,0,H

±
3,0, S

±
0 , f0),

satisfy constraints (15) and condition (10) at x1 = 0 for all x′ ∈ R2. Thanks
to assumption (10) we can resolve (15) for ∂2f and ∂3f :

∂2f = µ2(U)|x1=0, ∂3f = µ3(U)|x1=0, (111)

where U := (U+,U−),

µ2(U) =
H+

1 H−
3 −H−

1 H+
3

H+
2 H−

3 −H−
2 H+

3

, µ3(U) = −H+
1 H−

2 −H−
1 H+

2

H+
2 H−

3 −H−
2 H+

3

.

Then, from the first boundary condition in (12) we find

∂tf = η(U)|x1=0, (112)

with
η(U) = v+

1 − v+
2 µ2(U)− v+

3 µ3(U).

Thanks to the hyperbolicity condition (5) system (11) reads

∂tU = −(A0(U))−1
(
Ã1(U,Ψ)∂1U +

3∑
i=2

Ai(U)∂iU
)
, (113)
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where Ψ := (Ψ+, Ψ−), and the block-diagonal matrices A0, Ai, and Ã1 were
defined in Section 2. The traces

Uj = (p+
j , v+

1,j , . . . ,H−
3,j , S

−
j ) = ∂j

t U|t=0 and fj = ∂j
t f |t=0,

with j ≥ 1, are recursively defined by the formal application of the differen-
tial operator ∂j−1

t to (112) and (113) and evaluating ∂j
t U and ∂j

t f at t = 0.
Moreover, Ψ±

j = ∂j
t Ψ±|t=0 = χ(±x1)fj .

In particular, f1 = η(U0)|x1=0, where U0 := (U+
0 ,U−

0 ). Then we define
U1 by evaluating (113) at t = 0 and taking into account that ∂tΨ

±|t=0 =
χ(±x1)f1 and ∂iΨ

±|t=0 = χ(±x1)∂if0. We define the zero-order compati-
bility conditions as follows

[v2,0]∂2f0 + [v3,0]∂3f0 = 0, [p0 + (|H0|2/2)] = 0 (114)

(recall that by brackets we denote the jumps, e.g., [v2,0] = (v+
2,0−v−2,0)|x1=0).

From (111) and (112) evaluated at t = 0 and (114) we get

f1 = (v±1,0 − v±2,0∂2f0 − v±3,0∂3f0)|x1=0. (115)

Using (115), from (113) we obtain

(H±
N )1 = −

3∑
i=2

(
v±i,0∂i(H±

N )0 + ∂iv
±
i,0(H

±
N )0

)∣∣
x1=0

(see the proof of Proposition 1 in Appendix A), where (H±
N )

j
= ∂j

t (H±
N )|t=0,

in particular,

(H±
N )1 = H±

1,1 −
3∑

j=2

(
H±

i,1∂if0 + H±
i,0∂if1

)∣∣
x1=0

,

In view of (15) evaluated at t = 0, (H±
N )0 |x1=0 = 0 that yields (H±

N )1 |x1=0 =
0. Knowing U1 and f1 we can then find U2, f2, etc. Moreover, at each jth
step we can prove that

(H±
N )

j
|x1=0 = 0, (116)

provided that Uj and fj satisfy the compatibility conditions (they will be
defined below).

The following lemma is the analogue of Lemma 4.2.1 in [25] and Lemma
2 in [8].

Lemma 5. Let µ ∈ N, µ ≥ 3, U0 ∈ H2µ+1
∗ (R3

+), and f0 ∈ H2µ+1(R2).
Then, the procedure described above determines Uj ∈ H

2(µ−j)+1
∗ (R3

+) and
fj ∈ H2(µ−j+1)(R2) for j = 1, . . . , µ. Moreover,

µ∑
j=1

(
‖Uj‖2(µ−j)+1,∗ + ‖fj‖H2(µ−j+1)(R2)

)
≤ CM0, (117)
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where
M0 = ‖U0‖2µ+1,∗ + ‖f0‖H2µ+1(R2), (118)

the constant C > 0 depends only on µ and the norms ‖U0‖W 2,tan
∞ (R3

+) and
‖f0‖W 2

∞(R2
+).

The proof is absolutely analogous to that in [25,8]. We only need to use
the calculus inequality (see, e.g., [29,34])

‖uv‖s,∗ ≤ C‖u‖s,∗‖v‖r,∗

for u ∈ Hs
∗(R3

+) and v ∈ Hr
∗(R3

+), with r = max{s, 5}, instead of the
analogous calculus inequality in the usual Sobolev space Hs. Moreover, it
needs to remember that each differentiation with respect to x1 “takes two
derivatives” in the anisotropic weighted Sobolev space Hs

∗ .

Definition 1. Let µ ∈ N, µ ≥ 3. The initial data (U0, f0) ∈ H2µ+1
∗ (R3

+)×
H2µ+1(R2) are said to be compatible up to order µ when (Uj , fj) satisfy
(114) for j = 0 and

3∑
i=2

j∑
l=0

[vi,j−l]∂ifl = 0, [pj ] +
j−1∑
l=0

Cl
j−1[(Hl,Hj−l)] = 0 (119)

for j = 1, . . . , µ.

Remark 7. As for the case of a perfectly conducting wall boundary con-
dition [33,46], in our case the compatibility conditions associated with the
condition that the magnetic field is parallel to the boundary follow from
the remaining compatibility conditions. That is, the compatibility condi-
tions (116) associated with (15) are automatically satisfied by the condition
(H±

N )0 |x1=0 = 0 and (119).

4.2. Construction of the approximate solution to problem (11)–(13)

To use the tame estimate (110) for the proof of convergence of the
Nash-Moser iteration we need to reduce our nonlinear problem (11)–(13)
on [0, T ] × R3

+ to that on ΩT which solutions vanish in the past. This is
achieved by the classical argument suggesting to absorb the initial data in-
to the interior equations by constructing a so-called approximate solution.
In our case the only nonstandard point is that this approximate solution
should satisfy not only the system resulting from taking jth time derivatives
of (11) and evaluating at t = 0 but also the equations for H contained in
(11) (see (197)) for all times t. Moreover, as in [8], the boundary conditions
should also be satisfied by the approximate solution for all times. Below we
will use the notation

L(U,Ψ) :=

(
L(U+, Ψ+)
L(U−, Ψ−)

)
.
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Lemma 6. Suppose the initial data (13) are compatible up to order µ and
satisfy the assumptions of Theorem 1 (i.e., (5), (9), (10), (14), and (15)).
Then there exists a vector-function (Ua, fa) ∈ Hµ+1

∗ (ΩT ) × Hµ+1(∂ΩT ),
that is further called the approximate solution to problem (11)–(13), such
that

∂j
t L(Ua,Ψa)|t=0 = 0 for j = 0, . . . , µ− 1, (120)

and it satisfies equations (197) and the boundary conditions (12) and (15),
where Ψa is associated to fa like Ψ is associated to f . Moreover, the ap-
proximate solution obeys the estimate

[Ua]µ+1,∗,T + ‖fa‖Hµ+1(∂ΩT ) ≤ C1(M0) (121)

and satisfies the hyperbolicity condition (5) and the divergent constraints
(14) on ΩT as well as the stability condition (9) and restriction (10) on
∂ΩT , where C1 = C1(M0) > 0 is a constant depending on M0 (see (118)).

Proof. We use the notations Ua = (Ua+,Ua−), va = (va+,va−), etc.
Consider functions va,Ha, Sa ∈ Hµ+1

∗ (R × R3
+) and fa ∈ Hµ+1(R3) such

that

∂j
t (va,Ha, Sa)|t=0 = (vj ,Hj , Sj) ∈ H

2(µ−j)+1
∗ (R3

+) for j = 0, . . . , µ,

fa|t=0 = f0 ∈ H2µ+1(R2), ∂j
t fj |t=0 ∈ H2(µ−j+1)(R2) for j = 1, . . . , µ,

where Uj and fj are given by Lemma 5 (vj = (v+
1,j , . . . , v

−
3,j), Sj = (S+

j , S−j ),
etc.). Thanks to the compatibility conditions (114), that imply (115), and
the definition Uj and fj , we can choose va, Ha, and fa that satisfy

∂tf
a = (va±

1 − va±
2 ∂2f

a − va±
3 ∂3f

a)|x1=0 , (122)

LH(va,Ha,Ψa) = 0, (123)

where (123) is the compact form of equations (197) written for (va,Ha, fa).
From (122) and (123) we get that (va,Ha, fa) satisfies (198) and (199)
(see the proof of Proposition 1 in Appendix A). Since (va,Ha, fa)|t=0 =
(v0,H0, f0), it follows from the assumptions made for the initial data that
(va,Ha, fa) satisfies the divergent constraints (14) and the boundary con-
ditions (15).

Then we define pa ∈ Hµ+1
∗ (R× R3

+) such that

∂j
t pa|t=0 = pj ∈ H

2(µ−j)+1
∗ (R3

+) for j = 0, . . . , µ.

Thanks to the compatibility conditions we can choose pa that

[pa + (|Ha|/2)] = 0

([pa] = pa+
|x1=0 − pa−

|x1=0, etc.). By using a cut-off C∞
0 function we can sup-

pose that (Ua, fa) vanishes outside of the interval [−T, T ], i.e., (Ua, fa) ∈
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Hµ+1
∗ (ΩT ) × Hµ+1(∂ΩT ). Applying Sobolev’s embeddings (in particular,

inequalities (209)), we rewrite estimate (117) as

µ∑
j=1

(
‖Uj‖2(µ−j)+1,∗ + ‖fj‖H2(µ−j+1)(R2)

)
≤ C(M0), (124)

where C = C(M0) > 0 is a constant depending on M0. The estimate (121)
follows from (124) and the continuity of the lifting operators from the hy-
perplane t = 0 to R× R3

+.
Conditions (120) hold thanks to the properties of (Uj , fj) given by Lem-

ma 5. At last, since (Ua, fa) satisfies the hyperbolicity condition (5) and
the stability conditions (9), (10) at t = 0, in the above procedure we can
choose (Ua, fa) that it satisfies (9), (10) (at x1 = 0), and (5) for all times
t ∈ [−T, T ]. �

Without loss of generality we can suppose that

‖U0‖2µ+1,∗ + ‖f0‖H2µ+1(R2) ≤ 1, (125)

Also, without loss of generality, we assume that

‖f0‖H2µ+1(R2) ≤ 1/2.

Then for a sufficiently short time interval [0, T ] the smooth solution which
existence we are going to prove satisfies ‖f‖L∞([0,T ]×R2) ≤ 1 that implies

∂1Φ
+ ≥ 1/2, ∂1Φ

− ≤ −1/2 (126)

(recall that ‖χ′‖L∞(R) < 1/2, see Section 1). Let µ is an integer number that
will appear in the regularity assumption for the initial data in the existence
theorem for problem (11)–(13). Running ahead, we take µ = m + 9, with
m ≥ 12 (see Theorem 1). In the end of Section 5 we will see that this choice
is suitable. Taking into account (125), we rewrite (121) as

[Ua]m+10,∗,T + ‖fa‖Hm+10(∂ΩT ) ≤ C∗, (127)

where C∗ = C1(1).
Let us introduce

Fa :=
{
−L(Ua,Ψa) for t > 0,

0 for t > 0,
(128)

Since (Ua, fa) ∈ Hm+10
∗ (ΩT ) × Hm+10(∂ΩT ), exploiting (120), one gets

Fa ∈ Hm+8
∗ (ΩT ) and

[Fa]m+8,∗ ≤ δ0(T ), (129)

where the constant δ0(T ) → 0 as T → 0. To prove estimate (129) we use the
Moser-type and embedding inequalities from Appendix B, estimate (127),
and the fact that Fa vanishes in the past.
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Then, given the approximate solution defined in Lemma 6, (U, f) =
(Ua, fa)+(Ũ, f̃) is a solution of the original problem (11)–(13) on [0, T ]×R3

+

if (Ũ, f̃) satisfies the following problem on ΩT (tildes are dropped):

L(U,Ψ) = Fa in ΩT , (130)

B(U, f) = 0 on ∂ΩT , (131)

(U, f) = 0 for t < 0, (132)

where
L(U,Ψ) := L(Ua + U,Ψa + Ψ)− L(Ua,Ψa),

B(U, f) = B(Ua + U, fa + f)− B(Ua, fa).
(133)

From now on we concentrate on the proof of the existence of solutions to
problem (130)–(132).

5. Nash-Moser iteration

5.1. Iteration scheme for solving problem (130)–(132)

We solve problem (130)–(132) by a suitable Nash-Moser-type iteration
scheme. The general description of the Nash-Moser method can be find, for
example, in [14] (see also references therein). The main idea is to solve the
equation F(u) = 0 by the iteration scheme

F ′(Sθn
un)(un+1 − un) = −F(un),

where F ′ is the linearization of F and Sθn
is a sequence of smoothing

operators, with Sθn → I as n → ∞. This scheme is the classical Newton’s
scheme if Sθn = I.

Errors of a classical Nash-Moser iteration are the “quadratic” error of
Newton’s scheme and the “substitution” error caused by the application
of smoothing operators. As in [8], in our case the Nash-Moser procedure
is not completely standard and we have the additional error caused by
the introduction of an intermediate state un+1/2 satisfying some nonlinear
constraints and the error caused by dropping the zero-order term in Ψ± in
the linearized interior equations written in terms of the “good unknown”
(see (24) and (25)). In our case the intermediate (or modified) state should
satisfy the same constraints/assumptions that were required to be fulfilled
for the basic state (16), i.e., the mentioned nonlinear constraints are (17)–
(19), (21), and (22).

Here we closely follow the plan and notations of [8]. The main differences
from [8] are that we work in the anisotropic weighted Sobolev spaces Hs

∗
and instead of the assumption that the initial data are close to the piecewise
constant solution, that allows to construct small approximate solutions, we
make the assumption on the smallness of the time interval. Moreover, we
have additional constraints associated to (14) and (15). We first list the
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important properties of smoothing operators. The following proposition is
the analogue of the corresponding ones from [1,8,14].

Proposition 10. There exists such a family {Sθ}θ≥1 of smoothing opera-
tors in Hs

∗(ΩT ) acting on the class of functions vanishing in the past that

[Sθu]β,∗,T ≤ Cθ(β−α)+ [u]α,∗,T , α, β ≥ 0, (134)

[Sθu− u]β,∗,T ≤ Cθβ−α[u]α,∗,T , 0 ≤ β ≤ α, (135)[ d

dθ
Sθu

]
β,∗,T ≤ Cθβ−α−1[u]α,∗,T , α, β ≥ 0, (136)

where C > 0 is a constant, and (β−α)+ := max(0, β−α). Moreover, there is
another family of smoothing operators (still denoted Sθ) acting on functions
defined on the boundary ∂ΩT and meeting properties (134)–(136), with the
norms ‖ · ‖Hα(∂ΩT ).

Now, following [8] (with necessary modifications), we describe the iter-
ation scheme for problem (130)–(132). We choose

U0 = 0, f0 = 0

and assume that (Uk, fk) are already given for k = 0, . . . , n. Moreover, let
(Uk, fk) vanish in the past, i.e., they satisfy (132). Below we again use the
notations like Uk = (U+

k ,U−
k ), Ψk = (Ψ+

k , Ψ−
k ), etc., and in spite of the

fact that these notations are somewhere inapplicable, for short we usually
drop the ± superscripts. We define

Un+1 = Un + δUn, fn+1 = fn + δfn,

where the differences δUn and δfn solve the linear problem

L′e(Ua + Un+1/2,Ψ
a + Ψn+1/2)δU̇n = fn in ΩT ,

B′n+1/2(δU̇n, δfn) = gn on ∂ΩT ,

(δU̇n, δfn) = 0 for t < 0.

(137)

Here

δU̇n := δUn −
δΨn

∂1(Φa + Ψn+1/2)
∂1(Ua + Un+1/2) (138)

is the “good unknown” (cf. (23)),

B′n+1/2 := B′e((Ua + Un+1/2)|x1=0, f
a + fn+1/2),

the operators L′e and B′e are defined in (25)–(27), and (Un+1/2, fn+1/2) is
a smooth modified state such that (Ua + Un+1/2, f

a + fn+1/2) satisfies
constraints (17)–(19), (21), and (22) (Ψn+1/2 is associated to fn+1/2 like Ψ
is associated to f). The right-hand sides fn and gn are defined through the
accumulated errors at the step n.
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Let us now specify the errors of the iteration scheme. They are defined
from the following chains of decompositions:

L(Un+1,Ψn+1)− L(Un,Ψn)

= L′(Ua + Un,Ψa + Ψn)(δUn, δΨn) + e′n
= L′(Ua + Sθn

Un,Ψa + Sθn
Ψn)(δUn, δΨn) + e′n + e′′n

= L′(Ua + Un,Ψa + Ψn+1/2)(δUn, δΨn) + e′n + e′′n + e′′′n

= L′e(Ua + Un+1/2,Ψ
a + Ψn+1/2)δU̇n + e′n + e′′n + e′′′n + Dn+1/2δΨn

and
B(Un+1|x1=0, fn+1)− B(Un|x1=0, fn)

= B′((Ua + Un)|x1=0, f
a + fn)(δUn|x1=0, δfn) + ẽ′n

= B′((Ua + SθnUn)|x1=0, f
a + Sθnfn)(δUn|x1=0, δfn) + ẽ′n + ẽ′′n

= B′n+1/2(δU̇n, δfn) + ẽ′n + ẽ′′n + ẽ′′′n ,

where Sθn
are smoothing operators enjoying the properties of Proposition

10, with the sequence (θn) defined by

θ0 ≥ 1, θn =
√

θ0 + n,

and we use the notations

Sθn
Ψn :=

(
χ(x1)Sθn

fn

χ(−x1)Sθn
fn

)
, Dn+1/2δΨn :=

(
D+

n+1/2δΨ
+
n

D−
n+1/2δΨ

−
n

)
,

with

Dn+1/2 :=
1

∂1(Φa + Ψn+1/2)
∂1
{
L(Ua + Un+1/2, Ψ

a + Ψn+1/2)
}

.

The errors e′n and ẽ′n are the usual quadratic errors of Newton’s method,
and e′′n, ẽ′′n and e′′′n , ẽ′′′n are the first and the second substitution errors
respectively.

Let

en := e′n + e′′n + e′′′n + Dn+1/2δΨn, ẽn := ẽ′n + ẽ′′n + ẽ′′′n , (139)

then the accumulated errors at the step n ≥ 1 are

En =
n−1∑
k=0

ek, Ẽn =
n−1∑
k=0

ẽk, (140)

with E0 := 0 and Ẽ0 := 0. The right-hand sides fn and gn are recursively
computed from the equations

n∑
k=0

fk + SθnEn = SθnFa,

n∑
k=0

gk + SθnẼn = 0, (141)

where f0 := Sθ0F
a and g0 := 0.

Since SθN
→ I as N → ∞, one can show (see [8]) that we formally

obtain the solution to problem (130)–(132) from L(UN ,ΨN ) → Fa and
B(UN |x1=0, fN ) → 0, provided that (eN , ẽN ) → 0.
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5.2. Inductive hypothesis

Given a small number δ > 0, the integer α := m + 1, and an integer α̃,
our inductive hypothesis reads:

(Hn−1)



a) ∀ k = 0, . . . , n− 1, ∀s ∈ [6, α̃] ∩ N,

[δUk]s,∗,T + ‖δfk‖Hs(∂ΩT ) ≤ δθs−α−1
k ∆k,

b) ∀ k = 0, . . . , n− 1, ∀s ∈ [6, α̃− 2] ∩ N,

[L(Uk,Ψk)− Fa]s,∗,T ≤ 2δθs−α−1
k ,

c) ∀ k = 0, . . . , n− 1, ∀s ∈ [7, α] ∩ N,

‖B(Uk|x1=0, fk)‖Hs(∂ΩT ) ≤ δθs−α−1
k ,

where ∆k = θk+1−θk. Note that the sequence (∆n) is decreasing and tends
to zero, and

∀n ∈ N,
1

3θn
≤ ∆n =

√
θ2

n + 1− θn ≤
1

2θn
.

Recall that (Uk, fk) for k = 0, . . . , n are also assumed to satisfy (132).
Running a few steps forward, we observe that we will need to use inequalities
(127) and (129) with m = α̃− 6. That is, we now choose α̃ = m + 6.

Our goal is to prove that (Hn−1) implies (Hn) for a suitable choice of
parameters θ0 ≥ 1 and δ > 0, and for a sufficiently short time T > 0. After
that we shall prove (H0). From now on we assume that (Hn−1) holds. As
in [8], we have the following consequences.

Lemma 7. If θ0 is big enough, then for every k = 0, . . . , n and for every
integer s ∈ [6, α̃] we have

[Uk]s,∗,T + ‖fk‖Hs(∂ΩT ) ≤ δθ
(s−α)+
k , α 6= s, (142)

[Uk]α,∗,T + ‖fk‖Hα(∂ΩT ) ≤ δ log θk, (143)

[(I − Sθk
)Uk]s,∗,T + ‖(1− Sθk

)fk‖Hs(∂ΩT ) ≤ Cδθs−α
k . (144)

For every k = 0, . . . , n and for every integer s ∈ [6, α̃ + 6] we have

[Sθk
Uk]s,∗,T + ‖Sθk

fk‖Hs(∂ΩT ) ≤ Cδθ
(s−α)+
k , α 6= s, (145)

[Sθk
Uk]α,∗,T + ‖Sθk

fk‖Hα(∂ΩT ) ≤ Cδ log θk. (146)

Observe that (144)–(146) follow from (142), (143), and Proposition 10.
Moreover, (144) and (145) hold actually for every integer s ≥ 6 but below
we will need them only for s ∈ [6, α̃] and s ∈ [6, α̃ + 6] respectively.
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5.3. Estimate of the quadratic errors

Recall that the quadratic errors read

e′k = L(Uk+1,Ψk+1)− L(Uk,Ψk)− L′(Uk,Ψk)(δUk, δΨk),

ẽ′k =
(
B(Uk+1, fk+1)− B(Uk, fk)− B′(Uk, fk)(δUk, δfk)

)
|x1=0,

where L and B are given in (133). We define the second derivatives of the
operators L and B:

L′′(Û, Ψ̂)((U′,Ψ ′), (U′′,Ψ ′′)) :=
d

dε
L′(Uε,Ψ ε)(U′,Ψ ′)|ε=0,

B′′((W′, f ′), (W′′, f ′′)) :=
d

dε
B′(Wε, fε)(W′, f ′)|ε=0,

where Uε = Û + εU′′, Wε = Û|x1=0 + εW′′, fε = f̂ + εf ′′, and Ψ ′ and Ψ ′′

are associated to f ′ and f ′′ respectively like Ψ is associated to f . Moreover,
we easily find the explicit form of B′′, that do not depend on the state
(Û, f̂):

B′′((W′, f ′), (W′′, f ′′)) =

 v′+2 ∂2f
′′ + v′+3 ∂3f

′′ + v′′+2 ∂2f
′ + v′′+3 ∂3f

′

v′−2 ∂2f
′′ + v′−3 ∂3f

′′ + v′′−2 ∂2f
′ + v′′−3 ∂3f

′

[(H′,H′′)]

 .

Then, the quadratic errors can be rewritten as

e′k =
∫ 1

0
(1− τ)L′′(Ua + Uk + τδUk,Ψa + Ψk

+τδΨk)
(
(δUk, δΨk), (δUk, δΨk)

)
dτ,

(147)

ẽ′k =
1
2

B′′
(
(δUk|x1=0, δfk), (δUk|x1=0, δfk)

)
. (148)

To estimate the quadratic errors by utilizing representations (147) and
(148) we need estimates for L′′ and B′′. They can easily be obtained from
the explicit forms of L′′ and B′′ by applying the Moser-type and embed-
ding inequalities from Appendix B (as well as such inequalities for classical
Sobolev spaces) . Omitting detailed calculations, we get the following result.

Proposition 11. Let T > 0 and s ∈ N, with s ≥ 6. Assume that (Û, f̂) ∈
Hs+2
∗ (ΩT )×Hs+2(∂ΩT ) and

[Û]7,∗,T + ‖f̂‖H7(∂ΩT ) ≤ K̃.

Then there exists a positive constant K̃0, that does not depend on s and
T , and there exists a constant C(K̃0) > 0 such that, if K̃ ≤ K̃0 and
(U′, f ′), (U′′, f ′′) ∈ Hs+2

∗ (ΩT )×Hs+2(∂ΩT ), then[
L′′(Û, Ψ̂)((U′,Ψ ′), (U′′,Ψ ′′))

]
s,∗,T

≤ C(K̃0)
{
〈〈(Û, f̂)〉〉s+2〈〈(U′, f ′)〉〉7〈〈(U′′, f ′′)〉〉7

+〈〈(U′, f ′)〉〉s+2〈〈(U′′, f ′′)〉〉7 + 〈〈(U′′, f ′′)〉〉s+2〈〈(U′, f ′)〉〉7
}

,
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where 〈〈(U, f)〉〉` := [U]`,∗,T + ‖f‖H`(∂ΩT ).
If (W′, f ′), (W′′, f ′′) ∈ Hs

∗(∂ΩT )×Hs+1(∂ΩT ), then

‖B′′((W′, f ′), (W′′, f ′′))‖Hs(∂ΩT ) ≤ C(K̃0)
{
‖W′‖Hs(∂ΩT )‖f ′′‖H3(∂ΩT )

+‖W′‖H2(∂ΩT )‖f ′′‖Hs+1(∂ΩT ) + ‖W′′‖Hs(∂ΩT )‖f ′‖H3(∂ΩT )

+‖W′′‖H2(∂ΩT )‖f ′‖Hs+1(∂ΩT ) + ‖W′‖Hs(∂ΩT )‖W′′‖H2(∂ΩT )

+‖W′‖H2(∂ΩT )‖W′′‖Hs(∂ΩT )

}
.

Without loss of generality we assume that the constant K̃0 = 2C∗, where
C∗ is the constant from (127). Using (147), (148), and Proposition 11, we
have the following result.

Lemma 8. Let α ≥ 8. There exist δ > 0 sufficiently small, and θ0 ≥ 1
sufficiently large, such that for all k = 0, . . . n − 1, and for all integer s ∈
[6, α̃− 2], we have the estimates

[e′k]s,∗,T ≤ Cδ2θ
L1(s)−1
k ∆k, (149)

‖ẽ′k‖Hs(∂ΩT ) ≤ Cδ2θ
L1(s)−1
k ∆k, (150)

where L1(s) = max{(s + 2− α)+ + 10− 2α, s + 6− 2α}.
Proof. Taking into account (127) (recall that m = α̃ − 6), (Hn−1), and
(142), we estimate the “coefficient” of L′′ in (147) as follows:

sup
τ∈[0,1]

〈〈(Ua + Uk + τδUk, fa + fk + τδfk)〉〉7

≤ C∗ + δθ
(7−α)+
k + δθ6−α

k ∆k ≤ C∗ + Cδ ≤ 2C∗

for δ sufficiently small. Hence, we may apply Proposition 11:

[e′k]s,∗,T ≤ C
(
δ2θ12−2α

k ∆2
k

(
C∗ + 〈〈(Uk, fk)〉〉s+2 + 〈〈(δUk, δfk)〉〉s+2

)
+δ2θs+7−2α

k ∆2
k

)
for s ∈ [6, α̃− 2]. If s + 2 6= α, it follows from (142) that

[e′k]s,∗,T ≤ Cδ2∆2
k

{
θ
(s+2−α)++12−2α
k + θs+7−2α

k

}
≤ Cδ2θ

L1(s)−1
k ∆k

(here we have utilized the inequality θk∆k ≤ 1/2). If s + 2 = α and α ≥ 8,

[e′k]s,∗,T ≤ Cδ2∆2
k

{
(C∗ + δ log θk + δθ−1

k ∆k)θ12−α
k + θ5−α

k

}
≤ Cδ2∆2

kθ5−α
k ≤ Cδ2θ

L1(α−2)−1
k ∆k.

By using (148), the trace theorem [28] (cf. (35)), and Proposition 11, we
estimate the quadratic error on the boundary as

[ẽ′k]s,∗,T ≤ C
{
[δUk]s+1,∗,T ‖δfk‖H6(∂ΩT ) + [δUk]6,∗,T ‖δfk‖Hs+1(∂ΩT )

+[δUk]6,∗,T [δUk]s+1,∗,T
}
≤ Cδθs−α

k ∆kδθ5−α∆k ≤ Cδ2θ
L1(s)−1
k ∆k,

that completes the proof. �
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5.4. Estimate of the first substitution errors

The first substitution errors can be rewritten as follows:
e′′k = L′(Uk,Ψk)(δUk, δΨk)− L′(Sθk

Uk, Sθk
Ψk)(δUk, δΨk)

=
∫ 1

0
L′′
(
Ua + Sθk

Uk + τ(I − Sθk
)Uk,Ψa + Sθk

Ψk

+ τ(I − Sθk
)Ψk

)(
(δUk, δΨk), ((I − Sθk

)Uk, (I − Sθk
)Ψk)

)
dτ,

(151)

ẽ′′k =
(
B′(Uk, fk)(δUk, δfk)− B′(Sθk

Uk, Sθk
fk)(δUk, δfk)

)
|x1=0

= B′′
(
(δUk|x1=0, δfk), ((Uk − Sθk

Uk)|x1=0, fk − Sθk
fk)
)
.

(152)

Lemma 9. Let α ≥ 8. There exist δ > 0 sufficiently small, and θ0 ≥ 1
sufficiently large, such that for all k = 0, . . . n − 1, and for all integer s ∈
[6, α̃− 2], one has

[e′′k ]s,∗,T ≤ Cδ2θ
L2(s)−1
k ∆k, (153)

‖ẽ′′k‖Hs(∂ΩT ) ≤ Cδ2θ
L2(s)−1
k ∆k, (154)

where L2(s) = max{(s + 2− α)+ + 14− 2α, s + 9− 2α}.

Proof. It follows from (127), (Hn−1), (144), and (145) that

sup
τ∈[0,1]

〈〈(Ua + Sθk
Uk + τ(I − Sθk

)Uk, fa + Sθk
fk + τ(I − Sθk

)fk)〉〉7
≤ 2C∗

for δ sufficiently small, i.e., we may apply Proposition 11 for estimating
L′′ in (151). Using again (127), (Hn−1), (144), and (145), we obtain for
s + 2 6= α and s + 2 ≤ α̃ that

[e′′k ]s,∗,T ≤ C
{

δ2θ13−2α
k ∆k

(
C∗ + δθ

(s+2−α)+
k + δθs+2−α

k

)
+ δ2θs+8−2α

k ∆k

}
≤ Cδ2∆k

{
θ
13−2α+(s+2−α)+
k + θs+8−2α

k

}
≤ Cδ2θ

L2(s)−1
k ∆k.

Similarly, but exploiting (146) instead of (145), for the case s + 2 = α we
get

[e′′k ]s,∗,T ≤ C
{

δ2θ13−2α
k ∆k(C∗ + δ log θk + δ) + δ2θ6−α

k ∆k

}
≤ Cδ2∆k

{
θ13−2α

k + θ6−α
k

}
≤ Cδ2θ

L2(α−2)−1
k ∆k

for α ≥ 8.
In view of (152), the trace theorem, and Proposition 11, one has

[ẽ′′k ]s,∗,T ≤ C
{

[δUk]s+1,∗,T ‖(1− Sθk
)fk‖H6(∂ΩT )

+[δUk]6,∗,T ‖(1− Sθk
)fk‖Hs+1(∂ΩT ) + [(I − Sθk

)Uk]s+1,∗,T ‖δfk‖H6(∂ΩT )

+[(I − Sθk
)Uk]6,∗,T ‖δfk‖Hs+1(∂ΩT ) + [δUk]s+1,∗,T [(I − Sθk

)Uk]6,∗,T

+[δUk]6,∗,T [(I − Sθk
)Uk]s+1,∗,T

}
.

Using then (Hn−1) and (144), we obtain (154). �



The Existence of Current-Vortex Sheets 51

5.5. Construction and estimate of the modified state

As in [8], at this stage we need to construct a smooth modified state
(Un+1/2, fn+1/2) satisfying certain nonlinear constraints. In our case these
constraints are (17)–(19), (21), and (22). More precisely, the state (Ua +
Un+1/2, f

a + fn+1/2) should meet the same requirements as the basic state
(Û, f̂) in Section 2. Since the approximate solution satisfies constraints (14)
and (15) as well as the strict inequalities (17) and (19) (see Lemma 6) and
since we shall require that the smooth modified state vanishes in the past,
the state (Ua+Un+1/2, f

a+fn+1/2) will satisfy (14) and (15) for t = 0 (that
is (22)) and (17) and (19) for a sufficiently short time T > 0. Moreover, it
follows from (21) and (22) that this state obeys constraints (14) and (15)
for all t ∈ [0, T ]. Therefore, while constructing the modified state we may
focus only on constraints (18) and (21), i.e., (7) and (197).

Proposition 12. Let α ≥ 10. The exist some functions Un+1/2 and fn+1/2,
that vanish in the past, and such that (Ua + Un+1/2, f

a + fn+1/2) satisfies
(5), (12), (197), (14), (15), and (at x1 = 0) inequalities (9) and (10) for a
sufficiently short time T . Moreover, these functions satisfy

fn+1/2 = Sθnfn, Ψ±
n+1/2 := χ(±x1)fn+1/2, (155)

v±j,n+1/2 = Sθn
v±j,n, j = 2, 3, (156)

S±n+1/2 = Sθn
S±n , (157)

and

[Un+1/2 − Sθn
Un]s,∗,T ≤ Cδθs+2−α

n for s ∈ [6, α̃ + 4]. (158)

for sufficiently small δ > 0 and T > 0, and a sufficiently large θ0 ≥ 1.

Proof. Let fn+1/2, the entropies S±n+1/2, and the tangential components of
the velocities v±n+1/2 are defined by (155)–(157). Taking into account the
discussion above, it is enough to construct such functions p±n+1/2, v±1,n+1/2,
and H±

n+1/2 that

B((Ua + Un+1/2)|x1=0, f
a + fn+1/2) = 0, (159)

LH(va + vn+1/2,Ha + Hn+1/2,Ψ
a + Ψn+1/2) = 0, (160)

where (160) is the compact form of (197) (see also (123)),

Ψn+1/2 = (Ψ+
n+1/2, Ψ

−
n+1/2), vn+1/2 = (v+

n+1/2,v
−
n+1/2), etc.

Since (Ua, fa) satisfies (123),

LH(va± + v±n+1/2,H
a± + H±

n+1/2,Ψ
a± + Ψ±

n+1/2)

= ∂tH±
n+1/2 +

1
1 + ∂1Ψ

±
n+1/2

(wa± + w±
n+1/2,∇)H±

n+1/2 + . . . = 0,
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where wa± and w±
n+1/2 are defined similarly to w± in (197). Analogously,

we can explicitly write down (159) taking into account that (Ua, fa) satisfies
(12).

Let us now define v±1,n+1/2 as follows:

v±1,n+1/2 := Sθn
v±1,n +RTG±, (161)

where

G± = ∂tfn+1/2 − (Sθn
v±1,n)|x1=0

+
3∑

j=2

(
(va±

j + v±j,n+1/2)∂jfn+1/2 + v±j,n+1/2∂jf
a
)∣∣

x1=0,

and RT is the lifting operator, cf. (35). With (155) and (156) we have
thus defined vn+1/2 and Ψn+1/2. Then, we can define Hn+1/2 as a function
that vanishes in the past and solves equation (160). Note that, in view of
(161), the fist two boundary conditions in (159) are fulfilled. Hence, (wa±

1 +
w±

1,n+1/2)|x1=0 = 0, i.e., (160) considered as the equation for Hn+1/2 does
not need boundary conditions at x1 = 0. At last, we define p±n+1/2 by

p±n+1/2 := Sθnp±n ∓
1
2
RT εn −

1
2
|H±

n+1/2|
2 − (H±

n+1/2,H
a±)

+
1
2

Sθn
|H±

n |2 + Sθn
(H±

n ,Ha±),
(162)

where
εn =

(
Sθn

p+
n − Sθn

p−n +
1
2

Sθn
|H+

n |2 + Sθn
(H+

n ,Ha+)

−1
2

Sθn
|H−

n |2 − Sθn
(H−

n ,Ha−)
)∣∣∣

x1=0
.

It should be noted that (161) and (162) considered at x1 = 0 yield (159).
We first get the estimate of v1,n+1/2 − Sθn

v1,n. To that end we use the
following decompositions (we drop the ± superscripts, cf. (161)):

G = SθnBv(Un|x1=0, fn)− ∂t(1− Sθn)fn + (1− Sθn)∂tfn

3∑
j=2

(
(va

j + Sθn
vj,n)∂jSθn

fn − Sθn
((va

j + vj,n)∂jfn)

+(Sθn
vj,n)∂jf

a − Sθn
(vj,n∂jfn)

)∣∣
x1=0

and

Bv(Un|x1=0, fn) = Bv(Un−1|x1=0, fn−1) + ∂t(δfn−1)

+
3∑

j=2

(
(va

j + vj,n−1)∂j(δfn−1) + δvj,n−1∂j(fa + fn)− δv1,n−1
)∣∣

x1=0 ,

where Bv denotes the first (for G+) or the second (for G−) row of the bound-
ary operator B in (12).
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Exploiting point c) of (Hn−1), one has

[RT (Sθn
Bv(Un−1|x1=0, fn−1))]s,∗,T ≤ C‖Sθn

Bv(Un−1|x1=0, fn−1)‖Hs(∂ΩT )

≤

{
Cθs−α+1

n ‖Bv(Un−1|x1=0, fn−1)‖Hα(∂ΩT ) for s ∈ [α, α̃ + 4],
C‖Bv(Un−1|x1=0, fn−1)‖Hs+1(∂ΩT ) for s ∈ [6, α− 1]

≤ Cδθs−α
n for s ∈ [6, α̃ + 4].

Using (134) and point a) of (Hn−1), we get

[RT (Sθn∂t(δfn−1))]s,∗,T ≤ C‖Sθn∂t(δfn−1)‖Hs(∂ΩT )

≤ Cθs−6
n ‖δfn−1‖H7(∂ΩT ) ≤ Cθs−6

n δθ6−α
n−1θ−1

n−1 ≤ Cδθs−α−1
n

for s ∈ [6, α̃ + 4]. We also obtain[
RT

(
Sθn((va

j + vj,n−1)|x1=0 ∂j(δfn−1))
)]

s,∗,T

≤ Cθs−6
n ‖(va

j + vj,n−1)|x1=0 ∂j(δfn−1)‖H6(∂ΩT )

≤ Cθs−6
n

{
‖δfn−1‖H7(∂ΩT )[Ua + Un−1]6,∗,T

+‖δfn−1‖H6(∂ΩT )[Ua + Un−1]7,∗,T

}
≤ Cθs−6

n δθ5−α
n C∗ ≤ Cδθs−α−1

n

for j = 2, 3 and s ∈ [6, α̃ + 4]. Estimating similarly the remaining terms
containing in RT (SθnBv(Un|x1=0, fn)), we finally derive the estimate

[RT (Sθn
Bv(Un|x1=0, fn))]s,∗,T ≤ Cδθs−α

n , s ∈ [6, α̃ + 4].

We now need to get estimates for the remaining terms containing in
RTG. For s ∈ [α, α̃ + 4] one has[

RT (−∂t(1− Sθn
)fn + (1− Sθn

)∂tfn)
]
s,∗,T

≤ C
{
‖∂t(Sθn

fn)‖Hs(∂ΩT ) + ‖Sθn
(∂tfn)‖Hs(∂ΩT )

}
≤ C

{
‖Sθn

fn‖Hs+1(∂ΩT ) + θs−α
n ‖fn‖Hα+1(∂ΩT )

}
≤ Cδθs+1−α

n ,

while for s ∈ [6, α̃− 1] we obtain (recall that α̃ = α + 5)[
RT (∂t(1− Sθn

)fn)
]
s,∗,T ≤ Cδθs+1−α

n ,[
RT ((1− Sθn

)∂tfn)
]
s,∗,T ≤ Cθs−α

n ‖fn‖Hα+1(∂ΩT ) ≤ Cδθs+1−α
n .

Here we have, in particular, used Lemma 7. We do not get estimates for all
the remaining terms containing inRTG and leave corresponding calculations
to the reader. Collecting these estimates and the estimates above, we finally
have

[v1,n+1/2 − Sθnv1,n]s,∗,T ≤ Cδθs+1−α
n , s ∈ [6, α̃ + 4]. (163)

Observe that in the calculations above it was enough to assume that α ≥ 8.
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Now we turn to the estimate of Hn+1/2 − Sθn
Hn that, in view of (160),

solves the equation

LH(vn+1/2,Hn+1/2 − Sθn
Hn,Ψn+1/2) = Fn+1/2

H , (164)

where LH(v,H,Ψ) = LH(va + v,Ha + H,Ψa + Ψ) and the right-hand side
is decomposed as follows:

Fn+1/2
H = F̃n+1/2

H − Sθn
LH(Wn,Ψn), (165)

with Wn := (vn,Hn) and

F̃n+1/2
H = −LH(vn+1/2 − Sθnvn, SθnHn, SθnΨn)

+SθnLH(Wn,Ψn)− LH(SθnWn, SθnΨn).

We first consider the second term in the right-hand side in (165). We
decompose it as

Sθn
LH(Wn,Ψn) = Sθn

LH(Wn−1,Ψn−1) + Sθn
Zn−1,

where

Zn−1 = LH(Wn−1 + δWn−1,Ψn−1 + δΨn−1)− LH(Wn−1,Ψn−1).

Thanks to the definition of the approximate solution given in Lemma 6 we
have Fa

H = 0, where Fa
H is the right-hand side in (130) corresponding to the

equations for H. Using this fact and point b) of (Hn−1), one gets

[Sθn
LH(Wn−1,Ψn−1)]s,∗,T ≤ Cθs−6

n [LH(Wn−1,Ψn−1)]6,∗,T ≤ Cδθs−α−1
n

for s ∈ [6, α̃ + 4]. The typical term containing in Sθn
Zn−1 is, for example,

Sθn

(
∂1(va

1 + v1,n)
1 + ∂1(Ψa + Ψn)

δHn−1

)
(166)

that is estimated by using the properties of smoothing operators, the tame
estimate for a product (see Appendix B), etc.:

[Sθn(. . .)]s,∗,T ≤ Cθs−6
n

[ ∂1(va
1 + v1,n)

1 + ∂1(Ψa + Ψn)
δHn−1

]
6,∗,T

≤ Cθs−6
n

{∥∥∥ δHn−1

1 + ∂1(Ψa + Ψn)

∥∥∥
L∞(ΩT )

[va
1 + v1,n]8,∗,T[ δHn−1

1 + ∂1(Ψa + Ψn)

]
6,∗,T

‖va
1 + v1,n‖W 1

∞(ΩT )

}
≤ . . . ≤ Cδθs−α−1

n

for s ∈ [6, α̃ + 4]. Treating analogously the remaining terms containing in
SθnZn−1, we come to the estimate

[Sθn
LH(Wn,Ψn)]s,∗,T ≤ Cδθs−α−1

n , s ∈ [6, α̃ + 4]. (167)
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To obtain the estimate of F̃n+1/2
H , that is the remaining term in the right-

hand side in (165) to be estimated, we treat the case s ≥ α + 1 separately.
For s ∈ [α + 1, α̃ + 4] we proceed as follows:

[F̃n+1/2
H ]s,∗,T ≤ [LH(vn+1/2 − Sθn

vn, Sθn
Hn, Sθn

Ψn)]s,∗,T

+[LH(Sθn
Wn, Sθn

Ψn)]s,∗,T + [Sθn
LH(Wn,Ψn)]s,∗,T .

The last term in the right-hand side of the above inequality has been already
estimated in (167) for the general case s ∈ [6, α̃+4]. It is clear that we have
only to estimate the second term there because for the first one we can
get a better estimate by using (156) and (163). To obtain the estimate of
LH(SθnWn, SθnΨn) we exploit the arguments similar to those used for the
term in (166). Omitting detailed calculations, for s ∈ [α + 1, α̃ + 4] we thus
obtain

[F̃n+1/2
H ]s,∗,T ≤ Cδθs+2−α

n . (168)

For the case s ∈ [6, α] we use the decomposition

F̃n+1/2
H = −LH(vn+1/2 − Sθn

vn − (I − Sθn
)vn, Sθn

Hn, Sθn
Ψn)

−LH(vn, (I − Sθn)Hn, SθnΨn) + (LH(Wn,Ψn)− LH(Wn, SθnΨn).

Omitting details, we get estimate (168) for the case s ∈ [6, α] as well. Thus,
we have derived the estimate

[Fn+1/2
H ]s,∗,T ≤ Cδθs+2−α

n , s ∈ [6, α̃ + 4]. (169)

Equation (164), which right-hand side we have just estimated, is actually
written as

∂tY +
3∑

j=1

Dj(b)∂jY + Q(b)Y = Fn+1/2
H , (170)

where Y = Hn+1/2 − Sθn
Hn, b = (va + vn+1/2,Ψ

a + Sθn
Ψn), and Dj

and Q are matrices. Moreover, the matrices Dj are diagonal and, what is
important, the matrix D1|x1=0 = 0. That is, system (170) does not need
boundary conditions at x1 = 0. Then, with the help of the arguments like
those used in Section 3 for deriving the tame estimates (102) and (110), we
obtain the tame a priori estimate

[Y]s,∗,T ≤ C(K̃0)
{

[Fn+1/2
H ]s,∗,T + [Fn+1/2

H ]s1,∗,T [b]s+2,∗,T

}
(171)

for the solution Y of (170) that vanishes in the past, where s1 = 6 if s is even
and s1 = 7 if s is odd. Estimate (171) holds for the coefficients satisfying
the assumption

[va + vn+1/2]9,∗,T + ‖fa + Sθnfn‖H9(∂ΩT ) ≤ K, (172)

provided that K ≤ K̃0. The constant K̃0 = 2C∗, that does not depend on s
and T , can be taken the same as in Proposition 11 for δ sufficiently small.
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Taking into account (156) and (163) and using, in particular, (145), we
check that assumption (172) holds for s ∈ [6, α̃+4], α ≥ 10, and δ sufficiently
small:

[va + vn+1/2]9,∗,T + ‖fa + Sθnfn‖H9(∂ΩT ) ≤ [vn+1/2 − Sθnvn]9,∗,T

+[Sθn
(vn−1 + δvn−1)]9,∗,T + ‖Sθn

(fn−1 + δfn−1)‖H9(∂ΩT ) + [va]9,∗,T

+‖fa‖H9(∂ΩT ) ≤ C(δθ10−α
n + δθ

(9−α)+
n ) + C∗ ≤ C∗ + Cδ ≤ 2C∗.

Using (169), one has

[Fn+1/2
H ]s1,∗,T [b]s+2,∗,T ≤ Cδθs1+2−α

n (C∗ + Cδθs+3−α
n + δθκ

n),

where κ = (s + 2 − α)+ for s 6= α − 2 and κ = 1 for s = α − 2. One can
check that

s1 +2−α+max{s+3−α, κ} ≤ s+2−α for s ∈ [6, α̃+4] and α ≥ 10.

That is,
[Fn+1/2

H ]s1,∗,T [b]s+2,∗,T ≤ Cδθs+2−α
n . (173)

Estimates (169), (171), and (173) yield

[Hs+1/2 − Sθn
Hn]s,∗,T ≤ Cδθs+2−α

n , s ∈ [6, α̃ + 4]. (174)

At last, using (174), from (162) we can derive the estimate

[ps+1/2 − Sθn
pn]s,∗,T ≤ Cδθs+2−α

n , s ∈ [6, α̃ + 4]. (175)

To avoid overloading the paper we omit the calculations and only note that
the process of deriving estimate (175) is much simpler than that of obtaining
estimates (163) and, especially, (174). In view of (156) and (157), estimates
(163), (174), and (175) imply (158). This completes the proof. �

5.6. Estimate of the second substitution errors

The second substitution errors

e′′′k = L′(Sθk
Uk, Sθk

Ψk)(δUk, δΨk)− L′(Uk+1/2,Ψk+1/2)(δUk, δΨk)

and

ẽ′′′k =
(
B′(Sθk

Uk, Sθk
fk)(δUk, δfk)− B′(Uk+1/2, fk+1/2)(δUk, δfk)

)
|x1=0

can be written as

e′′′k =
∫ 1

0
L′′
(
Ua + Uk+1/2 + τ(Sθk

Uk −Uk+1/2),

Ψa + Sθk
Ψk)

(
(δUk, δΨk), (Sθk

Uk −Uk+1/2, 0)
)
dτ,

(176)

ẽ′′′k = B′′
(
(δUk|x1=0, δfk), ((Sθk

Uk −Uk+1/2)|x1=0, 0)
)
. (177)

Exploiting expressions (176) and (177), we get the following result.
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Lemma 10. Let α ≥ 10. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all k = 0, . . . n−1, and for all integer
s ∈ [6, α̃− 2], one has

[e′′′k ]s,∗,T ≤ Cδ2θ
L(s)−1
k ∆k, (178)

‖ẽ′′′k ‖Hs(∂ΩT ) ≤ Cδ2θ
L(s)−1
k ∆k, (179)

where L(s) = max{(s + 2− α)+ + 18− 2α, s + 11− 2α}.

Proof. Using Lemma 7 and Proposition 12, we obtain the estimate

sup
τ∈[0,1]

〈〈(Ua + Uk+1/2 + τ(Sθk
Uk −Uk+1/2), fa + Sθk

fk)〉〉
7,∗,T ≤ 2C∗

for δ sufficiently small, i.e., we can apply Proposition 11. Similarly, one gets

〈〈(Ua + Uk+1/2 + τ(Sθk
Uk −Uk+1/2), fa + Sθk

fk)〉〉
s+2,∗,T

≤ C
{
C∗ + δθs+4−α

k + δθ
(s+2−α)++1
k

}
≤ Cδθ

(s+2−α)++2
n .

Applying Proposition 11, we get (178):

[e′′′k ]s,∗,T ≤ C
{

δθ
(s+2−α)++2
k δθ6−α

k ∆kδθ9−α
k + δθs+1−α

k ∆kδθ9−α
k

+δθ6−α
k ∆kδθs+4−α

k

}
≤ Cδ2θ

L(s)−1
k ∆k.

Using (155), (156), and the explicit form of B′′ (see Proposition 11), one has

ẽ′′′k =

 0
0

[(δHk, Sθk
Hk −Hk+1/2)]

 .

Applying then (Hn−1) and (158), we easily get (179). �

5.7. Estimate of the last error term

It remains to estimate the last error term Dk+1/2Ψk, i.e., we should get
the estimate of

Dk+1/2δΨk =
δΨk

∂1(Φa + Ψn+1/2)
Rk,

where Rk := ∂1
{
L(Ua + Uk+1/2, Ψ

a + Ψk+1/2)
}
, and the ± superscripts

are dropped. Observe that

|∂1(Φa + Ψn+1/2)| = |1 + ∂1(Ψa + Ψn+1/2)| ≥ 1/2,

provided that T and δ are small enough, cf. (126).
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Lemma 11. Let α ≥ 10. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all k = 0, . . . n−1, and for all integer
s ∈ [6, α̃− 2], one has

[Dk+1/2Ψk]s,∗,T ≤ Cδ2θ
L(s)−1
k ∆k, (180)

where the function L(s) is defined in Lemma 10.

Proof. The proof follows from the arguments as in [1,8]. Using the Moser-
type and embedding inequalities from Appendix B, we obtain

[Dk+1/2δΨk]s,∗,T ≤ C
{
‖δfk‖Hs(∂ΩT )[R]6,∗,T

‖δfk‖H6(∂ΩT )
(
[R]s,∗,T + [R]6,∗,T ‖fa + fk+1/2‖Hs(∂ΩT )

)} (181)

(note that [∂1(Ψa + Ψn+1/2)]s,∗,T ≤ C‖fa + fk+1/2‖Hs(∂ΩT )). To estimate
Rk we utilize the decomposition

L(Ua + Uk+1/2, Ψ
a + Ψk+1/2) = L(Uk, Ψk)− Fa

+L(Ua + Uk+1/2, Ψ
a + Ψk+1/2)− L(Ua + Uk, Ψa + Ψk)

= L(Uk, Ψk)− Fa+
∫ 1

0
L′
(
Ua + Uk + τ(Uk+1/2 −Uk),

Ψa + Ψk + τ(Ψk+1/2 − Ψk)
)
(Uk+1/2 −Uk,Ψk+1/2 − Ψk)dτ.

Clearly,

[R]s,∗,T ≤ [L(Uk, Ψk)− Fa]s+2,∗,T + sup
τ∈[0,1]

[L′(. . .)(. . .)]s+2,∗,T (182)

(for short we drop the arguments of L′). Point b) of (Hn−1) implies

[L(Uk, Ψk)− Fa]s+2,∗,T ≤ 2δθs+1−α
k (183)

for s ∈ [6, α̃ − 4]. We estimate L′ similarly to L′′ (see Proposition 11). We
have

supτ∈[0,1] 〈〈(Ua + Uk + τ(Uk+1/2 −Uk), fa + fk + τ(fk+1/2 − fk))〉〉
7,∗,T

≤ 2C∗

for δ small enough. Then, omitting detailed calculations, we get the estimate

[L′(. . .)(. . .)]s+2,∗,T ≤ Cδ(θs+6−α
k + θ

(s+2−α)++13−α
k )

for s ∈ [6, α̃− 4]. This estimate, (182), and (183) yield

[R]s,∗,T ≤ Cδ(θs+6−α
k + θ

(s+2−α)++13−α
k ) (184)

for s ∈ [6, α̃− 4].
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For s = α̃− 3 and s = α̃− 2 we estimate as follows:

[R]s,∗,T ≤ [L(Ua + Uk+1/2, Ψ
a + Ψk+1/2)]s+2,∗,T

≤ C〈〈(Ua + (Uk+1/2 − Sθn
Uk) +−Sθn

Uk, fa + Sθn
fk)〉〉

s+4,∗,T

≤ C(C∗ + δθs+6−α
k + δθs+4−α

k ) ≤ Cδθs+6−α
k .

Here we assumed that s ≥ α − 3. This is true for s = α̃ − 3 and s = α̃ − 2
(recall that α̃ = α + 5). That is, we get estimate (184) for s ∈ [6, α̃ − 2].
Using then (181), we derive (180). �

Observe that estimate (180) is rather rough and we could, in principle,
specify the function L(s) more accurately, but we take L(s) as in Lemma
10 because finally we will need only the estimate of the sum of errors given
in (139).

5.8. Convergence of the iteration scheme

Lemmas 8–11 yield the estimate of en and ẽn defined in (139) as the
sum of all the errors of the kth step.

Lemma 12. Let α ≥ 10. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all k = 0, . . . n−1, and for all integer
s ∈ [6, α̃− 2], one has

[ek]s,∗,T + ‖ẽk‖Hs(∂ΩT ) ≤ Cδ2θ
L(s)−1
k ∆k, (185)

where L(s) is defined in Lemma 10.

In one’s turn, Lemma 12 gives the estimate of the accumulated errors
En and Ẽn.

Lemma 13. Let α ≥ 13. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that

[En]α+3,∗,T + ‖Ẽn‖Hα+3(∂ΩT ) ≤ Cδ2θn, (186)

where L(s) is defined in Lemma 10.

Proof. One can check that L(α + 3) ≤ 1 if α ≥ 13. It follows from (185)
that

〈〈(En, Ẽn)〉〉α+3 ≤
n−1∑
k=0

〈〈(ek, ẽk)〉〉α+3 ≤
n−1∑
k=0

Cδ2∆k ≤ Cδ2θn

for α ≥ 13 and α + 3 ∈ [6, α̃− 2], i.e., α̃ ≥ α + 5. The minimal possible α̃ is
α + 5, i.e., our choice α̃ = α + 5 is suitable. �

We now get the estimates of the source terms fn and gn defined in (141).
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Lemma 14. Let α ≥ 13. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all integer s ∈ [6, α̃ + 2], one has

[fn]s,∗,T ≤ C∆n

{
θs−α−3

n

(
[Fa]α+2,∗,T + δ2)+ δ2θL(s)−1

n

}
, (187)

‖gn‖Hs(∂ΩT ) ≤ Cδ2∆n

(
θL(s)−1

n + θs−α−3
n

)
. (188)

Proof. It follows from (141) that

Fn = (Sθn
− Sθn−1)F

a − (Sθn
− Sθn−1)En−1 − Sθn

en−1.

Using (134), (136), (185), and (186), we obtain the estimates

[(Sθn
− Sθn−1)F

a]s,∗,T ≤ Cθs−α−3
n−1 [Fa]α+2,∗,T ∆n−1,

[Sθn
− Sθn−1)En−1]s,∗,T ≤ Cθs−α−4

n−1 [En−1]α+3,∗,T ∆n−1 ≤ Cδ2θs−α−3
n−1 ∆n−1,

[Sθnen−1]s,∗,T ≤ Cδ2θL(s)−1
n ∆n−1.

Taking into account the inequalities θn−1 ≤ θn ≤
√

2θn−1 and θn−1 ≤ 3θn,
the above estimates yield (187). Similarly, we get (188). �

We are now in a position to obtain the estimate of the solution to
problem (137) by exploiting the tame estimate (110). Then the estimate
of (Un, fn) follows from formula (138).

Lemma 15. Let α ≥ 13. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all integer s ∈ [6, α̃], one has

[δUn]s,∗,T + ‖δfn‖Hs(∂ΩT ) ≤ δθs−α−1
n ∆n. (189)

Proof. Without loss of generality we can take the constant K0 appearing
in estimate (110) that K0 = 2C∗, where C∗ is the constant from (127). In
order to apply Theorem 4, by using (145) and (158), one checks that

[Ua + Un+1/2]11,∗,T + ‖fa + Sθn
fn‖H11(∂ΩT ) ≤ 2C∗

for α ≥ 13 and δ small enough. That is, assumption (109) is satisfied for
the coefficients of problem (137). By applying the tame estimate (110), for
T small enough one has

[δU̇n]s,∗,T + ‖δfn‖Hs(∂ΩT ) ≤ C
{

[fn]s+2,∗,T + ‖gn‖Hs+2(∂ΩT )

+
(
[fn]s0,∗,T + ‖gn‖Hs0 (∂ΩT )

)(
[Ua + Un+1/2]s+4,∗,T

+‖fa + Sθn
fn‖Hs+4(∂ΩT )

)}
.

(190)
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Using (204) and (208), from formula (138) we have

[δUn]s,∗,T ≤ [δU̇n]s,∗,T + C
{
‖δfn‖Hs(∂ΩT )

+‖δfn‖H6(∂ΩT )‖fa + Sθnfn‖Hs(∂ΩT )
}
.

Then (190) implies

[δUn]s,∗,T + ‖δfn‖Hs(∂ΩT ) ≤ C
{

θn[fn]s+2,∗,T + ‖gn‖Hs+2(∂ΩT )

+
(
[fn]s0,∗,T + ‖gn‖Hs0 (∂ΩT )

)(
[Ua + Un+1/2]s+4,∗,T

+‖fa + Sθn
fn‖Hs+4(∂ΩT )

)} (191)

for all integer s ∈ [6, α̃]. Applying Lemma 14, (145), and Proposition 12,
from (191) we get the estimate

[δUn]s,∗,T + ‖δfn‖Hs(∂ΩT ) ≤ C
{
θs−α−1

n

(
[Fa]α+2,∗,T + δ2

)
+δ2θ

L(s+2)−1
n

}
∆n + Cδ∆n

{
θs0−3−α

n

(
[Fa]α+2,∗,T + δ2

)
+δ2θ

L(s0)−1
n

}{
C∗ + θ

(s+4−α)+
n + θs+6−α

n

}
.

(192)

Let first s is even, then s0 = 8, L(s0)−1 = 18−2α, and s0−3−α = 5−α.
We can check that the inequalities

L(s + 2) ≤ s− α, (s + 4− α)+ + 5 + `− α ≤ s− α− 1,

(s + 4− α)+ + 18 + `− 2α ≤ s− α− 1,

s + 11 + `− 2α ≤ s− α− 1, s + 24 + `− 3α ≤ s− α− 1.

(193)

hold with ` = 0 for α ≥ 13 and s ∈ [6, α̃]. If s is odd, then s0 = 9,
L(s0)− 1 = 19− 2α, and s0 − 3−α = 6−α. Then, it is easily verified that
inequalities (193) with ` = 1 are satisfied for α ≥ 13 and s ∈ [7, α̃]. Thus,
(192) and (129) yield

[δUn]s,∗,T + ‖δfn‖Hs(∂ΩT ) ≤ C
(
δ0(T ) + δ2) θs−α−1

n ∆n ≤ δθs−α−1
n ∆n

for δ and T small enough. �

Inequality (189) is point a) of (Hn). It remains to prove points b) and
c) of (Hn).

Lemma 16. Let α ≥ 13. There exist δ > 0, T > 0 sufficiently small, and
θ0 ≥ 1 sufficiently large, such that for all integer s ∈ [6, α̃− 2]

[L(Un,Ψn)− Fa]s,∗,T ≤ 2δθs−α−1
n . (194)

Moreover, for all integer s ∈ [7, α] one has

‖B(Un|x1=0, fn)‖Hs(∂ΩT ) ≤ δθs−α−1
n . (195)
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Proof. One can show that

L(Un,Ψn)− Fa = (Sθn−1 − I)Fa + (I − Sθn−1)En−1 + en−1. (196)

For s ∈ [α + 1, α̃− 2], by using (134), we get

(I − Sθn−1)F
a]s,∗,T ≤ θs−α−1

n (C[Fa]α+1,∗,T + [Fa]s,∗,T ) ≤ Cδ0(T )θs−α−1
n ,

while for s ∈ [6, α + 1], applying (135), we have

(I − Sθn−1)F
a]s,∗,T ≤ Cθs−α−1

n−1 [Fa]α+1,∗,T ≤ Cδ0(T )θs−α−1
n .

As follows from Lemma 13 and (135), for 6 ≤ s ≤ α + 3 = α̃− 2

[(I − Sθn−1)En−1]s,∗,T ≤ Cθs−α−3
n−1 [En−1]α+3,∗,T ≤ Cδ2θs−α−1

n .

Applying (185), we obtain

[en−1]s,∗,T ≤ Cδ2θ
L(s)−1
n−1 ∆n−1 ≤ Cδ2θs−α−3

n−1 ∆n−1 ≤ Cδ2θs−α−1
n .

From the above estimates and decomposition (196), by choosing T > 0 and
δ > 0 sufficiently small, we derive (194). Similarly, by using the decomposi-
tion

B(Un|x1=0, fn) = (I − Sθn−1)Ẽn−1 + ẽn−1,

we can prove estimate (195). �

As follows from Lemmas 15 and 16, we have proved that (Hn−1) implies
(Hn−1), provided that α ≥ 13, α̃ = α + 5, the constant θ0 ≥ 1 is large
enough, and T > 0, δ > 0 are small enough. Fixing now the constants α, δ,
and θ0, we prove (H0).

Lemma 17. If the time T > 0 is sufficiently small, then (H0) is true.

Proof. We recall that (U0, f0) = 0. Then, by the definition of the approxi-
mate solution in Lemma 6 the state (Ua +U0, f

a +f0) = 0 satisfies already
(5), (12), (197), (14), (15), and (at x1 = 0) inequalities (9) and (10). That is,
it follows from the construction of Proposition 12 that (Un+1/2, fn+1/2) = 0.
Consequently, (δU̇0, δf0) solves the linear problem (28)–(30) with the co-
efficients (Û, f̂) = (Ua, fa) and the source terms f = Sθ0F

a and g = 0.
Thanks to (127) the assumption (109) is satisfied (recall that K0 = 2C∗).
Applying (110), we obtain the estimate

[δU̇0]s,∗,T + ‖δf0‖Hs(∂ΩT ) ≤ C[Sθ0F
a]s+2,∗,T .

With (130) and formula (138) this estimate yields

[δU0]s,∗,T + ‖δf0‖Hs(∂ΩT ) ≤ C[Sθ0F
a]s+2,∗,T

≤ Cθ
(s−α)+
0 δ0(T ) ≤ δθs−α−1

0 ∆0

for all integer s ∈ [6, α̃], provided that T is sufficiently small. Likewise,
points b) and c) of (H0) can be shown to be satisfied for a sufficiently short
time T > 0. �
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The proof of Theorem 1. Let us consider initial data (U±
0 , f0) ∈

H2m+19
∗ (R3

+)×H2m+19(R2) satisfying all the assumptions of Theorem 1. In
particular, they satisfy the compatibility conditions up to order µ = m + 9
(see Definition 1). Then, thanks to Lemmas 5 and 6 we can construct an
approximate solution (Ua, fa) ∈ Hm+10

∗ (ΩT )×Hm+10(∂ΩT ) that satisfies
(127). As follows from Lemmas 15–17, (Hn) holds for all integer n ≥ 0,
provided that α ≥ 13, α̃ = α + 5, the constant θ0 ≥ 1 is large enough, and
the time T > 0 and the constant δ > 0 are small enough. In particular, it
follows from (Hn) that

∞∑
n=0

{
[δUn]m,∗,T + ‖δfn‖Hm(∂ΩT )

}
≤ ∞.

Hence, the sequence (Un, fn) converges in Hm
∗ (ΩT ) × Hm(∂ΩT ) to some

limit (U, f). Recall that m = α − 1 ≥ 12. Passing to the limit in (194)
and (195) with s = m, we get (130)–(132). Consequently, U := U + Ua,
f := f + fa is a solution of problem (11)–(13). This completes the proof of
Theorem 1.

Appendix A

The proof of Proposition 1. The equation for H± contained in (11)
reads

∂tH± +
1

∂1Φ±
{
(w±,∇)H± − (h±,∇)v± + H±div u±

}
= 0, (197)

where

u± = (v±n , v±2 ∂1Φ
±, v±3 ∂1Φ

±), v±n = v±1 − v±2 ∂2Ψ
± − v±3 ∂3Ψ

±,

v±n |x1=0 = v±N |x1=0, w± = u± − (∂tΨ
±, 0, 0).

Analogous equation contained in system (1) written in the straightened
variables differs from (197) by the additional term v±div h± in the ex-
pression in braces. After long, but straightforward calculations (applying,
in particular, div to a consequence of (197)) we get

∂ta
± +

1
∂1Φ±

{
(w±,∇a±) + a±div u±

}
= 0 (198)

for a± = div h±/∂1Φ
±. Analogous equation following from system (1) does

not contain the last term in the expression in braces.
In view of the boundary conditions (12),

w±
1 |x1=0 = (v±N − ∂tf)|x1=0 = 0.

Therefore, equation (198) does not need a boundary condition for a±. Then
by standard method of characteristic curves, we get (14) for all t ∈ [0, T ].
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Considering (197) on the boundary x1 = 0, using the boundary condi-
tions (12), and omitting detailed calculations, we obtain

∂tH
±
N + v±2 ∂2H

±
N + v±3 ∂3H

±
N +

(
∂2v

±
2 + ∂3v

±
3

)
H±

N = 0 on x1 = 0. (199)

Using again the standard method of characteristic curves, we conclude that
(15) is fulfilled for all t ∈ [0, T ] if it is satisfied for t = 0. This completes the
proof.

The proof of Proposition 2. We write down the equation for Ḣ±

contained in (28):

∂tḢ± +
1

∂1Φ̂±

{
(ŵ±,∇)Ḣ± − (ĥ±,∇)v̇± + Ĥ±div u̇±

+(u̇±,∇)Ĥ± − (ḣ±,∇)v̂± + Ḣ±div û±
}

= f±H ,

(200)

where

u̇± = (v̇±n , v̇±2 ∂1Φ̂
±, v̇±3 ∂1Φ̂

±), v̇±n = v̇±1 − v̇±2 ∂2Ψ̂
± − v̇±3 ∂3Ψ̂

±,

v̇±n |x1=0 = v̇±N |x1=0, f±H = (f±5 , f±6 , f±7 ).

Recall that (21) and (22) imply

div ĥ+ = 0, div ĥ− = 0, (201)

Ĥ+
N |x1=0 = Ĥ−

N |x1=0 = 0. (202)

Using (21) and (201), after long calculations, which are omitted, from (200)
we obtain that r± = div ḣ± satisfy equations (33) (where a± = r±/∂1Φ̂

±).
It is worth noting that to get (33) we need not only the divergent constraints
(201) but also the equations for Ĥ± themselves, i.e., equations (21). Simi-
larly, using the boundary conditions (29), system (21) at x1 = 0, and the
constraints (202), from (200) being considered at x1 = 0 we get equations
(34). That is, the proof of Proposition 2 is complete.

Appendix B

Gagliardo-Nirenberg inequality for Hs
∗ . First of all we note that

if s is even, the anisotropic weighted Sobolev spaces Hs
∗ coincide with the

spaces Ẽs introduced by Alinhac [1]. Then, referring to [1], we have the
following variant of the Gagliardo-Nirenberg inequality for Hs

∗ :

‖∂α
? ∂k

1u‖L2p(ΩT ) ≤ C‖u‖1−1/p
L∞(ΩT )[u]1/p

s,∗,T ,
1
p

=
|α|+ 2k

s
, (203)

where s ≥ 0 is even, |α|+ 2k ≤ s, and u is supposed to belong to Hs
∗(ΩT )∩

L∞(ΩT ).
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Moser-type inequalities for Hs
∗ . The Gagliardo-Nirenberg inequality

(203) implies the following Moser-type calculus inequalities for Hs
∗ with even

s ≥ 0 (see [1]):

[uv]s,∗,T ≤ C
(
[u]s,∗,T ‖v‖L∞(ΩT ) + ‖u‖L∞(ΩT )[v]s,∗,T

)
, (204)

[F (u)]s,∗,T ≤ C(M) (1 + [u]s,∗,T ) , (205)

where the functions u and v are supposed to belong to Hs
∗(ΩT )∩L∞(ΩT ),

the function F is a C∞ function of u, and M is such a positive constant
that

‖u‖L∞(ΩT ) ≤ M.

As for the usual Sobolev spaces inequality (205) can be refined if we assume
that F (0) = 0:

[F (u)]s,∗,T ≤ C(M)[u]s,∗,T . (206)

Embedding theorems for Hs
∗ . With the reference to [1], for the do-

main ΩT ⊂ R4 we have the embeddings

Ẽs ⊂ W r
∞ if s >

5
2

+ 2r.

In particular, Ẽ3 ⊂ L∞ and Ẽ5 ⊂ W 1
∞. For the exact definition of Ẽs we

refer to [1], and for us it is only important that Ẽs = Hs
∗ if s ≥ 0 is even.

Then, we have the embeddings

H4
∗ (ΩT ) ⊂ L∞(ΩT ) and H6

∗ (ΩT ) ⊂ W 1
∞(ΩT ).

That is, the following inequalities hold:

‖u‖L∞(ΩT ) ≤ C[u]4,∗,T ∀u ∈ H4
∗ (ΩT ),

‖u‖W 1
∞(ΩT ) ≤ C[u]6,∗,T ∀u ∈ H6

∗ (ΩT ).
(207)

The case of odd s. It follows from the definition of the space Hs
∗ that

for odd positive s

[u]s,∗,T ≤ C
(
[u]s−1,∗,T +

∑
|α|=1

[∂α
? u]s−1,∗,T

)
.

Therefore, from inequalities (204), (205) we deduce their counterparts for
Hs
∗ with odd positive s:

[uv]s,∗,T ≤ C
(
[u]s,∗,T ‖v‖W 1,tan

∞ (ΩT ) + ‖u‖W 1,tan
∞ (ΩT )[v]s,∗,T

)
,

[F (u)]s,∗,T ≤ C(M1) (1 + [u]s,∗,T ) ,
(208)

where M1 is such a positive constant that ‖u‖W 1,tan
∞ (ΩT ) ≤ M1, and

‖u‖W 1,tan
∞ (ΩT ) := ‖u‖L∞(ΩT ) +

∑
|α|=1

‖∂α
? u‖L∞(ΩT ).
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Likewise, it follows from (207) that

‖u‖W 1,tan
∞ (ΩT ) ≤ C[u]5,∗,T ∀u ∈ H5

∗ (ΩT ),

‖u‖W 2,tan
∞ (ΩT ) ≤ C[u]7,∗,T ∀u ∈ H7

∗ (ΩT ),
(209)

with
‖u‖W 2,tan

∞ (ΩT ) := ‖u‖W 1
∞(ΩT ) +

∑
|α|=1

‖∂α
? u‖W 1

∞(ΩT ).
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