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Abstract

We study ...

1 Introduction

According to standard physical theory [?, ?], magnetohydrodynamics (MHD), i. e., the dynamics of

compressible quasineutrally ionized fluids under the influence of electromagnetic fields, is governed

by the system

ρt + div (ρu) = 0, (1)

(ρu)t + div (ρu⊗ u−H ⊗H) +∇q = ν∆u+ (λ+ ν)∇div u, (2)

Ht −∇× (u×H) = η∆H, (3)(
E + 1

2H
2)

t
+ div

(
(E + p)u+H×(u×H)

)
= div (Σu) + κ∆θ + η(H × (∇×H)) (4)

of partial differential equations. In (1)–(4), ρ > 0 denotes density, u ∈ Rd fluid velocity, H ∈ Rd

magnetic field, p(ρ, θ) pressure, θ > 0 temperature, q = p + 1
2H

2 total pressure, E = ρ(e + 1
2u

2)

specific energy, e = e(ρ, θ) internal energy, and Σ = λdiv (u)I + ν
(
∇u + (∇u)t

)
viscous stress

tensor, λ, ν > 0 are coefficients of viscosity and κ, η > 0 coefficients of heat conductivity and

electrical resistivity. System (1)–(4) is supplemented by the divergent constraint

divH = 0 (5)

on the initial data U |t=0 = (ρ, u,H, θ)|t=0 = U0. In the case (λ, ν, κ, η) = (0, 0, 0, 0), (1)–(4) is

called the system of ideal MHD, otherwise dissipative MHD.

A discontinuous (piecewise constant) solution

U(t, x) =

 Ū− for x ·N − st < 0,

Ū+ for x ·N − st > 0,
(6)
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of the system of ideal MHD is called a (planar) ideal MHD shock wave if constant states Ū± =

(ρ̄±, ū±, H̄±, θ̄±) satisfy the Rankine-Hugoniot conditions (see Sect. 2 and 3) and ū− · N 6= s,

ρ̄− 6= ρ̄+. A smooth solution

Ũ(t, x) = Φ(x ·N − st) (7)

of the system of dissipative MHD satisfying

Φ(±∞) = Ū± (8)

is called a corresponding (planar) viscous MHD shock wave, with a profile Φ. Hereafter we assume

without loss of generality that N = (1, 0d−1).

One calls an MHD shock wave multidimensionally (multi-D) strongly unstable at the inviscid

level if its ideal version violates even the weak Kreiss-Lopatinski condition for local-in-time persis-

tence [3, 8, 10, 13]. An MHD shock wave is called one-dimensionally (1D) stable at the viscous level

with respect to (λ, ν, κ, η) 6= (0, 0, 0, 0) if it has a viscous version (7) with respect to these values of

the viscosity coefficients and this profile is time-asymptotically stable towards planar perturbations

in the sense of Liu [9].

When thermal effects can be neglected, one alternatively considers barotropic MHD, i.e., system

(1)–(3) for the same variables except for the temperature θ and with the same dissipation coeffi-

cients except for the heat conductivity κ. We use the abovementioned terminology analogously in

the barotropic case. This paper establishes that there are MHD shock waves that are 1D stable at

the viscous level while they are not multi-D stable even at the inviscid level.

More precisely, we show:

Theorem 1.1 Fix (λ, ν) ∈ (0,∞)2 arbitrarily and consider equations (1)–(3) of barotropic MHD

with γ-law pressure,

p = aργ , (9)

where γ ∈ [1,∞) and a are given positive constants. Then there exist Lax type shock waves which

are multi-D strongly unstable at the inviscid level, while they are 1D stable at the viscous level with

respect to (λ, ν, η) for some η > 0.

Theorem 1.2 Fix (λ, ν, κ, η) ∈ (0,∞)4 arbitrarily and consider equations (1)–(4) of full MHD for

a polytropic gas, i.e., with

p = (γ − 1)ρe, e = cvθ, (10)

where γ ∈ (1,∞) and cv are given positive constants. Then there exist Lax type shock waves which

are multi-D strongly unstable at the inviscid level, while they are 1D stable at the viscous level with

respect to (λ, ν, κ, η).
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Remarks ...

...........................................

...........................................

...........................................

...........................................

...........................................

(iii) Texier and Zumbrun [17] have considered galloping instabilities at the 1D viscous level, a

situation corresponding to a pair of purely imaginary zeroes of the Evans function. Whether this

situation can occur in MHD, does not presently seem to be known.

Plan of the paper ...

...........................................

...........................................

2 One-dimensional viscous stability of barotropic MHD

shock waves

2.1 Stability problem for viscous parallel MHD shock waves

Consider system (1)–(3) in 1D written in Lagrangian coordinates:

vt − u1x = 0, u1t + qx = µ
(u1x

v

)
x
, (11)

ujt −H∗
1Hjx = ν

(ujx

v

)
x
, (vHj)t −H∗

1ujx = η

(
Hjx

v

)
x

, j = 2, 3, (12)

where v = 1/ρ is the specific volume, µ = λ + 2ν > 0, and, in view of (3) and (5), H1 = H∗
1

is a constant which is assumed without loss of generality to be positive, H∗
1 > 0. In (11), where

q = p+ (H2
2 +H2

3 )/2, the pressure is assumed to obey the γ-law (9), i.e., p(v) = av−γ .

Consider now a viscous MHD shock wave (7) for the case when the magnetic field is parallel to

N = (1, 0, 0), i.e., H̃ = (H∗
1 , 0, 0). Such viscous shocks and corresponding ideal MHD shocks (see

Sect. 3) are called parallel. The end states (8) should satisfy the Rankine-Hugoniot conditions

s(v̄+ − v̄−) = ū−1 − ū+
1 , s(ū+

1 − ū−1 ) = p(v̄+)− p(v̄−), (13)

ū+
j = ū−j (j = 2, 3), H̄+

1 = H̄−
1 = H̄∗

1 , (14)

and we assume that the constants v̄±, ū±1 satisfy the well-known compressibility conditions

0 < v̄+ < v̄−, 0 < ū−1 < ū+
1 . (15)
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Because of (14) we can choose a reference frame in which

ū+
2 = ū−2 = 0, ū+

3 = ū−3 = 0. (16)

Then, without loss of generality we suppose that the velocity is also parallel to N . That is, we

consider a profile

Φ = (ṽ, ũ, H̃) = (V,U , 0, 0,H∗
1 , 0, 0). (17)

Since H∗
1 is a constant we have roughly speaking a gas dynamic viscous profile because the

“tangential” part of the profile is trivial, (ũ2, ũ3, H̃2, H̃2) = (0, 0, 0, 0). Hence, the existence of

smooth traveling wave solutions (17) is guaranteed by conditions (13) and (15). By introducing

the new variable ξ = x−st, we get the following equations (see, e.g., [11]) for the solutions (V,U)(ξ)

of (11):

V ′ =
V
sµ

(
p̄+ − p(V) + s2(v̄+ − V)

)
, U + sV = ū+

1 + sv̄+ = ū−1 + sv̄−, (18)

where V ′ = dV/dξ and p̄± := p(v̄±). In view of (15), V ′ > 0.

As is known, the Lax conditions

0 <
√
γp̄−/v̄− < s <

√
γp̄+/v̄+ (19)

for gas dynamic shocks are equivalent to (15). Since for H2 = H3 = 0 system (11) coincides

with the barotropic Navier-Stokes equations, then a viscous parallel MHD shock is fast, i.e., a

corresponding ideal shock wave is 1-shock (see also Sect. 3), if inequalities (19) hold together with

s >
H∗

1√
v̄+

. (20)

Analogously, a viscous parallel MHD shock is slow, i.e., a corresponding ideal shock wave is 3-shock,

if inequalities (19) hold together with

s <
H∗

1√
v̄−

. (21)

Rewriting (11), (12) in the new variables (t, ξ) and linearizing the resulting equations about

profile (17) we obtain the separate system (see [11])

vt − svξ − uξ = 0,

ut − suξ −
(
f(V)
Vγ+1 v

)
ξ

= µ
(uξ

V

)
ξ
,

(22)

with

f(V) = a(γ − 1) + (p̄+ + s2v̄+)Vγ − s2Vγ+1,

for perturbations (v, u) of (V,U) and the system

wt − swξ −H∗
1hξ = ν

(wξ

V

)
ξ
,

(Vh)t − s(Vh)ξ −H∗
1wξ = η

(
hξ

V

)
ξ

(23)
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for perturbations (w, h) of (0, 0). System (23) depends on the gas dynamical part (22) only by

means of the profile V(ξ).

It is clear that a viscous parallel MHD shock wave is linearly stable, i.e., the perturbations

(v, u, w, h) are bounded in time, if and only if a corresponding gas dynamic shock is linearly stable

and the Cauchy problem for system (23) has only time-bounded solutions (w, h). The nonlinear

stability of viscous shock waves in barotropic gas dynamics with respect to zero-mass perturbations

was shown by Matsumura and Nishihara [11], provided that some sufficient stability condition

holds. In particular, this condition (see (29) below) holds for small-amplitude (weak) shocks or if

the adiabatic exponent γ is closed to 1. Of course, the result in [11] implies a weaker linear result,

i.e., the same shock waves are linearly stable under zero-mass perturbations (v, u) = (φξ, ψξ).

Clearly, linearized zero-mass stability implies spectral stability (see, e.g., discussion in [19]). At

the same time, as follows from the more recent work of Zumbrun and collaborators (see [20] and

references therein), spectral stability implies time-asymptotic orbital (nonlinear) stability [9].

Quite recently, the unconditional spectral stability of barotropic gas dynamic shock waves was

shown in [1, 16] by numerical Evans function calculations for γ ∈ [1, 2.5]. Thus, having in hand

stability results for barotropic gas dynamic shock waves (either analytical ones in [11] or numerical

ones in [1, 16]), to establish the nonlinear stability of viscous parallel MHD shock waves one needs

to study system (23) for zero-mass perturbations

(w,Vh) = (ωξ, αξ). (24)

By substituting (24) into (23) and integrating the result with respect to ξ, one gets

ωt − sωξ −
H∗

1

V
αξ =

ν

V
ωξξ,

αt − sαξ −H∗
1ωξ =

η

V

(αξ

V

)
ξ
.

(25)

2.2 Sufficient stability conditions

Let δ > 0 is a constant. By multiplying (25) by (Vδ+1ω,Vδα) and integrating the result over the

domain [0, t]× R we obtain the energy identity

1
2

∫
R
Vδ(Vω2 + α2)dξ

∣∣∣t
0
+

∫ t

0

∫
R
Vδ−2 (

1
2VV

′Ay · y + νV2ω2
ξ + α2

ξ

)
dξdt = 0, (26)

with y = (ω, α) and

A =

 (δ + 1)sV − δ

(
ν

µ

)
a1 δH∗

1

δH∗
1 δs− (δ − 1)

(
η

µv̄+

)
a2

 ,

where

a1 =
δ
(
p̄+ − p(V) + s2(v̄+ − V)

)
− V

(
s2 + p′(V)

)
s

,

5



a2 = v̄+ (δ − 2)
(
p̄+ − p(V) + s2(v̄+ − V)

)
− V

(
s2 + p′(V)

)
sV2 .

While deriving (26) we used relations like

−Vδωξξω = −Vδ(ωξω)ξ + Vδω2
ξ = −(Vδωξω)ξ + 1

2δV
δ−1V ′(ω2)ξ + Vδω2

ξ

=
(

1
2δV

δ−1V ′ω2
ξ − Vδωξω

)
ξ
− 1

2δV
δ−2 (

(δ − 1)(V ′)2 + VV ′′
)
ω2 + Vω2

ξ ,

integration by parts, and (18), that yields

V ′′ =
V ′

sµ

{
p̄+ − p(V) + s2(v̄+ − V)− V(s2 + p′(V))

}
.

Since V ′ > 0, it follows from (26) that the viscous parallel MHD shock wave is 1D stable if

A > 0 (27)

(provided that a corresponding gas dynamic shock wave is stable). Inequality (27) can give a

number of sufficient stability conditions. In particular, for the case ν/µ � 1 inequality (27) with

δ = 1 holds if

2s2v̄+ > (H∗
1 )2. (28)

In view of (20), the sufficient stability condition (28) for viscous parallel MHD shock waves for

ν/µ � 1 is always satisfied for fast shocks, i.e., fast parallel MHD shock waves are 1D stable for

ν/µ � 1. This result is purely analytical provided that a corresponding gas dynamic shock wave

satisfies the sufficient stability condition of Matsumura and Nishihara [11]:

2(γ − 1)(1 + s2/p′(v̄+)) < γ − 1 + (s2/p′(v̄+))2. (29)

Otherwise, we can refer to the numerical results in [1, 16] assuming only that γ ∈ [1, 2.5] (hereafter,

we assume by default that γ ∈ [1, 2.5]).

Let us now δ is a small parameter, δ � 1. Consider the case η/(µv̄+) � 1, more precisely,

let the dimensionless value η/(µv̄+) = O(δ2). Then, condition (27) holds for δ � 1. Indeed, the

diagonal elements of A are positive (they are sV+O(δ) and δs+O(δ2)), and detA = δs2V+O(δ2)

is positive too. We collect the results in the following theorem.

Theorem 2.1 For ν/µ� 1 fast viscous parallel shock waves in barotropic MHD are 1D stable, and

corresponding slow shock waves are 1D stable provided condition (28) is satisfied. For η/(µv̄+) � 1

fast and slow viscous parallel shock waves in barotropic MHD are 1D stable.

3 Multidimensional inviscid instability of slow barotropic

MHD shocks in the high-magnetic field limit

We now go on to the multi-D stability analysis of shock discontinuties in barotropic MHD (with

γ-law pressure). The present goal is to show the strong instability of slow MHD shock waves in
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the high-magnetic field limit. For full MHD this was shown in [2] (see also [3]) and here we closely

follow the arguments of [2, 3]. Since in the previous section we considered viscous profiles only

for parallel MHD shocks, here we also concentrate mainly on the case of parallel magnetic field

making brief remarks about the general case of nonparallel shocks.

3.3 Free boundary problem for nonplanar MHD shocks

It is known [3, 4] that, as for gas dynamic shock waves, the linearized stability problem for parallel

MHD shocks (fast or slow ones) has a symmetry along the directions tangential to the shock

front. Therefore, without loss of generality we can consider the 2D case x = (x1, x1) ∈ R2 and

assume that the fluid velocity and the magnetic field are 2D vector fields: u = (u1, u2) ∈ R2,

H = (H1,H2) ∈ R2. Unlike the previous section, the first component H1 of the magnetic field is

now not a constant and satisfies the divergent constraint (5).

For (1)–(3) the Rankine-Hugoniot conditions

[j] = 0, [Hn] = 0, j [un] + [q] = 0, j [uτ ] = Hn[Hτ ], Hn[uτ ] = j [vHτ ] (30)

should be satisfied at each point of the shock front

Γ(t) = {x1 − ϕ(t, x2) = 0} (31)

that is assumed to be a smooth hypersurface in [0, T ] × R2, where [g] = g+|Γ − g−|Γ denotes the

jump of g, with g± := g in Ω±(t) = {x1 ≷ ϕ(t, x2)},

j = ρ(un − ϕt), un = u1 − ϕx2u2, Hn = H1 − ϕx2H2,

uτ = ϕx2u1 + u2, Hτ = ϕx2H1 +H2, Hn|Γ := H±
n |Γ, j := j±|Γ.

3.4 Jump conditions for planar parallel MHD shocks

For planar discontinuities ϕ(t, x2) = st, see (6) with N = (1, 0). Since now we work in Eulerian

coordinates we can assume without loss of generality that s = 0. Consider a piecewise constant

solution (6) of (1)–(3), (30):

Ū± = (ρ̄±, ū±, H̄±) , x1 ≷ 0. (32)

We are interested in parallel MHD shocks, i.e.,

H̄+
2 = H̄−

2 = 0. (33)

It follows from (30) that, cf. (14),

H̄+
1 = H̄−

1 = H∗
1 , ū+

2 = ū−2 (34)
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and
ρ̄+

ρ̄−
=
ū−1
ū+

1

:= R, (35)

Without loss of generality we again have (16) and assume that H∗
1 > 0. Moreover, we again

consider compressive shocks, i.e., inequalities (15) are satisfied with v̄± = 1/ρ̄±.

In view of (15), (30), (33), and (34), the dimensionless parameter R should satisfy the inequality

R > 1, (36)

and the non-zero constants ρ̄± and ū±1 are related by

ρ̄+ū+
1 (ū+

1 − ū−1 ) + a
(
(ρ̄+)γ − (ρ̄−)γ

)
= 0. (37)

Introducing the downstream Mach number

M := M+ =
ū+

1

c+

where the square of the downstream sound velocity c2+ = p′(ρ̄+) = aγ(ρ̄+)γ−1, we rewrite (37) as

M2 =
Rγ − 1

γRγ(R− 1)
. (38)

Omitting standard calculations (see also Remark 3.1 below), we assert that the parallel MHD

shock is fast shock (1-shock) if

q < M < 1 (39)

and it is slow shock (3-shock) if

M < 1, q > M
√
R, (40)

where

q2 =
(H∗

1 )2

γa(ρ̄+)γ

is the ratio between the magnetic and fluid pressures behind the shock. In view of (38), the

condition M < 1 in (39) and (40) is equivalent to (36). Note also that in terms of the upstream

Mach number M− = ū−1 /c− = MR(γ+1)/2 the condition M < 1 is M− > 1.1

Remark 3.1 Using (13) and (35), we can express the shock speed s from Sect. 2 in Eulerian

coordinates:

s2 =
(
ū−1 − ū+

1

v̄+ − v̄−

)2

=
(
ū+

1

v̄+

)2

=
( c+
v̄+

)2
M2 = −p′(v̄+)M2 = −p′(v̄−)M2

−. (41)

Noting q2 = v̄+(H∗
1 )2/c2+, it follows from (41) that (19) and (20) are equivalent to (39), and (19)

and (21) are equivalent to (40).

1Below, unlike, for example, [1, 16], we mainly work with the downstream Mach number M .
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3.5 Stability problem for slow parallel MHD shocks

We straighten, as usual (see, e.g., [3, 10, 13]), the unknown front (31), i.e., the unknowns U± =

(ρ±, u±,H±) being smooth in Ω±(t) are replaced by the functions U±(t,±x1 + ϕ(t, x2), x2), that

are smooth in the fixed domain x1 > 0. Linearizing (1)–(3) and (30) written in terms of the

straightened variables about the piecewise constant solution (32) we get a constant coefficients

stability problem for small perturbations (δρ±, δu±, δH±) and δϕ. For the forthcoming normal

modes analysis in the high-magnetic field limit, q � 1, it is convenient to reduce this problem to

a dimensionless form by introducing the following scaled values:

t′ =
tū+

1

l
, x′ =

x

l
, ρ± =

δρ±

ρ̄+ , u± =
δu±

ū+
1

, H± =
δH±√
γa(ρ̄+)γ

, ϕ =
δϕ

l
,

where l is a typical length. After dropping the primes, taking into account (33) and (16), and

eliminating by cross differentiation the front ϕ from the boundary conditions, the stability problem

for the scaled perturbations U± = (ρ±, u±,H±) has the form:

L+ρ
+ + (u+

1 )x1
+ (u+

2 )x2
= 0, M2L+u

+
1 + ρ+

x1
= 0,

M2L+u
+
2 + ρ+

x2
+ q(H+

1 )x2
− q(H+

2 )x1
= 0,

L+H
+
1 + q(u+

2 )x2
= 0, L+H

+
2 − q(u+

2 )x1
= 0,

RL−ρ
− − (u−1 )x1

+ (u−2 )x2
= 0, M2Rγ−2L−u

−
1 − ρ−x1

= 0,

M2Rγ−2L−u
−
2 + ρ−x2

+ qRγ−1(H−
1 )x2

+ qRγ−1(H−
2 )x1

= 0,

L−H
−
1 + q(u−2 )x2

= 0, L−H
−
2 + q(u−2 )x1

= 0 for x1 > 0,

(42)


u+

1 + b1ρ
+ − u−1 − b2ρ

− = 0,

(u+
2 )t + b3ρ

+
x2
− (u−2 )t + b4ρ

−
x2

+ b5(u−1 )x2
= 0,

H+
1 −H−

1 = 0, H+
2 −RH−

2 − qu+
2 + qu−2 = 0 at x1 = 0,

(43)

where

L+ = ∂t + ∂x1 , L− = ∂t −R∂x1 , b1 =
1 +M2

2M2 , b2 =
1
2

(
R2 +

1
M2Rγ−1

)
,

b3 =
R(1−M2)
2(M2 − q2)

, b4 = − RM2

2(M2 − q2)

(
R2 − 2R+

1
M2Rγ−1

)
, b5 =

M2(1−R)
M2 − q2

.

If we multiply the last two equations in (42) by Rγ−1, equations (42) form the linear symmetric

hyperbolic system

A0Wt +A1Wx1 +A2Wx2 = 0 (44)

for the vector W = (U+, U−) ∈ R10 with block-diagonal matrices Aα = diag(A+
α , A

−
α ), where the

symmetric constant coefficients matrices A±α can be easily written down.
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3.6 Normal modes analysis

For Lax MHD shocks (fast or slow) system (44) has four outgoing characteristic modes. In par-

ticular, for slow parallel shock waves the Lax conditions (40) imply that the matrix (A+
0 )−1A+

1

has three positive eigenvalues whereas the matrix (A−0 )−1A−1 has one positive eigenvalue. Then,

in view of Hersh’s lemma [15], the equation

det(τA+
0 + ξA+

1 + iωA+
2 ) = 0 (45)

has three roots ξ and the equation

det(τA−0 + ξA−1 + iωA−2 ) = 0 (46)

has one root ξ with <ξ < 0 for all τ with <τ > 0 and for all real ω. One can show that slow parallel

MHD shocks in a γ-law gas are 1D stable (we omit simple calculations). Therefore, without loss

of generality we assume below that the wave number ω = 1.

To show the strong instability of slow parallel shocks in the high-magnetic field limit, i.e., to

prove the ill-posedness of problem (42), (43) for q � 1 we look for its solutions in the form

W =
4∑

k=1

Wk exp(τt+ ξkx1 + ix2), (47)

where ξ = ξj (j = 1, 2, 3) are the roots of (45) with <ξj < 0 for <τ > 0 (to avoid so-called glancing

modes [8] we assume that they are different for a given τ), and ξ = ξ4 is the unique root of (46)

with <ξ4 < 0 for <τ > 0. It is clear that Wj = (U+
j , 0) (j = 1, 2, 3) and W4 = (0, U−

4 ), where the

constant vectors U+
j and U−

4 satisfy the algebraic equations

(τA+
0 + ξjA

+
1 + iA+

2 )U+
j = 0, j = 1, 2, 3, (48)

(τA−0 + ξ4A
−
1 + iA−2 )U−

4 = 0 (49)

(they are the eigenvectors of the matrices (A±1 )−1(τA±0 + iωA±2 )).

The dispersion relation (45) explicitly reads

L̂+

{
ε2M2L̂2

+(M2L̂2
+ − ξ2 + 1) + (1− ξ2)(M2L̂2

+ − ξ2)
}

= 0, (50)

where L̂+ = τ + ξ and ε = 1/q. We easily find the root

ξ1 = −τ (51)

that solves L̂+ = 0. It follows from (50) and (51) that ξ = ξ2 and ξ = ξ3 solve the equation

ε2M2L̂2
+(M2L̂2

+ − ξ2 + 1) + (1− ξ2)(M2L̂2
+ − ξ2) = 0. (52)

10



Since L̂− 6= 0 for <ξ < 0 and <τ > 0, where L̂− = τ − Rξ, the dispersion relation (46) for ξ = ξ4

implies

ε2M2L̂2
−(M2Rγ−1L̂2

− − ξ2 + 1) +R(1− ξ2)(M2Rγ−1L̂2
− − ξ2) = 0. (53)

We assume that

τ = τ0 + τ1ε+ τ2ε
2 + . . .

for ε � 1. Then, by expanding ξ into series in ε we find appropriate roots of (52) and (53) for

<τ > 0 and for a fixed Mach number (or a fixed parameter R):
ξ2 = −1 + ε2

M4(τ0 − 1)4

2(M2(τ0 − 1)2 − 1)
+O(ε3),

ξ3 = − Mτ0
1 +M

− ε
Mτ1

1 +M
+O(ε2) if τ0 6= 1 +

1
M
,

ξ2,3 = −1 + ε
−Mτ1 ±

√
M2τ2

1 − 1−M

2(1 +M)
+O(ε2) if τ0 = 1 +

1
M
,

ξ4 = −1 + ε2
M4Rγ−2(τ0 +R)4

2(M2Rγ−1(τ0 +R)2 − 1)
+O(ε3).

(54)

The denominator appearing in the expression for ξ4 vanishes only for negative τ0. We also assume

that τ 6= 1 because τ = 1 is a glancing mode at which ξ1 = ξ2.

Remark 3.2 The equation (45) written for nonparallel shocks coincides with the analogous dis-

persion relation in the non-barotropic case [3]. For nonparallel shocks [3]

ξ3 = −M0lτ0 + im

l(1 +M0)
+O(ε) if τ0 6= τ∗0 , (55)

with

τ∗0 = 1 +
l − im

lM0
, l = cosβ, m = sinβ, M0 =

ū1

c+s
,

where β is the angle of inclination of the magnetic field to the planar shock front (for parallel

shocks β = 0), M0 is the downstream slow Mach number (for parallel shocks M0 = M), and c+s

is the downstream slow magnetosonic velocity (for barotropic MHD see, e.g., [14]). Note that the

condition τ0 6= τ∗0 implies ξ2|ε=0 6= ξ3|ε=0 (for parallel shocks τ∗0 = 1 + 1/M).

From (48) and (49), taking into account (51), we find the eigenvectors

U+
1 =



0

0

0

τ

−i


C1, U+

k =



−iM2L2
k

iξkLk

Lk`k

−iq`k
qξk`k


Ck, U−

4 =



−iM2Rγ−2L2
4

iξ4L4

L4`4

−iq`4
qξ4`4


C4, (56)
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where k = 2, 3,

Lj = τ + ξj (j = 1, 2, 3), L4 = τ −Rξ4, `k = M2L2
k − ξ2k, `4 = M2Rγ−1L2

4 − ξ24 ,

and Cα (α = 1, 4) are constants. We now substitute (47), (56) into the boundary conditions

(43). Omitting simple calculations, from the last two boundary conditions in (43) we derive

(τ2 − 1)C1 = 0. Since by assumption τ 6= 1 and we are not interested in the stable mode τ = −1

one gets C1 = 0, and the last two conditions in (43) written in terms of the constants C2, C3, and

C4 are linearly dependent. Then from the first three boundary conditions in (43) we obtain the

following linear system for the constant vector X = (C2, C3, C4):

LX = 0,

where

L =


(ξ2 − b1M

2L2)L2 (ξ3 − b1M
2L3)L3 (b2M2Rγ−2L4 − ξ4)L4

(τ`2 + b3M
2L2)L2 (τ`3 + b3M

2L3)L3 (b4M2Rγ−2L4 − b5ξ4L4 − τ`4)L4

`2 `3 −`4

 ,

In fact, ∆(τ) = detL is a reduced Lopatinski determinant [8].

Since bk = O(ε2) for k = 3, 4, 5 and, in view of (54), l3|ε=0 = 0 we have

∆(τ) =
{
(b1M2L3 − ξ3)L3

}
|ε=0 det

 τ`2L2 −τ`4L4

`2 −`4

∣∣∣∣∣∣
ε=0

+O(ε).

That is,

∆ = ∆0 + ∆1ε+ ∆2ε
2 + . . . ,

where

∆0(τ0) =
1
2
(R+ 1)τ3

0

(
M2(τ0 − 1)2 − 1

) (
M2Rγ−1(τ0 +R)2 − 1

)
and τ0, τ1, τ2, . . . are found recursively from the equations ∆0 = 0, ∆1 = 0, ∆2 = 0, . . . . The

condition <τ0 > 0 implies <τ > 0. The equation ∆0 = 0 has only one root with <τ0 > 0, and this

root τ0 = 1 + 1/M , that solves the equation `2|ε=0 = 0, can potentially correspond to a glancing

mode τg = τ0 +O(ε) at which ξ2 = ξ3, see (54). In fact, it does correspond to the glancing mode

τg that is the root of the equation ∆(τ) = 0 because the first two columns of the matrix L coincide

for ξ2 = ξ3. But, one can show that the glancing mode is not a root of the equation ∆ = 0 when

∆ is properly determined for ξ2 = ξ3.

Thus, we have to take τ0 = 0. Analyzing the structure of the matrix L for τ0 = 0, we find that

∆ = cτ3
1 ε

3 +O(ε4),
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where c is a nonzero constant. Therefore, τ1 = 0. Analyzing again the structure of the matrix L

for τ0 = τ1 = 0, one can see that

∆ = ∆6ε
6 +O(ε6), ∆6(τ2) = detM, M =

(
−1− b1M

2L
(0)
2

)
L

(0)
2

(
ξ
(2)
3 − b1M

2L
(2)
3

)
L

(2)
3 (b2M2Rγ−2L

(0)
4 + 1)L(0)

4(
τ2`

(0)
2 + b

(2)
3 M2L

(0)
2

)
L

(0)
2 b

(2)
3 M2

(
L

(2)
3

)2 (
b
(2)
4 M2Rγ−2L

(0)
4 + b

(2)
5 L

(0)
4 − τ2`

(0)
4

)
L

(0)
4

`
(0)
2 0 −`(0)4

 ,

where (·) = (·)(0) + (·)(1)ε+ (·)(2)ε2 + . . . , in particular,

ξ
(2)
3 = − Mτ2

1 +M
, L

(0)
2 = −1, L

(2)
3 =

τ2
1 +M

, L
(0)
4 = R, `

(0)
2 = M2−1, `

(0)
4 = M2Rγ+1−1,

b
(2)
3 =

R(M2 − 1)
2

, b
(2)
4 =

RM2

2

(
R2 − 2R+

1
M2Rγ−1

)
, b

(2)
5 = M2(R− 1).

After some algebra one gets

∆6(τ2) = −1
2
(1−M2)τ2

2

{
(1 +R)(M2

− − 1)τ2 −RM2σ
}
, (57)

where

σ =
M2

− − 1
1 +M

+R(R− 1) +
1
2
RM2

−

(
R2 − 2R+

R2

M2
−

)
− R(1−M)

2(1 +M)
(M2

− + 3).

Recall that M− is the upstream Mach number and M2
− = M2Rγ+1 > 1. In (57) it is assumed

that 1 −M2 = O(1), i.e., the Mach number is fixed while the parameter q is being taken to be

sufficiently large.2

Taking into account (38), we can consider σ as a function of R, where R > 1, see (36). One

can show that σ(1) = 0 and σ(+∞) = +∞. Then, at least for sufficiently strong shocks (when R

is large enough) σ > 0 for all γ ≥ 1. A more delicate analysis (we omit calculations) shows that

σ > 0 for all γ ∈ [1, 2] (the case γ > 2 needs numerical study of the function σ(R)). That is, the

root τ2 = RM2σ/((1 +R)(M2
− − 1)) of the equation ∆6(τ2) = 0 is positive, and we have found an

unstable root τ = τ2ε
2 +O(ε3) of the equation ∆(τ) = 0 with <τ > 0.

Remark 3.3 Actually, normal modes analysis for nonparallel shocks being technically involved is

principally simplier than that for parallel shocks studied above. The structure of the Lopatinski

determinant for nonparallel slow shocks in barotropic MHD is internally analogous to that in full

MHD. For nonparallel shocks (i.e., for β > 0, see Remark 3.2)

∆ = ∆−4q
4 + . . .+ ∆−1q + ∆̃0 + ∆̃1ε+ . . . ,

2If vice-versa q is fixed but M → 1, then our arguments do not work even for large q. The limit M → 1

corresponds to extremely weak shocks that are known to be uniformly stable [12].
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where ∆−k|β=0 = 0, k = 1, 4, ∆̃i|β=0 = ∆i, i = 0, 1, 2, 3, . . . . As in the non-barotropic case [2, 3],

for nonparallel shocks there is an unstable root of the equation ∆−4(τ0) = 0 that is

τ0 = τ̂0 = 1 +
1

M0l
√

2l

(√
l + 1− im√

l + 1

)
,

where τ̂0|β=0 = 1 + 1/M . But τ̂0 6= τ∗0 for β > 0, cf. (55), whereas τ̂0 = τ∗0 for β = 0. Thus,

for nonparallel shocks we do not have any difficulties connected with glancing modes! The root

τ = τ̂0 + O(ε) is a genuine (not fictitious) unstable root of the Lopatinski determinant for all

β > 0. Note that the non-barotropic MHD shocks studied in [2] were assumed by default to be

nonparallel. But, reasoning as above, for parallel slow shocks in full MHD one can also exhibit an

unstable root τ = O(ε2).

Thus, we have proved the following theorem (for the non-barotropic case and nonparallel slow

shocks it was proved in [2], see also [3]).

Theorem 3.1 For any fixed downstream Mach number M < 1 there exists a positive number q∗

such that the slow barotropic MHD shock is violently unstable for all q > q∗, where the parameter

q measures the competition between the magnetic and fluid pressures behind the shock.

It is worth to note that, as follows from the numerical results of [4] where the roots of the

Lopatinski determinant for MHD shocks in a polytropic gas were being sought numerically for

γ = 5/3, slow shocks in full MHD are unstable in a wide range of the parameter q. That is, the

number q∗ from the counterpart of Theorem 3.1 for full MHD [2, 3] is actually not extremely large

(except the case of weak shocks). It is clear that the same should be true for the barotropic case.

3.7 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from Theorems 2.1 and 3.1. Indeed, fix (λ, ν) ∈ (0,∞)2 arbitrar-

ily. Then, it follows from Theorem 2.1 that there exists some (possibly rather small) η∗ > 0 that

slow parallel shock waves in barotropic MHD are 1D stable at the viscous level for all η ∈ (0, η∗).

At the same time, Theorem 3.1 implies that these shock waves are multi-D strongly unstable at

the inviscid level for all q > q∗, with some (possibly rather large) q∗ > 0.

4 Viscous and inviscid stability of shock waves in full MHD

To prove a counterpart of Theorem 1.1 for shock waves in full MHD one needs only to repeat

arguments of Sect. 2 making appropriate brief remarks. We first make these remarks and then

prove Theorem 1.2 by using a scaling property of full MHD found in [5]. It is worth to note that

this argument is inapplicable for barotropic MHD.
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For the case of full MHD, equations (11) and (12) and the Rankine-Hugoniot conditions (13),

(14) (for parallel shocks) are complemented by

(
e+ 1

2u
2 + 1

2v(H
2
2 +H2

3 )
)

+
(
qu1 −H∗

1 (H2u2 +H3u3)x

=
(
µu1u1x + ν(u2u2x + u3u3x) + κθx + η(B2B2x +B3B3x)

v

)
x

,

and

s
(
cv(θ̄+ − θ̄−) + 1

2 ((ū+
1 )2 − (ū−1 )2)

)
= p(v̄+, θ̄+)ū+

1 − p(v̄−, θ̄−)ū−1

respectively, where q = p+(H2
2 +H2

3 )/2, p(v, θ) = (γ− 1)cvθ/v, and e = cvθ, cf. (10). For parallel

shocks the profile is

Φ = (V,U , 0, 0,H∗
1 , 0, 0,Θ),

where V, U , and Θ are determined by (18) (with p̄± = p(v̄±, θ̄±)) and (see [6])

Θ′ =
sV
κ

{
(v̄+ − V)

(
p̄+ + 1

2 (v̄+ − V)
)
− cv(Θ− θ̄+)

}
.

One can show [7] that there exists a positive constant C independent on γ such that for ξ ∈ R

|Θ′/V ′| ≤ C(γ − 1). (58)

At last, we note that for full MHD the Lax conditions (19), (20), and (21) remain the same.

In full MHD the study of viscous 1D stability of parallel shock waves is also reduced to the

analysis of system (25). We can follow the arguments of Sect. 2 giving the energy identity (26)

with p′(V) substituted for

pv(V,Θ) + (Θ′/V ′)pθ(V,Θ) =
(γ − 1)cv

V
(Θ′/V ′ −Θ/V).

The 1D stability of viscous gas dynamic shock waves was shown in [7] provided that (γ − 1)(v̄+ −

v̄−) � 1. This condition does not exclude the case of strong shocks when γ is close to 1. Then,

taking into account (58), we get a counterpart of Theorem 2.1 for full MHD for the case when γ is

close to 1 (or under the hypothesis that viscous shock waves in full gas dynamics are always stable

in a polytropic gas3). The multi-D ideal strong instability of slow (nonparallel) shock waves in the

high-magnetic field limit was proved in [2], and the instability of corresponding parallel shocks can

be shown by arguments analogous to those in Sect. 3 (see Remark 3.3). Thus, we have proved a

counterpart of Theorem 1.1 for full MHD.

Remark 4.1 A careful comparison of the sufficient stability condition (28) for slow shocks in full

MHD with the numerical results of [4] for γ = 5/3 can give us a counterpart of Theorem 1.1 (for

full MHD) when the viscosity coefficients (λ, η) ∈ (0,∞)2 are arbitrarily fixed and shocks are stable
3This hypothesis is quite reasonable in the light of the results in [1, 16].
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for some ν > 0 (under the hypothesis that corresponding viscous shock waves in gas dynamics are

stable). In Eulerian coordinates (see Remark 3.1) condition (28) becomes q2 < 2M2. Recalling

the Lax conditions (40), we have

M2R < q2 < 2M2. (59)

Note that for parallel shocks in a polytropic gas (see [18]), R = ((γ − 1)M2 + 2)/(γ + 1)M2.

Numerical Lopatinski determinant calculations in [4] show that slow parallel MHD shocks4 are

strongly unstable in a wide range of the parameter q. Rewriting the dimensionless parameters

used in [4] in terms of M and q, we can see that there are strongly unstable slow parallel MHD

shocks satisfying conditions (59) (we omit detailed calculations).

We prove Theorem 1.2 by using an interesting effect of scalings in [5] on the dissipation coeffi-

cients ...

5 Appendix on gas dynamics

The equations of full gas dynamics and those of barotropic gas dynamics ...

4In the notations of [4] they correspond to the case ϕ1 = 0.
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