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VIRIAL FUNCTIONALS IN FLUID DYNAMICS

V. A. VLADIMIROV AND K. I. ILIN

Dedicated to V. I. Arnold

Abstract. The aim of this paper is to show that functionals similar to
the ‘virial’ function of classical mechanics can be introduced for several
dynamical systems of fluid mechanics provided that those dynamical
systems can be described by Hamilton’s principle of least action. The
main requirement to ‘virials’ is their increasing by virtue of equations
of motion. Applications of those functionals to hydrodynamic stability
theory are reviewed and further perspectives are discussed.
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1. Introduction

An extremely attractive but very difficult problem in fluid dynamics is to find a
regular way of constructing functionals which grow monotonically with time. Ex-
istence of such a functional would mean that an initially ‘small’ solution gradually
becomes ‘large’, which is closely related to such fundamental problems as instability
of fluid flows, magnetohydrodynamic dynamo, etc. Also it would mean a certain
irreversibility of fluid flows. A class of such functionals is known for long time, for
brevity we shall call them ‘virials’. They represent an inner product between per-
turbations of velocities and displacements of material particles. First it appeared
(as a function, not a functional!) in classical mechanics in so called ‘virial equa-
tion’ and in the ‘virial theorem’ (see, e. g., [13]). Then it was extensively used as
Liapunov function in proofs of instability of finite-dimensional mechanical systems
by Liapunov [17] and Chetaev [11]. In continuous mechanics ‘virial’ was used in
astrophysical applications by Chandrasekhar [10] and others. The extensive use of
the ‘virial equality’ in a problem of fluid instability is due to Rumiantsev [19] who
considered instability of ‘fluid + solid’ equilibria with a free surface1.

All earlier ‘virial’ results on instability of fluid flows had been obtained for the
linearized problems of an inviscid fluid. More recent papers have been concentrated
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1There are also terms ‘virial function’ and ‘virial functional’ which are sometimes used for cross-

products of a force and coordinates (see the ‘Clausius virial’ [13]), or velocities and coordinates

(see [10]).
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on generalising the ‘virial functional’ to exact nonlinear problems, to viscous fluids
and to some other fluid systems [8], [21], [22], [26], [27], [23], [9]. The first exact
nonlinear result on instability of an equilibrium of an inviscid fluid with free sur-
face was presented in [8], where a special class of fluid equilibria was considered.
This result attracted the attention of V. I. Arnold, who considered it as a serious
achievement. There were also applications of ‘virial’ to the problem of instability
of special classes of fluid flows, which can be reduced to effective equilibria (see,
e. g., [16], [12]).

At the same time, any rational reason, why monotonically increasing ‘virial’
functions or functionals should exist, is unknown. In the present paper, we discuss
one possible general way of introduction ‘virial functionals’ for various infinite-
dimensional systems of fluid mechanics. We can introduce the notion of ‘virial’
(and show that it is useful) for a fluid system as soon as we know the expres-
sion for its Lagrangian. Technically, our approach is based on the introduction
of one-parameter families of vector fields. Variations of velocities and other fields
correspond to derivatives with respect to that parameter. Our ‘virial’ appears in
the equality for the second derivative of Lagrangian with respect to that parameter
(or in other words in the equation for second variation of the action functional). It
shows its close link to the solution of the well-known ‘Jacobi equation for geodesic
deviations’ [6]. In the linear approximation, when a state of rest is taken as the
basic solution, our ‘virial’ coincides with the conventional one.

We use the ‘virial’ in order to obtain results concerning a priori estimates of
solutions and instabilities. Particular cases of an inviscid incompressible fluid (with
and without free surface), stratified fluid, and ideal magnetohydrodynamics have
been considered. Our approach recovers and unifies all known instability results ob-
tained using ‘virial’ and, in particular, shows that the instability considered earlier
by Arnold [5] can be recovered using the direct Lyapunov method with the ‘geo-
desic virial’ as the Lyapunov functional2. Since our approach has evident parallels
in classical mechanics, it is instructive to draw a parallel with finite-dimensional
results.

First, we introduce the ‘virial’ as it was used by Lyapunov [17] and Chetaev [11].
Consider 2N -dimensional Hamiltonian system described by generalised coordinates
q = q(t) = (q1(t), . . . , qN (t)) and momenta p = p(t) = (p1(t), . . . , pN (t)) which
satisfy the equations

pt = −Hq, qt = Hp, (1.1)

where subscripts stay for partial or ordinary derivatives. The ‘virial’ function

V (t) = pq =
N∑

i=1

piqi (1.2)

is defined on trajectories p(t), q(t) in the phase space of the system. We have

Vt = ptq + pqt = pHp − qHq. (1.3)

2Arnold’s results includes also algebraic instability of vortex flows, which is out of our consid-

eration in this paper.
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If we now assume that
H(p, q) = K(p) + Π(q) (1.4)

where the kinetic energy K(p) is a quadratic nonnegative function of pi and the
potential energy Π(q) is quadratic in qi, then (1.3) can be written as

Vt = 2(K −Π) = 4K − 2H. (1.5)

The equation (1.5) is often referred to as the virial equality. Since of H = H(t) =
const on the trajectories and K ≥ 0 the virial V (t) (for negative full energy H < 0)
represents at least a linearly growing function:

V (t) ≥ V (0) + |H|t (1.6)

This fact was employed by Lyapunov to prove the converse Lagrange theorem stat-
ing that an equilibrium p = q = 0 in the conditions of maximum or saddle point of
potential energy Π is unstable. The negative sign of energy H < 0 in this situation
can be naturally provided by an appropriate choice of initial data (say K = 0,
Π < 0) [17], [11]. For this problem variables p and q involved in V serve as the fi-
nite perturbations (differences between a perturbed solution p(t), q(t) and the basic
solution (0, 0))3.

In the present paper, we work with a somewhat different definition of the ‘virial’,
which may be introduced as follows. Let us consider an arbitrary one-dimensional
function4 q(t, ε) of two scalar variables t and ε, and an arbitrary differentiable
function L(q, qt) (subscript stays for partial derivative). Direct calculation yields
the identity

Lε = (qεp)t − qε(pt − Lq) + p(qtε − qεt), p ≡ Lqt , (1.7)

which we call ‘the fundamental identity’. Next we accept that

qtε = qεt (1.8)

and function L satisfies the condition:

pt − Lq = 0 (1.9)

First equation requires certain smoothness, second one introduces a dynamical sys-
tem via its Lagrangian L. After those two suggestion are accepted, functions q(t, ε)
describe one parametric family of solutions for the considered dynamical system.
As the result the last two terms in (1.7) vanish and the identity reduces to

Lε = (pqε)t (1.10)

3However there is an important technical restriction: the virial equality in the form (1.5) is

valid only if K is quadratic in p and Π is quadratic in q. Therefore (1.5), (1.6) for the cases of
nonquadratic Hamiltonian are valid only in linear approximation. In the general case of arbitrary
K and/or Π those equalities take a more complicated form (usually it represents an infinite series

of subsequent variations[11]), but in the majority of situations the linear terms dominate within

a small vicinity of an equilibria and the virial function still may be used as a Lyapunov function.
4One dimensional case is presented here only for the sake of simplicity, general N -dimensional

situation can be treated in the same way.
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which represents the fundamental identity taken on the family of trajectories of the
dynamical system. Another form of the same equality is:

Wt = Lε, W ≡ pqε. (1.11)

The differentiation of (1.11) with respect to ε and accepting of (1.11) produces
an equality for Lεε which can be presented as:

(pεqε + pqεε)t = Kεε −Πεε. (1.12)

If we consider this equality at ε = 0 and take the equilibrium p(t, 0) = qt(t, 0) = 0
as the basic solution, then (1.12) immediately gives the linearized version of (1.4).

Another interesting way of presenting (1.12) is
1
2 (Aφt)t = Aψ +Bφ (1.13)

where φ ≡ q2ε , ψ ≡ q2εt, A ≡ Lqtqt
, B ≡ Lqq −Lqqtt. This equality is valid by virtue

of exact equations (1.9) and holds for any family of trajectories of the system. Let
us accept A > 0 (the Legendre condition) and use (1.4), which means B = −Πqq.
As the next step we consider the equilibrium q(t, 0) = qt(t, 0) = 0 as the basic
solution at ε = 0. In such situation the exponential growth of φ = q2ε follows
immediately from (1.13) if Πqq < 0 (the local maximum of potential energy). One
can say that function φ plays a part of ‘virial’ in this consideration. Some related
nonlinear results also can be obtained, however we are not going to develop this
problem here. Our target is to illustrate only the way of introducing our ‘virials’
W and φ and correspondent ‘virial equalities’ (1.11), (1.12), (1.13).

Close connection between (1.13) the Jacobi equation is evident. Indeed the same
equality can be obtained directly from the exact equation of motion (1.9) after its
differentiation with respect to ε (which gives us the well known Jacobi equation for
geodesic deviations) and subsequent multiplying by qε. Therefore one can call W
and φ ‘geodesic virials’.

The main difference between the properties of ‘virial’ V and ‘geodesic virials’
W , φ is now clear. The first one formally operates with the finite perturbations of
p and q, but actually is valid only for a linearized system (when both p and q are
infinitely small, or the Hamiltonian represents a quadratic form), while the latter
two explicitly deal with the values pε, qε, and the virial equality is valid for the
exact equations of motion.

In this paper, we shall derive equalities similar to (1.12), (1.13) for a number
of dynamical systems of fluid mechanics and employ them to obtain various suf-
ficient conditions for instability. The construction of our virial functionals has
been performed in several steps which follow to the scheme described above. First
we introduce certain identities (called the fundamental identities) defined for two
two-parameters families of vector fields. Then we require that flows defined by
these vector fields commute, so that the vector fields must satisfy a compatibility
condition. Finally, we treat one of the vector fields as a one-parameter family of
solutions of the governing equations. Then the geodesic virial equalities are ob-
tained by differentiating the fundamental equality (taken on a family of solutions)
with respect to the parameter. The outline of the paper is as follows. In Section 2,
we introduce a virial functional for general steady or unsteady flows of an inviscid
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incompressible fluid in a fixed domain and use this functional to obtain sufficient
conditions for instability. Section 3 is devoted to the extension of the results of
Section 2 to free-surface flows, stratified flows (in Boussinesq approximation) and
magnetohydrodynamic flows. Section 4 contains the discussion of the results and
conclusions.

2. Virial for inviscid incompressible fluid

2.1. Fundamental identity. Let D be a fixed simply-connected three-dimen-
sional domain with smooth boundary ∂D and let u(x, t, ε) and f(x, t, ε) be two
families of smooth vector fields in D depending on scalar parameters t and ε. We
assume that u(x, t, ε) and f(x, t, ε) are divergence-free (∇ · u = ∇ · f = 0 in D)
and tangent to the boundary (n ·u = n · f = 0 at ∂D where n is the unit outward
normal on ∂D), but are otherwise arbitrary.

Let us introduce two operators of differentiation:

Dt ≡
∂

∂t
+ u ·∇, Dε ≡

∂

∂ε
+ f ·∇.

Consider now the function

L(x, t, ε) ≡ u2

2
.

Differentiation of L with respect toDε and some manipulations result in the identity

DεL = Dt(f · u) + u · (Dεu−Dtf) + ∇ · (pf)− f · (Dtu + ∇p), (2.1)
where p(x, t, ε) is an arbitrary scalar function. Equation (2.1) which we call the
fundamental identity is valid for arbitrary vector fields u(x, t, ε) and f(x, t, ε).

This identity can be used in two different ways. Firstly, it can be employed to
derive the Euler equations from Hamilton’s principle of the least action. Secondly,
it can be used to obtain the virial equality.

2.2. Trajectories of fluid particles and compatibility condition. Let us now
assume that domain D is filled with a continuous medium with the dependence
between Eulerian x and Lagrangian a coordinates given as x(a, t, ε). Let us also
identify vector fields u(x, t, ε) and f(x, t, ε) from the previous subsection with
partial derivatives with respect to t and ε correspondingly:

xt(a, t, ε) = u(x(a, t, ε), t, ε), xε(a, t, ε) = f(x(a, t, ε), t, ε) (2.2)

The compatibility condition for the fields u(x, t, ε) and f(x, t, ε) follows from the
requirement that partial derivatives with respect to t and ε (at fixed a) commute,
i. e. xtε = xεt, in Eulerian coordinates it yields the relation

Dε u = Dt f (2.3)

or, equivalently,
f t + [f , u] = uε (2.4)

where
[f , u] ≡ (u ·∇)f − (f ·∇)u = ∇× (f × u)

is the commutator of the (solenoidal) vector fields u and f .
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The compatibility condition (2.3) means that one term in the fundamental iden-
tity (2.1) vanishes.

An important consequence of (2.3)/(2.4) is that all invariant operators associated
with the fields u(x, t, ε) and f(x, t, ε) commute. In particular, the operators Dt

and Dε commute, i. e.
DtDε = DεDt. (2.5)

2.3. Two applications of the fundamental identity.

2.3.1. Hamilton’s principle. We have assumed that u(x, t, ε) and f(x, t, ε) are di-
vergence-free inD, tangent to ∂D and satisfy the compatibility condition (2.3)/(2.4).
Integration of (2.1) over D and over t from t1 to t2, yields

d

dε

∫ t2

t1

∫
D
L dV dt =

∫ t2

t1

∫
D
DεL dV dt

=
∫ t2

t1

∫
D

(−Dtu−∇p) · f dV dt+
∫
D

f · u dV
∣∣∣∣t=t2

t=t1

. (2.6)

Consider the action functional S and the Lagrangian L given as

S(ε) =
∫ t2

t1

Ldt, L(ε, t) =
∫
D
L dV =

∫
D

u2

2
dV. (2.7)

By definition,
δS ≡ εSε(0), (2.8)

Assuming that the vector field δx(x, t) ≡ εf(x, t, 0) vanishes at the ends of time
interval

δx(x, t1) = δx(x, t2) = 0 (2.9)

we find from (2.6) and (2.7) that

δS =
∫ t2

t1

∫
D

(−Dtu−∇p) · δx dV dt, (2.10)

The Hamilton principle states that the actual motion of the system corresponds
to a critical point of S, i. e. δS = 0. Since, by its definition, δx is an arbitrary
vector field that is solenoidal and tangent to the boundary, the condition δS = 0 is
equivalent to the equation

Dtu = −∇p, (2.11)

with a function p which is determined by the conditions

∇ · u = 0 in D, u · n = 0 on ∂D. (2.12)

Equations (2.11), (2.12) represent the Euler equations governing the dynamics of an
inviscid incompressible fluid in a fixed domain D. Thus, we have recovered that the
fundamental equality (2.1) underlays the model of an ideal incompressible fluid. It
also gives a rational interpretation to the Newcomb’s form of Hamilton’s principle
for the Euler equations (see [20]), where the constraints for variations equivalent to
the compatibility condition (2.3) (taken at the point ε = 0) were accepted using a
physical reasoning.
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2.3.2. Virial equality. Now we assume that, in addition to the compatibility con-
dition (2.3), the field u(x, t, ε) satisfies the Euler equations (2.11) and (2.12) for
all ε. In other words, u(x, t, ε) represents a one parametric family of solutions
of the Euler equations (depending on parameter ε). In this case, the fundamental
identity (2.1) reduces to

Dt(f · u) = DεL −∇ · (pf). (2.13)

Integrating (2.13) over D, we obtain

Wt = Lε = Eε, W ≡
∫
D

f · u dV. (2.14)

Note that in the considered case the Lagrangian L coincides with the energy E.
The conservation of the energy

E(ε) = 1
2

∫
D

u2 dV (2.15)

means that E does not depend on time t, but still depend on ε. Then the first deriv-
ative Eε(ε) (as well as derivatives of any other orders) is also conserved. Integration
of (2.14) yields

W(t, ε) = W(0, ε) + Eε(ε) t. (2.16)
Equation (2.16) implies that |f |L2 grows at least linearly with time. Indeed, the
Cauchy–Buniakowski–Schwarz inequality gives

W2(t, ε) =
(∫

D
f · u dV

)2

≤
∫
D

u2 dV

∫
D

f2 dV = 2E |f |2L2
.

It follows that

|f |L2 ≥
1√
2E

|W(0, ε) + Eε(ε) t|. (2.17)

Inequality (2.17) gives us an a priori estimate which is valid for arbitrary one-
parameter family of solutions of the Euler equations: it shows that L2-norm of f
grows at least linearly with time provided that Eε(ε) 6= 0. Inequality (2.17) corre-
sponds to the most fundamental property of an inviscid fluid: perturbations, once
they are ‘imposed’ at the initial instant of time, will exist forever and result in at
least a linear increase of infinitesimal separation of distance (in L2-norm) between
two flows. One should notice that (2.17) represents an exact result, obtained with-
out using of any approximations. Some further discussions related to that question
are presented below in the Section 2.4 concerning hydrodynamic stability.

The differentiation of (2.14) with respect ε gives

Wtε =
∂

∂t

∫
D

(Dεf · u + f ·Dεu) dV =
∫
D

(
(Dεu)2 + u ·D2

ε u
)
dV = Lεε.

With the help of (2.3), (2.11), and (2.12), this equation can be rewritten as

∂

∂t

∫
D

f ·Dεu dV =
∫
D

(
(Dεu)2 −Dεf ·Dtu

)
dV

=
∫
D

(
(Dtf)2 − f · (f ·∇)∇p

)
dV. (2.18)



698 V. VLADIMIROV AND K. ILIN

Next, we note that∫
D

f ·Dεu dV =
∫
D

f ·Dtf dV =
∂

∂t

∫
D

f2

2
dV. (2.19)

Substituting this into (2.18), we obtain

∂2

∂t2

∫
D

f2 dV = 2
∫
D

(
(Dtf)2 − f · (f ·∇)∇p

)
dV. (2.20)

Equation (2.20) holds for any family of solutions u(x, t, ε) of the Euler equations.
The associated equation for the field f(x, t, ε) is obtained by differentiating the
Euler equations (2.11), (2.12) with respect to ε and applying the compatibility
condition. This yields

D2
t f = −∇pε − (f ·∇)∇p, (2.21)

where function pε is determined by the conditions

∇ · f = 0 in D, f · n = 0 on ∂D. (2.22)

Equations (2.18), (2.20) may be viewed as forms of ‘geodesic virial’ equality,
which has been successfully used to prove the converse Lagrange theorem on the
stability of equilibria of various continuum systems. The rest of the paper is devoted
to the derivation of equalities of this type for various dynamical systems of contin-
uum mechanics and their application to stability analysis. In the next subsection,
we shall show that the equality (2.18) leads to certain results on the stability of
steady and unsteady flows of an inviscid incompressible fluid.

2.4. Perturbations and stability of inviscid flows. Let

u0(x, t) ≡ u(x, t, 0), p0(x, t) ≡ p(x, t, 0) (2.23)

describe the basic flow whose stability is investigated. In this situation the velocity
field u(x, t, ε) with a fixed ε 6= 0 corresponds to a perturbed flow and the difference
u(x, 0, ε)− u0(x, 0) represents the initial perturbation.

The field of Lagrangian displacements ξ is defined as the difference between
the ‘disturbed’ and ‘undisturbed’ position of a particle with the same Lagrangian
coordinate a

ξ(a, t, ε) ≡ x(a, t, ε)− x(a, t, 0) =
∫ ε

0

f(a, t, µ) dµ (2.24)

where the fields f and u are linked by the compatibility condition (2.3).
Assuming that ε is small and using Taylor’s formula, we obtain

u(x, t, ε) = u0(x, t) + εuε(x, t, 0) + o(ε). (2.25)

ξ(x, t, ε) = εf(x, t, 0) + o(ε). (2.26)

Evidently,

ũ(x, t) ≡ εuε(x, t, 0), p̃(x, t) ≡ ε pε(x, t, 0), ξ̃(x, t) ≡ εf(x, t, 0) (2.27)

can be identified with the infinitesimal perturbation of velocity, pressure, and the
Lagrangian displacement, which satisfy to the linearized equations

ũt = −(ũ ·∇)u0 − (u0 ·∇)ũ−∇p̃. (2.28)
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and linearized compatibility conditions

ũ = ξ̃t + [ξ̃, u0]. (2.29)

The equation governing the evolution of ξ̃(x, t) is obtained from (2.21) by putting
ε = 0:

D2
0tξ̃ = −∇p̃− (ξ̃ ·∇)∇p0, (2.30)

where

D0t =
∂

∂t
+ u0 ·∇,

and the function p̃(x, t) is determined by the conditions

∇ · ξ̃ = 0 in D, ξ̃ · n = 0 on ∂D. (2.31)

As was mentioned already, equation (2.30) represents the Jacobi equation for the
action functional S (2.7). The Jacobi equation is closely connected with the lin-
earized Euler equations (2.28). It can be shown that the linearized Euler equa-
tions (2.28), supplemented with (2.29), lead to (2.30). This means that, given
any solution ξ̃(x, t) of (2.30), we can obtain the corresponding solution of the
linearized Euler equations (2.28) using (2.29). This correspondence between solu-
tions of (2.28) and (2.30) is however not one-to-one. Namely, more than one field
ξ̃(x, t) produce the same Eulerian velocity perturbation. In fact, suppose that
ξ̃?(x, t) = ξ̃(x, t) + cη(x, t) where ξ̃(x, t) is a solution of (2.30), c is a real con-
stant, and the vector field η(x, t) is divergence-free, tangent to the boundary ∂D,
and satisfies the equation ηt + [η, u0] = 0. Then, ξ̃?(x, t) is also the solution of
(2.30), and this new solution corresponds to the same velocity perturbation.

The linearized version of (2.20) is given by

d2

dt2

∫
D

ξ̃2 dV = 2
∫
D

(
D0tξ̃ ·D0tξ̃ − ξ̃ · (ξ̃ ·∇)∇p0

)
dV. (2.32)

Let

M =
∫
D

ξ̃2 dV, T =
1
2

∫
D

(D0tξ̃)2 dV,

I =
1
2

∫
D

ξ̃ · (ξ̃ ·∇)∇p0 dV =
1
2

∫
D
Hikξiξk dV.

(2.33)

With this notation, (2.32) can be written as

M̈ = 4(T − I). (2.34)

The sign of I is determined by the Hessian of the pressure in the basic flow

Hik ≡
∂2p0

∂xi∂xk
.

First we assume that the Hessian of the pressure is strictly negative definite in
D, i. e.

Hik ξ̃iξ̃k ≤ −γ ξ̃2 (2.35)
for some positive γ. Then,

I ≤ −γM
2

⇒ M̈ = 4(T − I) ≥ 2γM. (2.36)
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Let λ =
√

2γ. Since

M̈ − 2γM = M̈ − λ2M = eλt d

dt

(
e−2λt d

dt
(eλtM)

)
≥ 0 ,

we have
d

dt
(eλtM) ≥ e2λt(Ṁ(0) + λM(0)),

whence

M(t) ≥M(0)e−λt +
Ṁ(0) + λM(0)

λ
shλt. (2.37)

This inequality shows that any inviscid incompressible flow satisfying the condition
(2.35) is exponentially unstable in the linear approximation.

The irrotational flow near a stagnation point with the velocity field

u0(x, t) = (x, y, −2z), x = (x, y, z) (2.38)

is an example of a flow satisfying the condition (2.35). In this case, Hik =
diag(−1, −1, −4), so that Hik ξ̃iξ̃k ≤ −ξ̃2. The class of the exponentially unstable
flows with the velocity field being a linear function of coordinates is broader than
example (2.38).

The condition (2.35) is rather restrictive. For example it excludes flows with
constant pressure where the Hessian is zero at least at one point. Let us relax
inequality (2.35) and assume that the Hessian is negative semi-definite in D, i. e.

Hik ξ̃iξ̃k ≤ 0.

Then I ≤ 0 and (2.34) yields:
M̈ ≥ 4T. (2.39)

Since, by the Cauchy–Buniakowski–Schwarz inequality,

Ṁ2 = 4
(∫

D
ξ̃ ·D0tξ̃ dV

)2

≤ 4
∫
D

ξ̃2 dV

∫
D

(
D0tξ̃

)2

dV = 8MT, (2.40)

we obtain
M̈

M
− Ṁ2

2M2
≥ 0 ⇒ d

dt

( Ṁ

M1/2

)
≥ 0. (2.41)

Hence,
Ṁ

M1/2
≥ Ṁ

M1/2

∣∣∣∣
t=0

≡ 2λ. (2.42)

Since the initial values for ξ̃ and ξ̃t can be specified independently, we choose them
in such a way that λ > 0. With this choice,

M1/2(t) ≥M(0)1/2 + λ t ⇔ |ξ̃(t)|L2 ≥ |ξ̃(0)|L2 + λ t. (2.43)

and there is at least linear growth (in time) of Lagrangian displacements of fluid
particles in the L2 norm.

Note that inequality (2.43) is complementary to the linearized version of (2.17)
and allows us to analyze the structure of growing perturbations. To analyze corre-
spondence with (2.17), let us denote:

W0(t) = εW(t, 0) =
∫
D

ξ̃ · u0 dV ≡ 〈ξ̃, u0〉. (2.44)
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Then the linearized version of (2.16) (that was used to obtain (2.17)) can be written
as

W0(t) = W0(0) + Eε(0) t

or, equivalently,
〈ξ̃, u0〉(t) = 〈ξ̃, u0〉(0) + Eε(0) t. (2.45)

where
Eε(0) = 〈u0, D0tξ̃〉 = const. (2.46)

Let us decompose ξ into ‘parallel’ and ‘orthogonal’ to u0 components (in L2):

ξ̃ = ξ̃‖ + ξ̃⊥, ξ̃
‖

=
〈ξ̃, u0〉
〈u0, u0〉

u0 ≡ α(t)u0(x, t) (2.47)

According to (2.45) the numerator of (2.47) represents a linear function of time, so
α(t) = c0 + c1t, with arbitrary constants c0 and c1. It is a remarkable fact that

ξ̃‖ = αu0, p̃ = αp0t + 2αtp0, α = c0 + c1t (2.48)

represents an exact solution of the Jacobi equation (2.30), (2.31). Because of the
linearity of this equation, the ‘orthogonal’ component ξ⊥ is also a solution. Now
one can see, that for ξ = ξ⊥ all terms in (2.45) are identically zero, so the a priori
estimate (2.17) does not produce any result. However the estimate (2.43) still
works, and shows the linear growth of ξ = ξ⊥ in L2-norm.

Solutions (2.48) are sometimes called ‘trivial’ since the Lagrangian displacements
are parallel to the main velocity. The corresponding perturbation of the velocity
field takes a form:

ũ = αtu0 + αu0t (2.49)

It is clear that the linear growth of W0(t) corresponds to that ‘trivial’ solution. In
the special case of steady basic field u0(x) the existence of the ‘trivial’ solutions
does not imply any deviations of fluid particles from steady streamlines and this is
the reason why the correspondent grows may be not considered as ‘real’ physical
instability. The most interesting point here is the existence of the split (2.47) which
allow us to eliminate the linear ‘trivial’ perturbations.

Thus, we may conclude that if in a steady or unsteady flow the Hessian of
the pressure is negative semi-definite at every point of the flow domain, then this
flow is unstable and the growth rate is given by (2.43). For example, any steady
plane-parallel flow has constant pressure, and therefore does satisfy our sufficient
condition for instability. A similar result was obtained earlier in [18].

3. Free-surface flows, stratified flows and MHD flows

3.1. Governing equations for free-surface flows. Let us return to the exact
problems. As in Section 2, we consider a one-parametric family of fields u(x, t, ε)
and f(x, t, ε) that satisfy the compatibility condition (2.3). Let D(t, ε) be a three-
dimensional domain containing an inviscid incompressible fluid. The boundary
of the domain ∂D(t, ε) consists of two parts: the fixed boundary Σ and the free
boundary S(t, ε), i. e. ∂D = Σ ∪ S. We assume that u(x, t, ε) and f(x, t, ε)
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are defined in the domain D(t, ε), and both are divergence-free and satisfy to the
boundary conditions

u · n = 0, f · n = 0 on Σ; (3.1)

u · n = vn, f · n = wn on S(t). (3.2)

The free surface is defined by the equation

F (x, t, ε) = 0,

and
DtF = 0 and DεF = 0 at F (x, t, ε) = 0, (3.3)

so that
vn = −Ft/|∇F |, wn = −Fε/|∇F | at F (x, t, ε) = 0. (3.4)

Consider now the density of the Lagrangian, given by

L(x, t, ε) ≡ u2

2
− Φ

where Φ(x) is a given potential of an external body force. Differentiating L with
respect to ε and using the compatibility condition, we obtain

DεL = Dt(f · u) + ∇ · (pf)− f · (Dtu + ∇(p+ Φ)), (3.5)

where p(x, t, ε) is an arbitrary function. Equation (3.5) is valid for arbitrary vector
fields u(x, t, ε) and f(x, t, ε) satisfying the compatibility condition (2.3) and is a
generalization of the fundamental identity of Section 2.

3.2. Hamilton’s principle for free surface flows. Consider the action func-
tional given by

S(ε) =
∫ t2

t1

Ldt, L =
∫
D
LdV =

∫
D

(
u2

2
− Φ

)
dV. (3.6)

Differentiating (3.6) with respect to ε and using (3.5), we find that

Sε =
∫ t2

t1

∫
D

(−Dtu−∇(p+ Φ)) · f dV dt

+
∫ t2

t1

∫
S

(f · n)p dS dt+
(∫

D
f · u dV

) ∣∣∣∣t=t1

t=t1

. (3.7)

Putting ε = 0 and assuming that the vector field f(x, t, 0) vanishes at t = t1 and
t = t2, we find from (3.7) that

δS ≡ εSε(0)

=
∫ t2

t1

∫
D

(−Dtu−∇p−∇Φ) · ξ dV dt+
∫ t2

t1

∫
S

(ξ · n)p dS dt, (3.8)

where ξ(x, t) ≡ εf(x, t, 0). At a critical point, δS = 0. Since, by definition, ξ
represents an arbitrary vector field (which is solenoidal and tangent to the fixed
part Σ of the boundary ∂D), the condition δS = 0 leads to the Euler equation

Dtu = −∇p−∇Φ in D(t), (3.9)
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and the dynamic boundary condition p = 0 at the free boundary S(t).

3.3. Virial equality for free-surface flows. Now we assume that, in addition
to the compatibility condition, the field u(x, t, ε) satisfies (3.1)–(3.3) for all ε in a
neighbourhood of ε = 0. In this case, the fundamental identity (3.5) reduces to the
form:

Dt(f · u) = DεL −∇ · (pf). (3.10)
Integrating (3.10) over D, we obtain

d

dt

∫
D

f · u dV =
∫
D

(
Dε

(
u2

2
− Φ

)
−∇ · (pf)

)
dV. (3.11)

The differentiation of it with respect to ε gives
d

dt

∫
D

(Dεf · u + f ·Dεu) dV =
∫
D

(
(Dεu)2 + u ·D2

ε u−D2
ε Φ−Dε∇ · (pf)

)
dV.

Using the compatibility condition (2.3) and (3.9), we obtain
d

dt

∫
D

f ·Dεu dV =
∫
D

(
(Dtf)2−f · (f ·∇)∇(p+Φ)

)
dV −

∫
S

pε(f ·n) dS . (3.12)

In addition to (3.1)–(3.3) let us assume that the pressure p(x, t, ε) for all ε satisfies
to boundary condition:

p(x, t, ε) = 0 at S(t, ε) ⇒ Dεp = 0 at S(t, ε). (3.13)

Hence, (3.12) takes the form

d

dt

∫
D

f ·Dεu dV =
∫
D

(
(Dtf)2 − f · (f ·∇)∇(p+ Φ)

)
dV

+
∫

S

(f · n)(f ·∇p) dS. (3.14)

This relation represents a generalisation of equality (2.18). Below we use this
equation to obtain sufficient conditions for instability of free-surface flows.

3.4. Stability of free-surface flows. Let, in the basic state whose stability is
investigated, the fluid occupy the domain D0(t) = D(t, 0) with the free boundary
S0(t) = S(t, 0) defined by the equation

F0(x, t) = 0 (3.15)

where F0(x, t) = F0(x, t, 0). And let

u0(x, t) ≡ u(x, t, 0), p0(x, t) ≡ p(x, t, 0) (3.16)

be the velocity and the pressure in the basic state. The velocity field u(x, t, ε)
with some fixed ε 6= 0 corresponds to the perturbed flow. Assuming that ε is small
and using Taylor’s formula, we obtain

u(x, t, ε) = u0(x, t) + εuε(x, t, 0) + o(ε)

= u0(x, t) + (ξ̃t + [ξ̃, u0]) + o(ε) (3.17)

where, as in Section 2,
ξ̃(x, t) ≡ εf(x, t, 0). (3.18)
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The equation for ξ̃(x, t), given by

D2
0tξ̃ = −∇p̃− (ξ̃ ·∇)∇(p0 + Φ), (3.19)

is the same as (2.30) except for the presence of Φ. Boundary conditions for (3.19)
are

F̃ + ξ̃ ·∇F0 = 0 and p̃+ ξ̃ ·∇p0 = 0 at F0(x, t) = 0, (3.20)
where η(x, t) describes the perturbation of the free surface and defined by the
equation

F (x, t, ε) = F0(x, t) + εF̃ (x, t) + o(ε).
It follows from (3.14) taken at ε = 0 that

d2

dt2

∫
D0

ξ̃2 dV = 2
∫
D0

(
(D0tξ̃)2 − ξ̃ · (ξ̃ ·∇)∇(p0 + Φ)

)
dV

+ 2
∫

S0

(ξ̃ · n)(ξ̃ ·∇p0) dS. (3.21)

This can be written as
M̈ = 4(T − I −Π). (3.22)

where (cf. (2.34))

M =
∫
D0

ξ̃2 dV , T = 1
2

∫
D0

(D0tξ̃)2 dV,

I = 1
2

∫
D0

ξ̃ · (ξ̃ ·∇)∇(p0 + Φ) dV , Π = − 1
2

∫
S0

(ξ̃ · n)2(n ·∇p0) dS .
(3.23)

Sufficient conditions for instability, similar to the conditions formulated in Section 2,
can be easily obtained using the same procedure. The result can be formulated as
follows.

If there exists a real number λ such that, for all ξ̃,

∂2(p0 + Φ)
∂xi∂xk

ξ̃iξ̃k ≤ −λ2 ξ̃2

everywhere in D and if n · ∇p0 ≥ 0 on S0, then the considered basic state is
exponentially unstable.

If we require that the Hessian of p0 + Φ is negative semi-definite, then the ba-
sic state is still unstable, but we can guarantee only linear (with time) growth of
perturbations.

The most transparent stability result can be obtained for hydrostatic equilibria
of the fluid with free surface. To prove the instability in this case, we employ the
technique developed in [21] (see also [26], [23]). We consider the stability of the
equilibrium state, given by

u0 = 0, p0(x) = −Φ(x) + C in D, (3.24)

where C is a constant such that

Φ(x) = C at F0(x) = 0. (3.25)

For the basic state (3.24), (3.25), equations (3.22), (3.23) simplify to

Ẇ = 2(T −Π) (3.26)
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where

W ≡ Ṁ/2 =
∫
D0

ξ̃ · ξ̃t dV, (3.27)

M is the same as in (3.23) and where

T = 1
2

∫
D0

ξ̃2
t dV, Π = 1

2

∫
S0

(ξ̃ · n)2(n ·∇Φ) dS. (3.28)

The equality (3.26) is usually called the virial equality and the functional W (3.27)
is called the virial.

Since the basic state considered is time-independent, (3.19), (3.20) conserve the
integral

Ẽ = T + Π. (3.29)

[It can be shown that Ẽ is the second variation of the total energy evaluated at
the equilibrium (3.24), (3.25), i. e. Ẽ = 1

2ε
2E′′(0).] In view of (3.27) and (3.29),

equation (3.26) can be written as

M̈ = 8T − 4Ẽ. (3.30)

Now we assume that the ‘potential energy’ Π can be negative for some displacement
field ξ̃(x, 0). Then by choosing ξ̃t(x, 0) such that T < |Π| at t = 0, we obtain that
Ẽ|t=0 < 0. Since the ‘total energy’ Ẽ is conserved by (3.19), (3.20), it remains
negative for all t > 0. For perturbations with such initial data, it follows from
(3.30) that

M̈ > 8T. (3.31)

Using inequality (2.40), we obtain (cf. (2.41))

M̈

M
− 8T
M

> 0 ⇒ M̈

M
− Ṁ2

M2
> 0 ⇒ d

dt

(Ṁ
M

)
> 0. (3.32)

Therefore,

Ṁ

M
>
Ṁ

M

∣∣∣∣
t=0

= 2λ. (3.33)

Since the initial values for ξ̃ and ξ̃t can be specified independently, we choose them
in such a way that λ > 0. With this choice,

M(t) > M(0)e2λt ⇔ |ξ̃(t)|L2 > |ξ̃(0)|L2e
λt. (3.34)

This inequality gives us the lower bound for |ξ̃(t)|L2 that guarantees exponential
growth of perturbations provided that Π can take negative values. It can be shown
that Π is the second variation of the exact potential energy of the fluid in the
external body force with the potential Φ. Therefore, if at an equilibrium Π can
be negative, then this equilibrium corresponds to a maximum or saddle point of
the exact potential energy. Thus, our result can be formulated as the converse
Lagrange theorem: if an equilibrium does not correspond to a local minimum of the
potential energy then this equilibrium is unstable.
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3.5. Stratified flows. In the Boussinesq approximation, the governing equations
for flows of an incompressible, inviscid, stratified (inhomogeneous in density) fluid
contained in a three-dimensional domain D with fixed rigid boundary ∂D are

Dtu = −∇p− ρ∇Φ, ∇ · u = 0, Dtρ = 0, (3.35)

where ρ is the density and Φ(x) is the potential of the external body force. Bound-
ary condition for (3.35) is the condition of no normal flow through the rigid bound-
ary:

n · u = 0 on ∂D (3.36)
(n is the unit outward normal on ∂D).

3.5.1. Fundamental identity and compatibility conditions. The density of the La-
grangian (defined on a one-parameter family of stratified flows with the velocity
u(x, t, ε) and the density ρ(x, t, ε)) is given by

L =
u2

2
− ρΦ. (3.37)

Applying the operator Dε to this equation, we obtain the identity

DεL = Dt (f · u)+u·(Dεu−Dtf)−ΦDερ+∇·(pf)−f ·(Dtu+∇p+ρ∇Φ), (3.38)

where p(x, t, ε) is an arbitrary function. Equation (3.38) is an analog of the fun-
damental identity (2.1).

So far we have only made the assumption that u and f are divergence-free
and tangent to the boundary. Now we assume that fields u and f satisfy the
compatibility condition (2.3) and that the function ρ(x, t, ε) satisfies the condition

Dερ = 0, (3.39)
which we shall also call the compatibility condition. In a certain sense, the condition
(3.39) is dual to the equation

Dtρ = 0. (3.40)
As a consequence of (2.3), the operators Dt and Dε commute. Therefore, if (3.39)
is satisfied at t = 0, then it is satisfied for all t by virtue of (3.40) and, conversely,
if (3.40) is satisfied at ε = 0, then it is satisfied for all ε by virtue of (3.39).

3.5.2. Virial equality and stability of stratified flows. With the compatibility con-
ditions (2.3) and (3.39), the fundamental identity (3.38) reduces to

DεL = Dt(f · u) + ∇ · (pf)− f · (Dtu + ∇p+ ρ∇Φ). (3.41)

As before, (3.41) leads to Hamilton’s principle and to the generalised virial inequal-
ity. The latter has the form

d2

dt2

∫
D

f ·Dεu dV =
∫
D

(
(Dtf)2 − f · (f ·∇)∇p− ρf · (f ·∇)∇Φ

)
dV. (3.42)

Using the same procedure as that used for free-surface flows, we can (i) obtain
sufficient conditions for instability of steady or unsteady stratified flows and (ii)
prove the converse Lagrange theorem for hydrostatic equilibria of stratified fluid
(see, e. g., [21]).
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3.6. Magnetohydrodynamic flows. In this subsection we show that the same
technique can be applied to magnetohydrodynamic (MHD) flows of an inviscid,
incompressible, perfectly conducting fluid.

We consider MHD flows in a fixed three-dimensional domain D with perfectly
conducting boundary ∂D. The governing equations are

Dtu = −∇p+ curlh× h, ∇ · u = 0,

Dth = (h ·∇)u, ∇ · h = 0,
(3.43)

where h is the magnetic field Boundary condition for (3.43) are given by

n · u = 0, n · h = 0 on ∂D. (3.44)

3.6.1. Fundamental identity and compatibility conditions. The density of the La-
grangian (defined on an one-parameter family of MHD flows with the velocity
u(x, t, ε) and the magnetic field h(x, t, ε)) is given by

L =
u2

2
− h2

2
. (3.45)

Differentiating this with respect to ε, we obtain the fundamental identity

DεL = Dt(f · u) + u · (Dεu−Dtf)− h · (Dεh− (h ·∇)f)

− f · (Dtu− curlh× h + ∇p) + ∇ ·
(

f

(
p+

h2

2

)
− h (f · h)

)
. (3.46)

Now we assume that fields u and f satisfy the compatibility condition (2.3) and
that the magnetic field h(x, t, ε) satisfies the equation

Dεh = (h ·∇)f (3.47)

(the compatibility condition for h). Equation (3.47) is dual to the equation

Dth = (h ·∇)u (3.48)

(that governs the evolution of the magnetic fields with t) in the sense that if (3.47)
is satisfied at t = 0, then it is satisfied for all t by virtue of (3.48) and, conversely,
if (3.48) is satisfied at ε = 0, then it holds for all ε by virtue of (3.47). This is a
consequence of the compatibility condition (2.3) for the fields u and f .

3.6.2. Virial equality for MHD flows. Using the compatibility conditions (2.3) and
(3.47), we can rewrite the fundamental identity (3.46) as

DεL = Dt(f · u)− f · (Dtu− curlh× h + ∇p)

+ ∇ ·
(

f

(
p+

h2

2

)
− h (f · h)

)
. (3.49)

Equation (3.49) leads to Hamilton’s principle (see [20]) and to the virial equality:

d2

dt2

∫
D

f ·Dεu dV =
∫
D

(
(Dtf)2 − f · (f ·∇)∇

(
p+

h2

2

)
− ((h ·∇)f)2

)
dV.

(3.50)
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Now the same arguments as those used for free-surface flows lead to (i) sufficient
conditions for instability of steady or unsteady MHD flows and (ii) a proof of the
converse Lagrange theorem for magnetostatic equilibria (see [14]).

4. Conclusion

We have presented a general scheme of obtaining sufficient conditions for fluid
instability by the direct Lyapunov method. The main idea of the direct Lyapunov
method is to construct a functional which grows with time by virtue of equations
of motion. In this paper we have used the ‘virial’ as a Lyapunov functional and
described a regular procedure of constructing this functional. The virial functionals
are proved to be useful in obtaining both sufficient conditions for instability and in
estimating of the growth rate.

We have considered only conservative systems (inviscid fluids). The effect of
dissipation on the stability of equilibria has been studied in [22], [27], [14], [24],
where the converse Lagrange theorem has been proved for a number of dissipative
systems of fluid mechanics. All the ‘viscous’ results have been obtain in linear
approximation.

Much remains to be done in the applications of virial. We can identify two
major unsolved problems. First of all, most of the results on instability in fluid
mechanics are essentially linear. Even in the simplest case of hydrostatic equilibria
there are only a few results on genuine nonlinear instability (see [8], [15]). The
second unsolved problem is the conversion of the energy stability theorems such as,
for example, Arnold’s theorem on the stability of steady plane curvilinear flows of
an inviscid fluid [1], [3]. Although, as it is shown in this paper, we can generalise
virial to the case of steady basic flow rather than an equilibrium, the corresponding
virial equality yields only quite restrictive sufficient conditions for instability. The
third major problem is to find a Lyapunov functional for the cases of nonmonotonic
growth of perturbations in the correspondent linearized spectral problem.
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