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1 Introduction

In the 1960s in the series of pioneering papers V.I.Arnold obtained a number
of fundamental results in the mathematical theory of the dynamics of an ideal
incompressible fluid, especially in the area of hydrodynamic stability (see Arnold
[1965a,b, 1966a,b]).

First, he has developed a new, very effective method in the hydrodynamic
stability theory and proved the theorem on the nonlinear stability of steady two-
dimensional flows that generalizes the well-known linear stability criterion of Rayleigh
(Arnold [1965a,1966a]). Since that time this method, now known as the Arnold
method (or Energy-Casimir method) has been successfully applied to a wide range
of the problems in fluid mechanics, astrophysics, plasma physics etc. (for review
see Holm et al [1985], Marsden and Ratiu [1994], Marchioro and Pulvirenti [1994],
Arnold and Khesin [1998]). Remarkably, the Arnold method have found applica-
tions not only in theoretical sciences but also in such an applied field as geophysical
fluid dynamics (see e.g. McIntyre and Shepherd [1987], Shepherd [1990], Cho et al
[1993], Mu et al [1996]).

Second, V.I.Arnold [1966b] has discovered a close connection between the sta-
bility properties of an ideal incompressible fluid and the geometry of infinite dimen-
sional Lie groups. In Arnold’s theory, the configuration space of ideal incompress-
ible hydrodynamics is identified with the Lie group G = V Diff(D) of volume-
preserving diffeomorphisms of the domain D, and fluid flows represent geodesics on
G with respect to the metric given by the kinetic energy. One of the consequences
of this theory is that any steady flow of an ideal fluid corresponds to a critical
point of the energy functional restricted to the orbit of coajoint representation of
G. In physical terms, this means that, on the set of all isovortical velocity fields, a
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steady flow is a distinguished one: it corresponds to a critical point of the energy
functional (see Arnold [1965b, 1966b]). Another important consequence of the the-
ory is that if the second variation of the energy evaluated in a given steady state
on the same set of isovortical flows is definite in sign, this would imply at least
linear stability of this steady state (see Arnold [1965b], [1966b], Arnold and Khesin
[1998]). As has been shown by Rouchon [1991] and by Sadun and Vishik [1993], for
three-dimensional flows of an ideal incompressible fluid the corresponding second
variation is, in general, indefinite in sign, so that no conclusion about stability can
be drawn. If however only flows with a symmetry (translational, rotational or he-
lical) are considered then there exist non-trivial steady flows for which the second
variation is definite in sign (Arnold [1965a,b]). Moreover, sometimes it is possible
to obtain sufficient conditions for genuine nonlinear stability (see Arnold [1965a,
1966a], Holm et al [1985], Ovsiannikov et al [1985], Moffatt [1985,1986], Vladimirov
[1985, 1986], Marchioro and Pulvirenti [1994], Davidson [1998]).

In this paper, we shall discuss a number of variational principles that are di-
rect and natural generalizations of Arnold’s principle [1965b] to more sophisticated
hydrodynamic systems. These include:

1. a dynamical system ‘rigid body + fluid’, which may be either a body placed
in an inviscid rotational flow or a body with a cavity containing a fluid;

2. flows of an ideal incompressible fluid with contact discontinuities and, in
particular, flows with discontinuities of vorticity;

3. magnetohydrodynamic flows of an ideal, incompressible, perfectly conduct-
ing fluid.

We shall closely follow the original work of Arnold [1965b] (see also the paper
by Sedenko and Yudovich [1978], who extended Arnold’s principle for free-boundary
flows of an ideal incompressible fluid, and the paper by Grinfeld [1984] who consid-
ered compressible barotropic flows). Our analysis will be based on simple physical
arguments rather than on the general but highly abstract geometric theory. We
shall not discuss the underlying Hamiltonian structures of the considered mechani-
cal systems – they are all known and may be found in the literature (see e.g. Arnold
[1966b], Holm et al [1985], Khesin and Chekanov [1989], Marsden and Ratiu [1994],
Arnold and Khesin [1998]).

We believe that the construction of the variational principles, based on phys-
ically understandable ideas (similar to those of Arnold [1965b]) rather than on
abstract machinery of the differential geometry, is interesting and important from
several viewpoints:

1. the proposed theory may shed some light on the physical meaning of the
related abstract theories as, for instance, in the case of ideal magnetohy-
drodynamics where the variational principle formulated in Section 4 of the
present paper (see also Friedlander and Vishik [1994], Vladimirov and Ilin
[1997b], Vladimirov et al [1998]) clarifies the physical meaning of coajoint
orbits in the related semi-direct product theory of Marsden, Ratiu and We-
instein [1984] (see also Khesin and Chekanov [1989]);

2. in a very simple way it may, in some situations (such as ideal magnetohy-
drodynamics, see Friedlander and Vishik [1994], Vladimirov et al [1998]),
result in stability criteria for general three-dimensional steady states;

3. it is applicable to the systems whose configuration space cannot be identified
with any Lie group (the examples are: free-boundary flows of an ideal fluid,
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see Yudovich and Sedenko [1978] and Section 3 of the present paper, and
the system ‘rigid body + fluid’, see Section 2);

4. it may be modified so as to take account of the effects of dissipation (for
example, for the system ‘body + fluid’ one may include dissipation in finite
dimensional degrees of freedom corresponding to the rigid body).

For discussion of further generalizations and applications of the general geo-
metric theory of V.I.Arnold in continuum mechanics we refer to the recent book by
Arnold and Khesin [1998] (see also Holm et al [1985], Simo et al [1991a,b], Marsden
and Ratiu [1994]).

We conclude this introduction with a statement of Arnold’s original variational
principle.

Variational principle for steady three-dimensional flows of an ideal
fluid. Consider an ideal incompressible homogeneous fluid contained in a three-
dimensional domain D with fixed rigid boundary ∂D. Let u(x, t) be the velocity
field, p(x, t) the pressure (divided by constant density). Then the governing equa-
tions are the Euler equations:

Du = −∇p , (1.1)
∇ · u = 0 , D ≡ ∂/∂t + u · ∇ . (1.2)

The boundary condition for (1.1), (1.2) is the usual one of no normal flow through
the rigid boundary

n · u = 0 on ∂D , (1.3)

where n is a unit outward normal to the boundary.
In general, equations (1.1), (1.2) with boundary condition (1.3) have the only

quadratic integral invariant 1, the energy, given by

E = 1
2

∫

D
u2dτ , dτ = dx1dx2dx3 . (1.4)

Taking curl of equations (1.1) we obtain

ωt = [u, ω] (1.5)

where ω = ∇ × u is the vorticity, subscript t denotes the partial derivative ∂/∂t
and [u, ω] = ∇ × (u × ω) denotes a commutator of divergence-free vector fields
u and ω. Equation (1.5) implies that vortex lines are frozen in the fluid and, in
particular, that circulation of velocity round any closed material contour γ(t) is
conserved (Kelvin’s theorem), i.e.

Γ =
∮

γ(t)

u · dl = const . (1.6)

Steady flows. We now consider a steady solution of (2.1)-(2.3)

u = U(x) , p = P (x) , ω = Ω(x) ≡ ∇×U . (1.7)

From (1.1), (1.2) we have

Ω×U = −∇(P + 1
2U

2) , ∇ ·U = 0 . (1.8)

In addition to equation (1.8), U satisfies the boundary condition (1.3).

1For existence of another invariant, the helicity, one must assume that the vorticity ! ≡ curlu
is everywhere tangent to the boundary ∂D.
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Arnold’s isovorticity condition. Following Arnold [1965b], we consider a family
of volume-preserving transformations gε : x 7→ x̃ of the domain D to itself which
depend on a parameter ε and are defined by the solutions x̃(x, ε) of the equations

dx̃/dε = ξ(x̃, ε) (1.9)

with the initial data x̃|ε=0 = x. In equation (1.8), ξ is a divergence-free vector field
tangent to the boundary ∂D:

∇̃ · ξ = 0 in D , ξ · n = 0 on ∂D .

For small ε, the explicit form of the map gε is x̃(x, ε) = x + εξ(x, 0) + o(ε).
The transformation gε may be interpreted as a ‘virtual motion’ of the fluid

with ε playing the role of the ‘virtual time’, x̃(x, ε) being the position vector at the
moment of time ε of the fluid particle whose position at the initial instant ε = 0
was x and ξ representing the ‘virtual velocity’ of such a motion.

Let u1 and u2 be two velocity fields in D that are divergence-free and satisfy
the boundary condition (1.3). Following Arnold [1965b], we say that these fields
are isovortical if there exists a smooth, volume-preserving transformation gε of the
domain D which sends every closed contour γ to a new one gεγ in such a way that
the circulation of u1 round the original contour γ is equal to the circulation of u2

round its image gεγ under the transformation gε:
∮

γ

u1 · dl =
∮

gεγ

u2 · dl . (1.10)

To find the general form of infinitesimal variations the field u satisfying this con-
dition we introduce family of vector fields ũ(x̃, ε) such that the value ε = 0 corre-
sponds to the steady solution (1.7), i.e. ũ(x̃, ε)|ε=0 = U(x). For any ε, ũ(x̃, ε) is
divergence-free and parallel to D. Assuming that ε is small we define the first and
the second variations of the field u as

δu ≡ ũε

∣∣∣
ε=0

, δ2u ≡ 1
2 ũεε

∣∣∣
ε=0

.

For small ε the isovorticity condition (1.10) reduces to

Γ̃− Γ =
∮

gεγ

ũ · dl−
∮

γ

U · dl = ε
d
dε

∣∣∣∣
ε=0

Γ̃ + 1
2ε2

d2

dε2

∣∣∣∣
ε=0

Γ̃ + o(ε2) = 0 . (1.11)

From this, on using the formula (see e.g. Batchelor [1967])

d
dε

∮

gεγ

ũ · dl =
∮

gεγ

(
ũε − ξ × ω̃

)
· dl

we obtain∮

γ

{
ε
(
δu− ξ ×Ω

)
+ 1

2ε2
(
δ2u− χ×Ω

− ξ × δω − ξ × (δω − [ξ,Ω])
)}

· dl + o(ε2) = 0 ,

where χ(x) ≡ ξε|ε=0. Since γ is an arbitrary closed material line, we arrive at
conclusion that

δu = ξ ×Ω−∇α or δω = [ξ,Ω] , (1.12)
δ2u = ξ × δω + χ×Ω−∇β . (1.13)
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where α(x) and β(x) are scalar functions, which, in the case of singly-connected
domain D, are uniquely determined by the conditions

∇ · δu = ∇ · δ2u = 0 in D , δu · n = δ2u · n = 0 on ∂D .

Variational principle. Now we shall show that the first variation of energy (1.4)
with respect to variations of the velocity field u of the form (1.12), (1.13) vanishes.
We have

δE ≡ d
dε

∣∣∣∣
ε=0

=
∫

D
U · δudτ =

∫

D
U · (ξ ×Ω−∇α)dτ

=
∫

D
ξ · (Ω×U)dτ = −

∫

D
ξ · ∇(P + 1

2U
2)dτ = 0 .

We have thus proved the following.

Proposition 1.1 (Arnold, 1965) On the set of all flows isovortical to a given
steady flow (1.7) the energy functional (1.4) has a stationary value in this steady
flow.

The second variation. Let us now calculate the second variation of the energy
at the stationary point. We have

δ2E ≡ 1
2

d2

dε2

∣∣∣∣
ε=0

E =
∫

D

(
1
2 (δu)2 + U · δ2u

)
dτ .

After substitution of equation (1.13) and integration by parts, it may be shown
that all the terms containing χ vanish due to equations (1.8) and the boundary
conditions on ∂D for the fields χ, and U, and the second variation takes the form

δ2E = 1
2

∫

D

(
(δu)2 + δω · (U× ξ)

)
dτ . (1.14)

δ2E is a quadratic functional of the field ξ(x). If for a given steady flow (1.7) this
functional is definite in sign, it would mean that the energy (1.4) has a conditional
extremum in this flow, and this would imply at least linear stability of the flow.
Indeed, in the paper by Arnold [1966b] it has been shown that the second variation
(1.14) is an integral invariant of the corresponding linearized problem, provided
that δu is considered as an infinitesimal perturbation to the basic flow (1.7) that
obeys appropriate linearized equations.

Unfortunately, as recently has been shown by Rouchon [1991] and Sadun and
Vishik [1993], the second variation (1.14) is always indefinite in sign. There are
only two exceptions: (i) the basic flow is irrotational, then δω = 0, δu = −∇α,
and δ2E is always positive definite; (ii) the basic flow is a rigid rotation of the fluid
around a fixed axis, in this case one should consider a certain linear combination
of the energy and the angular momentum of the fluid whose second variation is
positive definite (see Arnold [1965b]). If however both the basic flow (1.7) and the
perturbation has a symmetry (translational, rotational or helical) then there are
known cases where δ2E is of definite sign (see Arnold [1965a,b], Holm et al [1985],
Vladimirov [1986], Marchioro and Pulvirenti [1994], Arnold and Khesin [1998]).

Consider for example two-dimensional problem. Both the basic flow (1.7) and
the perturbation have only two non-zero components and depend on only two co-
ordinates in the plane of motion, i.e. U = (U1(x, y), U2(x, y), 0), P = P (x, y) etc.
In this case, we may introduce stream function Ψ such that U1 = Ψx, U2 = −Ψy.
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Then, it follows from (1.8) that Ω = Ω(Ψ) where Ω = −∇2Ψ, and (1.14) reduces to

δ2E = 1
2

∫

D

(
(δu)2 − dΩ

dΨ
(ξ · ∇Ψ)2

)
dτ . (1.15)

Evidently, the second variation (1.15) is positive definite provided that dΩ/dΨ ≤ 0.

2 Variational principle and stability of steady states of the dynamical
system ‘rigid body + inviscid fluid’

In this section we shall show how Arnold’s principle can be generalized to the
case of the dynamical system ‘rigid body + inviscid fluid’.

We consider two general situations: (I) the system ‘body + fluid’ represents a
rigid body with a cavity filled with a fluid, (II) it represents a rigid body surrounded
by a fluid. In the first case the fluid is confined to an interior (for the body) domain.
In the second case it occupies an exterior domain, the latter in turn may be bounded
by some fixed rigid boundary or it may extend to infinity.

2.1 Governing equations. Consider a dynamical system consisting of an
incompressible, homogeneous and inviscid fluid and a rigid body. Let D be a
domain in three-dimensional space that contains both a fluid and a rigid body, and
let Db(t) be a domain (inside D, i.e. Db(t) ⊂ D) occupied by the body. The domain
Df (t) = D −Db(t) is completely filled with a fluid; its boundary ∂Df (t) consist of
two parts: the inner boundary ∂Db(t) representing the surface of the rigid body
and the outer boundary ∂D which is fixed in the space.

In general, motion of the rigid body may be restricted by some geometric con-
straints or may be not. The number of degrees of freedom is denoted by N where
necessarily N ≤ 6. Motion of the body is described by its generalized coordi-
nates qα(t) and velocities vα(t) = q̇α ≡ dqα/dt (α = 1, ..., N). Fluid motion is
described by velocity field ui(x, t) (i = 1, 2, 3) and the pressure field p(x, t), here
x ≡ (x1, x2, x3) are Cartesian coordinates. From here on we shall use two types of
indices, Greek and Latin. Greek indices take values from 1 to N and correspond
to finite-dimensional degrees of freedom of the system ‘body + fluid’, while Latin
indices take values from 1 to 3 and denote Cartesian components of vectors and
tensors. In the rest of the paper the summation is implied over repeated both Greek
and Latin indices.

We suppose that an external (with respect to the system ‘body + fluid’) force
is applied to the rigid body. This force is characterized by potential energy Π(qα).

The equations of motion for the fluid are the Euler equations (1.1), (1.2). Mo-
tion of the rigid body obeys the standard Lagrange equations of classical mechanics
that may be written in the form

d
dt

[
∂T

∂vα

]
− ∂T

∂qα
= − ∂Π

∂qα
+ Fα . (2.1)

In equation. (2.1), T (qα, vα) is the kinetic energy of the body given by the equation

T = 1
2Mwiwi + 1

2Iikσiσk , (2.2)

where Iik is the moment of inertia tensor; the velocity of the centre of mass w =
dr/dt and the angular velocity σ are considered as functions of the generalized
velocities vα and coordinates qα (if the constraints on the body are holonomic
and time-independent, as we shall always assume here, then kinetic energy T is a
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homogeneous quadratic form in the generalized velocities vα (see e.g. Goldstein
[1980]); Fα is given by the equation

Fα =
∫

∂Db

(
n · ∂r

∂qα
+

[(
x− r

)× n
] · ∂σ

∂vα

)
p dS (2.3)

and represents the α-component of the generalized force exerted on the body by the
fluid. In eqn. (2.3), n is the unit normal to the surface ∂Db; throughout the paper,
for all boundaries the direction of n is always taken to be outward with respect to
the fluid domain Df .

Remark. An instantaneous angular velocity σ of the rigid body is defined by
the equation

σi ≡ − 1
2eijk

dPjl

dt
Pkl

where eijk is the alternating tensor;
[
Pik

]
is an orthogonal matrix (PilPkl = δik)

representing rotation from the axes Ox1x2x3 of the coordinate system fixed in the
space to the axes O′x′1x

′
2x
′
3 of the coordinate system fixed in the body (with the

origin in its center of mass), so that the position vector x of a point in the body
relative to the space axes and the position vector x′ of the same point measured
by the body set of axes are related by the formula: xi = ri + Pijx

′
j . The rotation

matrix
[
Pik

]
is a function of the generalized coordinates qα; angular velocity σ can

therefore be expressed in the form

σi = − 1
2eijk

dPjl

∂qα
Pklvα . (2.4)

It is equation (2.4) that allows us to write the generalized force Fα in the form
(2.3).

Boundary condition (1.3) for velocity field u(x, t) is replaced by

u · n = 0 on ∂D , u · n =
(
w + σ × (x− r)

)
· n on ∂Db . (2.5)

Equations (1.1), (1.2), (2.1)-(2.3) with boundary conditions (2.5) give us the com-
plete set of equations governing the motion of the system ‘body + fluid’.

The conserved total energy of the system is given by

E = Ef + Eb = const , Eb ≡ T + Π ,

Ef ≡ 1
2

∫

Df

u2dτ , dτ ≡ dx1dx2dx3 . (2.6)

Basic state. Steady solutions of the problem (1.1), (1.2), (2.1)-(2.3), (2.5) given
by

vα = 0 , qα = Qα , r = R = 0 , u = U(x) , p = P (x) ,

w = W = 0 , σ = Σ = 0 , Pij = P0ij = δij (2.7)

satisfy the equations

Ω×U = −∇H , H ≡ P + 1
2U

2 , ∇ ·U = 0 in Df0 ; (2.8)

− ∂Π
∂Qα

+
∫

∂Db0

(
n · ∂R

∂Qα
+

[(
x−R

)× n
] · ∂Σ

∂Vα

)
P dS = 0 ; (2.9)

and boundary conditions

U · n = 0 on ∂D and on ∂Db0 . (2.10)
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This solution represents an equilibrium of the body in a steady rotational flow. In
eqns. (2.8)-(2.10) boundary ∂Db0 corresponds to the equilibrium position of the
rigid body. In obtaining equation (2.9) we used the fact that, according to (2.2),
(2.7), ∂T/∂Qα = 0.

2.2 Variational principle. We shall show that the total energy of the dy-
namical system ‘body + fluid’ has a stationary value at the steady solution (2.7) on
the set of all possible fluid flows that are isovortical to the basic flow. The isovortic-
ity condition is the same as in Arnold’s principle: we admit only such variations of
the velocity field u that preserve the velocity circulation over any material contour.
It is however more convenient to reformulate Arnold’s isovorticity condition in a
form first proposed in Vladimirov [1987b].

Consider a family of transformations

x̃ = x̃(x, ε) , q̃α = q̃α(ε) . (2.11)

depending on a parameter ε ≥ 0 where the functions x̃(x, ε) and q̃α(ε) are twice
differentiable with respect to ε and the value ε = 0 corresponds to the steady
solution (2.7):

x̃(x, 0) = x , q̃α(0) = Qα . (2.12)

The transformations defined by eqns. (2.11), (2.12) are similar to those introduced
in Section 1 and can be interpreted as a ‘virtual motion’ of the system ‘body +
fluid’ where ε plays the role of a ‘virtual time’, x̃(x, ε) is the position vector at the
moment of ‘time’ ε of a fluid particle whose position at the initial instant ε = 0
was x (in other words, x (x ∈ Df0) serves as a label to identify the fluid particle,
while x̃(x, ε) represents its trajectory) and where the functions q̃α(ε) determine
the position and the orientation of the rigid body at the moment of ‘time’ ε. In
such a ‘motion’, the domain Df0 = D̃f (0) evolves to a new one D̃f (ε) which is
completely determined by the position and the orientation of the rigid body, i.e.
by the generalized coordinates q̃α(ε).

Functions x̃(x, ε), q̃α(ε) are specified through yet another set of functions
ξ(x̃, ε), hα(ε) by the equations (cf (1.9))

dx̃/dε = ξ(x̃, ε) , dq̃α/dε = hα(ε) , (2.13)

where hα(ε) are arbitrary differentiable functions, while ξ(x̃, ε) is an arbitrary
divergence-free vector field differentiable with respect to ε and satisfying the con-
ditions

ξ · n = 0 on ∂D̃ , ξ · n =
[
r̃ε + ϕ̃ε ×

(
x̃− r̃

)] · n on ∂D̃b(ε) . (2.14)

In (2.14),

r̃ε ≡ ∂r̃
∂q̃α

hα , ϕ̃iε ≡ − 1
2eijk

∂P̃jl

∂q̃α
P̃klhα . (2.15)

In terms of ‘virtual motions’ the functions ξ(r̃, ε) and hα(ε) entering equations
(2.13) have a natural interpretation as the ‘virtual velocities’ of the fluid and the
rigid body. The conditions (2.14) mean that in the ‘virtual motion’ there is no fluid
flow through the rigid boundaries.

The actual velocity field of the fluid and the actual generalized velocities of
the rigid body in the ‘virtual motion’ are described by twice differentiable (with
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respect to ε) functions ũ(x̃, ε) and ṽα(ε) such that the value ε = 0 corresponds to
the steady state (2.7):

ũ(x̃, ε)
∣∣∣
ε=0

= U(x) , ṽα(ε)
∣∣∣
ε=0

= 0 . (2.16)

In addition, the field ũ(x̃, ε) satisfies the conditions

∇̃ · ũ = 0 in D̃f , ũ · n = 0 on ∂D̃ ,

ũ · n =
(
w̃ + σ̃ × (x̃− r̃)

)
· n on ∂D̃b(ε) , (2.17)

where, as before, w̃, σ̃ are considered as functions of ṽα(ε) and q̃α(ε). The evolution
with the ‘time’ ε of the generalized velocities ṽα(ε) is prescribed by the equation

dṽα/dε = gα(ε) (2.18)

with some differentiable function gα(ε). Note that the functions gα(ε) and hα(ε)
which determine the evolution in the ‘virtual motion’ of the generalized velocities
and coordinates are both arbitrary, so that ṽα(ε) and q̃α(ε) vary independently.

The evolution of the field ũ(x̃, ε) is defined through the evolution of vorticity
ω̃(x̃, ε) ≡ ∇̃ × ũ by the equation

ω̃ε = [ξ, ω̃] . (2.19)

Equation (2.19) means that the vorticity field ω̃ is considered as a passive vector
advected by the ‘virtual flow’ rather than as a field related with the ‘virtual velocity’
ξ by curl-operator; in other words, the evolution of ω̃ is the same as that of a
material line element δl or as the evolution of a frozen-in magnetic field in ideal
MHD. Yet another meaning of the equation (2.19) is that the circulation of the
velocity field ũ(x̃, ε) round any closed material curve is conserved in the ‘virtual
motion’, this, in turn, implies that equation (2.19) is equivalent to Arnold’s original
isovorticity condition (see Section 1).

On integrating equation (2.19) we obtain (cf (1.12))

ũε = ξ × ω̃ − ∇̃α (2.20)

with a certain function α(x̃, ε) which can be found from the conditions on ũε that
follows from (2.17).

Remark. Though equation (2.20) also could be used as a primary condition for
defining the evolution of the field ũ(x, ε), from a view-point of physical interpreta-
tion equation (2.19) seems preferable.

Assuming that ε is small we define the first and the second variations of the
velocity field of the fluid u and the generalized velocities and coordinates of the
rigid body vα, qα as follows

δx ≡ ξ|ε=0 , δu ≡ ũε|ε=0 , δ2u ≡ 1
2 ũεε|ε=0 , δvα ≡ vαε|ε=0 etc. (2.21)

In (2.21), δx is the Lagrangian displacement of the fluid element whose position at
time t in the undisturbed flow was x. The first and the second variations of the
energy (2.6) considered as a functional of ũ(x̃, ε), ṽα(ε), q̃α(ε) are, by definition,

δE ≡ dE/dε
∣∣∣
ε=0

, δ2E ≡ 1
2d2E/dε2

∣∣∣
ε=0

.

The first variation of E is

δE = δEf + δEb .
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From (2.2) it follows that

δEb = MWiδwi + 1
2δIikΣiΣk + IikΣiδσk +

∂Π
∂Qα

δqα , (2.22)

where

δw =
∂W
∂Qα

δqα +
∂W
∂Vα

δvα , δσ =
∂Σ
∂Qα

δqα +
∂Σ
∂Vα

δvα , δIik =
∂Iik

∂Qα
δqα .

Since in the basic state (2.7) W = Σ = 0, we obtain

δEb =
∂Π
∂Qα

δqα . (2.23)

To calculate δEf we first note that

d
dε

∫

D̃f (ε)

F (x̃, ε)dτ =
∫

D̃f (ε)

Fεdτ +
∫

∂D̃b(ε)

F
(
ξ · n)

dS

for any function F (x̃, ε) (see e.g. Batchelor [1967]). With help of this formula we
obtain

d
dε

∣∣∣
ε=0

Ef =
∫

Df0

{
ξ ·

(
Ω×U

)
+ U · ∇α

}
dτ +

∫

∂D̃b0

1
2U

2
(
ξ · n)

dS .

By using (2.8), Green’s theorem and the boundary conditions (2.14), this can be
transformed to

d
dε

∣∣∣
ε=0

Ef = −
∫

∂D̃b(0)

P
[
δr + δϕ× (

x− r
)] · ndS . (2.24)

Finally, from (2.23), (2.24) we have

δE =
∂Π
∂Qα

δqα −
∫

∂Db0

P
(
δr + δϕ× (

x− r
)) · ndS . (2.25)

The comparison of (2.25) with (2.9) then shows that δE = 0. Thus, we have proved
the following.

Proposition 2.1 The energy of the system ‘body + fluid’ has a stationary
value at any steady solution of the form (2.7) provided that we take account only of
‘isovortical’ fluid flows.

This result is a natural generalization of Arnold’s variational principle to the
dynamical system ‘body + fluid’.

2.3 The second variation. The second variation of the energy (2.6) evalu-
ated at the stationary point is given by the expression Vladimirov and Ilin [1997a]

δ2E = δ2EA + δ2Ec + δ2Eb ,

δ2EA ≡ 1
2

∫

Df0

{(
δu

)2 + U · (δx× δω
)}

dτ ,

δ2Ec ≡ 1
2

∫

∂Db0

{
2U · δu− δy · ∇P

}(
δy · n)

dS + 1
2

∫

∂Db0

(
δy · n)(

δx · ∇H
)
dS

− 1
2

∫

∂Db0

P
{
n · [δr× δϕ

]
+ Aαβδqαδqβ + Bαβδqαδqβ

}
dS ,

δ2Eb ≡ 1
2Mδwiδwi + 1

2Iikδσiδσk + 1
2

∂2Π
∂Qα∂Qβ

δqαδqβ , (2.26)
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where δy ≡ δr + δϕ × x is the displacement of a point on the body surface and
where

Aαβ ≡ n ·Rαβ , Bαβ ≡ n · [Σαβ × x
]
,

Rαβ ≡ ∂2R
∂Qα∂Qβ

, Σαβ ≡ ∂2Σ
∂Vα∂Qβ

. (2.27)

In (2.26) δ2EA is precisely Arnold’s second variation of the energy of the fluid in the
fixed domain Df0; δ2Eb involves only the variations of the generalized coordinates
and velocities of the rigid body; δ2Ec depend on the variations of fluid variables
and rigid body variables, so it may be interpreted as the part of δ2E appearing due
to interaction between the body and the flow.

The remarkable fact about the second variation δ2E is that if we consider
the variations δx, δu and δqα as the infinitesimal disturbances, whose evolution
is governed by appropriate linearized equations, then δ2E is an invariant of these
equations (see Arnold [1966b]). From this fact it immediately follows that the
basic state (2.7) is linearly stable provided that δ2E is positive definite. The linear
stability problem thus reduces to the analysis of the second variation.

Euler angles. Now consider the situation when no constraints are imposed on
the motion of the rigid body. In this case it is natural to take as the generalized
coordinates three Cartesian components of the radius-vector of the centre of mass
of the body and three Euler angles φ, θ, ψ that characterize the orientation of the
body in space. In defining the Euler angles we shall use the xyz-convention (as it
described in the book by Goldstein [1980]), so that they are specified by an initial
rotation about the original z axis through an angle φ, a second rotation about the
intermediate y axis through an angle θ, and a third rotation about the final x axis
through an angle ψ. With this choice the components of the angular velocity σ
along the space axis are (see Goldstein [1980], p. 610)

σ1 = ψ̇ cos θ cos φ− θ̇ sin φ , σ2 = ψ̇ cos θ sin φ + θ̇ cosφ , σ3 = φ̇− ψ̇ sin θ .
(2.28)

Now qα = (r,φ), vα = (ṙ, φ̇) where we use the notation φ = (φ1, φ2, φ3) ≡ (ψ, θ, φ).
The expression for the second variation given by eqns. (2.26) remains almost un-
changed except that now δϕ = δφ, δw = δṙ, δσ = δφ̇ = (δψ̇, δθ̇, δφ̇), Aαβ = 0 and
Bαβδqαδqβ = B̃ikδφiδφk where matrix [B̃ik] is given by

[
B̃ik

] ≡



0 −ez · (x× n) ey · (x× n)
−ez · (x× n) 0 −ex · (x× n)
ey · (x× n) −ex · (x× n) 0




Moreover, with help of the equilibrium condition (2.9) it can be shown that

− 1
2

∫

∂Db0

PB̃ikδφiδφkdS = Πψδθδφ−Πθδψδφ + Πφδψδθ

where Πφi ≡ ∂Π/∂φi at r = 0, φ = 0.
δ2E for a spherical body. Consider a particular case of the spherical body of

radius a. Evidently, no torque is exerted on the spherical body by an inviscid fluid.
We suppose that the potential Π = Π(r) is independent of the Euler angles (i.e.
no external moment of force is applied to the body). Then the Euler angles of the
body are cyclic coordinates and can therefore be ignored. This means that in (2.26)
all terms with the variations of the Euler angles can be discarded and the second
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variation simplifies to

δ2E = δ2EA + δ2Ec + δ2Eb ,

2δ2EA =
∫

Df0

{(
δu

)2 + U · (δx× δω
)}

dτ ,

2δ2Ec =
∫

∂Db0

{
2U · δu− δr · ∇P

}(
δr · n)

dS +
∫

∂Db0

(
δr · n)(

δx · ∇H
)
dS ,

2δ2Eb = Mδṙiδṙi +
∂2Π

∂Ri∂Rk
δriδrk . (2.29)

If, in addition, the basic flow is such that Ω · n = 0 on ∂Db0, then it can be shown
from eqn. (2.8) that H = const on ∂Db0, and δ2Ec in (2.29) reduces to the equation

2δ2Ec =
∫

∂Db0

{
2U · δu + δr · ∇(

1
2U

2
)}(

δr · n)
dS .

Rigid body with fluid-filled cavities. All the results described above were ob-
tained for a rigid body placed in an arbitrary rotational inviscid flow. However it
is easy to see that these results are equally valid for a rigid body with a cavity
containing an ideal fluid. The only difference between these two problems lies in
interpreting the boundary ∂Db, namely, for a body with a fluid-filled cavity we con-
sider the surface ∂Db as an internal (for the body) boundary which represents the
boundary of the cavity, i.e. ∂Db is an outer boundary of the fluid domain Df which
is completely filled with a fluid. With this interpretation the basic state given
by equations (2.7)-(2.9) represents an equilibrium of a rigid body with a cavity
containing a fluid which in turn is in a steady motion with velocity field U(x).

Remark. Evidently, the theory developed in the previous sections can be easily
modified to cover the situation when there are n rigid bodies in a fluid or the
situation when a cavity in the rigid body contains fluid and other rigid bodies.

For a general three-dimensional basic state (2.7) the second variation given
by (2.26) (and by (2.29) for a spherical body) is indefinite in sign. Nevertheless,
for some particular situations (such as a body in an irrotational flow, a force-free
rotation of a body with fluid-filled cavity and some two-dimensional problems), it
is possible to find sufficient conditions for sign-definiteness of δ2E and, hence, to
prove the linear stability of corresponding steady states (see Vladimirov and Ilin
[1994], Vladimirov and Ilin [1997a]).

3 Flows with contact discontinuities

In this section we shall discuss variational principles for steady flows of an ideal
incompressible fluid with contact discontinuities. We shall consider two examples
of such flows: steady flows of two-layer fluid and steady flows with discontinuities
of vorticity.

3.1 Basic equations. Let D be a fixed in space three-dimensional domain
containing two immiscible homogeneous fluids with (constant) densities ρ+ and
ρ−, and let D+(t) ⊂ D and D−(t) ⊂ D (D = D+∪D−) be the domains occupied by
each fluid and a smooth surface S(t) be the surface of contact of these two fluids.

The velocity u±(x, t) of each fluid and the pressure p±(x, t) obey the Euler
equations

ρ±
(
u±t + ω± × u±

)
= −∇H± ,

∇ · u± = 0 , H± = 1
2ρ±|u±|2 + p± + ρ±Φ in D±(t) , (3.1)
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where Φ(x) is a given potential of an external body force.
Boundary conditions for equations (3.1) are

u± · n = 0 on S± = ∂D± ∩ ∂D ; (3.2)[
u · n]

= 0 ,
[
p
]

= 0 on S(t) . (3.3)

In (3.2), n is a unit outward normal to the fixed boundary ∂D; in (3.3), n is
a unit normal to the moving boundary S(t), its direction being taken so that n
is an outward normal for the domain D+; square bracket denotes a jump of the
corresponding quantity on S(t), e.g. [p] = p+ − p− on S(t). Boundary condition
(3.2) is the usual one of no normal flow through a fixed boundary and conditions
(3.3) are the standard kinematic and dynamic conditions on a moving boundary.

We shall assume that the contact surface can be described by the equation

F (x, t) = 0 , |∇F (x, t)| 6= 0 .

Then the evolution of this surface is governed by the equation
(
∂/∂t + u± · ∇)

F = 0 at F (x, t) = 0 . (3.4)

Note that the condition
[
u · n]

= 0 on S(t) is a direct consequence of (3.4).
Steady flows of two-layer fluid. Consider a steady solution of the problem (3.1)-

(3.3), given by

u± = U±(x) , p± = P±(x) , ω± = Ω±(x) ,

H± = H±
0 (x) = 1

2ρ±|U±|2 + P± + ρ±Φ , F (x, t) = F0(x) . (3.5)

In the steady flow (3.5),

ρ±Ω± ×U± = −∇H±
0 , ∇ ·U± = 0 in D±0 ; (3.6)

U± · n = 0 on S± ,
[
U · n]

= 0 ,
[
P

]
= 0 on S0 . (3.7)

Since in the steady flow (3.5) the contact surface is not moving (F = F0(x)), it
follows from (3.4) that

U± · n = 0 on S0 . (3.8)

3.2 Variational principle. Consider a one-parameter family of transforma-
tions of D defined via corresponding transformations of the domains D±

x± 7→ x̃± = x̃±(x, ε) , D± 7→ D̃± , S 7→ S̃ , (3.9)

such that

x̃±|ε=0 = x , D̃±|ε=0 = D±0 , S̃|ε=0 = S0, . (3.10)

Functions x̃±(x, ε) are the solutions of ordinary differential equations

dx̃±/dε = ξ±(x̃±, ε) (3.11)

with initial data given by (3.10). In equation (3.11), ξ±(x̃±, ε) are arbitrary
divergence-free vector fields satisfying the following boundary conditions:

ξ± · n = 0 on S± ,
[
ξ · n]

= 0 on S̃ . (3.12)

As before (see Sections 1, 2), such a transformation may be viewed as a virtual
motion of a two-layer fluid.

For the considered problem Arnold’s isovorticity condition (1.10) remains al-
most the same. Only one correction is necessary, namely: we consider only such
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closed curves γ (see (1.10)) that do not intersect the contact surface S, or, in other
words, that entirely lie either in D+ or in D−. Then, from (1.12), (1.13), we have

δu± = ξ± ×Ω± −∇α± or δω± = [ξ±,Ω±] , (3.13)

δ2u± = ξ± × δω± + χ± ×Ω± −∇β± . (3.14)

Scalar functions α(x) and β(x) are determined by the conditions that ∇ · δu± =
∇ · δ2u± = 0 in D±0 , δu± · n = δ2u± · n = 0 on S± and and by the boundary
conditions on S0 that may be obtained by differentiating the condition

[
ũ · n]

= 0
on S̃ with respect to ε at ε = 0.

Variational principle. Let us show that the first variation of the energy

E =
∫

D+
ρ+

(
1
2 |u+|2 + Φ

)
dτ +

∫

D−
ρ−

(
1
2 |u−|2 + Φ

)
dτ (3.15)

with respect to variations of the form (3.13), (3.14) vanishes in the steady state
(3.5).

We have

δE =
∑ ∫

D±
ρ±U± · δu±dτ +

∫

S0

(ξ · n)
[
1
2ρU2 + ρΦ

]
dS .

Here
∑

denotes the sum of the corresponding integrals over the domains D±.
Substitution of (3.13) in this equation results in

δE =
∑∫

D±
ρ±U± ·

(
ξ± ×Ω± −∇α

)
dτ +

∫

S0

(ξ · n)
[
1
2ρU2 + ρΦ

]
dS

= −
∑ ∫

D±
ρ±ξ± · ∇H±dτ +

∫

S0

(ξ · n)
[
1
2ρU2 + ρΦ

]
dS

= −
∫

S0

(ξ · n)
([

H
]
+

[
1
2ρU2 + ρΦ

])
dS = −

∫

S0

(ξ · n)
[
P

]
= 0 .

Thus, the following assertion is valid.

Proposition 3.1 With respect to variations isovortical to a given steady state
(3.5) the energy functional (3.15) has a critical point in this steady state.

The second variation. It can be shown that the second variation of the energy
evaluated in the steady state (3.5) is given by the equation

δ2E = 1
2

∑ ∫

D±
ρ±

(
(δu±)2 + δω± · (U± × ξ

))
dτ

+ 1
2

∫

S0

(ξ · n)
(
2
[
ρU · δu]

+
[
ξ · ∇(

1
2ρU2 + ρΦ

)])
dS . (3.16)

In general, this second variation is indefinite in sign. There are however certain
particular situations (including particular classes of variations) for which it is def-
inite in sign. We shall not discuss all of them here. Instead, we shall concentrate
our efforts on one important subclass of flows with contact discontinuities - on flows
with discontinuous vorticity.

3.3 Flows with vorticity discontinuities. Consider a special subclass of
flows with contact discontinuities, namely, flows with continuous density, pressure,
and velocity and with contact discontinuities of vorticity. Evolution with time of
such flows is governed by equations (3.1) with ρ+ = ρ− = ρ. Boundary conditions
(3.2) on the fixed boundary D remains the same. The only difference from the
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general situation considered above is that, in addition to (3.3), we impose one more
restriction: tangent to S(t) components of velocity are also continuous, i.e.[

u · σα

]
= 0 (α = 1, 2) on S(t) , (3.17)

where σα (α = 1, 2) are independent unit vectors tangent to S(t).
Steady flows. Consider now a steady solution (3.5) of the problem (3.1)-(3.3),

(3.17) that satisfy (3.6)-(3.8) and, in addition, the following conditions[
U · σα

]
= 0 (α = 1, 2) , on S0 . (3.18)

Boundary conditions (3.8) and (3.18) impose a certain restriction on possible dis-
continuities of vorticity. Note first that, in view of (3.7), (3.8) and (3.18), [H0] = 0
on S0, and therefore [σα · ∇H0] = 0 on S0. On taking scalar product of equation
(3.6) with σα and using (3.8), we obtain(

U · σβ

)
ρΩ± · (σβ × σα

)
= −σα · ∇H±

0 .

whence, with help of the formula

eαβn =
σα × σβ

|σ1 × σ2|
(where eαβ is a unit alternating tensor), we find that

eβα

(
U · σβ

)
ρ
[
Ω · n]

/|σ1 × σ2| = −[
σα · ∇H0

]
= 0 . (3.19)

Therefore, in the steady flow (3.5) the vorticity field can have only tangent discon-
tinuity on S0: [

Ω · n]
= 0 ,

[
Ω · σα

] 6= 0 (α = 1, 2) on S0 . (3.20)

Similarly, it can be shown that another consequence of (3.7), (3.8) and (3.18) is[
n · ∇P

]
= 0 on S0 . (3.21)

One more formula useful formula[
n · ∇H0

]
= −ρ|σ1 × σ2|eαβ

[
Ω · σα

]
(U · σβ) (3.22)

is obtained by taking scalar product of equation (3.6) with n.
The second variation of the energy. Variational principle of previous subsection

still holds for steady flows with vorticity discontinuities. But now we do not need
to consider discontinuous fields ξ(x̃, ε) and ũ(x̃, ε), so that we assume that they are
continuous [

ξ · n]
=

[
ξ · σα

]
=

[
ũ · n]

=
[
ũ · σα

]
= 0 on S̃ ,

and, hence,[
ξ · n] ∣∣

ε=0
=

[
ξ · σα

] ∣∣
ε=0

=
[
δu · n]

=
[
δu · σα

]
= 0 on S0 . (3.23)

In view of (3.18), (3.20)-(3.23), the second variation (3.16) simplifies to

δ2E = 1
2

∑ ∫

D±
ρ
(
(δu)2 + δω± · (U× ξ

))
dτ

− 1
2

∫

S0

ρ(ξ · n)2|σ1 × σ2|eαβ

[
Ω · σα

]
(U · σβ)dS . (3.24)

If there is no discontinuity of vorticity then, evidently, (3.24) reduces to Arnold’s
second variation (1.14). The second variation (3.24) is, in general, indefinite in sign
because of the volume integrals in (3.26). As in Arnold’s case, if both the basic
flow and the perturbation have a symmetry then there are situations when δ2E is
definite in sign.
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Two-dimensional problem. Let both the basic steady flow and the variations
be two-dimensional, i.e. the fields U, ξ, have only two non-zero components and
depend only on two coordinates on the plane of motion, then

U = (U1(x, y), U2(x, y), 0) , Ω± = Ω±0 ez , F0 = F0(x, y) ,

σ1 = ez , σ2 = n× ez n = ∇F0/|∇F0| at F0 = 0 . (3.25)

Let Ψ be stream function for U such that U1 = Ψx, U2 = −Ψy. Then, the vorticity
Ω±0 = −∇2Ψ and stream function Ψ are functionally dependent Ω±0 = Ω±(Ψ) and
the second variation (3.24) takes the form

δ2E = 1
2

∑∫

D±
ρ
(
(δu)2 − dΩ±0

dΨ
(ξ · ∇Ψ)2

)
dτ

− 1
2

[
Ω0

] ∫

S0

ρ(ξ · n)2|U|dS . (3.26)

It is clear that δ2E is positive definite provided that

dΩ±0 /dΨ < 0 in D± ,
[
Ω0

]
< 0 on S0 . (3.27)

Thus, we can formulate the following.

Proposition 3.2 A two dimensional steady flow with discontinuity of vorticity
along a contact line S0 is linearly stable to two-dimensional isovortical perturbations
provided that the conditions (3.27) are satisfied.

In a particular case of a flow with piecewise constant vorticity (Ω+
0 = const in

D+, Ω−0 = const in D−), these sufficient conditions for stability reduce to only one
condition on the sign of the vorticity jump across S0: [Ω0

]
< 0.

More examples of stable two-dimensional flows with discontinuous vorticity,
can be found in Vladimirov [1988].

4 Ideal magnetohydrodynamics

Here we discuss a variational principle for a steady three-dimensional magne-
tohydrodynamic flow of an ideal incompressible fluid which is a generalization of
Arnold’ principle for a steady three-dimensional inviscid flow. We formulate a cer-
tain ‘generalized isovorticity condition’ and then show that on the set of all possible
velocity fields and magnetic fields satisfying this condition the energy has a critical
point in a steady solution of the governing equations. The second variation of the
energy is calculated. The ‘modified vorticity field’ introduced by Vladimirov and
Moffatt [1995] and its connection with present analysis is also discussed.

4.1 Basic equations. Consider an incompressible, inviscid and perfectly con-
ducting fluid contained in a domain D with fixed boundary ∂D. Let u(x, t) be the
velocity field, h(x, t) the magnetic field (in Alfven velocity units), p(x, t) the pres-
sure (divided by density), and j = ∇× h the current density. Then the governing
equations are

Du ≡
(
∂/∂t + u · ∇

)
u = −∇p + j× h , (4.1)

ht = [u,h] ≡ ∇× (u× h) , (4.2)

∇ · u = ∇ · h = 0 . (4.3)

Equation (4.2) implies that h is frozen in the fluid, its flux through any material
surface is conserved. We suppose that the boundary ∂D is perfectly conducting
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and therefore the magnetic field h does not penetrate through ∂D. The boundary
conditions are then

n · u = 0 , n · h = 0 on ∂D . (4.4)

We suppose further that at t = 0, the fields u and h are smooth and satisfy (4.3)
and (4.4), but are otherwise arbitrary.

The equations (4.1)-(4.3) with boundary conditions (4.4) have three quadratic
integral invariants: the energy

E = 1
2

∫

D

(
u2 + h2

)
dτ , (4.5)

the magnetic helicity

HM =
∫

D
(h · curl−1h)dτ , (4.6)

and the cross-helicity

HC =
∫

D
(u · h)dτ (4.7)

(Woltjer 1958). By arguments of Moffatt [1969], the helicities HM and HC are both
topological in character.

Taking curl of equation (4.1) we obtain

ωt = [u,ω] + [j,h] , (4.8)

where ω = ∇ × u is the vorticity field. Equation (4.8) implies that vortex lines
are not frozen in the fluid unless the Lorentz force j × h is irrotational. However,
the flux of vorticity through any material surface bounded by a closed magnetic
line (which, according to (4.2), is also a material line) is conserved. This fact has a
consequence that the circulation of the velocity round any closed h-line is conserved:

Γh =
∮

γh(t)

u · dl = const . (4.9)

In (4.9), γh(t) is a closed h-line. The invariants Γh will play the key role in the
subsequent analysis.

Steady MHD flows. We now consider a steady solution of (4.1)-(4.4)

u = U(x) , h = H(x) , p = P (x) , (4.10)

and the associated fields

ω = Ω(x) ≡ ∇×U , j = J(x) ≡ ∇×H . (4.11)

From (4.1), (4.2), we have

Ω×U− J×H = −∇K , U×H = −∇I , (4.12)

where K ≡ P + 1
2U

2 and I is an arbitrary scalar function. Note that, according to
(4.4),(4.12), the function I is constant on the boundary ∂D provided that U is not
parallel to H on D.
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4.2 Variational principle. We shall establish a variational principle for a
steady MHD flow which is similar to Arnold’s variational principle for a steady
three-dimensional flow of an ideal incompressible fluid (see Section 1). First we
shall define a set of MHD flows that are subject to a certain ‘generalized isovorticity
condition’. And then we shall show that the energy (4.5) restricted on such a set
has a stationary value in the steady solution (4.10).

As in formulation of Arnold’s principle (see Section 1), we introduce the family
of volume-preserving transformations gε : x 7→ x̃ of the domain D to itself which
depend on a parameter ε and are defined by the solutions x̃(x, ε) of the equations
(1.9) with the same initial data x̃|ε=0 = x.

Generalized isovorticity condition. Let (u1, h1) and (u2, h2) be two pairs of
velocity fields and magnetic fields. We say that these pairs of the fields are isovorti-
cal in generalized sense if there is a transformation gε of the domain D which sends
every closed contour γ to a new one gεγ in such a way that

1. the flux of the magnetic field h2 through the new contour is the same as the
flux of the field h1 through the original one:

∫

S

h1 · dS =
∫

gεS

h2 · dS , (4.13)

where S is any surface bounded by the curve γ and gεS is its image under
the transformation gε;

2. the circulation of the velocity u1 round the original closed h-line γh is equal
to the circulation of u2 round its image gεγh under the transformation gε:

∮

γh

u1 · dl =
∮

gεγh

u2 · dl . (4.14)

To find the general form of infinitesimal variations of the fields u and h that satisfy
the ‘generalized isovorticity condition’ (expressed by (4.13), (4.14)) we introduce
another family of transformations ũ(x̃, ε), h̃(x̃, ε) such that the value ε = 0 corre-
sponds to the steady solution (4.10):

ũ(x̃, ε)
∣∣∣
ε=0

= U(x) , h̃(x̃, ε)
∣∣∣
ε=0

= H(x) .

The fields ũ(x̃, ε), h̃(x̃, ε) satisfy the following conditions:

∇̃ · ũ = 0 , ∇̃ · h̃ = 0 in D , ũ · n = 0 , h̃ · n = 0 on ∂D .

The first and the second variations of the fields u and h are given by

δu ≡ ũε

∣∣∣
ε=0

, δ2u ≡ 1
2 ũεε

∣∣∣
ε=0

, δh ≡ hε

∣∣∣
ε=0

, δ2h ≡ 1
2hεε

∣∣∣
ε=0

.

For small ε the generalized isovorticity conditions (4.13), (4.14) reduce to (cf (1.11))

ε
d
dε

∣∣∣∣
ε=0

∫

gεS

h̃ · dS + 1
2ε2

d2

dε2

∣∣∣∣
ε=0

∫

gεS

h̃ · dS + o(ε2) = 0 , (4.15)

ε
d
dε

∣∣∣∣
ε=0

∫

gεγh

ũ · dl + 1
2ε2

d2

dε2

∣∣∣∣
ε=0

∫

gεγh

ũ · dl + o(ε2) = 0 . (4.16)

From (4.15), using the formula (see e.g. Batchelor [1967])

d
dε

∫

gεS

h̃ · dS =
∫

gεS

(
h̃ε + (ξ · ∇)h̃− (h̃ · ∇)ξ

)
· dS ,
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we obtain∫

S

{
ε
(
δh− [ξ,H]

)
+ 1

2ε2
(
δh− [χ,H]

− [ξ, δh]− [
ξ, δh− [ξ,H]

])}
· dS + o(ε2) = 0 .

Whence, using the fact that S is an arbitrary material surface, we deduce that

δh = [ξ,H] , δ2h = [ξ, δh] + [χ,H] , χ ≡ ξε

∣∣∣
ε=0

. (4.17)

Note that the variations δh, δ2h satisfy the conditions

∇ · δh = ∇ · δ2h = 0 in D , δh · n = δ2h · n = 0 on ∂D .

From (4.16), we obtain
∮

γh

{
ε
(
δu− ξ ×Ω

)
+ 1

2ε2
(
δ2u− χ×Ω

− ξ × δω − ξ × (δω − [ξ,Ω])
)}

· dl + o(ε2) = 0 . (4.18)

Since γh is an arbitrary closed h-line we conclude that

δu = ξ ×Ω + η ×H−∇α or, equivalently, δω = [ξ,Ω] + [η,H] , (4.19)

where η is an arbitrary divergence-free, tangent to the boundary vector field that
appears in (4.19) due to the fact that γh is a closed h-line, not an arbitrary material
line 2; and where the scalar function α is uniquely (in the case of singly-connected
domain) determined by the fact that δu is a divergence-free and tangent to the
boundary field.

Derivation of the formula for the second variation of u is somewhat more tricky.
From (4.18), we obtain

2δ2u = χ×Ω + ξ × δω + ξ × (δω − [ξ,Ω]) + f ×H−∇β , (4.20)

where f is an arbitrary divergence-free, tangent to the boundary vector field.
Further, we have

J ≡
∮

γh

(
ξ × (

δω − [ξ,Ω]
)) · dl =

∮

γh

(
ξ × [η,H]

)
· dl by (4.19)

=
∫

Sh

(
∇× (

ξ × [η,H]
)) · dS =

∫

Sh

[
ξ, [η,H]

] · dS by Stokes’ formula

= −
∫

Sh

([
H, [ξ, η]

]
+

[
η, [H, ξ]

] · dS by Jacobi identity

=
∫

γh

(
η × δh + [ξ, η]×H

)
· dl by Stokes’ formula

(4.21)

Noting that the last term in (4.21) vanishes since H is parallel to dl on γh (or, in
other words, it can be absorbed in term f ×H entering (4.20)), we find that

2δ2u = χ×Ω + ξ × δω + f ×H + η × δh−∇β , (4.22)

2To satisfy the condition (4.18) it is not necessary for � to be a divergence-free field, so that
this property is our assumption. We shall use it below while calculating the first variation of the
energy functional.
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Variational principle. Now we shall show that the first variation of the energy
(4.5) vanishes with respect to variations of the fields h, u of the form (4.17), (4.19).
We have

δE ≡ dE

dε

∣∣∣∣
ε=0

=
∫

D

(
U · δu + H · δh

)
dτ

=
∫

D

(
U · (ξ ×Ω + η ×H−∇α) + H · (∇× (ξ ×H))

)
dτ

=
∫

D

(
ξ · (Ω×H− J×H)− η · (U×H)

)
dτ

=
∫

D

(
−ξ · ∇K + η · ∇I

)
dτ = 0 . (4.23)

We have thus proved the following.

Proposition 4.1 On the set of all possible fields h and u satisfying the gen-
eralized isovorticity conditions (4.13), (4.14) the energy functional (4.5) has a sta-
tionary value in the steady state (4.10).

4.3 The second variation. . Let us now calculate the second variation of
the energy at the stationary point. We have

δ2E ≡ 1
2

d2E

dε2

∣∣∣∣
ε=0

=
∫

D

(
1
2 (δu)2 + 1

2 (δh)2 + U · δ2u + H · δ2h
)
dτ .

After substitution of the equations (4.17), (4.22) and integration by parts, it may
be shown that all the terms containing χ and f vanish due to the equations (4.12)
and the boundary conditions on ∂D for the fields χ, U and H and the second
variation takes the form

δ2E = 1
2

∫

D

(
(δu)2 + (δh)2 + δω · (U× ξ) + δh · (U× η + J× ξ)

)
dτ . (4.24)

Suppose now that δu and δh are identified with infinitesimal perturbations to the
basic steady state (4.10) whose evolution is governed by the appropriate linearized
equations. Then the following statement holds.

Proposition 4.2 The second variation (4.24) is an integral invariant of the
corresponding linearized problem.

This proposition is an MHD counterpart of the corresponding result by Arnold
[1966]. It follows from the general geometric theory of Khesin and Chekanov [1989].
For the direct proof which is nothing but the calculation of the time derivative of
δ2E on a solution of the linearized problem we refer to Vladimirov and Ilin [1997b],
Vladimirov, Moffatt and Ilin [1998].

It follows from this proposition that the steady state (4.10) is linearly stable
provided that the second variation (4.24) is definite in sign. In contrast with ideal
hydrodynamics, there are steady three-dimensional MHD flows for which δ2E is
positive definite, and which, therefore, are linearly stable to small three-dimensional
perturbations satisfying the generalized isovorticity condition. Examples of stable
MHD flows may be found in Friedlander and Vishik [1995], Vladimirov, Moffatt
and Ilin [1998].
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4.4 Another form of variational principle for steady MHD flows. The
theory developed above heavily uses the fact that the circulation of velocity round
any closed h-line is conserved. It is known, however, that the situation when
magnetic lines are all closed is very particular, usually even in steady MHD flows
almost all magnetic lines are not closed. It is necessary therefore to modify our
theory so as to cover such situations.

The field η turns out to be closely related with a certain generalization of the
vorticity for MHD flows, namely with the ‘modified vorticity field’ w introduced by
Vladimirov and Moffatt [1995]. We therefore start with a new approach (different
from that of Vladimirov and Moffatt [1995]) to introducing the field w.

Modified vorticity field. The variational principle of section 4.2 was based on
the fact that the circulation Γh of velocity round any closed h-line is conserved. It
is easy to see that Γh is invariant with respect to transformations of the form

u → v = u + h×m +∇c (4.25)

where m is an arbitrary divergence-free, tangent to the boundary vector field and
c is an arbitrary single-valued function. In what follows c will not play any role, so
that we simply take c = 0.

It is natural to ask a question whether it is possible to find a field m such
that the circulation of the ‘modified velocity field’ v (v = u + h ×m) round any
material contour (not only round those ones which coincide with closed h-lines) is
conserved. The answer to this question is affirmative. To show this, we define a
‘modified vorticity field’ w:

w ≡ ∇× v = ω + [h,m] . (4.26)

The conservation of the circulation of v round any material contour is equivalent
to the following equation for w:

wt = [u,w] . (4.27)

According to (4.26), this implies that

ωt + [ht,m] + [h,mt] = [u, ω] + [u, [h,m]] . (4.28)

On substituting ωt from equation (4.8) and using the Jacobi identity we obtain

[j,h] + [ht,m] + [h,mt] = [h, [u,m]]− [m, [u,h]] ,

whence, in view of (4.2),

[h,mt] = [h, j + [u,m]] .

This means that up to an arbitrary field commuting with h the field m satisfies the
equation

mt = [u,m] + j , (4.29)

which is exactly the same as that of Vladimirov and Moffatt [1995]. Thus, in our
approach m appeared as a generator of transformations that leave the circulations
Γh unchanged, while the equation (4.29) is a consequence of the requirement that
the circulation of the ‘modified velocity’ v round any material contour is conserved.
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Another form of the generalized isovorticity condition. Let, as in Section 4.2
(u1, h1) and (u2, h2) be two pairs of velocity field and magnetic field, and let m1,
m2 be (associated with these pairs) fields satisfying (4.29). We say that the triplets
of the fields (u1, h1, m1) and (u2, h2, m2) are isovortical in generalized sense if
there is a transformation gε of the domain D which sends every closed contour γ
to a new one gεγ in such a way that

1. the flux of the magnetic field h2 through the new contour is the same as the
flux of the field h1 through the original one, i.e. (4.13) holds;

2. the circulation of the modified velocity v1 = u1 +h1×m1 round any closed
material line γ is equal to the circulation of v2 = u2 + h2 ×m2 round its
image gεγ under the transformation gε:

∮

γ

v1 · dl =
∮

gεγ

v2 · dl . (4.30)

Now the generalized isovorticity condition given by (4.14) can be formulated
precisely in the same way as it was done by Arnold [1965b]. This results in the
replacement of (4.19), (4.22) by the equations (cf (1.12), (1.13))

δv = ξ ×W −∇α or, equivalently, δw = [ξ,W] ,

δ2v = ξ × δw + χ×W −∇β , (4.31)

where W = Ω + [H,M] is the ‘modified vorticity field’ in the basic state (4.10);
M is a time-independent solution of (4.29) corresponding to the basic state. Note
that in the basic state

U×W = ∇G , J = [M,U] , (4.32)

with some function G. It follows from (4.26) that

δv = δu + δh×M + H× δm ,

whence, in view of (4.31),

δu = −δh×M−H× δm + ξ ×W −∇α . (4.33)

Similarly, we obtain

δ2u =− δ2h×M− δh× δm

−H× δ2m + 1
2

(
χ×W + ξ × δw −∇β

)
. (4.34)

Here δh, δ2h are given by (4.17) and δw by (4.31).
4.4.1 Variational principle. Let us calculate the first variation of the energy

(4.5) on the set of all possible flows satisfying (4.13) and (4.30). We nave

δE =
∫

D

(
U · (M× [ξ,H] + δm×H + ξ ×W −∇α

)
+ H · [ξ,H]

)
dτ

=
∫

D

((
ξ ×H

) · ([U,M] + J
)

+ δm · (H×U
)

+ ξ · (W ×U
))

dτ = 0 .

Here we used integration by parts and equations (4.12), (4.32).
Thus, we have proved the following.

Proposition 4.3 The energy (4.5) has a critical point in a steady MHD flow
(4.10) on the set of all possible flows satisfying the generalized isovorticity condition
given by (4.13) and (4.30).
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The second variation. It can be shown by standard calculations that the second
variation of the energy evaluated in the steady state (4.10) is given by

δ2E = 1
2

∫

∂D

(
(δu)2 + (δh)2 + δω · (U× ξ)

+ δh · (U× (δm− [ξ,M]) + J× ξ
))

dτ . (4.35)

Comparing this formula with equation (4.24), we conclude that they coincide pro-
vided that

η = δm− [ξ,M] . (4.36)

The relation between the fields η given by (4.36) is the same as obtained in
Vladimirov and Ilin [1997b] from the analysis of corresponding linearized equations.
Note that if we identify variations δu, δh, δm with infinitesimal perturbations to
the basic state (4.10) that obey the corresponding linearized equations, then the
relation (4.36) gives us an evolution equation for the field η (see Vladimirov and
Ilin [1997b]).

5 Conclusion

We started with formulation of Arnold’s variational principle for steady three-
dimensional flows of an ideal incompressible fluid. Then we established the analo-
gous variational principles for steady states of a system ‘body + fluid’, for steady
flows of an ideal incompressible fluid with contact discontinuities and for steady
magnetohydrodynamic flows of ideal, perfectly conducting fluid.

We should note that all these variational principles can be generalized so as
to cover the situations when the basic state is unsteady provided that it is steady
relative to coordinate system which either moves along a fixed axis with constant
velocity or rotates around a fixed axis with constant angular velocity. For a system
‘body + fluid’ such principles have been established and exploited for obtaining
stability conditions in Vladimirov and Ilin [1997a].
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