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Abstract

We consider fixed-smoothing asymptotics for the Diebold and Mariano (1995) test

of predictive accuracy. We show that this approach allows to obtain predictive

accuracy tests that are correctly sized even when only a small number of out

of sample observations are available. We apply the fixed-smoothing asymptotics

to the Diebold and Mariano (1995) test to evaluate the predictive accuracy of

the Survey of Professional Forecasters (SPF) against a simple random walk. Our

results show that the predictive ability of the SPF was partially spurious, especially

in the last decade.
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1 Introduction

Good forecasts are key to good decision making. And being able to compare predictive

accuracy is key to discriminate between good and bad forecasts. To this end, one of the

most used tests to compare the predictive accuracy of two competing forecasts is the

Diebold and Mariano (1995) [DM] test.

The DM test is based on a loss function associated with the forecast errors of each

forecast, testing the null of zero expected loss differential of two competing forecasts.

This framework allows to test for equal predictive accuracy using any loss function, and

the test statistic is valid for contemporaneously correlated, serially correlated and non-

normal forecast errors. The DM approach takes forecast errors as model-free and the

test is valid also when the forecasts are produced from unknown models, as for example

from forecast survey data.

When the forecasts are produced by estimated models, nested or non-nested, it is

in general necessary to account for the impact of the model parameter estimation un-

certainty on the distribution of the forecast accuracy test, see West (1996) and Clark

and McCracken (2001). In this case, the limiting distribution of the test statistics de-

pends on the specific modelling assumptions made for obtaining the forecast errors, see

West (2006) and Clark and McCracken (2013). West (1996) shows that in some cases

the DM approach is asymptotically valid even when forecasts are obtained from esti-

mated models. This happens when the number of in sample observations is large relative

to the number of out of sample observations or when a quadratic loss function is used

to evaluate the accuracy of non-nested models estimated by ordinary least squares. In

addition, in practice it is also not uncommon to compare forecasts produced by models

for which it is not tractable to account for the model parameter estimation uncertainty.

For these reasons, the DM test is still widely applied also when forecasts are obtained

by estimated models, see Diebold (2015).

One reason for the success of the DM test is that the test statistic is simple to
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compute and asymptotically normally distributed. As a consequence, the DM testing

framework has been extended in several directions, see Diebold (2015), for example to

test for conditional predictive ability, Giacomini and White (2006), and to deal with

structural changes, Giacomini and Rossi (2010).

However, as also noted by DM, the test can be subject to large size distortions in

small samples, which can be spuriously interpreted as superior predictive ability for one

forecast. This is due to the fact that in the test statistic the long run variance is replaced

by a consistent estimate, and standard limit normality is then still employed: this may

be unsatisfactory when only a small number of out of sample observations are available.

As remarked by Clark and McCracken (2013), “one unresolved challenge in forecast test

inference is achieving accurately sized tests applied at multi-step horizons – a challenge

that increases as the forecast horizon grows and the size of the forecast sample declines”.

In this paper, we consider two alternative asymptotics for testing assumptions about

the expected loss differential of two competing forecasts. The first is the fixed-b approach

of Kiefer and Vogelsang (2005), in which the limit properties of the weighted autoco-

variances estimate of the long run variance are derived assuming that the bandwidth to

sample size ratio is constant. With this approach, the test to compare predictive accu-

racy has a non-standard limit distribution, that depends on the bandwidth to sample

ratio b and on the kernel used to estimate the long run variance. The second alternative

asymptotic that we consider is the fixed-m approach as in Sun (2013) and Hualde and

Iacone (2015). In this case, the estimate of the long run variance is based on a weighted

periodogram estimate with Daniell kernel and a truncation parameter m that is assumed

to be constant as the sample size increases. The test to compare predictive accuracy

has a t distribution with degrees of freedom that depends on the truncation parameter.

This averaged periodogram estimate can be seen as one application of the orthonormal

series variance estimate, see Phillips (2005).

Following Sun (2014a) and Sun (2014b) we refer to these two alternative asymptotics,
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fixed-b and fixed-m, as “fixed-smoothing asymptotics”. With these asymptotics, the

assumptions on the bandwidth parameter implies that the estimate of the long run

variance is not consistent. However, inference is more precise than with HAC standard

asymptotics, and therefore it is often referred to as “Heteroskedasticity Autocorrelation

Robust” (HAR).

We perform a Monte Carlo analysis and find that fixed-smoothing asymptotics deliver

correctly sized predictive accuracy tests for highly correlated loss differentials even in

small samples. Monte Carlo results also show that the power of the tests with fixed-

smoothing asymptotics is comparable to the power of bootstrap tests. Overall, the

findings of our Monte Carlo exercises are in line with the general literature on testing:

the application of fixed-smoothing asymptotics to the DM test for predictive ability

discussed here and the focus on small samples is novel. We apply fixed-smoothing

asymptotics to evaluate the predictive accuracy of the Survey of Professional Forecasters’

(SPF) forecasts for four core macroeconomic indicators: output growth, inflation, the

unemployment rate and the three-month Treasury bill rate for the period from 1985:Q1

until 2014:Q4. Results show that part of the superior predictive accuracy indicated by

the the DM test is spurious, especially in the most recent subsample.

For high frequency, large sample forecast evaluations, Patton (2015) and Li and

Patton (2013) show that fixed-b asymptotics delivers considerable size improvements.

For small samples, Harvey, Leybourne and Newbold (1997) propose a modified statistic

and critical value: while this is only justified when the loss differential is an independent

process, they find that their modified DM test alleviates the size distortion of the original

test, even in presence of weak autocorrelation. The modifications of the DM test based on

fixed-smoothing asymptotics that we propose have the advantage of being formally based

on asymptotic theory, also when the loss differential is a dependent process. Harvey,

Leybourne and Whitehouse (2015) perform an extensive Monte Carlo simulation exercise

to examine the small sample size and power properties of different approaches. Their
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results confirm that the fixed-m approach proposed in this paper outperforms standard

approaches in small samples.

The paper is organized as follows. In Section 2 we introduce the test for equal

predictive accuracy and in Section 3 we describe the DM estimate. The tests for equal

predictive accuracy using fixed-b asymptotics and fixed-m asymptotics are described in

Section 4. In Section 5 we present a Monte Carlo study and in Section 6 perform a

Monte Carlo comparison with the bootstrap. Then in Section 7 we apply the testing

methodology to analyse the predictive ability of the SPF and in Section 8 we conclude.

2 Comparing predictive accuracy

We consider the time series y1, ..., yT , for which we want to compare two h-step ahead

forecasts ŷh1,t and ŷh2,t made at time t − h, with forecast errors eh1,t = yt − ŷh1,t and

eh2,t = yt − ŷh2,t, respectively. We denote by L(ehi,t), for i = 1, 2, the loss associated with

the forecast error ehi,t; for example, a quadratic loss would be L(ehi,t) =
(
ehi,t
)2

. The time-t

loss differential between the two forecasts is

dt = L(eh1,t)− L(eh2,t)

and it can be represented as

dt = µ+ ut

where ut has E (ut) = 0 and it is a weakly dependent process, with autocovariances

γj = E (utut+j) and long run variance σ2 =
∑∞

j=−∞ γj, with 0 < σ2 <∞.

DM propose to test the hypothesis of equal predictive ability as H0 : {µ = 0}. Let

d =
1

T

∑T

t=1
dt

denote the sample mean of the loss differential. Under regularity conditions, it holds
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that
√
T
d− µ
σ
→d N (0, 1) . (1)

Unfortunately, this statistic is unfeasible to test H0, because σ2 is unknown. However,

the parameter σ2 can be replaced with an appropriate estimate and, if a consistent

estimate is used, then the limit normality is not affected by the replacement.

3 The DM estimate

A typical estimate for the long run variance is the Weighted AutoCovariances Estimate

(WCE),

σ̂2 = γ̂0 + 2
∑T−1

j=1
k (j/M) γ̂j (2)

where γ̂j = 1
T

∑T−j
t=1 ûtût+j, with ût = dt − d, and k (.) is a kernel function such that

k (0) = 1, |k (τ)| < 1, k (τ) = k (−τ), k (τ) is continuous at τ = 0 and
∫ 1

0
k (τ)2 dτ <∞.

The parameter M is a bandwidth parameter (or a truncation lag), and for consistency of

σ̂2 regularity conditions include M →∞ and M/T → 0 as T →∞. We refer to Hannan

(1970) for a survey of these estimates, and for a discussion of which kernels ensure that

σ̂2 ≥ 0.

In a variation of this approach, DM note that if ŷh1t is an optimal forecast h steps

ahead, then eh1t is at most a MA(h − 1), and then propose to set M = h − 1 and

k (j/M) = 1 if j/M ≤ 1 and 0 otherwise, so

σ̂2
DM = γ̂0 + 2

∑h−1

j=1
γ̂j. (3)

This does not meet the condition M → ∞, but the estimate is nevertheless consistent,

because it exploits the assumption that ut is MA(h− 1), thus ensuring

√
T
d− µ
σ̂DM

→d N (0, 1) . (4)
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The choice of σ̂2
DM may be very appealing, as it exploits information about the structure

of ut. However, the rectangular kernel used in (3) may generate negative estimates

for σ̂2
DM , which is undesirable. Moreover, the Monte Carlo exercise in DM suggests

the possibility of large size distortions in small samples, which would be spuriously

interpreted of superior predictive power for one forecast rule. DM mention the possibility

of using alternative kernels and standard asymptotics, to avoid the risk of negative

estimates of σ, but simulations in Clark (1999), in which a Bartlett kernel was used, do

not suggest that simply replacing the kernel results in a definite improvement of the size

distortion.

4 Fixed-smoothing asymptotics

4.1 Fixed-b asymptotics

Following the approach of Kiefer and Vogelsang (2005) we consider alternative asymp-

totics for the estimate (2): for given M , the ratio M/T is taken as fixed as T → ∞.

As M/T is fixed, letting b = M/T , this alternative approach is referred to as fixed-b

asymptotics. With this assumption, Kiefer and Vogelsang (2005) show that the esti-

mate of σ is not consistent and not even asymptotically unbiased. This implies that the

standardized sample mean has a non-standard limit distribution that depends on b and

on the kernel. Kiefer and Vogelsang (2005) provide a formula to generate quantiles of

the limit distribution, that can be used as critical values in tests.

For fixed-b asymptotics and assuming that the Bartlett kernel is used, we introduce

the notation

σ̂2
BART = γ̂0 + 2

∑T−1

j=1
kBART (j/M) γ̂j, M/T → b, (5)

kBART (x) =

 1− |x| , if |x| ≤ 1;

0, otherwise.
(6)
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Kiefer and Vogelsang (2005) show that

if b ∈ (0, 1] , then
√
T
d− µ
σ̂BART

⇒ ΦBART (b) , (7)

where⇒ denotes weak convergence in the in the D[0, 1] space with the Skorohod topol-

ogy. They characterise the limit distribution ΦBART (b) and provide formulas to compute

quantiles. For the Bartlett kernel with b ≤ 1, these can be obtained using the formula

q (b) = α0 + α1b+ α2b
2 + α3b

3

where

α0 = 1.6449, α1 = 2.1859, α2 = 0.3142, α3 = −0.3427 for 0.950 quantile

α0 = 1.9600, α1 = 2.9694, α2 = 0.4160, α3 = −0.5324 for 0.975 quantile

The results of Kiefer and Vogelsang (2005) provide asymptotics that may be valid for

any M , even M = T , but notice that Kiefer and Vogelsang (2005) do not automatically

recommend using M = bbT c: rather, they provide alternative asymptotics for a user

chosen bandwidth. So, for example, assuming T = 128 and M =
⌊
T 1/3

⌋
= 5, then

b = 5/128 = 0.039063 and the 5% critical value for a two-sided test is 2.0766 instead of

1.96.

When testing assumptions about the sample mean, Kiefer and Vogelsang (2005) show

in Monte Carlo simulations that the fixed-b asymptotics yields a remarkable improvement

in size. However, while the empirical size improves (it gets closer to the theoretical size)

as b is closer to 1, the power of the test worsens, implying that there is a size-power

trade-off. These results are also confirmed analytically by Sun, Phillips and Jin (2008),

who prove that the fixed-b limit distribution provides a higher-order correction.
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4.2 Fixed-m asymptotics

We now consider an alternative estimate of the long run variance, a Weighted Peri-

odogram Estimate (WPE). Letting λj = 2πj/T for j = 0,±1, ...,±bT/2c as the Fourier

frequencies, and

I (λj) =

∣∣∣∣ 1√
2πT

∑T

t=1
dte
−iλjt

∣∣∣∣2
as the periodogram of dt, we consider estimates

σ̃2 = 2π
∑bT/2c

j=1
KM (λj) I (λj) (8)

where KM (λj) is a kernel function that is symmetric and M is a bandwidth parameter.

Notice that as 1√
2π

∑T
t=1 de

−iλjt = d 1√
2π

∑T
t=1 e

−iλjt and, for j 6= 0,
∑T

t=1 e
−iλjt = 0,

I (λj) is also the periodogram of ût at these frequencies. Kernels k (j/M) in (2) and

KM (λj) in (8) are related, as KM (λ) := (2π)−1
∑
|l|<T k (l/M) e−ilλ, and the WCE in

(2) has frequency domain representation

∫ π

−π
KM (λ) I∗ (λ) dλ (9)

where I∗ (λ) is the periodogram of dt− d. Weighted covariance estimation and weighted

periodogram estimation are therefore very similar, and this suggests for WPE an alter-

native theory analogue to fixed-b for WCE.

The WPE of the long run variance using the Daniell kernel is

σ̂2
DAN = 2π

1

m

m∑
j=1

I (λj) (10)

where m is a function of the bandwidth M (and, with slight abuse of notation, it is

usually referred to as bandwidth itself). Regularity conditions, including m → ∞,

ensure that σ̂2
DAN is a consistent estimate of σ2; for fixed m this is no longer the case,
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but σ̂2
DAN is still asymptotically unbiased.

Using results from Hannan (1970), it is possible to show that, for fixed m,

√
T
d− µ
σ̂DAN

→d t2m. (11)

This result was anticipated in Sun (2013) and Müller (2014): we provide some details

about the derivation of (11) in Appendix A. Monte Carlo simulations in Hualde and

Iacone (2015) show that fixed-m asymptotics have the same size-power trade-off docu-

mented for fixed-b asymptotic: the smaller the value for m, the better the empirical size,

but also the weaker the power.

5 A Monte Carlo study of the test for predictive

accuracy under fixed-smoothing asymptotics

In this section we analyse the size and power properties of the proposed tests of equal

predictive accuracy in small samples for both the case of equal predictive accuracy and

the case of superior predictive accuracy of one forecasting model.

5.1 Size Analysis

We simulate forecast errors as in DM and Clark (1999). In particular, we first simulate

a vector of forecast innovations from a bivariate standard normal, (v1t, v2t)
′ ∼ N(02, I2).

We then introduce contemporaneous correlation by taking

 u1t

u2t

 =

 √k 0

ρ
√

1− ρ2


 v1t

v2t
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and serial correlation by taking

e1t =
∑q

j=0
θju1t−j/

√∑q

j=0
θ2j

e2t =
∑q

j=0
θju2t−j/

√∑q

j=0
θ2j

where k = 1, ρ = 0.5 and θ = 0.75. DM, Clark (1999) and Harvey, Leybourne and

Whitehouse (2015) fix q to 1, in our case instead q is set to range between 1 and 5. With

this design, as q increases the processes e1t and e2t become similar to an AR(1) with

parameter θ. Results in Clark (1999) suggest only limited sensitivity of size to ρ and θ,

so we keep these fixed and investigate the effect of increasing the serial correlation with

q. In Appendix B, we report a sensitivity analysis, including a size study for θ = 0.5.

In Tables 1–2 we report results of the Monte Carlo, with theoretical size set to 5%.

In all cases we use 10,000 replications (entries in the tables are rounded to the third

decimal digit) and a quadratic loss function. We use T = 40 and T = 120 as these

samples correspond to 10 years and 30 years of quarterly data, and therefore match the

dimension of our sample in the empirical analysis. We consider three estimates of σ: the

WCE using the DM estimate in (3) with h− 1 = q; the WCE using the Bartlett kernel

in (5)–(6); the WPE using the Daniell kernel in (10). We refer to these three estimates

as WCE-DM, WCE-B and WPE-D, respectively.

In the first part of the experiment, we study the size properties treating the estimates

of σ as consistent and using standard asymptotics, i.e. the limit normal distribution, to

compute the empirical size. In Table 1 we report the empirical size of the tests when

the WCE-DM, WCE-B and WPE-D are used to estimate σ. When using the WCE-DM

estimate, negative estimates are possible. We treat these instances as rejections of the

null hypothesis. We discuss these occurrences in Appendix B.

For the WCE-B we use M =
⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
, and for the WPE-D we use

m =
⌊
T 1/3

⌋
, m =

⌊
T 1/2

⌋
and m =

⌊
T 2/3

⌋
. The choice of the first bandwidth for the
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WCE-B is motivated by the fact that the optimal bandwidth, in minimum MSE sense, is

obtained setting M proportional to
⌊
T 1/3

⌋
, see for example Newey and West (1994). We

discuss here the näıve choice M =
⌊
T 1/3

⌋
, in Appendix B we also consider the automatic

procedures from Newey and West (1994). The second bandwidth, M =
⌊
T 1/2

⌋
, is

chosen because existing Monte Carlo evidence for fixed-b asyptotics suggests that longer

bandwidths are associated with better empirical size.

As for the bandwidths for the WPE-D, Delgado and Robinson (1996), Phillips (2005)

and Sun (2013) show that the optimal bandwidth, in MSE sense, is proportional to⌊
T 4/5

⌋
, whereas Abadir, Distaso and Giraitis (2009) recommend m =

⌊
T 2/3

⌋
. However,

in samples as small the ones of this exercise, even m =
⌊
T 2/3

⌋
spans a substantial part of

the interval (0, π), and the estimate of σ with this bandwidth may therefore be subject

to too much bias. The other two bandwidths are therefore chosen to limit this bias,

and to allow comparison with the fixed-m asymptotics. We further explore this issue in

Appendix B.

In general, Table 1 shows that, as the serial correlation increases with q, the size

of the test deteriorates, although the size distortion is less serious in the larger sample.

Comparing the results when WCE-B is used, on balance we find that M =
⌊
T 1/3

⌋
yields

better size properties, the only exception being for q = 5 in the large sample. The

comparison between using the WCE-B with M =
⌊
T 1/3

⌋
and the WCE-DM estimate is

less clear cut in this instance. The DM estimate delivers better size properties in the

large sample, but using the WCE with Bartlett kernel helps avoiding the very severe

size distortion occurring in the small sample with q = 4 or q = 5 when the DM estimate

is used.

For the WPE-D, we find that the bandwidth m =
⌊
T 2/3

⌋
is too long for the small

samples used in this investigation: the bandwidth m =
⌊
T 1/2

⌋
yields better size in most

cases, although a certain size distortion still occurs, especially in the smallest sample.

Comparing the results for the three cases in which WPE-D is used, corresponding to
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Table 1: Size of tests with standard asymptotics

T=40

WCE WPE
q DM

⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 2/3

⌋
1 0.075 0.092 0.115 0.093 0.075 0.081
2 0.095 0.105 0.121 0.095 0.082 0.106
3 0.115 0.113 0.128 0.090 0.089 0.137
4 0.141 0.125 0.131 0.096 0.102 0.163
5 0.173 0.136 0.139 0.098 0.112 0.179

T=120

WCE WPE
q DM

⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 2/3

⌋
1 0.058 0.069 0.080 0.084 0.062 0.064
2 0.057 0.073 0.082 0.079 0.058 0.070
3 0.064 0.082 0.087 0.082 0.063 0.089
4 0.073 0.090 0.090 0.082 0.069 0.108
5 0.085 0.102 0.098 0.085 0.077 0.128
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using standard normal asymp-

totics for various MA(q) processes with θ = 0.75 and alterna-

tive estimates of the long run variance. For the WCE, DM is

the WCE with the truncated kernel as in DM and h − 1 = q,⌊
T 1/3

⌋
and

⌊
T 1/2

⌋
are the WCE with the Bartlett kernel and

M =
⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
. For the WPE, we use the

Daniell kernel with m =
⌊
T 1/3

⌋
, m =

⌊
T 1/2

⌋
and m =

⌊
T 2/3

⌋
.
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the three different bandwidths, the choice m =
⌊
T 1/2

⌋
limits two alternative sources of

size distortion: the lower order bias in the estimation of σ at higher frequencies, which

affects m =
⌊
T 2/3

⌋
most, and the high variance of the estimate, which is more a problem

when the shortest bandwidth, m =
⌊
T 1/3

⌋
, is used. Bearing in mind that our focus is on

small samples, the WPE estimate with bandwidth m =
⌊
T 1/2

⌋
is overall the best choice.

In Table 2 we report results when the properties of the estimates of σ and of the

test statistic are derived assuming fixed-smoothing asymptotics. In columns WCE, we

use (5)–(6), with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
, and M = T , and fixed-b asymptotics, with

limit (7); in columns WPE, we use the estimate (10) with m =
⌊
T 1/4

⌋
, m =

⌊
T 1/3

⌋
and

m =
⌊
T 1/2

⌋
and asymptotics from (11). Bandwidths M =

⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
for

the WCE-B means that the same test statistic is used both in Table 1 and Table 2, and

the difference in the empirical size in the two tables is then due only to the different

critical values. Bandwidth M = T , on the other hand, has been proposed when fixed-b

asymptotics is used, by Kiefer and Vogelsang (2002). Likewise, for the WPE-D estimate,

bandwidths m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
allow for a comparison with results from

Table 1. The size distortion for m =
⌊
T 2/3

⌋
documented in Table 1 is due to the

bias in the estimation of the long run variance and therefore cannot be improved upon,

with fixed-m asymptotics. Instead, we consider m =
⌊
T 1/4

⌋
: this is too short to be

considered for standard asymptotics, as m = 2 when T = 40, but fixed-m asymptotics

provides a useful justification for this choice. As the Monte Carlo exercise in Hualde and

Iacone (2015) shows that the best size is achieved for the lowest bandwidths, m =
⌊
T 1/4

⌋
is a very interesting choice.

Comparing Tables 1 and 2, we find that fixed-smoothing asymptotics always im-

proves the empirical size, yielding results closer to the prescribed 5%. Moreover, with

WCE-B the empirical size is better the larger is the bandwidth, whereas with the WPE-

D the empirical size is more precise the smaller is m. Indeed, we find that the bandwidth

M =
⌊
T 1/3

⌋
in the WCE-B still yields some size distortion, even when fixed-b asymp-
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Table 2: Size of tests with fixed-smoothing asymptotics

T=40

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.054 0.051 0.054 0.044 0.044 0.051
2 0.061 0.054 0.054 0.043 0.043 0.052
3 0.066 0.054 0.054 0.037 0.041 0.057
4 0.076 0.056 0.057 0.039 0.039 0.065
5 0.081 0.060 0.056 0.039 0.043 0.074

T=120

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.054 0.049 0.049 0.050 0.047 0.047
2 0.055 0.047 0.048 0.044 0.046 0.044
3 0.064 0.050 0.048 0.045 0.045 0.049
4 0.073 0.054 0.048 0.043 0.043 0.052
5 0.081 0.059 0.055 0.043 0.044 0.057
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using fixed-smoothing asymp-

totics for various MA(q) processes with θ = 0.75 and alterna-

tive estimates of the long run variance. For the WCE, we use

the Bartlett kernel withM =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
andM = T .

For the WPE, we use the Daniell kernel with m =
⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
.
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totics is used; results for m =
⌊
T 1/2

⌋
for the WPE-D are also not entirely satisfactory,

especially in the T=40 sample. Overall, then, with fixed-b asyptotics it seems desirable

to choose bandwidths M longer than what we would consider when standard asymp-

totics is used; this result is mirrored in case fixed-m asymptotics is used, in which case,

the bandwidths could be shorter than what is usually recommended under standard

asymptotics.

In summary, in our Monte Carlo exercise we find that the DM test with the WCE-DM

may be subject to relevant size distortion in small samples, and that alternative estimates

of the long run variance may help limiting this size distortion, but not completely restore

the theoretical 5% size. Fixed-smoothing asymptotics alleviates the size distortion, and

may eliminate it completely, when a long bandwidth is used for the WCE-B or when a

short bandwidth is used for the WPE-D.

5.2 Power Analysis

In the previous exercise, we saw that some tests of equal predictive accuracy give rise

to relevant size distortion, and we therefore do not recommend using those tests. To

choose between the remaining tests, that are broadly correctly sized, in the second part

of the Monte Carlo exercise, we study the power of the tests.

In this experiment, we only consider test statistics in which σ is estimated as the

WCE-B or as WPE-D, and only use critical values from fixed-smoothing asymptotics.

Notice that we also include two cases in which even the non-standard asymptotics does

not completely eliminate the size distortion: when σ is estimated with M =
⌊
T 1/3

⌋
for

the WCE-B and m =
⌊
T 1/2

⌋
for the WPE-D. In this way, we are able to observe the

power loss associated to using M =
⌊
T 1/2

⌋
for the WCE-B, instead of M =

⌊
T 1/3

⌋
. We

keep m =
⌊
T 1/2

⌋
for the WPE-D for a similar power comparison against the case in

which the WPE-D with m =
⌊
T 1/3

⌋
is used.

We test H0 : {µ = 0} in processes with µ = cT−1/2, for c ranging between 0 and
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7. Since in this part of the exercise we are interested in power, rather than in size

distortion, we use a time series of independent, standard normal distributed variates.

As in the previous exercise, we use 10,000 repetitions and T = 40 and T = 120. We also

compare the tests with fixed-smoothing asymptotics against a benchmark case in which

σ is known. With samples as small as the ones used in our experiment, this benchmark

is unfeasible. If a very large sample is available, this situation can be interpreted as a

limit case of the test when a WCE-B with b → 0 or a WPE-D with m → ∞ are used,

so that the replacement of σ2 with its estimate is negligible and asymptotic normality

is justified. Thus, in our experiment this benchmark should be the upper bound for the

empirical power functions.

The simulated empirical power is in Figure 1. Previous simulations in Kiefer and

Vogelsang (2005) and in Hualde and Iacone (2015) found that the power is higher the

smaller is M or the larger is m, and our results are consistent with them. The test

with statistic with known σ has the highest power, as expected. It is worth noticing,

however, that the power loss due to estimating σ is minimal, especially when the WCE-B

with M =
⌊
T 1/3

⌋
or M =

⌊
T 1/2

⌋
is used. Overall, the only case in which we observe

a remarkable power loss is for M = T when the WCE-B is used. For this bandwidth

choice, the condition b → 0 as T → ∞ is certainly not justifiable so the power loss

with respect to the unfeasible benchmark is not going to disappear as the sample size

increases. We also verify that the power difference between using M =
⌊
T 1/2

⌋
instead

of M =
⌊
T 1/3

⌋
for the WCE-B is very limited; to a sightly less extent, this is also true

of using m =
⌊
T 1/2

⌋
instead of m =

⌊
T 1/3

⌋
for the WPE-D.

6 Monte Carlo comparison with the bootstrap

Bootstrap is a widely used alternative to using asymptotic approximations in tests for

equal predictive ability. For this reason, in this section we perform a Monte Carlo
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Figure 1: Finite sample local power
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

cT−1/2 and independent innovations. U refers to the unfeasible case in which the unknown variance is

used and the test statistic has standard normal limit distribution. For the feasible tests, fixed-smoothing

asymptotics is used. The alternative estimates of the long run variance are: WCE-B is for the WCE

with Bartlett kernel with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
or M = T ; WPE-D for the WPE with Daniell

kernel and m =
⌊
T 1/2

⌋
, m =

⌊
T 1/3

⌋
or m =

⌊
T 1/4

⌋
.
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analysis of the size and power of the tests for equal predictive ability using bootstrap

critical values, and compare it with the results using fixed-smoothing asymptotics.

In the i-th Monte Carlo replication, we simulate forecast errors e
(i)
(1t) and e

(i)
(2t) as

described in section 5.1 (for size analysis) or section 5.2 (for power analysis), compute

the loss differential d
(i)
t and the test statistic

t(i) =
√
T
(
d
(i)
/σ̂(i)

)
.

Then for each bootstrap replication b, we generate bootstrapped loss differentials d
(i,b)
t

using the overlapping stationary block-bootstrap of Politis and Romano (1994) with a

circular scheme. In particular, we collate the loss differentials (d
(i)
1 , . . . , d

(i)
T , d

(i)
1 , . . . , d

(i)
T ).

We then draw block sizes L1, L2, . . . from a discrete uniform distribution with support on

{1, . . . , 2
⌊
T 1/4

⌋
}. We also draw random initial indices I1, I2, . . . from a discrete uniform

distribution with support on {1, . . . , T}. The series of bootstrapped loss differential

d
(i,b)
t is then given by the first T elements of (d

(i)
I1
, . . . , d

(i)
I1+L1−1, d

(i)
I2
, . . . , d

(i)
I2+L1−2, . . .).

We finally construct the boostrapped test statistic as

t(i,b) =
√
T
(

(d
(i,b) − d(i))/σ̂(i,b)

)
. (12)

where d
(i,b)

is the sample mean of d
(i,b)
t , and σ̂(i,b) is the estimate of its long run variance

constructed using the same formula as in the original data (WCE-B or WPE-D). We

perform 10, 000 bootstrap replications and use the 95% quantile of the bootstrap dis-

tribution of the test statistic, (t(i,1), . . . , t(i,10000)), as critical value cv(i). We then reject

the null of equal predictive ability if |t(i)| > cv(i). Notice that this is the naive bootstrap

also performed by Kiefer and Vogelsang (2005) and Gonçalves and Vogelsang (2011) for

the test with the WCE-B estimate of the long run variance using block-bootstrap.

In Table 3, we report the size of tests of equal predictive ability using using bootstrap

critical values for various MA processes with θ = 0.75 and alternative estimates of
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Figure 2: Finite sample local power: fixed-b vs bootstrap
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

cT−1/2 and independent innovations. U refers to the unfeasible case in which the unknown variance

is used and the test statistic has standard normal limit distribution. For the feasible tests, fixed-b or

bootstrap critical values are used. The long run variance is estimated using the WCE with Bartlett

kernel with M =
⌊
T 1/2

⌋
or M = T .
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Figure 3: Finite sample local power: fixed-m vs bootstrap

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

c

m =T1/4, T = 40

U
Fixed-m
Bootstrap

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

c

m=T1/2, T = 40

U
Fixed-m
Bootstrap

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

c

m =T1/4, T = 120

U
Fixed-m
Bootstrap

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

c

m=T1/2, T = 120

U
Fixed-m
Bootstrap

The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

cT−1/2 and independent innovations. U refers to the unfeasible case in which the unknown variance

is used and the test statistic has standard normal limit distribution. For the feasible tests, fixed-m

or bootstrap critical values are used. The long run variance is estimated using the WPE with Daniell

kernel with m =
⌊
T 1/4

⌋
or m =

⌊
T 1/2

⌋
.
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Table 3: Size of tests with bootstrap

T=40

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.047 0.043 0.042 0.037 0.040 0.042
2 0.047 0.042 0.044 0.036 0.036 0.040
3 0.048 0.041 0.044 0.036 0.036 0.040
4 0.050 0.040 0.043 0.031 0.032 0.042
5 0.053 0.039 0.043 0.030 0.031 0.043

T=120

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.055 0.052 0.052 0.047 0.045 0.051
2 0.051 0.045 0.045 0.041 0.045 0.045
3 0.051 0.045 0.047 0.042 0.042 0.045
4 0.053 0.045 0.046 0.040 0.042 0.044
5 0.053 0.043 0.043 0.039 0.037 0.043
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using bootstrap critical values

for various MA(q) processes with θ = 0.75 and alternative es-

timates of the long run variance. For the WCE, we use the

Bartlett kernel with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
and M = T .

For the WPE, we use the Daniell kernel with m =
⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
.

the long run variance. For the WCE, we use the Bartlett kernel with M =
⌊
T 1/3

⌋
,

M =
⌊
T 1/2

⌋
and M = T . For the WPE, we use the Daniell kernel with m =

⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
. Results in Table 3 indicate that the bootstrap test

dominates standard asymptotics and is correctly sized regardless of the choice of M (for

the test using WCE) or m (for the test using WPE). In Figures 2-3, we report the finite

sample local power comparison of fixed-b and fixed-m asymptotics with the bootstrap.

Both figures indicate that the bootstrap local power mimics the fixed-b and the fixed-m

local power.

Results for the bootstrap test with the WCE-B estimate of the long run variance are

in line with Gonçalves and Vogelsang (2011). They prove that the naive block-bootstrap
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has the same limiting distribution as the fixed-b asymptotic distribution. They also find

that the power of the naive block-bootstrap closely follows the power when using the

fixed-b critical value. However, Kiefer and Vogelsang (2005) show that the size properties

of the naive block-bootstrap test statistic depends on the choice of the block length.

7 Predictive Accuracy of the SPF

To illustrate the usefulness of fixed-smoothing asymptotics for equal predictive accuracy

tests, we evaluate the predictive accuracy of the Survey of Professional Forecasters’

(SPF) forecasts for output growth, output inflation, the unemployment rate and the

three-month Treasury bill rate against a simple random walk.

Data on the SPF are provided by the Federal Reserve Bank of Philadelphia and

are available at quarterly frequency. In particular, each quarter, the SPF asks panel

members to make forecasts for a set of macroeconomic indicators for the current quarter

and for the following four quarters. The deadline for panel members to submit their

forecasts is the middle of the quarter. We focus on median responses for the period from

1985:Q1 until 2014:Q4 and consider four evaluation periods: the full sample and three

10-year subsamples, i.e. from 1985:Q1 to 1994:Q4, from 1995:Q1 to 2004:Q4 and from

2004:Q1 to 2014:Q4.

In the SPF, the output price index is the implicit price deflator for GNP in surveys

conducted prior to 1992:Q1, the implicit deflator for GDP in surveys from 1992:Q1

to 1995:Q4, and the chain-weighted price index in surveys conducted thereafter. In

the same way, real output is defined as fixed-weighted real GNP in surveys conducted

before 1992:Q1, fixed-weighted real GDP in surveys from 1992:Q1 to 1995:Q4, and

chain-weighted real GDP in surveys conducted thereafter. Real GNP/GDP growth

and GNP/GDP inflation are constructed as the annualized quarter over quarter growth

rates. For both variables, we define the corresponding benchmark forecasts and realized
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values accordingly, as in Stark (2010). Finally, the three-month Treasury bill rate and

the unemployment rate are expressed in levels.

For all the variables considered, we use as benchmark a naive random walk, i.e.

a no change benchmark using the vintages of data that were available to the public

before the survey’s mid-quarter deadline. In particular, for GNP/GDP inflation, the

unemployment rate and the three-month Treasury bill rate, we use as benchmark a

random walk on the variable. For real GNP/GDP growth, Stark (2010) finds that a no

change model performs poorly, thus we use as benchmark a random walk with drift on

real GNP/GDP levels and estimate the drift parameter using a rolling average of real

GNP/GDP growth with a window of 60 observations.

We compare forecasts and benchmarks with forecast horizons of 0 (current quarter)

to 4 (four quarters in the future) using the first release as realised value and a quadratic

loss function. To evaluate the performance of the SPF against the random walk, we

perform the DM test, with WCE-DM, WCE-B and WCE-D estimates of the long run

variance, using standard and fixed-smoothing asymptotics.

To compute the WCE-DM, we use truncation lags equal to the forecast horizon.

To select the bandwidths for the WCE-B and for the WPE-D, we use the results of

our Monte Carlo exercise. For the WPE-D, we use the bandwidths m =
⌊
T 1/4

⌋
and

m =
⌊
T 1/3

⌋
, as in our Monte Carlo they always returned good size properties for the DM

test when fixed-m asymptotics were used. We omit m =
⌊
T 1/2

⌋
as we still found some

evidence of size distortion in the Monte Carlo exercise, even with fixed-m asymptotics.

For the WCE-B, our choice is a little bit more delicate: we omit M = T in view of its

low power, but we keep M =
⌊
T 1/3

⌋
, alongside M =

⌊
T 1/2

⌋
, despite some residual size

distortion for the DM test even under fixed-b asymptotics, when this estimate is used.

This implies that, for the WCE-B, we should put more weight on M =
⌊
T 1/2

⌋
.

Tables 4–7 report the test statistics presented in Section 3 for the null hypothesis of

equal predictive accuracy of the SPF’ forecasts for real GNP/GDP growth, GNP/GDP
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Table 4: Real GNP/GDP Growth: SPF vs. Random Walk in level

Evaluation period: 1985.Q1 - 2014.Q4, T=120
Forecast horizon 0 1 2 3 4
WCE-DM 2.55∗∗ 1.25 0.82 0.06 -0.05
WCE-B, M =

⌊
T 1/3

⌋
1.83∗ 1.32 0.90 0.06 -0.06

WCE-B, M =
⌊
T 1/2

⌋
1.83∗ 1.33 0.88 0.06 -0.05

WPE-D, m =
⌊
T 1/4

⌋
1.66 1.16 0.77 0.05 -0.05

WPE-D, m =
⌊
T 1/3

⌋
1.74 1.30 0.86 0.05 -0.05

Evaluation period: 1985.Q1 - 1994.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 1.96∗∗ 1.12 0.82 0.71 0.56
WCE-B, M =

⌊
T 1/3

⌋
1.54 1.20 0.89 0.77 0.60

WCE-B, M =
⌊
T 1/2

⌋
1.56 1.20 0.90 0.71 0.58

WPE-D, m =
⌊
T 1/4

⌋
1.46 1.14 0.91 1.10 0.57

WPE-D, m =
⌊
T 1/3

⌋
1.40 1.06 0.77 0.74 0.65

Evaluation period: 1995.Q1 - 2004.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 1.16 -0.64 -1.64 -1.58 -1.07
WCE-B, M =

⌊
T 1/3

⌋
1.19 -0.72 -1.80 -1.64 -1.13

WCE-B, M =
⌊
T 1/2

⌋
1.24 -0.82 -1.71 -1.53 -1.13

WPE-D, m =
⌊
T 1/4

⌋
1.11 -0.97 -1.45 -1.30 -1.04

WPE-D, m =
⌊
T 1/3

⌋
1.14 -0.72 -1.64 -1.46 -1.04

Evaluation period: 2005.Q1 - 2014.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 1.81∗ 1.09 1.01 0.60 0.51
WCE-B, M =

⌊
T 1/3

⌋
1.32 1.17 1.12 0.52 0.47

WCE-B, M =
⌊
T 1/2

⌋
1.29 1.18 1.16 0.59 0.50

WPE-D, m =
⌊
T 1/4

⌋
1.09 1.01 1.01 0.54 0.44

WPE-D, m =
⌊
T 1/3

⌋
1.12 1.02 1.01 0.53 0.42

Note: this table reports the predictive accuracy tests for the SPF
forecasts of real GNP/GDP growth with respect to a random walk
with drift on GNP/GDP levels. GNP/GDP growth is defined as the
annualized quarter over quarter growth rates of fixed-weighted real
GNP in the surveys conducted before 1992:Q1, fixed-weighted real
GDP in the surveys from 1992:Q1 to 1995:Q4, and chain-weighted
real GDP in the surveys thereafter. Random walk predictions and
realized values are computed accordingly. The drift parameter is es-
timated using a rolling window of 60 observations. ∗∗ and ∗ indicate,
respectively, two-sided significance at the 5% and 10% level using
standard asymptotics for WCE-DM, fixed-b asymptotics for WCE-B
and fixed-m asymptotics for WPE-D. and indicate, respec-
tively, two-sided significance at the 5% and 10% level using standard
asymptotics and limit normality.
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Table 5: GNP/GDP Inflation: SPF vs. Random Walk

Evaluation period: 1985.Q1 - 2014.Q4, T=120
Forecast horizon 0 1 2 3 4
WCE-DM 4.20∗∗ 3.89∗∗ 2.27∗∗ 0.73 1.67∗

WCE-B, M =
⌊
T 1/3

⌋
3.28∗∗ 3.65∗∗ 2.39∗∗ 0.72 1.59

WCE-B, M =
⌊
T 1/2

⌋
2.89∗∗ 3.71∗∗ 2.38∗∗ 0.62 1.57

WPE-D, m =
⌊
T 1/4

⌋
2.59∗∗ 3.23∗∗ 1.81 0.50 1.24

WPE-D, m =
⌊
T 1/3

⌋
2.69∗∗ 3.53∗∗ 2.07∗ 0.55 1.37

Evaluation period: 1985.Q1 - 1994.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 2.55∗∗ 3.08∗∗ 1.45 -0.66 0.38
WCE-B, M =

⌊
T 1/3

⌋
2.73∗∗ 3.09∗∗ 1.50 -0.52 0.35

WCE-B, M =
⌊
T 1/2

⌋
3.08∗∗ 3.11∗∗ 1.54 -0.50 0.35

WPE-D, m =
⌊
T 1/4

⌋
3.59∗∗ 2.61∗ 1.82 -0.42 0.28

WPE-D, m =
⌊
T 1/3

⌋
4.10∗∗ 2.63∗∗ 1.38 -0.45 0.30

Evaluation period: 1995.Q1 - 2004.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 1.20 1.17 0.56 0.29 0.32
WCE-B, M =

⌊
T 1/3

⌋
1.04 1.19 0.59 0.33 0.38

WCE-B, M =
⌊
T 1/2

⌋
0.94 1.16 0.56 0.31 0.36

WPE-D, m =
⌊
T 1/4

⌋
1.01 1.16 0.50 0.28 0.33

WPE-D, m =
⌊
T 1/3

⌋
1.04 1.21 0.54 0.30 0.31

Evaluation period: 2005.Q1 - 2014.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 3.27∗∗ 2.62∗∗ 1.89∗ 1.44 4.84∗∗

WCE-B, M =
⌊
T 1/3

⌋
2.42∗∗ 2.37∗∗ 2.04∗ 1.42 2.25∗∗

WCE-B, M =
⌊
T 1/2

⌋
2.35∗ 2.63∗∗ 2.05∗ 1.27 2.89∗∗

WPE-D, m =
⌊
T 1/4

⌋
1.85 2.59∗ 1.91 0.99 3.07∗∗

WPE-D, m =
⌊
T 1/3

⌋
2.07∗ 2.25∗ 1.70 1.20 2.97∗∗

Note: this table reports the predictive accuracy tests for the SPF fore-
casts of GNP/GDP inflation with respect to a random walk. GNP/GDP
inflation is defined as the implicit price deflator for GNP in surveys con-
ducted prior to 1992:Q1, the implicit deflator for GDP in the surveys
from 1992:Q1 to 1995:Q4, and the chain-weighted price index in the
surveys thereafter. Random walk predictions and realized values are
computed accordingly. ∗∗ and ∗ indicate, respectively, two-sided signifi-
cance at the 5% and 10% level using standard asymptotics for WCE-DM,
fixed-b asymptotics for WCE-B and fixed-m asymptotics for WPE-D.
and indicate, respectively, two-sided significance at the 5% and 10%
level using standard asymptotics and limit normality.
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Table 6: Unemployment Rate: SPF vs. Random Walk

Evaluation period: 1985.Q1 - 2014.Q4, T=120
Forecast horizon 0 1 2 3 4
WCE-DM 3.77∗∗ 2.08∗∗ 1.89∗ 1.94∗ 2.14∗∗

WCE-B, M =
⌊
T 1/3

⌋
2.42∗∗ 1.98∗ 2.06∗ 2.22∗∗ 2.54∗∗

WCE-B, M =
⌊
T 1/2

⌋
2.31∗∗ 1.91∗ 1.95∗ 2.07∗ 2.30∗∗

WPE-D, m =
⌊
T 1/4

⌋
2.12∗ 1.80 1.82 1.87 2.03∗

WPE-D, m =
⌊
T 1/3

⌋
2.09∗ 1.79 1.79 1.87∗ 2.05∗

Evaluation period: 1985.Q1 - 1994.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 3.24∗∗ 1.64 1.65∗ 2.00∗∗ 2.70∗∗

WCE-B, M =
⌊
T 1/3

⌋
2.69∗∗ 1.75 1.85∗ 2.18∗ 2.58∗∗

WCE-B, M =
⌊
T 1/2

⌋
2.82∗∗ 1.82 1.96 2.42∗∗ 2.89∗∗

WPE-D, m =
⌊
T 1/4

⌋
3.42∗∗ 1.73 2.09 2.92∗∗ 3.74∗∗

WPE-D, m =
⌊
T 1/3

⌋
2.32∗ 1.54 1.64 1.89 2.03∗

Evaluation period: 1995.Q1 - 2004.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 2.03∗∗ 1.72∗ 1.26 1.11 1.04
WCE-B, M =

⌊
T 1/3

⌋
2.00∗ 1.73 1.43 1.32 1.28

WCE-B, M =
⌊
T 1/2

⌋
2.10∗ 1.71 1.35 1.25 1.18

WPE-D, m =
⌊
T 1/4

⌋
1.80 1.47 1.16 1.14 1.04

WPE-D, m =
⌊
T 1/3

⌋
1.86 1.50 1.17 1.05 0.99

Evaluation period: 2005.Q1 - 2014.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 2.84∗∗ 1.66∗ 1.57 1.69∗ 1.90∗

WCE-B, M =
⌊
T 1/3

⌋
1.86∗ 1.66 1.78 1.97∗ 2.27∗∗

WCE-B, M =
⌊
T 1/2

⌋
1.81 1.61 1.71 1.88 2.12∗

WPE-D, m =
⌊
T 1/4

⌋
1.50 1.32 1.39 1.54 1.72

WPE-D, m =
⌊
T 1/3

⌋
1.58 1.38 1.47 1.63 1.85

Note: this table reports the predictive accuracy tests for the SPF fore-
casts of the unemployment rate with respect to a random walk. ∗∗ and ∗

indicate, respectively, two-sided significance at the 5% and 10% level us-
ing standard asymptotics for WCE-DM, fixed-b asymptotics for WCE-B
and fixed-m asymptotics for WPE-D. and indicate, respectively,
two-sided significance at the 5% and 10% level using standard asymp-
totics and limit normality.
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Table 7: Three-month Treasury Bill: SPF vs. Random Walk

Evaluation period: 1985.Q1 - 2014.Q4, T=120
Forecast horizon 0 1 2 3 4
WCE-DM 5.53∗∗ 4.26∗∗ 3.48∗∗ 2.35∗∗ 1.35
WCE-B, M =

⌊
T 1/3

⌋
4.29∗∗ 4.31∗∗ 3.72∗∗ 2.48∗∗ 1.48

WCE-B, M =
⌊
T 1/2

⌋
4.46∗∗ 4.46∗∗ 4.01∗∗ 2.61∗∗ 1.50

WPE-D, m =
⌊
T 1/4

⌋
4.89∗∗ 5.08∗∗ 3.66∗∗ 2.21∗ 1.38

WPE-D, m =
⌊
T 1/3

⌋
3.97∗∗ 4.44∗∗ 3.99∗∗ 2.55∗∗ 1.48

Evaluation period: 1985.Q1 - 1994.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 5.61∗∗ 3.67∗∗ 3.31∗∗ 1.34 0.69
WCE-B, M =

⌊
T 1/3

⌋
5.02∗∗ 4.12∗∗ 3.28∗∗ 1.33 0.75

WCE-B, M =
⌊
T 1/2

⌋
5.87∗∗ 4.75∗∗ 3.96∗∗ 1.32 0.72

WPE-D, m =
⌊
T 1/4

⌋
9.34∗∗ 5.70∗∗ 6.21∗∗ 1.35 0.71

WPE-D, m =
⌊
T 1/3

⌋
4.28∗∗ 3.24∗∗ 3.56∗∗ 1.57 0.83

Evaluation period: 1995.Q1 - 2004.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 2.63∗∗ 1.92∗ 1.46 1.23 0.56
WCE-B, M =

⌊
T 1/3

⌋
1.94∗ 1.88∗ 1.58 1.20 0.40

WCE-B, M =
⌊
T 1/2

⌋
1.83 1.78 1.59 1.35 0.49

WPE-D, m =
⌊
T 1/4

⌋
1.55 1.53 1.44 1.50 0.63

WPE-D, m =
⌊
T 1/3

⌋
1.58 1.53 1.38 1.13 0.40

Evaluation period: 2005.Q1 - 2014.Q4, T=40
Forecast horizon 0 1 2 3 4
WCE-DM 2.23∗∗ 2.12∗∗ 1.97∗∗ 1.59 1.08
WCE-B, M =

⌊
T 1/3

⌋
1.93∗ 2.21∗∗ 2.11∗ 1.92∗ 1.46

WCE-B, M =
⌊
T 1/2

⌋
1.81 2.08∗ 1.87 1.68 1.23

WPE-D, m =
⌊
T 1/4

⌋
1.65 2.17∗ 1.82 1.56 1.06

WPE-D, m =
⌊
T 1/3

⌋
1.63 1.96∗ 1.73 1.54 1.13

Note: this table reports the predictive accuracy tests for the SPF fore-
casts of the three-month Treasury Bill rate with respect to a random
walk. ∗∗ and ∗ indicate, respectively, two-sided significance at the 5%
and 10% level using standard asymptotics for WCE-DM, fixed-b asymp-
totics for WCE-B and fixed-m asymptotics for WPE-D. and
indicate, respectively, two-sided significance at the 5% and 10% level
using standard asymptotics and limit normality.
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inflation, the unemployment rate and the three-month T-Bill rates with respect to the

random walk. We denote by eh1,t the h-steps ahead forecast error of the random walk

and by eh2,t the h-steps ahead forecast error from the SPF. Therefore, a positive entry in

the tables means higher loss for the forecast made using the random walk, and viceversa

for a negative entry. In the tables, we use asterisks to indicate two-sided significance

using standard asymptotics for WCE-DM, fixed-b asymptotics for WCE-B and fixed-m

asymptotics for WPE-D. We also use shades of gray to indicate two-sided significance

using standard asymptotics and limit normality. This implies that for the WCE-DM the

asterisks and the shades of grey coincide.

Results in Tables 4–7 show that overall the predictive ability of the SPF is stronger

than the one of the random walk for the three-month Treasury bill rate and GNP/GDP

inflation but not for real GNP/GDP growth and the unemployment rate. The tables also

indicate that the subsample 1985.Q1 to 1994.Q4 is characterised by a strong predictive

ability of the SPF with respect to the random walk, but this predictive ability sharply

declined in the most recent subsample.

In particular, Table 4 shows that the SPF’s forecasts for real GNP/GDP growth

do not in general outperform the random walk. For the current quarter, the test with

WCE-DM indicates significant outperformance of the SPF, but the tests with fixed-

b and fixed-m asymptotics do not support this result, especially when looking at the

three subsamples. As for GNP/GDP price inflation, Table 5 shows a much stronger

predictive ability of the SPF, especially for short horizons and in the first and the last

subsamples. Results in Table 6 indicate some predictive ability of the SPF’s forecasts for

the unemployment rate, but the evidence is much weaker when using the proposed tests

with fixed-smoothing asymptotics. Finally, Table 7 provides strong evidence of superior

predictive accuracy of the SPF’s forecasts for the three month Treasury bill rate with

respect the random walk, especially for short horizons. However, the predictive ability

of the SPF for the three month Treasury bill rate sharply declined in the last two
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subsamples.

As for the comparison of standard asymptotics with the fixed-smoothing asymptotics

used in this paper, the tables show that the tests with standard asymptotics are more

likely to reject the null of equal predictive ability than the tests that use fixed-smoothing

asymptotics, especially in the subsamples (see for example the bottom panels in Tables 6-

7). This is due to the fact that in the subsamples the tests are performed only on 40

observations, exacerbating the size distortions induced by standard asymptotics, see

Table 1. For example, Table 6 shows that for inflation both the test with WCE-DM

and test the with WCE-B and standard asymptotics reject at 10% significance level the

null of equal predictive ability of the SPF and the random walk on the last subsample

for almost all forecasting horizons. This could be interpreted as a clear indication of

predictive ability of the SPF for the unemployment rate. However, the tests with fixed-

smoothing asymptotics fail to reject the null of equal predictive ability for almost all

forecasting horizons, especially when fixed-m asymptotics is used, indicating that the

SPF did not have any significant predictive ability for the unemployment rate in this

period.

8 Conclusion

We propose fixed-smoothing asymptotics to overcome the small sample size distortions

of standard tests for predictive accuracy. Our Monte Carlo results show that these

alternative asymptotics provide correctly sized tests for autocorrelated loss differentials

even when only a small number of out of sample observations are available.

The methodology proposed in this paper is well-suited to evaluate the predictive

accuracy of surveys with limited samples. As an illustrative example, and to facilitate

comparison with other works, we apply our methodology to reassess the predictive ac-

curacy of the Survey of Professional Forecasters (SPF). Other interesting applications
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may include the ECB survey of professional forecasters, which has a short time series

dimension and is thus well-suited for our setup.

In this paper, we focus on applying the fixed-b and fixed-m asymptotics to the Diebold

and Mariano (1995) test. However, these methodologies are of broader applicability in

the forecasting literature. For example, Harvey, Leybourne and Whitehouse (2015)

apply the fixed-m approach to forecast encompassing tests. Future work includes appli-

cations of fixed-smoothing asymptotics to tests of equal predictive ability in presence of

parameter estimation errors, see West (1996) and Clark and McCracken (2001); to fore-

cast rationality tests, see Granger and Newbold (1986) and Diebold and Lopez (1996);

forecast breakdown tests, see Giacomini and Rossi (2009); and forecast comparison in

unstable environments, Giacomini and Rossi (2010).
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A Limiting fixed-m asymptotics

Let xt = µ + ut, with ut =
∑∞

l=0Alεt−l where εt is an independent, identically dis-

tributed process with E (εt) = 0, E (ε2t ) = 1, E (ε4t ) < ∞, and
∑∞

l=0 j
1/2 |Al| < ∞.

Define the Fourier frequencies λj = 0, ±1, ...,bT/2c and the Fourier transform wx (λ) =

1√
2πT

∑T
t=1 xte

iλt, the periodogram Ix (λ) = |wx (λ)|2, the sample mean x = 1
T

∑T
t=1 xt

and the statistic τ = x−µ0√
2π 1

m

∑m
j=1 Ix(λj)

; then, under H0 : {µ = µ0}, as T →∞,

τ →d t2m (13)

Proof. First, note that, for j = 1, ..., m, 1√
2πT

∑T
t=1 e

iλjt = 0, so wx (λj) = wu (λj).

Moreover, following Hannan (1970), page 247,

wu (λ) =
(∑∞

l=0
Ale

iλl
)
wε (λ) + rT (λ)

where rT (λ) = op (1) uniformly in λ, so

wu (λj) =
(∑∞

l=0
Ale

iλj l
)
wε (λj) + op (1) (14)

Now let

s2T =
1

2πT

T∑
t=1

cos2
(

2πjt

T

)
ηt,T =

1√
2πT

εt cos

(
2πjt

T

)
zt,T = s−1T ηt,T
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then sufficient conditions for the central limit theorem are that

E (zt,T ) = 0 ∀t, T
T∑
t=1

V (zt,T ) = 1 ∀t, T

zt,T independent from zs,T ∀t, s, ∀T
T∑
t=1

E |zt,T |2+δ → 0 for some δ > 0

The first three conditions are easy to establish; the Liapunov condition can be easily

verified for δ = 1, noting that E |εt|3 exists because E (ε4t ) <∞. Thus,

T∑
t=1

zt,T →d N (0, 1)

i.e.,

(
1

2πT

T∑
t=1

cos2
(

2πjt

T

))−1/2 T∑
t=1

1√
2πT

εt cos

(
2πjt

T

)
→ dN (0, 1)

T∑
t=1

1√
2πT

εt cos

(
2πjt

T

)
→ dN

(
0,

1

2π
1/2

)

where we also used 1
T

T∑
t=1

cos2
(
2πjt
T

)
= 1

2
from Gradshteyn and Ryzhik (1994), equation

(1.351.2), page 37, and

(
1/2

1

2π

)−1( T∑
t=1

1√
2πT

ηt cos

(
2πjt

T

))2

→d χ
2
1

The term 1√
2πT

T∑
t=1

εt sin
(
2πjt
T

)
may be discussed in the same way. The covariance of
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T∑
t=1

1√
2πT

εt cos
(
2πjt
T

)
and

T∑
t=1

1√
2πT

εt sin
(
2πjt
T

)
is

1

2πT

T∑
t=1

sin

(
2πjt

T

)
cos

(
2πjt

T

)
= 0

using Gradshteyn and Ryzhik (1994), equation (1.333.1), page 35, and then equation

(1.342.1), page 36. Then, the joint convergence of
√

2π
√

2
T∑
t=1

1√
2πT

εt cos
(
2πjt
T

)
and

√
2π
√

2
T∑
t=1

1√
2πT

εt sin
(
2πjt
T

)
to a bivariate vector of independently normally distributed

random variables with diagonal covariance matrix follows from an application of the

Cramer-Wold device. Therefore,

2 (2π) Iε (λj)→d χ
2
2.

Moreover, using
T∑
t=1

eit(λj−λk) = 0 for j 6= k (15)

for integers j, k such that λj ∈ [0, π] and λk ∈ [0, π], then, following Giraitis, Koul and

Surgalis (2012), page 112, the formula (15) yields E (wε (λj)wε (λk)
∗) = 0 for j 6= k;

therefore, with an application of the Cramer Wold device, it is easy to conclude that

2π
1

m

∑m

j=1
Iε (λj)→d C

2
2m/ (2m)

where C2
2m/ (2m) is a χ2

2m distributed random variable divided by the number of degrees

of freedom. Using (14) and
∑∞

l=0Ale
iλj l →

∑∞
l=0Al = σ, it also follows that

2π
1

m

∑m

j=1
Ix (λj)→d σ

2C2
2m/ (2m) .
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Finally, as in Phillips and Solo (1992), we use the Beveridge Nelson decomposition

ut =
(∑∞

l=0
Al

)
εt + ε̃t−1 − ε̃t

where

ε̃t =
∑∞

l=0
Ãlεt−l, Ãl =

∑∞

k=l+1
Ak

and

1√
T

∑T

t=1
ut =

(∑∞

l=0
Al

) 1√
T

∑T

t=1
εt +

1√
T

(ε̃0 − ε̃T ) (16)

where 1√
T

(ε̃0 − ε̃T ) = op (1) as on Phillips and Solo (1992) page 978. In view of Remark

3.5 of Phillips and Solo (1992), the condition on the weights Al is
∑∞

l=0 Ã
2
l < ∞, as

in equation (16) of Phillips and Solo (1992), and this is implied by
∑∞

l=0 l
1/2 |Al| < ∞,

Phillips and Solo (1992) page 973, so,

1√
T

∑T

t=1
ut = σ

1√
T

∑T

t=1
εt + op (1)→d N

(
0, σ2

)
.

Another application of the Cramer Wold device and of (15) allows to establish a

central limit theorem for the vectors

(
1√
T

∑T
t=1 εt,

√
2π
√

2
T∑
t=1

1√
2πT

εt cos
(
2πjt
T

))′
for in-

teger 0 < j < m and conclude that 1√
T

∑T
t=1 εt is asymptotically independent from

√
2π
√

2
T∑
t=1

1√
2πT

εt cos
(
2πjt
T

)
; asymptotic independence between

√
2π
√

2
T∑
t=1

1√
2πT

εt sin
(
2πjt
T

)
and 1√

T

∑T
t=1 εt is established in the same way. Therefore, (13) holds.

Remark. Condition
∑∞

l=0 l
1/2 |Al| < 0 is fairly common in the literature, and it holds

for any ARMA model. Many of these results are already known in the literature. For

example, the limit normality for the Fourier transform is given in Hannan (1970) in page

225, also see Kokoszka and Mikosch (2000) page 51, where the asymptotic independence

of the periodograms Iε (λj) at different frequencies is also discussed. A result similar

to (13) is also in Sun (2013). The main reason of interest for this proof is then in the

fact that, using the decompositions (14) and (16) we see that can treat most weakly
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dependent processes as independent processes, and derive results from the latter ones.

These results are then fairly intuitive and easy to establish.

B Additional Monte Carlo results

In this appendix, we report additional Monte Carlo results that include the frequency

of negative estimates for the long run variance using the WCE-DM, the size of standard

asymptotics for θ = 0.5, for the WCE-B with automatic bandwidth selection and for

the WPE with feasible minimum MSE bandwidth.

B.1 Negative estimates of the long run variance

In Table 8, we study the frequency of negative estimates for σ̂2
DM , the WCE estimate

with the rectangular kernel (WCE-DM) defined in (3). Table 8 shows that the risk of

negative long-run variance estimates is higher in the small sample, at large forecasting

horizons and for low values of θ. For θ = 0, q = 5 and T = 40, the size distortion due

just to a negative estimate σ̂2
DM < 0 is actually larger than the nominal size.

Table 8: Frequency of negative estimates for the long run variance

T=40 T=120

q θ = 0.00 θ = 0.50 θ = 0.75 θ = 0.00 θ = 0.50 θ = 0.75
1 0.001 0.000 0.000 0.000 0.000 0.000
2 0.005 0.001 0.000 0.000 0.000 0.000
3 0.014 0.007 0.003 0.000 0.000 0.000
4 0.033 0.017 0.007 0.000 0.000 0.000
5 0.060 0.037 0.019 0.002 0.001 0.000
Note: frequency of negative estimates of the long run variance using the WCE

estimator with the truncated kernel as in DM for various MA(q) processes.
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B.2 Sensitivity to θ

In Table 9, we study the size properties of the DM test for various estimates of σ when

θ = 0.5 instead, assuming standard asymptotics. This exercise allows a comparison

with Table 1 in which θ = 0.75 was used, to appreciate the consequences of altering

θ. Consistently with results in Clark (1999), the size when the WCE-DM is used does

not seem to be sensitive to the different value of θ; on the other hand, the reduction in

the dependence is associated with a slight improvement in the size properties when the

WCE with Bartlett kernel (WCE-B) or the WPE with Daniell kernel (WPE-D) is used.

Overall, in the case θ = 0.5 the evidence that the test with statistic standardized by the

WPE-D estimate (with m =
⌊
T 1/2

⌋
) gives best size is even more compelling.

Table 9: Size of tests with standard asymptotics for θ = 0.5

T=40 T=120

q WCE-DM WCE-B WPE-D WCE-DM WCE-B WPE-D
1 0.077 0.085 0.075 0.059 0.068 0.061
2 0.099 0.090 0.076 0.058 0.066 0.060
3 0.124 0.096 0.078 0.068 0.072 0.062
4 0.157 0.097 0.081 0.074 0.075 0.062
5 0.196 0.097 0.080 0.086 0.075 0.065
Note: empirical rejection frequencies for tests of equal predictive ability at 5% nominal

size using standard normal asymptotics for various MA(q) processes and alternative

estimates of the long run variance: WCE-DM is for the WCE with the truncated

kernel as in DM, WCE-B is for the Bartlett kernel with M =
⌊
T 1/3

⌋
, and WPE-D

for the WPE with Daniell kernel and m =
⌊
T 1/2

⌋
.

B.3 Automatic bandwidth selection

In Table 10, we study the application of the automatic bandwidth selection of Newey

and West (1994), when θ = 0.75. We compare the performance for the näıve M =
⌊
T 1/3

⌋
bandwidth (already available in Table 1) against the NW estimate with prewhitening

as in Newey and West (1994), and against a third estimate in which the same proce-

dure is applied, but without prewhitening. In general, using the NW estimate without
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prewhitening does not yield size as good as when the näıve M =
⌊
T 1/3

⌋
estimate is

employed: the prewithening on the other hand does provide some size correction, but

the better size for larger q is mostly offset by worse size when q = 1: this suggests

that the automatic NW procedure would not fare well when the dependence is rela-

tively weak, and actually size properties deteriorating for larger θ are documented also

in Clark (1999). Table 10 therefore shows that even the automatic bandwidth selection

with prewhitening from Newey and West (1994) does not offer a complete correction of

the size distortion, when standard asymptotics is used.

Table 10: Automatic bandwidth selection for WCE-B with standard asymptotics

T=40 T=120

q
⌊
T 1/3

⌋
Prew No Pre

⌊
T 1/3

⌋
Prew No Pre

1 0.092 0.129 0.125 0.069 0.074 0.079
2 0.105 0.122 0.130 0.073 0.066 0.082
3 0.113 0.110 0.129 0.082 0.067 0.085
4 0.125 0.107 0.135 0.090 0.065 0.092
5 0.136 0.108 0.140 0.102 0.068 0.096
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using standard normal asymp-

totics for various MA(q) processes with θ = 0.75 and alter-

native bandwidths for the WCE using the Bartlett kernel:⌊
T 1/3

⌋
, the Newey and West (1994) estimate with prewhiten-

ing (Prew) and the Newey and West (1994) against the same

procedure without prewhitening (No Pre).

B.4 Minimum MSE bandwidth

In Table11 we report the empirical size of equal predictive ability tests when the WPE

estimate of the long run variance with feasible minimum MSE bandwidth is used.

To derive the minimum MSE bandwidth, we follow Phillips (2005) and Sun (2013).

For the average periodogram with bandwidth m, the bias is

Bias =
(m
T

)2
B, where B = −π

2

6

∞∑
j=−∞

j2γj.
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Using the fact that
2πI(λj)

σ2 →d
1
2
χ2
2, V ar

(
2πI(λj)

σ2

)
→ 2×2

4
= 1 then for fixed m

V ar

(
1
m

∑m
j=1 2πI (λj)

σ2

)
→ 1

m

and the asymptotic MSE is m4

T 4B
2 + 1

m
σ4. Thus, ∂

∂m

(
m4

T 4B
2 + 1

m
σ4
)

=
(

4m
3

T 4B
2 − 1

m2σ
4
)

and from 4m
3

T 4B
2 − 1

m2σ
4 = 0 we get 4m

5

T 4B
2 = σ4 and mMSE = T 4/5

(
σ4

4B2

)1/5
.

The bias factor B is usually unknown, but when ut = φut−1 + εt with |φ| < 1 and

εt iid(0, ω), then σ2 = ω2

(1−φ)2 and B = −π2

6
2φ

(1−φ)4ω
2, so we approximated σ4/B2 with a

common plug in method: we assume such AR(1) model, estimate φ and then replace the

estimated value in the formula for mMSE.

Finally the feasible MSE bandwidth m̂MSE is given by the integer part of mMSE,

when this is between 1 and T/2, and by 1 or T/2 otherwise.

Result in Table 11 indicate that, as for the NW automatic bandwidth selection, the

test is oversized both when standard and fixed-m asymptotics are used. This is due

to the fact that the feasible minimum MSE bandwidth is longer than bT 1/4c, bT 1/3c or

bT 1/2c used in Table 2, resulting in a larger bias.
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Table 11: Size of tests with minimum MSE bandwidth

T=40 T=120

q Standard Fixed-m Standard Fixed-m
1 0.083 0.071 0.072 0.066
2 0.095 0.075 0.068 0.061
3 0.104 0.081 0.074 0.066
4 0.115 0.087 0.082 0.073
5 0.121 0.092 0.092 0.078
Note: empirical rejection frequencies for tests of equal

predictive ability at 5% nominal size for various MA(q)

processes with θ = 0.75 using the WPE estimator of

the long run variance and the feasible minimum MSE

bandwidth. The test with standard asymptotics uses

standard normal critical values and the test with fixed-

m asymptotics uses critical values from a t2m, where m

is the feasible minimum MSE bandwidth.
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