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AbstractThis thesis explores the non-linear e�ects of gyrotaxis on the bioconvection patternsformed in a suspension of swimming micro-organisms. The cells are denser than themedium in which they swim and the patterns are formed spontaneously by aggrega-tions of cells which drive bulk uid motion. The micro-organisms under considerationare orientated by a balance between a gravitational torque, due to them being bottomheavy, and a viscous torque arising from local uid velocity gradients. This mecha-nism is known as gyrotaxis. A wide range of investigative techniques are employed,from experiments in the laboratory to computer algebra and bifurcation analysis usingamplitude equations.Firstly, a series of experiments is described in which images of bioconvection pat-terns are captured and Fourier analysed. The most unstable pattern wavelength isextracted as a function of suspension concentration, depth and time. Ideas from sur-face geometry are exploited to produce a measure of pattern. Some other experimentsare also discussed.Secondly, a full linear analysis of a stochastic, gyrotactic continuum model in asuspension of �nite depth is conducted and an extension of the theory to include therandom nature of the micro-organisms' swimming speeds is proposed.Thirdly, an approximation to the steady Fokker-Planck equation describing thestochastic nature of the micro-organism swimming direction using surface sphericalharmonics is investigated. The limitations of this method are explored.Finally, the non-linear mechanisms involved in a gyrotactic instability are eluci-dated by exploiting the long vertical scale for descending plumes in a deep suspension.Initially, a weakly non-linear analysis provides an amplitude equation that implies thatthe bifurcation to instability is supercritical. Secondly, non-linear solutions are seento undergo a Hopf bifurcation when there is a weak background vorticity. The result-ing limit cycle provides the basis for horizontally travelling, vertical plume solutions.Equations describing the slow vertical variations along plume solutions admit travellingwaves, for which the wavespeed is found. The travelling waves are thought to describethe varicose instabilities seen on bioconvection plumes in experiments.
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Figure 1: A micro-organism soup - \Not even Martin's imagination can reproduce thevariety seen in life", N. A. Hill, October 1995.



Chapter 1
General Introduction
1.1 IntroductionWhy study patterns formed by swimming micro-organisms (see Figure 1.1)? Surelythe micro-organisms and their patterns are so small as to be insigni�cant to our dailylives. The lengthscales for these micro-organisms are of the order of 1�m for bacteriaand 10�m for algae, and 1cm for the patterns that they produce (see Figures 2.10 to2.23). Even if the micro-organisms are important, we should be studying how theyfeed, mate and die. This is what pattern formation is all about. Over millions ofyears these organisms have evolved (they are some of the oldest species known to man)to �ll niches, whether they are in your stomach or a�ecting the global weather byphotosynthesizing in the sea. The patterns that they form are there for a reason, thatmay not be obvious, but de�nitely an essential part of the organism's life cycle. It iscrucial that we understand how and why these organisms, at the base of the wholefood chain, behave (at least under ideal conditions in the laboratory). After all, theyconsist of the majority of the Earth's biomass and a variation in their numbers couldhave catastrophic consequencies (e.g. positive or negative feedback e�ects in globalwarming, Goodess & Palutikof 1992 [37] pp. 53{55, or species extinction due to highlevels of bacteria in our rivers).There is also the possibility of harnessing the power of micro-organisms. Somealgae and bacteria produce alcohol as an unwanted byproduct but to us this is a valuablecommodity not least for its use as a fuel. Plastics, fertilizers, waste treatment plantsand solid fuels are other possible applications for algae, bacteria and their byproducts.2



Introduction 3

Figure 1.1: A typical labyrinth pattern formed in a suspension of Chlamydomonasnivalis, for a concentration of 1:5�107 cells per cm3 and a depth of 2mm, viewed fromabove after several minutes. The dark regions indicate a high cell concentration andthe scale on the left is in cm.If we can understand the patterns formed by some of the simplest organisms on Earththen maybe we could understand patterns formed by more complex organisms suchas insects (e.g. locusts, ants and bees), �sh and even humans (their migration andimmune systems). This thesis aims to explain the patterns observed in suspensions ofswimming micro-organisms whose behaviour is determined by a set of simple rules.1.2 Taxes - what are they?Taxis is Greek for an arrangement. Henderson's dictionary of biological terms, [48],de�nes it as\a movement of a freely motile, usually simple organism, especially Pro-



Introduction 4tista, or part of an organism, towards (positive), or away from (negative), asource of stimulation, such as light, temperature, chemicals; an orientationbehaviour related to a directional stimulus."Taxes represent simple rules for biasing the direction in which organisms move. Typi-cal examples of taxes include chemotaxis (where organisms sense gradients in chemicalconcentrations around them and can change their swimming direction in response tothem), phototaxis (which could be sensitivity to light intensity, direction or polarisa-tion) and geotaxis (which is also known as gravitaxis and is where gravity gives a biasto the direction of movement). Taxes represent both the measurement of the surround-ing environment and the physical mechanisms by which individuals move in responseto that physical stimulus. Without taxes, organisms would move in a random mannerin the hope that their situation will improve. Most organisms use a combination ofrandom movement and taxes. Natural selection ensures that the optimal tactics arealways employed (see Weiner 1994 [120]; Futuyma 1994 [34]).The algae Chlamydomonas nivalis are \negatively geotactic" (they have a tendencyto swim upwards due to being bottom heavy, Kessler 1985 [61]), phototactic (theyneed light for photosynthesis and hence swim towards it; Boscov & Feinlieb 1979 [9];Foster & Smyth 1980 [33]; Kessler 1986 [63]; Witman 1993 [123]; Vincent 1995 [116])and gyrotactic (a term coined by Kessler (1984) [60] to describe the phenomenon inwhich cells swim towards regions of down-owing uid and away from up-owing uid).Gyrotaxis (gyro is Greek for circle) is due to the cells' geometry and mass distributionand describes the balance between viscous and gravitational torques. Rheotaxis (fromthe Greek rheein meaning to ow) is a similar taxis that represents the alignment ofcells along streamlines because of their shape but is independent of gravity.In this thesis gyrotaxis will be shown to be a signi�cant mechanism for patternformation.1.3 Micro-organisms and how they swimThe term organism represents anything with animal or plant-like characteristics. Pro-tista was originally de�ned ([48]) as a kingdom of living organisms including bacteria,protozoans (Greek, meaning �rst animals, and representing \a subkingdom and phylum



Introduction 5of microscopic animals whose body is equivalent to a single cell" [48]), algae and fungi.More recently the term is used for unicellular and colonial algae (or fungi) or for organ-isms showing both plant and animal characteristics, and is used as a collective nounfor the groups protozoa and protophyta (Greek, meaning �rst plants, and representingall unicellular plants). The term algae is from the Latin word alga meaning seaweed.Henderson's dictionary of biological terms de�nes algae as\a major division of the plant kingdom consisting of simple non-vascularphotosynthetic plants with a unicellular, colonial, �lamentous, or thalloidbody, and being aquatic in marine or fresh water or found in damp habitatson land."The label plankton (from the Greek, plangktos, meaning wandering) is in commonuse for a class of micro-organisms. Plankton also produce both small and large scalepatterns (Steele & Henderson, 1979 [104]; Truscott & Brindley, 1994 [109]; Solow &Steele, 1995 [102]) but the mechanisms may be very di�erent. Henderson's dictionaryde�nes plankton as\the usually small marine or freshwater plants (phyto-) and animals (zoo-)drifting with the surrounding water, including animals with weak locomo-tory power."Clearly, swimming algae and bacteria are not subsets of plankton. However, the samepublication mentions that unicellular motile agellates can be classi�ed in a sectionof the animal kingdom. This thesis is chiey a mathematical thesis and we are freeof such semantic restrictions and we may generalise our arguments to the idealizedswimming micro-organism, paying attention purely to its mechanical and behaviouralcharateristics independently of its genealogical background. Bearing in mind the pos-sible extensions of this work to other micro-organisms, we choose to study in detail thegreen biagellated algae Chlamydomonas nivalis (Figure 1.2).There are a number of forces acting on the algae, some external but others inter-nally inuenced. Figure (1.3) describes the main forces a�ecting the cell, under theassumption that the method of swimming contributes only a propulsive force to thecell and does not a�ect the ow �eld or the cell otherwise. Gyrotaxis is caused by thebalance between gravitational and viscous torques. The micro-organisms' geometry



Introduction 6

BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB

CCCCCC
CCCCCC
CCCCCC
CCCCCC

>>>
>>>
>>>

>>>
>>>
>>>

flagellum

eye
spot

chloroplast

centre of starch
production

nucleus

pulsating
vacuoles

cell
wall

######
######
######
######
######

control
osmotic
pressure

pyrenoidFigure 1.2: Chlamydomonas nivalis - anatomy.and mass distribution imply that they swim towards regions of down owing suspen-sion and away from up owing suspension. The viscous torques can e�ectively biasthe direction in which the micro-organism swims and can lead to the cells aggregating.Chlamydomonas nivalis have a higher density than the medium in which they swim andso aggregations of cells will cause bulk uid motion and lead to more cells swimmingtowards cell rich down owing regions.Jones et al. (1994) [55] has looked into the e�ects of biagellar swimming in greaterdetail and has come to the conclusion that more realistic models can be approximated byassuming that the micro-organism is a self propelled spheroidal cell. They recommendthat an adjustment should be made to the measured parameters of geometry and massdistribution to allow for the e�ects of the agella.



Introduction 7

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

@@@@
@@@@
@@@@
@@@@

v

g

gravitational
torque

viscous
torques

due to strain
and vorticity
in the fluid

off centre mass
distribution caused
by chloroplast and 
deposits of starch

rotational
Brownian
motion

Figure 1.3: The forces acting on Chlamydomonas nivalis.Swimming at small Reynolds number is very di�erent to the way that we swim(Purcell 1977 [91]; Lighthill 1975 [76]). It has been likened to us swimming throughthick syrup or \a vat of warm pitch" (Childress 1981 [18]). One of the keys to beingable to swim is to have a stroke that is not symmetric in time otherwise the reversibleviscous uid ow prevents ground from being gained (Childress 1981 [18], pages 16{21). Figure (1.4) explains the breast stroke like swimming style of Chlamydomonasnivalis. There are two stages: an e�ective or power stroke in which the micro-organismgains ground, and a recovery stroke in which the agella are returned to their originalpositions at the expense of losing some ground (see the analysis of Jones et al. 1994[55]). The agella do not perform their stroke symmetrically and hence the cells revolveabout an axis with the swimming direction. It has been proposed by Crenshaw (1993)[25] and Hill & Vincent (1993) [43] that the cell takes advantage of this rotation inthat its eye spot is able to survey the surrounding light �eld and hence control itsphototaxis ([116, 117]). The typical swimming speed of Chlamydomonas nivalis is60�ms�1 (or 6 bodylengths s�1). The sedimentation velocity of a spheroidal cellwith the dimensions of Chlamydomonas nivalis is found from analysis by Van de Ven



Introduction 8

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

@@@@
@@@@
@@@@

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

@@@@
@@@@
@@@@
@@@@

Stroke

Recovery

a)

b)

Figure 1.4: How Chlamydomonas nivalis swims. a) The power stroke in which themicro-organism moves forward as the agella are thrust back, and b) the recoverystroke in which ground is lost but the agella are returned to their initial positions.(1989) [113] to be about 1�ms�1 (see Jones 1995 [54] and Batchelor 1972 [4]) and itis, therefore, reasonable to ignore sedimentation of the cells with respect to the cellsswimming. However, the rotational torque due to sedimentation is not quite so easilydispensed with. It was proposed by A. M. Roberts (1995, personal communication ),via Roberts (1970) [97] and Roberts (1975) [98], that the viscous drag of the agella onthe cell due to sedimentation is responsible (at least in part) for the upswimming of themicro-organism. A series of independent calculations by Hill, Pedley and Jones (1995,personal communication) indicate that the mechanism is of an order of magnitude lessthan that due to the bottom heaviness of the cell. In this thesis the upswimming willbe modelled as due to the cell being bottom-heavy. Nonetheless, a section in Chapter 2



Introduction 9is dedicated to some experiments aimed at distinguishing the two mechanisms.Euglena gracilis has one main agellum along which it passes a helical wave topower its swimming. Euglena also exhibits upswimming tendencies (Wager 1911 [119])but is mainly phototactic. Other organisms may use agella or cilia to swim. Ramia(1991) [93] has investigated the swimming capabilities of Spirillia with single trailing orleading, and bipolar agella by simulating its movement in a uid using the boundaryelement method. Ramia & Swan (1993) [94] compare these results with rotations andvelocities observed in experiments on Spirillium volutans and report good agreement.Ramia et al. (1993) [95] further consider a general boundary element method whichthey benchmark with slender body results. They use their model to investigate amicro-organism with a spherical cell body and one agellum. They go on to explorethe interaction of parallel swimming individuals and hydrodynamic interactions withplane boundaries. Their general conclusion is that hydrodynamic interactions are onlysigni�cant when separation distances are smaller than or equal to the micro-organismslargest physical length scale. These results indicate that it is reasonable to ignore cell-cell interaction when suspension concentrations are low. The particular shape of thecells used in Ramia et al. (1993) [95] could be applicable to the swimming of Euglenagracilis.1.4 Bioconvection - a brief history of observationsFar from being a recently discovered phenomenon, pattern formation in suspensionsof swimming cells has been observed for some time. Ever since some common algae,such as Chlamydomonas nivalis, Euglena viridis, C. cohnii and the ciliated protozoanTetrahymena pyriformis had been isolated, plumes of aggregating cells have been no-ticed in the culturing asks. The term \bioconvection" was �rst coined by Platt in1961 to describe the phenomenon of pattern formation in shallow suspensions of motilemicro-organisms. However, this is by no means the �rst documentation, which in factgoes back to at least 1848 (see Wagner 1911 [119]). Other investigators have includedLoe�er & Me�erd (1952) [77], Nultsch & Ho� (1973) [82], Plesset & Winet (1974) [87]and recently Kessler [61, 60].In a series of papers, Kessler has looked into the pattern forming capabilities of



Introduction 10micro-organisms ([59, 61, 63, 64, 65, 66]). He noticed that the regions of downwellinguid which contained large quantities of micro-organisms were narrower than the up-welling clear uid. Kessler demonstrated the phenomenon of cell focusing ([62, 61]) byconsidering Poiseuille ow through a long vertical U-tube, as in Figure 1.5, and foundthat the cells \focused" into a thin plume in the centre of the tube only on the sideof the U-tube where the uid owed downwards. Cells collected on the outside of theother half of the U-tube.
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Figure 1.5: Gyrotaxis in Poiseuille ow through a U-tube. Cells swim towards relativelydownwards owing uid and away from upward owing uid. This forms a \focused"plume on the left hand side of the U-tube and cells gather on the wall of the right handside.Kessler invented the term \gyrotaxis" to describe the mechanism behind this cellfocusing.1.5 Geotaxis and Gyrotaxis - why bother?A possible explanation for the reason behind aggregation of cells in bioconvection pat-terns is provided by Tomson & Demets (1989) [108]. The micro-organisms mate sexuallyand as the volume fraction of the cells is very small (typically of the order of 0.001 fora cell concentration of 1 million per cm3) they need some mechanism so that they can
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Figure 1.6: An overturning Rayleigh-Taylor type instability. Cells swim to the top andform a suspension layer of greater density than that below.come into close proximity and, hence, chemotaxis can e�ectively drive sexual aggrega-tion (see for example Clayton 1957 [22]). Tomson & Demets (1989) [108] call this themating trap which they say \can only be e�ective at the beginning of the day, whenthe diurnally uctuating sexual agglutinability is high and when the dark/light switchis on". Only then, can the mating process begin. Geotaxis and gyrotaxis result inpattern formation and hence self-concentration and are two mechanisms that are avail-able to Chlamydomonas nivalis. Gyrotaxis even works in the absence of an upper uidboundary (see Figure 1.7) and drives the cells into increasingly concentrated regions.This increase in concentration is only halted by the di�usion of cells away from regionsof high concentration. If the conditions for mating are wrong, then the cells are free tomove as individuals, otherwise the cells become tactile and form pairs or much largercell aggregates. Why then are the micro-organisms still geotactic and gyrotactic attimes when they do not wish to mate? The reason could simply be that there is moresunlight at the surface of a pond for photosynthesis and in a murky pond, phototaxismay be ine�ective. However, the cells also need nutrients and di�usion alone could notprovide enough nutrients for a colony of cells living at the surface of a pond. Thereforeit is perhaps bene�cial for the cells to travel to the bottom of the pond once in a while.If they drive bulk motion at the same time then this may be helpful to the whole colonyof cells by mixing the nutrients throughout the uid. However, in all but very small
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Figure 1.7: A gyrotactic instability. Cells swim towards downwelling uid making itdenser and, hence, sink faster.puddles, mixing is likely to be driven by wind shear or thermal convection. Figure (1.8)shows how, in the absence of wind shear or thermal convection, gyrotaxis might workto extract more nutrients from the bed of a pond than a mere geotactic instability,involving organisms that do not exhibit gyrotaxis, by increasing the width of upowinguid and creating higher wall shear stress.Maybe we are asking too much to explain an individual species' behaviour by con-sidering them in isolation. Perhaps they have diversi�ed into a niche that is only appar-ent when considering the wider ecosystem of a mixture of swimming micro-organismsand larger animals as will be found in nature (see Bees 1994 [5]; Bees & Spiegel 1996[6]; Dawkins 1989 [27]).1.6 A review of modelling techniquesBioconvection is similar to the thermal convection problem between two horizontalplates (Chandresekar 1961 [15]; Childress & Peyret 1976 [20]) but the energy input
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large regions of upwelling fluid    high wall
shear stressFigure 1.8: Nutrient uptake from pond bed in a suspension of gyrotactic micro-organisms. Streamlines indicate high wall shear stress and large regions of upwellinguid on the pond bed, increasing the area of nutrient uptake.is via the individual micro-organisms and not through the boundaries as in thermalconvection (Whitehead 1988 [121]; Goldstein et al. 1993 [35]). However, much of theestablished linear and non-linear theory can be borrowed (Schl�uter, Lortz & Busse 1965[101]; Joseph 1971 [56]; Malkus & Veronis 1958 [78]; Proctor 1981 [90]), and of course,ideas from the comparable �eld of magnetohydrodynamics (Hughes & Proctor 1988[49], 1992 [50]) can also be used. The necessary inclusion of uid ow in convectionand bioconvection modelling generally distances the theory from Turing type patterns(Turing 1952 [111]), however, many of the techniques involved in the analysis of bothsystems are common (Levin & Segel 1985 [75]; Eilbeck 1986 [30]). (See Spiegel &Zaleski 1984 [103] for a combination of shear ow and reaction di�usion.) On modellingthe individual micro-organisms, existing theories for suspensions of particles can beexploited (Je�rey 1922 [53]; Batchelor 1970 [3]; Leal & Hinch 1972 [71]) and ideas fromthe statistics of random walks employed (Hill & H�ader 1996 [41]; Mardia 1972 [79]).1.6.1 Pure upswimming modelsThe �rst models of bioconvection were developed by Plesset & Winet (1974) [87]. Theyconsidered a Rayleigh-Taylor instability in a continuously strati�ed, two-layer model



Introduction 14and were able to investigate the preferred pattern wavelength as a function of the upperlayer depth and the cell concentration. Levandowsky et al. (1975) [74] investigatedbioconvection and proposed a more realistic model (Childress et al. 1975 [19]) in whichthe micro-organisms could swim but were constrained to swim in the vertical directiononly. They introduced an orthotropic di�usion,D = 0BBB@ Dh 0 00 Dh 00 0 Dv 1CCCA ; (1.1)(with di�ering horizontal and vertical di�usion coe�cients) to account for the ran-dom motions. Their model consisted of the Navier-Stokes equations, incorporating theBoussinesq approximation (e.g. Chandresekar 1961 [15]),�DuDt +rp� �r2u = �g�(1 + �ec)k (1.2)and r � u = 0 (1.3)where u is uid velocity, � is viscosity, g is gravity, � is uid density and �ec is theextra density due to micro-organisms of concentration c at a point. The Boussinesqapproximation implies that the only way in which the cell concentration a�ects the uidow is through a change in the uid density. Other e�ects of a change in viscosity anda non-Newtonian stress are considered negligable. Childress et al. (1975) [19] modelledthe swimming cells with a cell conservation equation@c@t +r � J = 0; (1.4)where the ux is given by J = cU(c; z)k �D � rc; (1.5)and U(c; z) is the cell swimming speed. These equations are very similar to theRayleigh-B�enard equations for convection between two horizontal planes and a negativevertical temperature gradient (Chandresekar 1961 [15]). However, in bioconvection, en-ergy is provided internally by the action of swimming micro-organisms, which get theirenergy from nutrients in the medium and the incident light by photosynthesis. TheBoussinesq vertical symmetry of the standard Rayleigh-B�enard problem is lost due to



Introduction 15the biased swimming behaviour of the micro-organisms. Linear analysis predicted thatthe most unstable wavenumber is zero, and Childress & Spiegel (1978) [21] were able toshow from weakly non-linear theory that the bifurcation to instability was subcritical.This means that linear analysis cannot be used to predict a most unstable wavenumber.Harashima et al. (1988) [40] produced a simulation of bioconvection from the equationsof [19] and found that in all cases the pattern wavelength increased with time, on aparallel with studies of weakly non-linear Rayleigh-B�enard convection with insulatingboundaries (Chapman & Proctor 1980 [16]). It is found experimentally, in Chapter 2of this thesis, that exactly the opposite occurs in bioconvection and indeed the �rst(linear) instability to occur has non-zero wavenumber.1.6.2 Modelling gyrotaxisWe start, as in [84], by considering the total torque, LT on a cell, such as that inFigure 1.3. LT is the sum of two termsLT = Lg + Lv (1.6)where Lg is the gravitational torque and Lv the viscous torque. For a bottom-heavymicro-organism such as Chlamydomonas nivalis thenLgi = hmg �ijlpjkl (1.7)where i; j and l are indices and the summation convention is assumed. h is the displace-ment of the centre of mass of the cell from its geometrical centre along the swimmingdirection p, m is the cell's mass, g is the magnitude of the acceleration due to gravity,�ijl is the Levi-Civita tensor and k is the unit vector in the vertical direction. Rallison(1978) [92] wrote the viscous torque on a solitary body with zero Reynolds number asLvi = ��v �Pij(vj � uj) + Yij �!cj � 12
j�+Rijlejl� (1.8)where � is uid viscosity, v is the cell volume, v is the cell velocity, !!!c is the cell'sangular velocity, u is the uid velocity, 


 is the vorticity and e is the rate-of-straintensor. This is a linear expression assuming that the length scale for the changes in theow is much larger than the cell diameter. P, Y and R are tensors depending only onthe surface geometry and orientation of the cell. For a rigid prolate spheroid (Batchelor



Introduction 161970 [3]) Pij = 0; (1.9)Yij = �kpipj + �?(qiqj + rirj) (1.10)and Rijk = ��0Yil(rlpjqk � qlpkrj); (1.11)where p;q; r form an orthonormal right-handed set of coordinates and �0; �k and �?are shape parameters. �0 is the eccentricity and is given by�0 = a2 � b2a2 + b2 (1.12)where a is length and b is breadth of the cell. As eij is symmetric we can writeLvi = ��v �Yij �!cj � 12
j�� �0Yil �klmpmpjejk� : (1.13)Putting LT = 0 giveshmg �ijlpjkl � �v ���kpipj + �?(qiqj + rirj)��!cj � 12
j � �0�kjmpmplelk�� = 0:(1.14)Multiplying this expression by �istps and using the identity�ijk�stk = �is�jt � �it�js (1.15)where �ij is the Kronecker delta, then12B [k� (k:p)p] = !!!c ^ p� 12


 ^ p� �0(p ^ (E � p)) ^ p (1.16)where B = ��?2h�g (1.17)is the gyrotaxis number. Hence, as _p = !!!c ^ p, so_p = 12B [k� (k � p)p] + 12


 ^ p+ �0 [E � p� pp �E � p] : (1.18)The above equation combines expressions from Leal & Hinch (1972) [71] and Hinch &Leal (1972) [47] which were both initially derived by Je�rey (1922) [53].



Introduction 171.6.3 A new continuum modelPedley & Kessler (1990) [85] reasoned that by considering D as isotropic and, hence,\strongly random" and independent of the mechanisms involved in gyrotaxis, Pedley etal. (1988) [83] were being inconsistent in that they were considering the determinationof the swimming velocity, Vs, as \weakly random". That is to say that calculating thecell swimming direction, in a deterministic manner, for all of the cells, and then assum-ing that there was no bias in the direction of di�usion of these cells was inconsistent.Therefore, instead of assuming constant orthotropic di�usion tensor (as in [19]) theymodelled the cell swimming direction in a probabilistic fashion. A model analogous tothat of suspensions of colloidal particles subject to rotary Brownian motion was applied(Brenner & Weissmann 1972 [12]; Brenner [10, 11]; Hinch & Leal [46, 47, 70, 71]). Fromthis, they calculated the average swimming direction and the cell di�usion tensor.Consider a cell swimming direction probability density function (p.d.f.) de�nedon a sphere, f(p), where p = 0BBB@ sin � cos�sin � sin�cos � 1CCCA : (1.19)where � and � are the unit spherical polar angles. � is the colatitude measured relativeto k. The mean cell swimming direction, hpi, is de�ned byhpi = ZS pf(p)dS (1.20)where S is the surface of a unit sphere andD(t) = Z 10 hVr(t)Vr(t� t0)idt0; (1.21)where Vr is the velocity of a cell relative to its mean value. The expression for D is, ofcourse, hard to calculate as it requires a knowledge of all previous cell velocities and,hence, we are forced to make an approximation for the sake of simplicity. If the cellswimming speed, Vs, is a constant as assumed by [85] (the e�ects of a non-constant Vson the linear analysis will be considered in Section 3.7) and assume that it takes a cell� seconds to settle to a preferred direction (called the direction correlation time) thenwe have D � V 2s �h(p� hpi)(p � hpi)i: (1.22)



Introduction 18The p.d.f., f(�; �), satis�es a conservation equation@f@t +r � ( _pf) = Drr2f; (1.23)where Dr is the rotational di�usivity constant. Equations (1.18) and (1.23) are calledthe forward Kolmogorov or Fokker-Planck equations (see Risken 1989 [96]; Schienbein& Gruler 1993 [100]). Fluid ow is modelled with the Navier-Stokes equations foran incompressible uid that includes a term for the negatively buoyant cells. TheBoussinesq approximation is employed such that this is the only way in which the cellsa�ect the uid motion. Hence, r � u = 0 (1.24)and �DuDt = �rpe + nv��g +r ��: (1.25)The total number of cells is conserved and the cells can be modelled using a conservationequation of the form @n@t = �r � [n (u+ Vshpi)�D � rn] ; (1.26)where u(x) is the uid velocity, hp(x)i is the mean cell direction, Vs is the meancell swimming speed, �(x) and D(x) are the uid stress and cell di�usion tensorsrespectively, n(x) is the local cell concentration, pe(x) is the excess pressure, v is themean volume of a cell, and �� is the the di�erence between the cell and uid density.The boundary conditions for a suspension trapped between two solid boundaries arethe no ow condition u = 0 at z = 0;�H; (1.27)and zero cell ux perpendicular to the boundariesk � (n (u+ Vshpi)�D � rn) = 0 at z = 0;�H: (1.28)We shall assume throughout this thesis that the horizontal boundaries are solid forthe following reasons. Although the suspension is typically open to the atmosphere atthe upper boundary and a stress free boundary condition may appear to be the mostreasonable, there is some evidence to suggest that the upper boundary quickly becomes\rigid" ([61, 60, 84, 42]). Cells swim up to the upper surface and form close-packed



Introduction 19two-dimensional structures that oat on the surface. These structures form quicklyand appear to be very stable. At subsequent times, when cells encounter the upperboundary, they behave as if it were solid. Perhaps it would be more reasonable toassume a mixed type of boundary condition but at the present time, evidence suggests([19, 42]), that this would alter the general behaviour of the system very little.1.7 What this thesis is aboutThis thesis describes a combination of experimental and theoretical techniques thathave been used to study the mechanics involved in bioconvection in a suspension ofgyrotactic swimming algae called Chlamydomonas nivalis.Chapter 2 decribes experiments on bioconvection to obtain quantitative data onthe pattern wavelengths and how they vary with suspension concentration, depth andtime. Other observations are discussed, such as mode interactions and the formationand breakup of annular patterns. A general measure of pattern is examined wherebyimages are associated with a rippled surface in Euclidean three space and its Gaussianand mean curvatures.Chapter 3 investigates the linear analysis, both analytical and numerical, of therecent continuum model proposed by [85] in a container of �nite depth. A furtherextension that the cell swimming speed is taken to be a random variable, and thee�ect of this on the linear analysis is examined. The value of the variance of the cellswimming speed is found to have a critical nature.Chapter 4 details a computer aided, analytical expansion of the gyrotactic Fokker-Planck equation for f(�; �) in terms of surface spherical harmonics. It is found thatalgebraic approximations for the di�usion tensor and mean cell swimming velocity canbe obtained and convergence is rapid for a range of realistic parameters. These expres-sions can be applied directly to the fully non-linear equations for cell concentration anduid ow.Chapter 5 considers the fully non-linear problem of bioconvection in a \deep"suspension. Models of purely upswimming micro-organisms ([19]) do not possess aninstability in deep bioconvection in the absence of an upper boundary but modelsincorporating gyrotaxis do. For the physically realisable situation of small vertical



Introduction 20variation, a weakly non-linear analysis is constructed to give an amplitude equationfor the non-linear saturation of an initial disturbance and steady state solutions areexplicitly calculated. The possibility of horizontally travelling vertical plume solutionsis also investigated. By introducing a background vorticity, a Hopf bifurcation is gen-erated and the ensuing limit cycle produces a travelling front of horizontally travelling,vertical plumes. The analysis of a small vertical variation to the steady state solutionsintroduces the possibility of vertically travelling pulses, or blips, down a plume, whichare also seen in experiments.



Chapter 2
An Experimental Investigation ofBioconvection
2.1 IntroductionThe purpose of this investigation is to attempt to quantify observations of patternformation by swimming micro-organisms in a rational and reproducible manner. Inthis chapter, methods will be described that we have developed for measuring theattributes of these patterns in suspensions of a particular micro-organism, the algaeChlamydomonas nivalis. Observations of pattern formation have been recorded beforeby such authors as Wager (1911) [119], Loe�er & Me�erd (1952) [77], Wille & Ehret(1968) [122], [74] and recently Kessler (1984) [60] but the results have tended to be ofa qualitative nature. This is one of the �rst, controlled experiments aimed at quanti-tatively cataloguing aspects of the bioconvection patterns. It is hoped that the largedata set of 39 experiments will be used in future analysis. Methods will be describedto Fourier analyse the images, with emphasis on the dominant unstable wavenumberand how this changes with time. It will be shown that this wavenumber increases withtime, not continuously, but discretely as new modes become unstable on top of alreadydeveloped modes. Observations of pattern development and mode interactions will bediscussed and a general measure of the patterns based on curvatures of an associatedlandscape will be proposed. Finally some experiments that were performed to inves-tigate the mechanisms for gyrotaxis, by increasing the density of the medium withrespect to the algae, will be described. 21



An Experimental Investigation of Bioconvection 222.2 Culturing and concentrating the algaeBefore measuring bioconvection patterns, it is necessary to breed a \homogeneous"culture of cells that are in a fully motile stage of development. This is essential as thereare numerous forms of these organisms depending on their environmental conditions.For example, when bad times of limited nutrients arise the algae metamorphose intodormant cysts. There are a number of media that could be used, such as the slightlycloudy \Soil Water Medium" or media based on Fish Meal as in James (1978) [52].\Bolds Basal Medium" was used because it is relatively clear, mimics the natural con-ditions of the cells and is reasonably easy to make whilst being easily adaptable (Bold& Wynne 1978 [8]). This medium allowed normal, moderate growth and was usedin large asks to reduce the glare of the light source and facilitate mutual shading.Alternatively, the medium plus vitamin B12 (often recommended to increase the per-centage of swimming cells) in smaller asks allowed faster growth plus an assurance ofmotility. However, the vitamin B12 produced some abnormal development when usedcontinuously over many months. The cells were subcultured every four to six weeksand, ideally, experiments were only performed on fresh green cultures of about threeto four weeks old. There is some evidence to suggest (Kessler, personal communication1995) that the cells are not gyrotactic within the �rst week after subculturing. Thecells are left to breed under two, cool white, uorescent tubes which give a maximumlight intensity of 500 lx. A cycle of twelve hours of darkness followed by twelve hoursof light is used. It is important to realise that the cells have their own diurnal cycles ofbreeding, dividing and feeding, and it is essential to carry out experiments during thecorrect motile phase. The cells' cycle was set to coincide with my own daily cycle sothat full advantage of their motility could be taken. Like many of us Chlamydomonasdo not perform well within the �rst few hours of daylight! Half way through their daythey appear to perform best and produce the most robust patterns. Tomson & Demets(1989) [108] have studied the daily cycle of Chlamydomonas eugametos in detail andsuggest that they are most motile in the middle of their day. In the �rst few hoursof light the cells are concerned with dividing and in their evening they begin to sticktogether in preparation for mating. Tomson & Demets (1989) [108] also suggest thatthe cells breed best when the suspension is not agitated, and that they do not divide atall if the suspension is regularly well-mixed. The cells also tend to stop swimming with



An Experimental Investigation of Bioconvection 23a sudden change of temperature, and hence, all steps of the breeding and experimentalprocesses took place at a constant temperature (25� 2o C) within the laboratory, at aset time in the day. All the equipment required in culturing was washed and rinsed indistilled water and then carefully sterilized (autoclaved at 15 pounds per square inchof pressure for 15 minutes) to avoid contamination by bacteria and fungi. Cleanlinessis crucial as if cultures become infected then it is very di�cult to remove the infection.Because Chlamydomonas are geotactic, it is easy to concentrate them (see Kessler[58, 59]). By using a long-necked ask with a small piece of absorbent cotton woolplaced within the suspension, half way down the neck, the cells can be harvested fromthe top. This is because the cells' average swimming direction is upwards and they willswim through the cotton wool but will not be convected back down, as in the absenceof the cotton wool. After 24 hours or more, clear liquid is left at the bottom of the askand concentrated suspension at the top. If left too long, the cells will quickly run out ofnutrients and metamorphose into a non-motile state. Alternatively, by oating a pieceof absorbent cotton wool in a suspension, the cells will swim to the highest point andget stuck in the cotton wool. Again, if this is left too long it will dry out and kill thecells (Figure 2.1). The concentrated suspension can be transfered by pipette to a petri
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Figure 2.1: Two methods of concentrating the cells: a) cells swim up through absorbentcotton wool in a thin necked ask and remain in the suspension above the cotton wool;b) cells swim up through a oating raft of absorbent cotton wool and become trappedwithin it at the surface.



An Experimental Investigation of Bioconvection 24dish. It was found that plastic petri dishes were the most regularly shaped and so the5cm diameter, circular, sterile variety were generally used. One of the �rst reactionsof the cells is to stick to the petri dish walls. To avoid this problem, a small amountof clear medium from the culture ask was put into the petri dish. It was cleaned andpolished with a lens tissue before �lling with the concentrated suspension. If the cellsstill stuck then the dish and suspension were left in darkness for twenty four hours.This usually gave the cells su�cient time to get used to their new environment andreproducible patterns were generally observed.2.3 Parameter measurement and controlAs well as being geotactic and gyrotactic, Chlamydomonas are also sensitive to light(i.e. phototactic). (Foster & Smyth 1980 [33]). It was therefore necessary to limit thise�ect as much as possible. One way that was considered is to let the patterns form indarkness and then to ash a light on for the purpose of recording visual images. Thecells, however, exhibit a photophobic response to a sharp increase in light intensityand they stop swimming for a short period before eventually adjusting their swimmingstroke, such that their agella are both aligned, and swimming in the reverse direction(Witman 1993 [123]; R�u�er & Nultsch 1985 [99]). Instead, a very low, red light sourceat wavelengths of about 622 � 780nm was used, to which Chlamydomonas do notappear to respond signi�cantly ([33]). Heating the suspension with the light sourcewas undesirable and so an infra-red �lter was placed between the light source and thecells. Finally, a milk glass �lter was used directly under the suspension to create aneven, non-directional light source. The light intensity at the �nal stage did not exceed5 lx, measured using a standard light meter.After concentrating the suspensions of algae, it is necessary to measure their con-centration. This was achieved after experimentation by �rst killing the cells, usingiodine or heating them, and then sampling from the well mixed suspension using amicroslide. A typical microslide is a hollow tube of rectangular cross-section, with di-mensions of 0:2mm deep by approximately 1mm wide and 40mm long and thus, thevolume per unit area, when the slide is at on the table, is easily calculated. Whenthe cells are dead, they sink to the bottom of the slide. Using a microscope linked to



An Experimental Investigation of Bioconvection 25an image processing system the number of cells in the picture were counted automat-ically and, after calibration with a graticule, the concentration was calculated. Themicroscope was set up with a light source directly below the microslide. The light wasadjusted so that it was focused through the spheroidal cells onto the video lense andhence pinpoints of bright light in the centres of the cells were obtained. This allowedtouching cells to be counted independently. This is good for counting purposes but notgood for calculating cross-sectional areas. The counting process was set up to rejectitems that are too small or too large. Counting was repeated ten times on the samemicroslide and up to three microslides were used to calculate an average concentrationfor the suspension. To check the accuracy of this process a standard haemo-cytometerwas used to count cells by eye. The calculations of concentration compared well, withthe automated method giving a value of 84% of the manual method after counting1039 cells by eye. This was within the error ranges of both methods and so it wasnot necessary to scale the concentrations from the automated method. To measure thedepth of the suspensions, a calibrated microscope was used that was �rst focused onthe bottom of the petri dish and then on the surface of the suspension. The microscopewas calibrated by using glass slides of known thickness (measured using a micrometer).To ease the focusing the surfaces of the slides were smeared. A combination of theslides and �ne focus was used to measure the depth to within �0:03mm of the surfaceof the suspension. The surface is easily identi�able as cells group together and formrafts of unit thickness at the surface. Realistically, however, this error bound shouldbe doubled to allow for small errors in calibrating the microscope and focusing on thescratches on the bottom of the petri dish.It was found that plastic petri dishes were the attest and the depth did not varysigni�cantly over the dish (maximum error � 0:03mm). It is assumed that the depth isconstant over the majority of the central region of the suspension. In situations wherethe suspension was very concentrated the bottom could not be focused on and, hence,this had to be done prior to �lling the dish with suspension.



An Experimental Investigation of Bioconvection 262.4 Experimental arrangementAll experimental work was completed on a minimal budget and use was made of what-ever, often old, equipment was available. By far the most up to date unit was the Leitzstereo micro/macroscope which was connected to a Z80 based Seescan image processor.The image processor can in no way be described as state of the the art technology butwas su�cient for our purposes and was used primarily to implement the cell counting
Seescan

printer monitor

video

micro
scope

light

moveable stage
micro−
slide

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat 

Figure 2.2: Experimental setup for cell concentration measurements.algorithm. For the bioconvection experiments, the videocamera was focused directlyonto the petri dish. In general the suspensions were mixed well, and then pictures werecaptured every ten seconds. Mixing correctly is very important since if unwanted uidmotion is initiated then the initial pattern that forms may be a�ected. For instance,spin-up will result in higher concentrations in the centre, whereas secondary circula-tions in the horizontal plane could inuence the generation of a sheet instability asopposed to point instabilities. For each of the experiments a total of nine pictures werecaptured and saved on 312 inch magnetic disks. These pictures were then transferred toa PC 286, via a serial port, where they were then transferred across the network to aUnix system. A graphics package, IDL (Research Systems Inc., Colorado), was utilizedto analyse the data on the Unix workstation.
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Figure 2.3: Experimental setup for recording images of bioconvection in a petri dish.2.5 Image processing and characterizationThe images consist of 256�256 pixels of 128 grey shades plus an unused bit (Figure 2.4).This gives a total picture size of 64 kbytes. Thus, each experiment takes up a totalof 0:6 Mbytes. This can be greatly reduced after compression. It can be clearly seenthat the horizontal and vertical scales di�er. This was due to the camera that was usedand it was necessary to rescale the images accordingly. The graphics package IDL wasselected to analyse the images due to its ease of use and adaptability.The set of nine pictures each contain unwanted information such as:� the walls of the dish,� reections and scratches on the dish,� localized or irregular light sources, and� the boundary of the picture.The �rst three can be eliminated by subtracting the �rst image, when there is noconvection, from the next eight images. The last item becomes important when Fourieranalysing the images. Suitable use of windowing functions can solve this problem.By Fourier transforming the images, it is possible to extract a measure of the mostdominant wavelength at a given instance and investigate how it changes with time.
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Figure 2.4: Example of a bioconvection image as initially recorded.2.5.1 Discrete Fourier transformsThe images are composed of a two-dimensional, discrete, real data set and one wouldexpect there to be a corresponding two dimensional discrete complex Fourier space.One of the best ways to obtain this is to use the Fast Fourier Transform (or FFT) algo-rithm developed by Cooley & Tukey (1965) [23] (see Bingham 1974 [7] for a history ofthe method). Press et al. in Numerical Recipes [89] (Chapters 12 and 13) describe theworkings of the FFT succinctly, and it is only necessary here to consider the approxi-mation errors involved in the process in more detail. Firstly, we may dispel any concernabout the resolution of the picture as it contains 256 � 256 pixels and we will only beconsidering up to a maximum of 60 wave lengths per picture. This gives a minimum offour pixels per oscillation and satis�es the Nyquist condition of at least two pixels peroscillation. However we should be aware of the problems linked with transforming dis-crete data, such as aliasing. Aliasing occurs as a result of the information \lost" whenenforcing an upper bound on frequency in Fourier space. The \energy" misplaced dueto the higher frequencies is reected back onto lower frequencies in Fourier space. Thisis summed up in Figure (2.6). The reader is again referred to the relevent section inNumerical Recipes [89] (page 496). The discrete Fourier transform of an image h(x; y)
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Figure 2.5: The same image as before but after the �rst image, where bioconvectiondoes not occur, has been subtracted.of size N2 in two dimensions is given byH(kx; ky) = N�1Xy=0 N�1Xx=0 e2�ixN e2�iyN h(x; y); (2.1)where H is in general complex, and contains phase information as well as the powerspectrum. A procedure in the graphics package IDL was used to perform the FFT onthe real, two dimensional image array. The procedure returns a complex array of thesame size. The structures of the two arrays are given in Figure (2.7) with an exampleof a hexagonal pattern shown schematically. The distance in Fourier space of the dotsfrom the origin indicates the wavenumber (wavenumber is used here as the number ofwaves in 256 pixels) and its position indicates its direction. Phase information is alsocontained in the argument of each complex number in H.2.5.2 Fourier spectrum estimation and analysisThe aim here is to extract the most dominant wavenumber contained in the image.The Fourier spectrum is a measure of the spectral components of an image at varyingwavenumbers. The discrete Fourier spectrum, Pn, is de�ned on N2 intervals (called
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Figure 2.6: Aliasing and how it a�ects the Fourier spectrum. The energy from higherwavenumbers beyond the cuto� wavenumber is reected back onto the discrete Fourierspectrum.bins), In = [n; n+ 1) where n = 0; :::; N2 � 1, asPn = Xd(kx;ky)2In jH(kx; ky)j2 (2.2)where d(kx; ky) is the distance in Fourier space of (kx; ky) from the origin. As thescales in h space for x and y are di�erent (depending on the construction of the videocamera), it is necessary to scale the distance in the transform space, H, accordingly.How does this Fourier spectrum compare with the continuous Fourier spectrum? Asthe two dimensional FFT is essentially two FFT performed in the x and y directionsconsecutively we may consider the errors involved in just one dimension. The imagehas an edge and, hence, we are in e�ect multiplying the original in�nite image by asquare windowing function. This is equivalent to �nding the convolution of the imageFourier space with that of the square window Fourier space. There is a certain amountof \leakage" from one bin to the next due to the windowing function, and it can beshown that it has a typical fall o� rate of (�s)�2, where s is the frequency o�set inbins (Numerical Recipes [89], pages 545 { 551). The square of the transformation ofthe window function determines the leakage, L, whereL(s) = 1Wss �����N�1Xx=0 e 2�isxN W(x)�����2 ; (2.3)
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Figure 2.7: Discrete image and Fourier transformed space: an example of a hexagonalpattern. The upper square indicates the input image and the lower square (with a thickboundary) indicates the form of the fast Fourier transformed output space and how itis to be interpreted (the square with a thin boundary).where W(k) is the windowing function and Wss = NPN�1k=0 W2(k). For a squarewindowing function L(s) = 1N2 �sin�ssin �sN �2 : (2.4)For Fourier spectrum analyses it is the oscillatory nature of the leakage which is un-desireable (a manifestation of the Gibbs phenomenon whereby sharp edges introduceoscillatory errors). A solution is to use a di�erent windowing function that does nothave the sharp edges of the square windowing function. The Hann window was chosen(Numerical Recipes [89], pages 545 { 549) as it removes the oscillatory nature of theleakage and the error rapidly decreases to zero outside a small range in the Fourier



An Experimental Investigation of Bioconvection 32spectrum space. The Hann window is essentially a cosine (plus a constant) about thecenter of the image and reaches a minimum of zero at the edges. This has the additionalbene�t of favourably weighting the information in the centre of the picture. The Hannwindow in two dimensions is de�ned asWH(x; y) = 14 �1� cos 2�xN � �1� cos 2�yN � (2.5)and is multiplied with the image before application of the FFT algorithm.2.5.3 Dominant wavenumber analysisIn general the discrete Fourier spectrum can be graphed as a rather noisy bar chartwith one or more dominant wavenumbers. But how do we extract this wavenumberand produce an estimate of the variance of this value? Figure (2.11) shows a typicaltime series of nine images taken one every 10 seconds and Figure (2.12) the correspond-ing Fourier spectra. As the �rst frame is subtracted from each subsequent frame thebackground \noise" will increase with time as the di�erences between the two framesbecome greater. Also, a range of wavenumbers become unstable with maybe one mostunstable wavenumber. An unnormalised double Gaussian distribution is �tted to the\noise" and \not so unstable wavenumbers" and the other is �tted to the dominant mostunstable wavenumber. The unnormalized double Gaussian distribution, ��(X = n), isde�ned as ��(X = n) = A1�(�1;X = x+ �1) +A2�(�2;X = x+ �2); (2.6)where �(�i;X = x) = e� x�i!2 : (2.7)Figure (2.8) shows a close up of this curve �tting. The trial curve is �t using a leastsquares algorithm. It was found that this method could be used on large sets of Fourierspectra where the curve �tting was e�ectively implemented on a computer. However, itwas necessary to investigate some measures of the errors involved so that we could bewarned if the curve �tting was inappropriate (for example if there exists two or moredominant peaks).
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Figure 2.8: An example of curve �tting using the unnormalised double Gaussian dis-tribution to an image's Fourier spectrum. The horizontal axis measures wavenumberand the vertical axis is the Fourier density.2.5.4 Error analysisDue to the nature of the bar graph, standard con�dence tests are not particularlyrelevant here. That is to say that the Fourier spectrum contains information on theharmonics of the patterns and it would be unreasonable to assume the spectrum has aparticular shape. What we are interested in acheiving is to �t a curve to the generaloutline of the spectrum. Moreover we wish to ignore the possible large uctuations ofthe spectrum. This could be acheived by �rst smoothing the data, but this has thedisadvantage of losing some important information on the harmonics. Alternatively,two statistics are chosen that describe how well the unnormalized double Gaussiandistribution �ts the data. A small value (< 0:1) of both of the statistics indicatesthat the curve �tting is sucessful, whereas a large value of any one statistic does notnecessarily imply that the curve �tting is inappropriate but does indicate that greaterattention should be paid. If both statistics are large then this is a strong indication thatthe curve �tting is ine�ectual. In only a small number of cases it is necessary to estimatethe most unstable wavenumber by eye (for example, experiment x120h, Figures 2.11and 2.12, in which there are two dominant wavenumbers in the initial pattern). Thesum modulus error, normalised with respect to the area under the bar graph, is a goodmeasure of the absolute roughness of the bar graph and the Kolmorgorov-Smirnovstatistic describes variations in the trends of cumulative data (e.g. von Mises, 1964



An Experimental Investigation of Bioconvection 34[118]). The sum modulus error has a di�erent character to the chi-squared statistic inthat it represents the small errors as much as the large. It is de�ned asEM = 1PN�1n=0 Pn N�1Xn=0 ��Pn � ��(X = n)�� ; (2.8)where Pn is the Fourier spectrum at wavenumber n and ��(X = n) is the unnormalizeddouble Gaussian distribution. The normalised Kolmorgorov-Smirnov statistic is de�nedas EKS = 1PN�1n=0 Pn maxn=0::N�1 nXj=0 �Pn � ��(X = n)� (2.9)and measures the maximum cumulative error rather than the total sum error. A cal-culation of the signi�cance of EKS (e.g. Stephens 1970 [105]) is not strictly relevantin this context as the spikes found in the Fourier spectrums are very real entities andrepresent unstable modes or harmonics and not random events.If EM is large then this indicates that the data is not very smooth and manyharmonics exist. If EKS is large then this indicates that the general trend of theunnormalised double Gaussian distribution deviates signi�cantly from the data.Regardless of the form of the error estimates, the �� appears to be the naturalchoice of function to �t for the majority of experiments. In this way a most unstablewavenumber can be extracted as a function of time. In particular the �rst unstablewavenumber and the �nal (or near �nal wavenumber as the pattern may take hours tofully evolve) most unstable wavenumber can be examined as a function of concentrationand suspension depth.2.6 Experimental examplesBelow we present experimental data for each experiment and display a number of exam-ples of the di�ering patterns that one might expect with Chlamydomonas nivalis. Darkregions indicate a high local cell concentration. There are nine frames per experimenttaken consecutively every ten seconds unless otherwise stated. The very last picturein each experiment was recorded after a su�ciently long time such that the patternappeared stationary (typically 5 to 10 minutes).



An Experimental Investigation of Bioconvection 352.6.1 TablesBelow, all of the experiments vital statistics are recorded detailing measurements ofinitial and well developed dominant pattern wavelengths.



An Experimental Investigation of Bioconvection 36Experimental dataExpt. Conc. Depth k0 k1 �0 �1 NotesName M=cm3 cm /dish /dish cm cmx108a 2.75 0.333 14.09 n/a 0.369 n/ax108b 2.07 0.396 10.71 n/a 0.486 n/ax108c 6.31 0.365 19.47 22.57 0.267 0.230x108d 3.06 0.444 11.10 17.30 0.468 0.301x114a 0.808 0.522 10.80 n/a 0.481 n/a mixed modesx114b 1.02 0.729 7.50 n/a 0.693 n/a mixed modesx114c 0.886 0.399 12.48 n/a 0.417 n/a mixed modesx117e 1.64 0.381 15.76 n/a 0.330 n/a slow to developx117f 2.30 0.456 15.10 n/a 0.344 n/a slow to developx117g 1.88 0.690 10.00 n/a 0.520 n/a slow to developx120a 2.81 0.282 15.40 n/a 0.338 n/a mixed modesx120h 2.47 0.528 8.87 19.10 0.586 0.272 2 mixed modes, startsin centrex120i 2.15 0.645 10.08 18.61 0.516 0.279 mixed modes, starts incentrex208b 1.89 0.384 14.96 16.73 0.348 0.311 every 30 secondsx208c 1.89 0.318 14.20 10.64 0.366 0.489 every 20 secondsx208d 3.62 0.310 17.15 14.54 0.303 0.358x208j 1.89 0.469 07.34 17.18 0.708 0.303 2 peaks, L dominantx208k 1.89 0.469 14.70 14.79 0.354 0.352 2 peaks, L dominantx208l 1.89 0.469 08.63 15.62 0.603 0.333 2 peaks, R dominantx208m 1.89 0.723 09.97 15.11 0.522 0.344x208n 1.89 0.384 15.12 15.67 0.344 0.332x209e 2.09 0.355 14.25 16.66 0.365 0.312continued.....Table 2.1: Table of experimental measurements where the subscript 0 means the �rstunstable mode to be measured and 1 means the �nal pattern mode. Wavenumbers(waves per width of dish) are indicated by k and the dimensional wavelength by �. Forthe �nal pattern, n/a indicates that the images are not available.



An Experimental Investigation of Bioconvection 372.6.2 ImagesHere a selection of the experiments are displayed which have been chosen for theirvariety. Figure 2.9 describes the order in which the images appear.
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Figure 2.9: Key. Order in which images are recorded. Pictures taken one every 10seconds unless otherwise stated.2.7 Dominant wavenumber results2.7.1 The initial disturbanceThe suspension is initially well-mixed such that there is a uniform concentration pro�le.In general, an initial instability is apparent after 20 to 30 seconds and if the cells swimat 50�ms�1 then they have only travelled 1 to 1:5mm in this time. This may notbe su�cient for the majority of cells to be involved in an overturning instability andthey will not have had su�cient time to swim to the equilibrium solution, as assumedin the linear analysis of Chapter 3, in which vertical cell di�usion is balanced by theup swimming cells and there is no horizontal variation (the depths in the experimentsgenerally being of the order of 5mm). A proportion of the cells may, however, have hadenough time to aggregate at the top and initiate the overturning. In which case, theRayleigh-Taylor instability is due to a reduced density gradient than that determined
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Experimental data continued.....Name Conc. Depth k0 k1 �0 �1 NotesM=cm3 cm /dish /dish cm cmx215f 4.19 0.468 13.87 22.20 0.375 0.234x215g 4.19 0.291 17.26 20.62 0.301 0.252x215h 4.19 0.186 27.67 17.48 0.188 0.297y11i 4.30 0.282 19.66 22.52 0.264 0.231y11j 4.30 0.282 17.76 21.89 0.293 0.238y11k 4.30 0.282 15.75 24.19 0.330 0.215y11l 4.30 0.282 17.45 23.52 0.298 0.221 every 30 secondsy12b 11.8 0.342 18.08 36.84 0.288 0.141y12c 4.00 0.297 16.71 28.03 0.311 0.186y12d 15.0 0.195 28.24 28.02 0.184 0.186y12e 11.8 0.118 34.84 32.95 0.149 0.158y12f 11.8 0.168 30.59 32.72 0.170 0.159y12m 3.60 0.324 15.71 17.30 0.331 0.301y12n 11.8 0.342 15.70 25.58 0.331 0.203y02i 4.30 0.228 23.09 34.15 0.225 0.152y02j 4.30 0.300 28.73 45.19 0.181 0.115y02k 4.30 0.300 29.86 43.05 0.174 0.121 every 30 secondsTable 2.2: Table of experimental measurements (continued) where the subscript 0means the �rst unstable mode to be measured and 1 means the �nal pattern mode.Wavenumbers are indicated by k and the dimensional wavelength by �. For the �nalpattern, n/a indicates that the images are not available.
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name initialpattern �nalpatternx108a D DHx108b X D=Lx108c X Dx108d L Dx114a D Dx114b L Dx114c D Dx117e D L=Dx117f X Dx117g X Xx120a D Dx120h M Dx120i M Dx208b DT Dx208c DT Dx208d D Mx208j X Dx208k D=L Dx208l L Dx208m X DHx208n DT Dx209e X DHTable 2.3: Experimental initial and �nal patterns observed. The types of patterns areindicated by D = dots, L = lines, X =dots joined by lines in X or Y shapes and M =mixed. The subscript T means that the pattern evolves through a torus stage and thesubscripts H and S mean clear evidence of hexagonal or square arrays respectively.
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name initialpattern �nalpatternx215f L D=Lx215g XT D=Lx215h DT D+ emptyy02i X DHy02j X DHy02k X DHy11i X DHy11j X DHy11k X DHy11l X DHy12b M DSy12c M DHy12d M Dy12e MT Dy12f MT Dy12m X DHy12n M DTable 2.4: Experimental initial and �nal patterns observed. Continued....
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Figure 2.10: Experiment number x208m. Concentration = 1:89 � 106cm�3, depth=7:23mm. Pictures taken one every 10 seconds.
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Figure 2.11: Experiment number x120h. Concentration = 2:47 � 106cm�3, depth=5:28mm. Pictures taken one every 10 seconds.
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Figure 2.12: Experiment number x120h. Fourier spectra of images. Horizontal axisis wavenumber and vertical axis is Fourier density. Concentration = 2:47 � 106cm�3,depth = 5:28mm. Pictures taken one every 10 seconds.
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Figure 2.13: Experiment number x208l. Concentration = 1:89 � 106cm�3, depth =4:69mm. Pictures taken one every 10 seconds.
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Figure 2.14: Experiment number x108d. Concentration = 3:06 � 106cm�3, depth= 4:44mm. Pictures taken one every 10 seconds.
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Figure 2.15: Experiment number x209e. Concentration = 2:09 � 106cm�3, depth =3:55mm. Pictures taken one every 10 seconds.
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Figure 2.16: Experiment number x208c. Concentration = 1:89 � 106cm�3, depth =3:18mm. Pictures taken one every 20 seconds.
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Figure 2.17: Experiment number y02k. Concentration = 12:2 � 106cm�3, depth =3:00mm. Pictures taken one every 30 seconds.
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Figure 2.18: Experiment number y02k. Fourier spectra of images. Horizontal axis iswavenumber and vertical axis is Fourier density. Concentration = 12:2 � 106cm�3,depth = 3:00mm. Pictures taken one every 10 seconds.
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Figure 2.19: Experiment number x215g. Concentration = 4:19 � 106cm�3, depth =2:91mm. Pictures taken one every 10 seconds.
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Figure 2.20: Experiment number y02i. Concentration = 4:6 � 106cm�3, depth =2:28mm. Pictures taken one every 10 seconds.
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Figure 2.21: Experiment number y12d. Concentration = 15:0 � 106cm�3, depth =1:95mm. Pictures taken one every 10 seconds.
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Figure 2.22: Experiment number x215h. Concentration = 4:19 � 106cm�3, depth= 1:86mm. Pictures taken one every 10 seconds.
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Figure 2.23: Experiment number y12e. Concentration = 11:8 � 106cm�3, depth =1:18mm. Pictures taken one every 10 seconds.



An Experimental Investigation of Bioconvection 55from the exponential distribution of Chapter 3. Alternatively, the observed initialinstability may be a gyrotactic instability (or perhaps a combination of both). Thus,it is di�cult to isolate the mechanisms involved in the initial disturbance.The wavenumber, k, is related to a physical wavelength by� = Iwk ; (2.10)where Iw is the image width and equals 5:2cm. Figure (2.24) describes how the �rstobservation of a most unstable wavelength varies with concentration and suspension.The diameter of the circle is proportional to the wavelength and the centre of the circleindicates its position in parameter space. In general the wavelength increases with

Figure 2.24: Dominant wavelengths of the initial disturbance from a fully mixed sus-pension of Chlamydomonas nivalis against concentration and suspension depth. Thediameter of the circles represent the most unstable wavelength measured on a contin-uous scale in cm.depth and decreases very slowly with concentration. The patterns have been groupedinto four groups and Figure (2.25) shows how the pattern varies with concentrationand depth. There are a number of regions in the concentration/depth parameter space



An Experimental Investigation of Bioconvection 56that require further explanation. The region M described in Figure (2.25) displaysacute sensitivity to the initial conditions. However carefully the suspension is mixedthere will always be some coherent uid motion. Depending on the nature of thismotion the initial pattern will either develop as dots or lines. In terms of the Fourierspectrum, there is a range of equally unstable wavelengths and, depending on the initialconditions, any can dominate the pattern. However, the well developed pattern appearsto be free of any such degeneracy.2.7.2 The well developed patternIt is di�cult to decide when in fact the well developed pattern occurs. In many casesthe pattern tends towards a regular array of dots but in other cases either no regularpattern exists or no long term pattern is visible at all! Indeed, after 24 hours either anexceedingly regular pattern emerges or the cells are stuck together at the bottom. It isnot always necessary to wait 24 hours and the impatient investigator need only wait 5to 10 minutes before the pattern reaches a stage where there is very little or no furthervariation. As mentioned previously 8 images were recorded at 10 second intervals anda long term image recorded after about 5 minutes. The dominant wavenumber anal-ysis was performed and the results are displayed in Figure (2.26) where the dominantwavenumber is plotted against depth and concentration. The results vary signi�cantlyfrom the initial disturbance in that the wavelength decreases with concentration andthere is no signi�cant change with depth. Certainly the well developed pattern is inde-pendent of the initial conditions and Figure (2.26) is much smoother than Figure (2.24).A clear di�erence occurs in the shape of the Fourier spectra of the initial and well devel-oped patterns. The initial patterns' Fourier spectra contain harmonics and competingunstable wavenumbers whereas the �nal patterns Fourier spectra contain just one un-stable wavenumber as the patterns are generally characterised by a regular array ofdots. This can clearly be seen in Figure (2.11), where it is also obvious that the pat-tern wavenumber has increased with time. In some situations of very low concentrationand small depth it was observed (but not recorded) that although an initial instabilityoccured, long time patterns were not visible. At the time these patterns were not suf-�ciently repeatable to warrant recording and the cells appeared to stick to the walls ofthe dish soon after. There are a number of possible explanations. One is that the cells
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Figure 2.25: Pattern type of the initial disturbance from a fully mixed suspensionof Chlamydomonas nivalis against concentration and suspension depth. The regionscorrespond to the dominant pattern present where D = dots, L = lines, X = dotsjoined by lines in X or Y shapes and M = mixed. The subscript T means that thepattern evolves through a torus stage and the subscripts H and S mean clear evidenceof hexagonal or square arrays respectively.
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Figure 2.26: Dominant wavelengths of the �nal observed pattern in a suspension ofChlamydomonas nivalis against concentration and suspension depth. The diameter ofthe circles represent the most unstable wavelength measured on a continuous scale incm. The dots represent experiments performed where a �nal pattern was not recorded.were separated during mixing, swam to the top and promptly stuck together and sank.Alternatively the cells could have been fully independently motile but of insu�cientconcentration to set up long term bioconvection patterns but may instead have set upa stable vertical concentration gradient. Irregular long time patterns are also hard tointerpret but, by considering the Fourier spectra, appear to be time dependent modeinteractions of two or more modes.2.7.3 Transitionary mode interactionAlthough we have seen that the wavenumber, k, increases from the initial instabilityto the �nal steady state, it does not always do so monotonically. Figure (2.27) showsthree identical experiments performed within ten minutes of each other in a regionof parameter space where the patterns are sensitive to the initial conditions. Exper-
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300Figure 2.27: How the dominant pattern wavenumber varies with time. Three identicalexperiments where the initial instability is highly dependent on the initial conditions.iment x208j was performed between the other two. It was observed that the initialinstability was dependent on the type of mixing that was used beforehand even thoughcare was taken not to set up any bulk uid motion and whatever motion was presentdied away in under a couple of seconds. Whatever the initial instability the patternsevolved towards the same long term state. Figure (2.28) is a typical example of howa pattern's Fourier spectrum evolves with time. One of the �rst observations to bemade concerns the oscillatory nature of the amplitude of the Fourier spectrum. Theinitial instability quickly increases in size until it hits the bottom of the dish and thecells then have to swim back up to the surface. During this period the amplitude ofthe unstable mode decreases. Any new instability that occurs must exist on top ofthe recently set up uid motion and, in this respect, the patterns that occur have adiscrete set of wavelengths. The overall amplitude of the Fourier spectrum is seen toincrease when this new instability occurs. It can clearly be seen that the initial instabil-ity is composed of distinct competing wavenumbers and as time progresses shorter andshorter wavelengths become unstable. It is also apparent when viewing the bargraphsin Figure (2.12) that each new shorter wavelength that becomes unstable does so atthe expense of the the previous most unstable wavelength. Figure (2.29a) shows howthe wavenumber increases as opposed to a continuous increase in Figure (2.29b). These
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Figure 2.28: A contour plot of the Fourier spectrum of experiment y02k varying withtime. Di�erent modes generally become unstable to modes of larger wavenumber.Fourier spectra become clearer when they are contrasted with the images. In general,the �rst instability to occur tends to be sheets or lines when viewed from above. (Al-though dots are also quite common.) The sheet instability generally becomes unstableto a dot type instability or sometimes to something resembling a lattice of nodes joinedby lines. These patterns further break down into smaller dots or other connected pat-terns. So, in general, two dimensional patterns become unstable to three dimensionalpatterns. But what occurs between the initial instability and the long time patternis a complicated set of mode interactions. For example, tori can be formed as seen inFigure (2.30). Initially the suspension is well mixed and the cells are able to swim tothe top (before any instability forms) thus initiating a Rayleigh-B�enard type instabil-ity. The initial disturbance is generally two dimensional and in the form of descendingsheets of concentrated suspension (bioconvection rolls). This quickly breaks down to athree dimensional instability of descending plumes. As a plume hits the bottom of the
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wavenumberFigure 2.29: Unstable wavenumbers varying with time. a) a discretely varying dominantwavenumber. b) a continuously varying dominant wavenumber.dish it spreads out entraining clear uid in its wake at the upper surface. It is when theclear uid reaches the bottom of the dish that the ring vortex can be clearly seen as anannulus when view from above. The annulus increases its diameter and forms a closedbioconvection roll. Eventually this two dimensional rotationally invariant roll becomesunstable to three dimensional plumes. Figure (2.31) illustrates this possible process asa cartoon viewed from above. This is only one possibility and the �nal pattern could beproduced by di�erent mechanisms. Nonetheless, this possibility has been seen to occurand annuli can be observed in Figure (2.20) eventually breaking up into dots. Anothermechanism that has been noticed is where a dot becomes elongated and breaks up intotwo smaller dots. By comparing the three pictures for each independent experimentgiven in Section (2.6) it is possible to track the unstable wavelengths and see how theyvary with time in relation to the type of pattern present.2.8 A measure of patternHere a measure of pattern will be proposed that distinguishes between a dot patternand a line pattern. First, we associate the image intensity, z(x; y), with the smoothsurface r(x; y) = (x; y; z(x; y)) (2.11)embedded in Euclidean three-space. The key to the following argument is that by usingbending alone one can recreate the line (or ridge in our new geometry) pattern from aplane. This is not so with the dot (or hill) pattern which requires some stretching of
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Figure 2.30: A sketch to illustrate how clear uid can be entrained in a plume and anannulus pattern can be formed when viewed from above. a) cells swim up to the topand overturn due to a Rayleigh-Taylor instability. b) gyrotaxis produces thin plumes.c) the plumes hit the bottom of the dish and spread out forming a ring vortex. d) clearuid is entrained in the wake of the plume and an annulus is set up.the plane as well as bending (see Figure 2.32). It is this combination of bending andstretching that we shall measure. Consider the tangent space at a point on the surfacethat is spanned by the vectors rx = (1; 0; zx) (2.12)and ry = (0; 1; zy): (2.13)The \�rst fundamental form" describes length and area (do Carmo 1976 [29]) and isde�ned as ds2 = Edx2 + 2Fdxdy +Gdy2 (2.14)where E = rx � rx; (2.15)F = rx � ry (2.16)and G = ry � ry: (2.17)
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Figure 2.31: Possible mode interactions. Patterns can become unstable to other newmodes. In particular, two dimensional patterns can become unstable to three dimen-sional patterns. These dot patterns can form annuli. When large enough, the annuliare essentially two dimensional patterns and can again become unstable to three di-mensional patterns. Eventually the pattern settles down to a regular array of dots. Ingeneral the pattern wavelength decreases with time.Let the unit normal to the surface be de�ned asn = rx ^ ryjrx ^ ryj � 1q1 + z2x + z2y (�zx;�zy; 1): (2.18)Now consider the \second fundamental form", which represents the way in which thetangent plane diverges from the surface, and is de�ned asLdx2 +Mdxdy +Ndy2 (2.19)where L = rxx � n; (2.20)
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Figure 2.32: Bending and stretching a plane to produce a line pattern or a dot pattern.M = rxy � n (2.21)and N = ryy � n: (2.22)For the surface r(x; y) = (x; y; z(x; y)) the coe�cients are E = 1 + z2x, F = zxzy,G = 1 + z2y , L = zxxH , M = zxyH and N = zyyH where H =q1 + z2x + z2y .The two principal surface curvatures are determined from the eigenvalue problemdet8<:0@ L MM N 1A� �0@ E FF G 1A9=; = 0: (2.23)It can be shown that the Gaussian curvature (or the product of the two principalcurvatures) on a surface embedded in Euclidean three-space, can be written as (see doCarmo 1976 [29]) �g = LN �M2EG� F 2 ; (2.24)and the mean curvature (i.e. the mean of the two principal curvatures) is�m = 12 LG� 2MF +NEEG� F 2 : (2.25)Once evaluated with the surface r(x; y), these expressions can be written as�g = zxxzyy � z2xyH4 (2.26)



An Experimental Investigation of Bioconvection 65and �m = 12 zxx(1 + z2y) + zyy(1 + z2x)� 2zxyzxzyH3 : (2.27)�g(x; y) is a measure of the local bending and stretching required to produce the surfacefrom a plane. If no stretching is required then �g � 0 and the surface is said tobe isomorphic to the plane. The only such surfaces are \ruled surfaces" which arede�ned as the surface swept out by a straight line. A subset of these surfaces are\developable surfaces" such as cylinders and corrugated roofs. A version of the Gauss-Bonnet theorem states that for a smooth closed bounded surface, S, with n sides andinternal angles �i nXi=1 �i = (n� 2)� + ZdS �nds+ ZS �gdS (2.28)where �n is the \normal curvature" of the bounding curve. This formula is related tothe Euler formula 2 - holes = faces - edges + vertices for partitions of a closedbounded surface in Euclidean three-space. For a surface such as ours, P�i = 2� andif we preprocess our images such that the boundary curves are geodesics (i.e. normalcurvature is zero) then RS �gdS = 0. Geodesic boundaries are easy to enforce byrequiring that the surface is \at" at the edges.In this study we are interested in the local behaviour of the surface and in particularthe signs of the Gaussian and mean curvatures and the image area these regions occupy.This information will provide us with a characterization of the image and how thischanges with time.2.8.1 PreprocessingContained within the pictures is a small amount of noise and also some small scalestructures. For example, debris, dust, scratches on the petri dish or lenses and, ofcourse, sampling inaccuracies. For the purposes of curvature calculations, these struc-tures can prove troublesome and must be eliminated beforehand. There are a numberof methods for �ltering out noise. Initially, we chose to use a band-pass �lter of the �fthorder Butterworth type to remove high and low wavenumbers. Unfortunately, this �lterhad the e�ect of introducing a low level, oscillatory signal to the image which, unlessits wavelength matched that of the image, was su�cient to corrupt the curvature cal-culation. We opted instead for a more sophisticated method of moving averages (Tukey



An Experimental Investigation of Bioconvection 661977 [110]; Cressie 1993 [26]). We found that by using a combination of a median mov-ing average (Justusson 1981 [57]; Tyan 1981 [112]), which preserves edges and ignoresoutliers, and a mean moving average, which smooths sharp edges but is sensitive tooutliers, we were able to construct a smooth surface that had all of the bioconvectionstructures intact. The median moving average is de�ned as the median of a pointsneighbours within a suitable distance. If this neighbourhood is too large, the �lter hasthe undesirable e�ect of rounding corners. The mean moving average is de�ned as themean of a point's neighbours and smooths the image. We found that a neighbourhoodwidth of �ve was best for both �lters, with the mean following the median, in that theimage appeared uncorrupted. A couple of applications of this combined �lter removedthe undesirable noise and created a smooth surface with similar characteristics to theoriginal image.2.8.2 Numerical gradientsTo calculate the surface curvatures for a surface z(xi; yj) � zij it is �rst neccessaryto approximate the surface gradients zx; zy; zxx; zyy and zxy. Fourth order accurateexpressions for these gradients arezx = �zi+2;j + 8zi+1;j � 8zi�1;j + zi�2;j12hx +O(h4x); (2.29)zyy = �zi;j+2 + 16zi;j+1 � 30zi;j + 16zi;j�1 � zi;j�212h2y +O(h4y) (2.30)and similarly for zy; zxx and zxy where hx and hy are the horizontal and vertical lengthsbetween pixels. A choice of 0:1 for hx is su�cient for an accuracy of 10�3 for the gradientcalculation. Equations (2.26) and (2.27) are used to calculate the Gaussian and meancurvatures. These expressions are not valid at the edges of the image however, but thecurvatures there are not relevant and are left unevaluated.2.8.3 InterpretationAs mentioned before, if �g is zero at a point then it is locally isomorphic to a plane andis in a class of surfaces called \ruled" surfaces. We can gain even more information onthe shape of the surface, and hence the type of image pattern, by considering what thecombinations of signs of �m and �g refer to. Figure (2.33) explains how combinationsof �m and �g determine the local form of the surface. To allow for small errors, �g is
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Figure 2.33: Di�erent combinations of �m and �g imply di�erent local surface struc-tures. In particular, if �g < 0 then the principal curvatures have di�erent signs and wehave a saddle point. If �g < 0 then the principal curvatures have the same sign and wehave a local minimum or maximum. The sum of the principal curvatures, �m, providesthe extra information required to determine the form of the local surface structure.



An Experimental Investigation of Bioconvection 68considered as equal to zero if and only if ��gx < �g < �gx where �g = max (abs(�g))100and likewise for �m. Figure (2.34) shows a typical example where the di�erent coloursrepresent regions of qualitatively di�erent local surface structures. We can sum theareas of the image for di�erent shapes in a window within the image to get measures ofhow the pattern changes with time. If Abd; Abl; Awd; Awl and Af are image areas whichare black (b), white (w), dots (d), lines (l) or at (f) then the normalised coe�cientsCbd; Cbl; Cwd and Cwl can be de�ned asCbd = AbdAw �Af (2.31)etc., where Aw is the area of the sample window, and represent the proportion of thewhole pattern taken up by a particular type of pattern. These pattern coe�cientsare shown in Figure (2.35) for experiment x120h (Figure 2.11) and it is clear that theproportion of black dots increases with time and black lines initially increase but thendecrease. We do not consider the cases where the surface is locally isomorphic to aplane as it is hard to distinguish these structures from local uctuations caused by\noise" and the choice of �lter. Hence, we can conclude that this method is e�ectiveat isolating particular image strucures and di�erentiating between them.Figure (2.37) is another example of the coe�cients for experiment x208l where thecurvatures are displayed in Figure (2.36). There are general characteristics for bothexample images.� The percentage of white dots decreases with time.� The percentage of white lines increases with time.� The percentage of black dots decreases and then increases with time.� The percentage of black lines increases and then decreases with time.� Striped linear patterns are observed, indicating that line patterns almost imme-diately become unstable along their length.� Well developed patterns are well de�ned with an overall increase in black dotsand white lines and a decrease in white dots and black lines, indicating a changefrom line patterns to dot patterns.



An Experimental Investigation of Bioconvection 69

Figure 2.34: An example (experiment x120h) of image characteristic curvatures varyingwith time. Key: Blue = cell concentration maximums or black dots; Red = cell con-centration minimums or white dots; White = high cell concentration saddles or blacklines; Green = low cell concentration saddles or white lines; Black = at.
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Figure 2.35: x120h. Image pattern coe�cients varying with time. Dash-dotted line:Cbd, black dot coe�cient; Dashed line: Cbl, black line coe�cient; Solid line: Cwd, whitedot coe�cient; Dotted line: Cwl, white line coe�cient.In particular Figure (2.36) displays background large scale structures that couldeither be generic or a result of the pre-mixing.Further investigations could focus on the possible connections between these coef-�cients and the dimension of the pattern that they represent. For example, a patternof a regular array of dots is essentially a three dimensional pattern whereas an array ofbioconvection rolls is a two dimensional pattern. In the same manner a pattern consist-ing of large tori could be classed as being closer to a two dimensional pattern and manyother patterns would be somewhere between two and three dimensional. The analysisof the curvature coe�cients could provide some means of determining this average di-mension. In particular, the coe�cients Cbl and Cbd indicate the levels of two and threedimensional structures of concentrated cells. De�ning the pattern demension, Dp, asDp = 2 + CbdCbl + Cbd (2.32)provides a basic measure of the pattern dimension.
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Figure 2.36: An example (experiment x208l) of image characteristic curvatures varyingwith time. Key: Blue = cell concentration maximums or black dots; Red = cell con-centration minimums or white dots; White = high cell concentration saddles or blacklines; Green = low cell concentration saddles or white lines; Black = at.
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Figure 2.37: x208l. Image pattern coe�cients varying with time. Dash-dotted line:Cbd, black dot coe�cient; Dashed line: Cbl, black line coe�cient; Solid line: Cwd, whitedot coe�cient; Dotted line: Cwl, white line coe�cient.2.9 Varying the density of the suspending uidAn experimental attempt was made to alter the strength of the cells' negative bouyancyand gyrotaxis and, hence, to measure the strength of the alternative sedimentary mech-anism proposed by Alun M. Roberts (1995, personal communication) that has beenneglected in our model to date (see Section 1.3). Theoretically, Hill, Jones and Pedley(1995, personal communication) have independently estimated the orienting forces dueto sedimentation (which we shall call the taxis due to sedimentation) to be an order ofmagnitude less than for gyrotaxis. Experimentally our results were inconclusive. Theunreactive chemical Percoll1, which has a higher density than water, was added to sus-pensions of swimming micro organisms in di�erent proportions and observations weremade of the behaviour of the organisms. Percoll (registered trademark of Pharmicia,1Recently Lebert & H�ader (1996) [72] have reported their �ndings on experiments with a similarchemical called Ficoll to vary geotaxis in Euglena gracilis.



An Experimental Investigation of Bioconvection 73Inc.) is a colloidal Polyvinylpyrrolidone (PVP) coated silica and is normally used toset up gradients in suspension density for cell separation. It has a higher density thanwater (density of Percoll equals 1:13�0:005gcm�3) which is desirable but also a higherviscosity (0:1 � 0:05gcm�1s�1 at 20oC, equal to ten times that of water) and higherpH (8:9 � 0:3 at 20oC) which are not.2.9.1 Theoretical predictionsCase I:-In their standard medium (of density 1:0gcm�3) Chlamydomonas nivalis are bottomheavy and will, on average, swim upwards. They are, however, denser than the sur-rounding uid (cells are of density 1:05gcm�3) and will cause a Rayleigh-Taylor in-stability when they accumulate at the upper boundary. Gyrotaxis acts such that thecells swim towards downowing uid. The taxis due to sedimentation results from thehigh relative drag of the cell's agella to the cell body, when the cell experiences theotherwise negligible sedimentation force (relative to the cell swimming speed), and actsin the same manner as gyrotaxis.Case II:-If enough Percoll is added (approximately 38.5 % from previous measurements of den-sity) such that the cells are neutrally bouyant then1. There are no torques due to sedimentation.2. The cells are bottom heavy and swim upwards.3. The cells accumulate at the upper boundary but cannot cause a Rayleigh-Taylorinstability.4. Cells swim towards regions of downowing uid (gyrotaxis) but a gyrotactic in-stability cannot occur.Case III:-If the cells are slightly positively bouyant then1. The taxes due to sedimentation acts to point the cell downwards but is smallerthan



An Experimental Investigation of Bioconvection 742. the torque due to the bottom heaviness of the cell acting to point the cell upwards.The cells swim upwards on average.3. The cells accumulate at the upper boundary but cannot cause a Rayleigh-Taylorinstability.4. Cells swim towards regions of downowing uid (gyrotaxis) but a gyrotactic in-stability cannot occur.Case IV:-If the cells are positively bouyant such that the torques due to sedimentation and thebottom heaviness of the cell cancel each other out then1. The cells have no preferred swimming direction and accumulate neither at thetop nor bottom boundaries in the short term.2. In the long term, the cells accumulate at the upper boundary due to sedimenta-tion.3. The cells are neither attracted to upowing nor downowing uid.Case V:-If we increase the suspension density with Percoll such that the torques due to sedi-mentation are greater than bottom heaviness but in the opposite sense then1. The cells preferred swimming direction is downwards.2. The cells accumulate at the lower boundary.3. A Rayleigh-Taylor instability is possible with heavier, cell free suspension abovelighter concentrated suspension.4. Cells swim towards regions of upowing uid - negative gyrotaxis.This last case would result in upwards tending plumes and is the opposite of the normalsituation.



An Experimental Investigation of Bioconvection 752.9.2 Experimental observationsFive experiments were performed with Percoll using suspension ratios of 0:1 (0% Per-coll), 1:4 (20%), 1:2 (33%), 2:1 (67%) and 3:1 (75%). This provided overall suspensiondensities of 1:000 cm�3, 1:026 cm�3, 1:043 cm�3, 1:087 cm�3 and 1:098 cm�3, respec-tively. The suspensions were well mixed in small test tubes, left to settle over a coupleof days and then observed through a microscope set up to view from the side. Ta-ble 2.5 illustrates the results which were largely inconclusive. The major problem withPercoll bouyancy mean R-T gyrotactic % notesculture swimming instability instability cellsratio direction ? ? alive0:1 negative upwards yes yes 90 normal1:4 neg-neut upwards little little 40 less focused1:2 neutral none no no 1 many stuck to sidesswimmers in middle2:1 positive - no no 0 oating at top3:1 positive - no no 0 oating at topTable 2.5: Observations of suspensions of Chlamydomonas nivalis and Percoll in di�er-ent ratios.the experiments being the unwanted increase in viscosity with higher ratios of Percoll.This interferes with the cells locomotion and aglutinability and many cells seem to beclumped together. Also there is not just one cell density but a whole range of densitiesand some cells can be positively bouyant at the same time as others being negativelybouyant.There are two balances that could be measured in theory, represented by Cases IIand IV. Case II, neutral buoyancy, can be measured as approximately corresponding toa Percoll-culture ratio of 1:2 and leads to a cell density calculation of 1:04� 0:02gcm�3(this has been independently estimated as 1:05gcm�3). Case IV represents a suspensionwhere micro-organisms have no preferred swimming direction and this situation mayhave been seen in the Percoll-culture ratio of 1:2, but it is di�cult to say due to the



An Experimental Investigation of Bioconvection 76very small levels of operational (alive?) cells. Case V was never observed. The onlything that we can conclude from these results is that our value for the cell densityis approximately correct. Perhaps we can conjecture, however, that the torque due tosedimentation is small compared with that due to bottom heaviness and we are justi�edin neglecting the sedimentation altogether. More experiments with Percoll (or otheragents) may produce clearer results, especially if it is possible to observe individualmicro-organisms as the Percoll concentration is increased (or Ficoll concentration, asin Lebert & H�ader 1996 [72]).2.10 DiscussionIn this chapter we have developed techniques for recording bioconvection patterns in ashallow dish as functions of suspension concentration, depth and time. In doing so itwas necessary to construct a methodology for measuring the cell concentration (whichwas achieved using computer processing techniques) and depth, and for culturing thecells such that they were always healthy and fully motile. All the experiments wereperformed on a limited budget but this did not adversely a�ect the results. We havere�ned techniques to process the images and extract the dominant pattern wavenumberusing Fourier analysis. The initial pattern wavenumber and the well developed patternwavenumber were analysed in detail and it was found that the initial wavenumberdecreased with increasing depth but hardly varied at all with concentration. Conversely,the well developed wavenumber increased with concentration and slightly increasedwith depth. Each of the patterns were categorized and the interaction of unstablemodes as the pattern evolved with time was explored. In particular, mechanisms forthe existence of annular patterns were proposed. Also, a new method of analysing thepattern structure has been investigated that adopts the methods of surface geometry.Each image is associated with a surface in Euclidean three-space where the imagesintensity relates to the surface elevation. The corresponding local surface curvaturesare used to identify the local surface structure and, hence, the local image structure. Acritical feature of this work's success was the construction of a median/mean movingaverage �lter to remove unwanted noise and create a smooth surface. The �lter isnot ideal but was found to be better than using Fourier analysis. Perhaps we require



An Experimental Investigation of Bioconvection 77higher level statistical modelling of the surface. For example, approximating a localquadratic surface using least squares �t and applying diagnostics in a similar mannerto regression analysis (see for example Cressie, 1993 [26]). Regardless of the bene�ts ofsuch extra complications the four telltale pattern statistics de�ned, plus the graphicalimages of surface curvature themselves provide a basis for future investigation andallow the exploration of local pattern structures, and how they �t in globally, that arenot immediately obvious to the naked eye. In particular the existence of larger scalepatterns on the scale of the dish and the fact that line patterns immediately becomeunstable to dotted patterns. The reorganisation neccessary for the qualitative patternchange is also more clearly observed.The neutral substance Percoll was used to increase the density of suspensions ofmicro-organisms in an attempt to isolate a hypothetical mechanism for cell orientationdue to sedimentation. However, the presence of Percoll interfered with the cells andrendered them immobile (or perhaps dead). Experiments with Percoll on individualmicro-organisms may produce clearer results or perhaps we could repeat the experi-ments using Ficoll instead of Percoll (see Lebert & H�ader 1996 [72]).Figure (2.22) shows a sequence of images where the suspension is very shallow(1:86mm) and the concentration is reasonably high. Bioconvection is initiated butthe plumes that develop do not fully �ll the dish. As time progresses, the plumesemigrate towards the edge of the dish and, in particular, towards one side leaving ano�-centre, clear patch with no patterns. Close inspection of these plumes reveals asigni�cant elevation of the upper uid surface directly above them and this may a�ecttheir stability. Concentrated plumes exist for long periods of time on the edge of theclear patch but tend to wander and appear to be repelled by any close neighbours. Itis possible that the upper surface tension may a�ect the stability of these dense plumesin very shallow layers and this needs to be investigated further.Future research should also try to discover the e�ect of horizontal boundaries onthe pattern. This could be investigated by observing patterns in large annular dishesof varying aspect to establish the e�ect of two side walls.Recently, some cursory experiments have been performed on a long horizontal tubeof diameter 1:5cm, �lled with a suspension of Chamydomonas nivalis of concentration1 million cells per cm3 and rotating about a horizontal axis. Initial results indicate that



An Experimental Investigation of Bioconvection 78for no rotation \disorderly" bioconvection occurs with plumes descending throughoutthe tube's cross-section. If the rotation rate is slowly increased from zero the patternsbecome more orderly and for a range of rotation rates (1 rev / min to 2 rev / min) formdense rings perpendicular to the cylinder axis. As the rotation rate increases, theserings move closer together and inevitably some collide. Ultimately, the whole systemcollapses and for a rotation rate of 5 rev / min there is no discernable pattern. If therotation rate is decreased from this value no patterns are observed well into the regionof rotation rates for which patterns were previously observed. Patterns spontaneouslyoccur if the rotation rate is decreased su�ciently. It is hypothesised that by slowlyrotating the cylinder we are driving the uid in a linear bioconvection roll and thatas it becomes stronger it becomes unstable to patterns along the cylinder axis. Thepossibility of multiple patterns for a given rotation rate raises some important questionsabout mode interaction, such as splitting and annihilation, and it will be a goal of futureresearch to repeat the experiments quantitatively and to understand the mechanismsbehind them.



Chapter 3
Finite Depth StochasticGyrotactic Bioconvection -Linear Analysis
3.1 IntroductionThe aim of this chapter is to predict a particular most unstable mode (i.e. one thatgrows most rapidly) from the initial equilibrium solution. This can be compared, inprinciple, with the experiments of Chapter 2. In practice, however, it may be di�cultto realise the very �rst unstable mode before the non-linear e�ects become signi�cantand form �nite amplitude convection cells.Here, an equilibrium solution, of the full equations for �nite depth and zero ow,is found and a small perturbation allowing weak ambient ow is made. Initially theFokker-Planck equation described in the previous chapter has to be solved. Brenner& Weissmann (1972) [12] describe the use of asymptotic expansions in their analysisof dipolar spheres subject to external couples and rotational Brownian motion andthis has been extended by Pedley & Kessler (1990) [85] for their in�nite depth model.This work initially follows that of [85] but with minor corrections. In the [85] in�nitedepth model, the �rst order correction to the di�usion tensor did not appear in the fulllinear equations. However, in the �nite depth case, the �rst order di�usion tensor is ofparamount importance and can determine the range of unstable wavenumbers.79



Finite Depth { Linear Analysis 80When the full linear equations are solved using asymptotic and numerical tech-niques with �nite depth, the analysis is similar to that of Hill et al. (1989) [42], withthe added complications of the non-constant di�usion and mean cell swimming velocitybeing modelled using the Fokker-Planck equation. The [42] model is itself an extensionof the older Childress et al. (1975) [19] model with the inclusion of a deterministicgyrotactic mechanism.Hillesdon et al. (1995) [45] and [44] investigate patterns formed by chemotactic(or more speci�cally aerotactic) bacteria and some of their analytic and numerical tech-niques stem from the same sources as those contained in this chapter. In their modelsthe analysis is further complicated by discontinuities in the bacterial concentration gra-dient and ideas from the theory of penetrative convection (Veronis 1963 [115]) need tobe employed to understand the non-linear behaviour of the system. However, theirmodel does not include coupling of uid ow and cell orientation in a Fokker-Planckequation.Finally, we investigate the e�ect of modelling the swimming speed as a randomvariable and compare our predictions with the experiments of Chapter 2.3.2 Linear Solution of the Fokker-Planck Equation3.2.1 The Fokker-Planck equation on a sphereEquations (1.18) and (1.23) give the steady gyrotactic Fokker-Planck equation asr � ( _pf) = Drr2f (3.1)where _p = 12B [k� (k � p)p] + 12


 ^ p+ �0p �E � (I� pp); (3.2)which gives12Br� [(k� (k � p)p)f ]+ 12r� [(


 ^ p)f ]+�0r� [(p �E � (I� pp)) f ] = Drr2f: (3.3)Here k;


 and E are constants, and tr(E) � r�u = 0. p is a unit vector perpendicularto the unit sphere and so, for any function g = g(p), it follows that rg is perpendicular



Finite Depth { Linear Analysis 81to p. Thus (p � r)g = 0. We also know that r � p = 2, by direct calculation, rp =I � pp, and (r ^ p)i � �ijkpj;k = 12�ijk(pj;k + pk;j) = 0 since rp = (rp)T . ConsiderEquation (3.3) term by term:� r � fk � k � rf� r � [(k � p)pf ] � (k � p)fr � p+ p � r [(k � p)f ] � 2(k � p)f� r� [(


 ^ p)f ] � (


^p) �rf+fr�(


^p) � 


 �(p^rf)�f


�r^p � 


 �(p^rf)� r � (fp �E) � p �E � rf +E : (I� pp) � p � E � rf � fp �E � p� r � [f(p � E � p)p] � f(p �E � p)r � p+ p � r(f(p �E � p)) � 2f(p �E � p).Substituting back into Equation (3.3) gives12B (k � rf � 2k � pf)+ 12


�(p ^rf)+�0 [p � E � rf � 3f (p �E � p)] = Drr2f: (3.4)Now if we non-dimensionalize (the explanation for this particular scaling will be givenin Section 3.3) by putting 


 = V 2s �H2 !!! (3.5)and E = V 2s �H2 e (3.6)where V 2s � can be thought of as a typical di�usion scale (see Equation 1.22) and H isthe depth of the suspension, thenk � rf � 2 (k � p) f + �!!! � (p ^rf) + 2��0 [p � e � rf � 3p � e � pf ] = ��1r2f (3.7)where1 � = 12DrB (3.8)and � = BV 2s �H2 : (3.9)� is the dimensionless gyrotaxis parameter. Using our best estimates (from Table 3.2,later) � = 2:2 and � = 1:8�10�4�H�2 where H is depth of layer in cm (or � = 33d�2,see later).1Note: � di�ers by a factor of 12 omited in error in [85] but corrected in [86] review.



Finite Depth { Linear Analysis 823.2.2 Solution for zero owConsider the equilibrium state of no ow where u = !!! = e = 0 and f = f0. Writingp = (sin � cos�, sin � sin�, cos �) and k = (0, 0, 1), gives�@f0@� �̂�� + @f0@� 1sin � �̂��� � k� 2f0 cos � = ��1 1sin � @@� �sin �@f0@� �+ ��1 1sin2 � @2f0@�2(3.10)which implies that1sin � @@� �sin �@f0@� �+ 1sin2 � @2f0@�2 = ���sin �@f0@� + 2f0 cos �� : (3.11)For zero ow, we can assume axial symmetry and thus f0 is independent of � andf0 = f0(�) only. Substituting x = cos � into Equation (3.11) yieldsf000(1� x2)� 2� 2xf00 � (1� x2)�f00 + 2�xf0 = 0; (3.12)where the prime indicates di�erentiation with respect to x. Integrating gives(1� x2)�f00 � �f0� = A (3.13)where A is a constant, which is found to be zero by noting that f0 and f00 are both�nite at x = 1. Hence f0 = ��e� cos �: (3.14)Applying the normalization condition that the integral of f0 over the unit sphere is 1,gives �� h���1e� cos �i�0 = 12� (3.15)which implies that �� = �4� sinh�: (3.16)This is a special case of the Fisher distribution on a sphere (see Mardia, 1972; [79]).Since the mean of p is hpi = ZS pf(p)dp; (3.17)we can write hpi0 = Z 2�0 Z �0 0BBB@ sin � cos�sin � sin�cos � 1CCCA��e� cos � sin � d� d�: (3.18)



Finite Depth { Linear Analysis 83Integrating �rst with respect to � gives zero components in the i and j directions. Then,integrating by parts with respect to � yieldshpi0 = 0BBB@ 00K1 1CCCA (3.19)where K1 = coth �� ��1: (3.20)Similarly,hppi0 = Z 2�0 Z �0 0BBB@ sin � cos�sin � sin�cos � 1CCCA0BBB@ sin � cos�sin � sin�cos � 1CCCA��e� cos � sin � d� d�: (3.21)On integrating the matrix pp with respect to �, only the diagonal terms survive becausetheir � components are cos2 �, sin2 � and 1 respectively. Hencehppi0 = ��� Z �0 0BBB@ sin2 � 0sin2 �0 2 cos2 � 1CCCA e� cos � sin �d�: (3.22)Integrating by parts twice giveshppi011 = hppi022 = K1� (3.23)and hppi033 = 1� 2K1� : (3.24)Hence, from the de�nition of D in Chapter 1,D0 = V 2s � �hppi0 � hpi0hpi0� (3.25)so that D011 = D022 = V 2s � K1� (3.26)and D033 = V 2s � �1� 22K1� �K21� = V 2s �K2; (3.27)on de�ning K2 = 1� coth2 �+ 1�2 : (3.28)



Finite Depth { Linear Analysis 843.2.3 First order perturbationFrom the equilibrium state of no ow ( u = !!! = e = 0), we perturb tou = �u1;!!! = �!!!1;e = �e1;f = f0 + �f1; (3.29)where 0 < �� 1. At O(�), Equation (3.7) givesk � rf1 � 2k � pf1 + �!!!1 � �p ^rf0�+ 2��0 �p � e1 � rf0 � 3p � e1 � pf0� = ��1r2f1;(3.30)which in spherical polar coordinates (�,�) becomes��1sin � @@� �sin �@f1@� �+ ��1sin2 � @2f1@�2 � k � �̂��@f1@� + 2 cos �f1= ��!!!1 � p ^ �̂��@f0@� + 2�0p � e1 � �̂��@f0@� � 6�0p � e1 � pf0� ; (3.31)where @f0@� = ���� sin �e� cos �;�̂�� = ( cos � sin�; cos � cos�; � sin � )T ;p ^ �̂�� = ( � sin �; cos �; 0 )T ;p � e1 � �̂�� = �34e33 sin 2� + �14(e11 � e22) cos 2�+ 12e12 sin 2�� sin 2�+ [e13 cos�+ e23 sin 2�] cos 2�and p � e1 � p = 12e33(3 cos2 � � 1) + �12(e11 � e22) cos 2�+ e12 sin 2�� sin2 �+ [e13 cos�+ e23 sin 2�] sin 2�: (3.32)3.2.4 First order perturbation for spherical cells: �0 = 0Firstly we consider purely spherical cells, i.e. �0 = 0, and then extend this result forarbitrary values of �0. For spherical cells, Equation (3.31) simpli�es to��1sin � @@� �sin �@f1@� �+ ��1sin2 � @2f1@�2 � k � �̂��@f1@� + 2 cos �f1



Finite Depth { Linear Analysis 85= �� �!12 cos�� !11 sin����� sin �e� cos �: (3.33)Suppose that f1 = ����(!12 cos�� !11 sin�)g(�); (3.34)for some function g(�). On substituting x = cos �, it follows that�(1� x2)g0�0 � g(1� x2) � � �(1� x2)g�0 = �� �1� x2�12 e�x: (3.35)Expanding the exponential term as�e�x = 1Xn=1 �nxn�1(n� 1)! ; (3.36)and writing g(x) as a power series in �g(x) = 1Xn=1�nGn(x); (3.37)(assuming convergence at this stage), we �nd by comparing the coe�cients of �n in(3.35) that�(1� x2)G0n�0 � Gn(1� x2) � � �(1� x2)Gn�1�0 = ��1� x2� 12 xn�1(n� 1)! : (3.38)The �rst two terms suggest using an expansion in terms of associated Legendre poly-nomials of order one (see Appendix A.1). Suppose thatGn(x) = nXr=1 anrP 1r (x) (3.39)where anr = 0 for n < r or n; r < 1, and apply Legendre's associated equation (A.1).This gives� nXr=1 anrr(r + 1)P 1r � n�1Xr=1 an�1;r ddx �(1� x2)P 1r � = �(1� x2) 12 xn�1(n� 1)! : (3.40)If m = 1 in Equation (A.7), then(2n+ 1)xP 1n = (n+ 1)P 1n�1 + nP 1n+1: (3.41)Also, substituting (A.6) and (A.9) into (A.10) gives(1� x2)P 10n = xP 1n � n(n+ 1)(2n+ 1) �P 1n+1 � P 1n�1� : (3.42)



Finite Depth { Linear Analysis 86Using (3.42) in (3.40) givesnXr=1 anrr(r + 1)P 1r + n�1Xr=1�an�1;r �xP 1r � r(r + 1)2r + 1 �P 1r+1 � P 1r�1��= (1� x2) 12 xn�1(n� 1)! ; (3.43)and applying (3.41) impliesnXr=1 anrr(r + 1)P 1r � n�1Xr=1 an�1;r � r + 12r + 1P 1r�1 + r2r + 1P 1r+1 + r(r + 1)2r + 1 �P 1r+1 � P 1r�1��= (1� x2) 12 xn�1(n� 1)! : (3.44)Multiplying by P 1m and integrating from x = �1 to 1, using (A.4), givesanm = � m+ 2(m+ 1)(2m+ 3)an�1;m+1 + m� 1(2m� 1)man�1;m�1 + bnmm(m+ 1) (3.45)where bnm = 2m+ 12(n� 1)!m(m + 1) Z 1�1(1� x2) 12xn�1P 1m(x)dx: (3.46)Then from Gradshteyn & Ryzhik (1980) [38]bn+1;m = 8<: 0 8 (n+m) even;(2m+1)�( n+12 )�(n+22 )4�(n+1)�(n�m+32 )�(n+m+42 ) 8 (n+m) odd; (3.47)where n + 1 � m (see Appendix A.2). This implies that an+1;m = 0 for n +m even.We require the aij for i � j � 1. Substituting the values of bij into the expression forthe coe�cients aij above, gives a11 = 12 ; a22 = 536 ; a31 = 1120 ; a33 = 13540 ; a42 = 11296and a51 = 4730240 .We can now calculate what e�ect the weak ambient ow (with �0 = 0) has on pand D. The mean value of the perturbation to the orientation ishpi1 = ZS pf1(p)dp= ���� Z 2�0 Z �0 (!2 cos�� !1 sin�)0BBB@ sin � cos�sin � sin�cos � 1CCCA�" 1Xn=1�n nXr=1 anrP 1r (cos �)# sin �d�d�: (3.48)



Finite Depth { Linear Analysis 87Integrating with respect to � hpi1 = 0BBB@ !2�!10 1CCCA �J1 (3.49)where J1 = ���� Z �0 1Xn=1�n nXr=1 anrP 1r (cos(�)) sin2(�)d� (3.50)Integrating term-by-term, assuming the series to be uniformly convergent, we can useEquation (A.4) with k set to 1 to getJ1 = 43���� 1Xl=0 �2l+1a2l+1;1: (3.51)In a similar way, we can calculate the second momentshppi1 = ZS ppf1(p)dp (3.52)from which we �nd that the diagonal terms are zero and that hppi is symmetric. Also,hppi113 = hppi131 = !2�J2;hppi123 = hppi132 = �!1�J2 (3.53)where J2 = 45���� 1Xl=1 �2la2l;2: (3.54)In both cases, for J1 and J2, it can be seen that the aij's decrease rapidly with increasingvalues of i and j, and the series converge rather quickly even though � = 2:2. Only threeor four terms in the sum are required in each case for an accuracy of two signi�cant�gures.3.2.5 First order perturbation for aspherical cells: �0 6= 0By considering the form of p � e1 � �̂�� and p � e1 � p in Equations (3.32) we can clearlywrite the additional contribution from terms in �0 in Equation (3.34) asf1�(x) = �2�0�����34e33g2(x) + �12(e11 � e22) cos 2�+ e12 sin 2�� g4(x)+ [e13 cos�+ e23 sin�] g3(x)g (3.55)



Finite Depth { Linear Analysis 88for some functions g2(x), g3(x) and g4(x) where x = cos �. If L is the operatorL� = @@x �(1� x2) @@x��� � @@x �(1� x2)�� ; (3.56)then Lg2 = 2e�x ���x(1� x2) + 3x2 � 1� ; (3.57)Lg3 � g31� x2 = e�x(1� x2) 12 �2x2�� �+ 6x� ; (3.58)Lg4 � 4g41� x2 = e�x(1� x2) [�x+ 3] : (3.59)Equation (3.58) can be treated as in Section 3.2.4 but for a di�erent right hand side.Equation (3.59) is similar to the above but requires expansions in terms of P 2n(x) insteadof P 1n(x). For more details the reader is referred to [85, Appendix A]. Equation (3.57)requires particular mention so as to correct an error in the [85] analysis.Substituting g2 = G(x)e�x into Equation (3.57) givesG0(1� x2)e�x = �2x(1� x2)e�x + const: (3.60)To avoid a singularity at x = 1, put const = 0. Integrating Equation (3.60) givesg2 = e�x(B � x2): (3.61)The normalization condition R 1�1 g2dx = 0 (from the normalization condition on f)implies g2 = e�x�1� 2K1� � x2� (3.62)We shall now calculate the contributions to hpi1 which will be indicated by the index(2). First note that f1(2)(p) = �32�0����e33g2(x): (3.63)The i and j components of hpi1(2) are zero, as they have sin� and cos� terms, and sohpi1(2) = �32�0����e33kZ �0 Z 2�0 e� cos � �1� 2K1� � cos2 �� cos � sin � d� d�: (3.64)On substituting x = cos � and integrating by parts, we gethpi1(2) = �12�0����e33k ��K1� cosh�+�1 + K1� � sinh�� � 3�2 cosh� = 3�3 sinh��(3.65)



Finite Depth { Linear Analysis 89where �� = �=4� sinh� and K1 = coth �� 1=�. Hencehpi1(2) = �3�0�e33K4k (3.66)where2 K4 = 1� coth2 �� 2K1� + coth �� : (3.67)3.2.6 SummaryThere are nine constants de�ned (to allow comparison with [85]) by�� = �4� sinh�K1 = coth �� 1�K2 = 1� coth2 �+ 1�2K4 = 1� coth2 �� 2K1� + coth ��= K2 � K1�K5 = � 2� �2 + 5�2 � 4 coth �� � coth2 ��= � 2� �1 +K2 � 4K1� � (3.68)J1 = 43���� 1Xl=0 �2l+1a2l+1;1J2 = 45���� 1Xl=1 �2la2l;2J4 = 43���� 1Xl=0 �2l+1~a2l+1;1J5 = 45���� 1Xl=0 �2l~a2l;2J6 = 165 ���� 1Xl=0 �2l�a2l;2; (3.69)where a; ~a and �a are de�ned by:-2This is not in agreement with [85]. The de�nition of K4 here is the corrected version of thatappearing in [85].



Finite Depth { Linear Analysis 90� anm = � m+ 2(m+ 1)(2m + 3)an�1;m+1 + m� 1(2m� 1)man�1;m�1 + bnmm(m+ 1) (3.70)where bn+1;m = 8<: 0 8 (n+m) even;(2m+1)�( n+12 )�(n+22 )4�(n+1)�(n�m+32 )�(n+m+42 ) 8 (n+m) odd: (3.71)� ~anm = � m+ 2(m+ 1)(2m + 3)~an�1;m+1 + m� 1(2m� 1)m~an�1;m�1 + ~bnmm(m+ 1) (3.72)where~bn+1;m = 8<: 0 8 (n+m) even;� (2m+1)�( n+12 )�(n+22 )(n2+5n+4+m+m2)16�(n+1)�(n�m+52 )�(n+m+62 ) 8 (n+m) odd: (3.73)� �anm = � m+ 3(m+ 1)(2m + 3)�an�1;m+1 + m� 2(2m� 1)m�an�1;m�1 + �bnmm(m+ 1) (3.74)where �bn+1;m = 8<: 0 8 (n+m) even;� (2m+1)�( n+22 )�(n+32 )(n+4)8�(n+2)�(n�m+52 )�(n+m+62 ) 8 (n+m) odd: (3.75)Hence Ji / ���� 8 i. The mean cell swimming direction is given byhpi = 0BBB@ 00K1 1CCCA+ �26664�J10BBB@ !2�!10 1CCCA� 2�0�0BBB@ e13J4e23J432e33K4 1CCCA37775+O(�2) (3.76)and the expected value of pp ishppi = 0BBB@ K1� 0 00 K1� 00 0 1� 2K1� 1CCCA+ �26664�J20BBB@ 0 0 !20 0 �!1!2 �!1 0 1CCCA (3.77)
� 2�0�0BBB@ �34e33K5 + 14(e11 � e22)J6 12e12J6 e13J512e12J6 �34e33K5 � 14(e11 � e22)J6 e23J5e13J5 e23J5 32e33K5 1CCCA37775+ O(�2):



Finite Depth { Linear Analysis 91� K1 K2 K4 K50.3 0.099 0.33 -0.0039 -0.0131.0 0.31 0.28 -0.037 -0.0482.2 0.57 0.16 -0.10 -0.113.0 0.67 0.10 -0.12 -0.14� J1 J2 J4 J5 J60.3 0.015 7:4� 10�4 �4:6� 10�3 -0.02 -0.0401.0 0.14 0.024 -0.064 -0.064 -0.122.2 0.45 0.16 -0.26 -0.13 -0.203.0 0.60 0.27 -0.41 -0.18 -0.22Table 3.1: Values of the K and J constants, for varying values of �, from Pedley &Kessler (1990) with corrections for K4.The di�usion is then approximated by Equation (1.22) given in the previous chapter.Up to O(�), this isD = V 2s � �hppi0 � hpi0hpi0�+ �V 2s � �hppi1 � �hpi0hpi1 + hpi1hpi0�� : (3.78)On substitution this yields1V 2s �D = 0BBB@ K1� 0 00 K1� 00 0 K2 1CCCA+ �26664� (J2 � J1K1)0BBB@ 0 0 !20 0 �!1!2 �!1 0 1CCCA� 2�0�0BBB@ �34e33K5 + 14(e11 � e22)J6 12e12J6 e13(J5 �K1J4)12e12J6 �34e33K5 � 14(e11 � e22)J6 e23(J5 �K1J4)e13(J5 �K1J4) e23(J5 �K1J4) 32e33(K5 � 2K1K4) 1CCCA37775+ O(�2): (3.79)



Finite Depth { Linear Analysis 923.3 Linearizing the main model equationsWe start this section by reviewing the main equations of the model which arethe incompressibility condition r � u = 0; (3.80)momentum balance �DuDt = �rpe + nv��g +r ��; (3.81)and the cell conservation equation@n@t = �r � [n (u+ Vshpi)�D � rn] : (3.82)The boundary conditions are of no owu = 0 at z = 0;�H; (3.83)and no cell ux perpendicular to the boundariesk � (n (u+ Vshpi)�D � rn) = 0 at z = 0;�H: (3.84)Here u(x) is the uid velocity, hp(x)i is the mean cell direction, Vs is the mean cellswimming speed, �(x) and D(x) are the uid stress and cell di�usion tensors respec-tively, n(x) is the local cell concentration, pe(x) is the excess pressure, v is the meanvolume of a cell, and �� is the the di�erence between the cell and uid density. It hasbeen assumed that the upper and lower surfaces are rigid, which is reasonable becausethe cells appear to quickly form a `solid' boundary on the uid surface. A possibleimprovement could be to have a more general combination of both a rigid and a stressfree condition at the upper surface. However, there is some experimental evidence tosuggest that the exact form of this boundary condition does not signi�cantly changethe general pattern formation. We shall also assume Newtonian stress as the volume



Finite Depth { Linear Analysis 93fraction of the cells is much less than one (but see Section 3.4 where the e�ect ofnon-Newtonian stress terms is investigated). Hence, for now,��� = 2�E: (3.85)Name Description Typical Value Unitslength scale average cell diameter 10 �mlength scale cell spacing 100 �mlength scale convection patterns 0.2 { 2.0 cmD di�usivity 5� 10�5 { 5� 10�4 cm2=s� uid density 1 gm=cm3�+�� cell density 1.05 gm=cm3v cell volume 5� 10�10 cm3h centre of gravity o�set 0 { 0:5 �m�0 cell eccentricity 0.20 { 0.31�0 including agella 0.40�? viscous torque parameter 6.8Vs cell swimming speed 63 �m=s� dynamic viscosity 10�2 gm=cmsg acceleration due to gravity 103 cm=s2� small ) random behaviour 2.2large ) deterministic� direction correlation time 1.3 sB gyrotaxis parameter 3.4 sB including agella 6.3 sDr cells' rotational di�usivity 0.067 s�1Sc Schmidt number 19Table 3.2: Parameter estimates and measurements (from [42, 85, 53, 41]).An equilibrium solution to the above equations isu = 0; n = Ne�z; hpi = hpi0 and D = D0 (3.86)



Finite Depth { Linear Analysis 94where � and N are unknown constants. ��1 represents a local scale height and isdetermined by substituting this equilibrium solution into the cell conservation equation,r � �Ne�zVshpi0 �D0 � kN�e�z� = 0; (3.87)which implies that � = Vshpi03D033 : (3.88)From Equations (3.76) and (3.79), � = K1K2Vs� : (3.89)On applying the normalisation conditionZ 0�H ndz = H�n; (3.90)where �n is the mean cell concentration and n = Ne�z it follows thatN = H�n�1� e��H : (3.91)Lengths are scaled on H, the depth of the suspension, cell concentration on N ,and di�usivity on V 2s � , where Vs is the cell swimming speed and � is the directioncorrelation time, or the time taken for a cell to orientate itself. Hence, the remainingscalings follow: ~x = xH ; ~n = nN ;~D = DV 2s � ; ~t = tV 2s �H2 ;~u = uHV 2s � ; ~��� = ���H2V 2s ��and ~pe = peH2�V 2s � : (3.92)Dropping tildes, the governing equations becomer � u = 0; (3.93)S�1c DuDt = �rpe � nk+r ���� (3.94)and @n@t = �r � �nu+ dK2K1nhpi �D � rn� ; (3.95)



Finite Depth { Linear Analysis 95where d = H� = K1HK2Vs� (3.96)is the ratio of layer depth, H, to sublayer depth, ��1. For d � 1 we say we have a\deep suspension", and for d � 1 we have a \shallow suspension". The Schmidt andRayleigh numbers are de�ned as Sc = �V 2s � (3.97)and R = d = Nvg��H4K1��V 3s �2K2 : (3.98)R is based not on the sub-layer depth as in [19] but on the depth of the whole layer,following [42]. The equilibrium state is u = 0, hpi = hpi0, n = edz , D = D0, ��� = 0and !!! = 0. Consider a perturbation from this equilibrium solution by settingu = �u1;hpi = hpi0 + �hpi1;n = edz + �n1;pe = p0e + �p1e;��� = ����1;D = D0 + �D1: (3.99)To O(�), the governing equations becomer � u1 = 0; (3.100)S�1c @u1@t = �rp1e � n1k+r ����1 (3.101)and@n1@t = �r � �edzu1 + dK2K1 edzhpi1 + dK2K1n1hpi0 �D0 � rn1 � dedzD1 � k� : (3.102)These �ve p.d.e.'s in �ve unknowns are reduced to two p.d.e.'s in two unknowns asfollows. Expanding the third equation we obtain@n1@t = �dedzu13 � dK2K1 edz@ihpi1i � d2K2K1 edzhpi13�dK2K1 hpi0i @in1 +D0ij@i@jn1 +D133d2edz + dedz@iD1i3; (3.103)



Finite Depth { Linear Analysis 96where @i � @=@xi. Consider the components in the terms of @ihpi1i and @iD1i3 (Equa-tions 3.76 and 3.79). We know@1!2 = @3@1u11 � @1@1u13@2!1 = @2@2u13 � @3@2u12:Since @3 �@iu1i � = 0, we get @1!2 � @2!1 = �@i@iu13 (3.104)and similarly @1e13 + @2e23 = 12 �@3@1u11 + @1@1u13 + @3@2u12 + @2@2u13�= 12 ��@3@3u13 + @1@1u13 + @2@2u13�= 12r2u13 � @3@3u13: (3.105)Hence from Equation (3.76) we obtain@ihpi1i = ��J1r2u13 � 2�0� �J4�12r2u13 � @3@3u13�+ 32K4@3@3u13� (3.106)or @ihpi1i = �� (J1 + �0J4)r2u13 + ��0 (2J4 � 3K4) @3@3u13: (3.107)Similarly, from equation (3.79) we obtain@iD1i3 = ��r2u13 (J2 � J1K1)� 2�0� �(J5 �K1J4)�12r2u13 � @3@3u13�+32 (K5 � 2K1K4)� @3@3u13; (3.108)which gives @iD1i3 = �� (J2 � J1K1 + �0 (J5 �K1J4))r2u13+��0 (2 (J5 �K1J4)� 3 (K5 � 2K1K4)) @3@3u13: (3.109)On de�ning the following functions,H1 = �� (J1 + �0J4) ;H2 = ��0 (2J4 � 3K4) ;H3 = �� (J2 � J1K1 + �0 (J5 �K1J4)) ;H4 = ��0 (2 (J5 �K1J4)� 3 (K5 � 2K1K4)) (3.110)



Finite Depth { Linear Analysis 97we have @ihpi1i = H1r2u13 +H2@3@3u13and @iD1i3 = H3r2u13 +H4@3@3u13: (3.111)Substituting Equations (3.111) into Equation (3.103) yields@n1@t = dedz ��1 + �H3 � K2K1H1�r2+ �H4 � K2K1H2� @3@3 + 3�0� �dK2K1K4 � d (K5 � 2K1K4)� @3� u13+�K1� (@1@1 + @2@2) + dK2@3@3 �K2@3�n1: (3.112)Now consider Equation (3.101) and rewrite r����1 as r2u1. If we take the divergence ofEquation (3.101), and take the Laplacian of the third component of Equation (3.101)we get the system of equations 0 = �r2p1e � @3n1 (3.113)and S�1c @@t �r2u13� = �@3r2p1e +r2r2u13 � r2n1: (3.114)Substituting the former into the latter givesS�1c @@t �r2u13� = r4u13 � r2n1 + @3@3n1: (3.115)We now have two equations, (3.112) and (3.115), in terms of the independent variablesn1 and u13 only.The next step involves introducing a horizontal planform and an exponential com-ponent in t. The particular choices of normal modes areu13 =W (z)ei(lx+my)+�t (3.116)and n1 = �(z)ei(lx+my)+�t : (3.117)



Finite Depth { Linear Analysis 98On substituting (3.117) into Equations (3.115) and (3.112), we get� �Sc + k2 � d2dz2��k2 � d2dz2�W = �Rd�1k2� (3.118)and �K2 d2dz2 �K2d ddz � K1� k2 � ��� = dedz �1��H3 +H4 � (H2 +H1)K2K1� d2dz2�3d�0��K2K1K4 � (K5 � 2K1K4)� ddz +�H3 � K2K1H1� k2�W (3.119)where k = pl2 +m2.Using the de�nitions, (3.110), for the Hi, we de�neP1 = J1�K1 + K2K1�� J2;P2 = �J5 +K1J4 + 2 (J5 �K1J4)� 3 (K5 � 2K1K4)� K2K1 (J4 � 3K4) ;P3 = 3�K4�2K1 + K2K1��K5� ;P4 = J4�K1 + K2K1�� J5 (3.120)from which we see that P2 = P3 � P4. We can thus rewrite Equation (3.119) as�K2 d2dz2 �K2d ddz � K1� k2 � ���= dedz �1� � (P1 + P2�0) d2dz2 � ��0dP3 ddz + � (P1 + P4�0) k2�W: (3.121)Finally, if we de�ne PV = K2;PH = K1� ;P5 = P1 � P4�0 + P3�0;P6 = P3�0;P7 = P1 + P4�0; (3.122)then we can write the last equation as�PV d2dz2 � PV d ddz � PHk2 � ���= dedz �1� �P5 d2dz2 � �P6d ddz + �P7k2�W; (3.123)



Finite Depth { Linear Analysis 99where the Pi are functions of the parameter � = (2DrB)�1 and the shape parameter �0only. Pedley & Kessler (1990) [85] use the data of Hill & H�ader (1996) [41] to calculate� as lying between 1:85 and 2:63. They choose to take an average value, as we shall,of 2:2. As we know B from Table (3.2), we can calculate Dr to be 0:067 s�1. The celleccentricity, �0, is in the range 0:2 { 0:31 but Jones (1995) has calculated an e�ective�0 of 0:40 to allow for the cells' agella and swimming characteristics. The directioncorrelation time, � , can be calculated from observations of the horizontal di�usion tobe 1:3 s ([85]), but see Section 3.8 where we use a direct observational estimate of 5 s.�0 � P5 P6 P7 PH PV0.0 2.2 0.22 0.0 0.22 0.26 0.160.2 0.3 0.050 -0.00017 0.050 0.33 0.330.2 1.0 0.14 -0.0050 0.14 0.31 0.280.2 2.2 0.22 -0.022 0.20 0.26 0.160.2 3.0 0.23 -0.028 0.19 0.22 0.100.31 2.2 0.21 -0.035 0.19 0.26 0.160.40 2.2 0.21 -0.044 0.18 0.26 0.161.00 2.2 0.20 -0.11 0.13 0.26 0.16Table 3.3: The values of the constants P for typical values of � and �0.The boundary conditions (3.83) becomeW = 0 on z = 0;�1 (3.124)and dWdz = 0 on z = 0;�1: (3.125)By taking the z component of the ux and applying the above conditions, Equation(3.84) becomes �d� d�dz = 0 on z = 0;�1: (3.126)The exponential appearing in Equation (3.123) prevents an explicit solution frombeing found and we must resort to �nding numerical or asymptotic solutions.



Finite Depth { Linear Analysis 1003.4 The e�ect of leading order non-Newtonian stress termsPedley & Kessler (1990) [85] have considered a number of additional e�ects that themicro-organisms can have on the uid through the variation in uid stresses.Three speci�c e�ects were investigated each of which are discussed in more detailin [85].� ���p. Rigid cells do not let uid deform as it would in the absence of cells (Batchelor,1970 [3]). The resulting stresses are termed Batchelor stresses. The stress systemfor a suspension of spheroids was analysed by Batchelor (1970) [3].� ���d. Stresses associated with the e�ective particle rotation caused by rotary dif-fusion of the cells axis of symmetry. This is explained by Brenner (1972) [10] andalso by Hinch & Leal (1972) [46].� ���s. The stresslets (see [3]) caused by the swimming actions of the individualmicro-organisms.Pedley & Kessler (1990) [85] report that,\It fortunately turns out that, for the parameter values appropriate toChlamydomonas nivalis, the quantities ���p and ���d are negligibly small soerrors in computing them are unimportant."In fact, they show that these terms have no qualitative e�ect and no signi�cant quan-titative e�ect (���d < 1% of ���s) and are dropped. We choose to drop the Batchelorstresses from the outset. This just leaves terms for the intrinsic swimming stressletsand rotational di�usion which can be combined and are calculated to be (from [85])���sd = nS0�hppi � 13I� (3.127)where S0 = S + 2�vDr�5 (3.128)S = 6�b�Vs�F l cos (f ); (3.129)f = cosh�1 rr(r2 � 1) 12 (3.130)and r = ab =r1 + �01� �0 : (3.131)



Finite Depth { Linear Analysis 101a is half of the cell length, b is half of the cell breadth and l is the length of the thrustpoints from the cell's centre of gravity, which are on average inclined at an angle ffrom p (see [85]). �5 = 3:15 ([85]) and �F � 1:08 as calculated by Happel & Brenner(1965) [39]. In the de�nition of S0, S is the term due to the intrinsic stresslets andthe other term is due to rotational di�usion. Hence, we can use Equation (3.77) tocalculate ���sd to leading order. (Or we can use the constants A to G given in Pedley& Kessler, 1990 [85], correcting the �rst term for C by changing the misprinted J4 toa J6.) The non-zero stress at zero ow does no more than alter the �rst order excesspressure term. Non-dimensionalising ���sd, we obtain the equation for uid ow at O(�),as S�1c @u1@t = �rp1e � n1k+r2u1 +r ����sd; (3.132)where ���sd = �sdn�hppi � 13I� (3.133)and �sd = �V 2s �SNH2 : (3.134)r ����sd can be rewritten asr ����sd = K3�sd3 0BBB@ 002 1CCCA @3n0 + �K3�sd3 0BBB@ �@1n1�@2n12@3n1 1CCCA+ ��sd0BBB@ @1hppi11n0 + @2hppi21n0 + @3 �hppi31n0�@1hppi21n0 + @2hppi22n0 + @3 �hppi32n0�@1hppi31n0 + @2hppi32n0 + @3 �hppi33n0� 1CCCA+ O(�2): (3.135)Utilizing Equations (3.77), (3.104) and (3.105) we �nd that the Laplacian of the thirdcomponent of r ����sd at O(�) isr2 �r ����sd1�3 = �sdr2 �2K33 @3n1 � (�0J5 + J2)n0r2u13+ �0 (2J5 � 3K5)n0@23n13 � 3�0K5@3n0@3u13� (3.136)and the divergence of r ����sd at O(�) becomesr � �r ����sd1� = K33 �sd �3@23n1 �r2n1�



Finite Depth { Linear Analysis 102+ n0�sd@3 ��32�0K5 � �02 J6 � 2�0J5 � 2J2�r2u13+�0��92K5 + 12J6 + 4J5� @23u13�+ @3n0�sd �(�2�0J5 � 2J2)r2u13 + �0 (4J5 � 3K5) @23u13�+ @23n0�sd ��3�0K5@3u13� : (3.137)Both of these expressions are in terms of the dependent variables n1 and u13 andtheir derivatives. Hence we can use the same method as before to reduce the system of�ve equations in �ve unknowns to two equations in two unknowns.Taking the divergence of Equation (3.132), and the Laplacian of the third compo-nent of Equation (3.132) we obtain the following system of equations at O(�):0 = �r2p1e � @3n1 +r � �r ����sd1� (3.138)and S�1c @@t �r2u13� = �@3r2p1e +r2r2u13 � r2n1 +r2 �r ����sd1�3 : (3.139)Substituting the �rst equation into the second givesS�1c @@t �r2u13� = r4u13�r2n1+@3@3n1�@3r��r ����sd1�+r2 �r ����sd1�3 : (3.140)This equation was derived to highlight the additional leading order terms due to anon-Newtonian stress. In particular, odd ordered derivatives are introduced that a�ectthe qualitative form of the equations. In general, if Vs, the cell size and the cell concen-tration are su�ciently large then the additional terms could be signi�cant. However,for Chlamydomonas nivalis the terms are negligibly small. S can be estimated fromthe values in Table 3.2 to be S � 4 � 10�10 and the other term in the de�nition of S0is estimated as 2�vDr�5 � 2� 10�12 and, hence, using Equation (3.91) and (3.129),�sd = �V 2s �S0NH2 � �6�b�2�F l cos (f )� K1K2V 2s �nH � 10�13 � �nH (3.141)where �n is concentration in cells per cm3 and H is suspension depth in cm. Hence,�sd, is negligibly small compared with the Newtonian term which is O(1). Also, Equa-tion (3.140) is far more complicated than Equation (3.115). In the following sections,we shall ignore the additional stress terms and concentrate on the e�ects of including



Finite Depth { Linear Analysis 103non-deterministic swimming cells. Future work could consider the above equations, asthe non-Newtonian stress terms may become signi�cant in the non-linear regime wherelocal variations in concentration are large.3.5 Asymptotic analysisThe work in this section uses similar techniques to those in [42]. (See Van Dyke, 1964[114], for a description of the ideas involved.) We shall consider Equations (3.118) and(3.123) plus the boundary conditions (3.124), (3.125) and (3.126) above. If we assumethat Chlamydomonas nivalis is a self propelled spheroid and use the correspondingvalues � = 2:2 and �0 = 0:31 (but see Sections 3.6, 3.7, 3.8 and 3.9 for recent estimates)then PV � 0:16PH � 0:26P5 � 0:21P6 � �0:035P7 � 0:19:P6 appears to be too small to be classed as order one but by noting that P5, P6 and P7always appear in Equation (3.123) multiplied by � (and � � 33d�2) then it simpli�esmatters to consider Pi order one and � order dn for some n and i = 5; 6; 7. Henceforth,we shall assume that all of the P 's are of the same order and all approximately of orderone. This assumption is justi�ed asymptotically provided we either assume that d ismuch smaller than (for shallow layers) or much larger than (for deep layers) Pi for alli. Using the de�nition of d and Equation (3.9) we can write� = BK21�K22 d�2 � 33d�2 (3.142)where we have used B = 3:4 and � = 1:3.There are two natural asymptotic expansions which could be considered here; onefor small d and one for large d. Firstly it is important to understand what we mean bysmall d. By Equation (3.96) H = K2Vs�dK1 (3.143)



Finite Depth { Linear Analysis 104then, from Tables 3.1 and 3.2, H = 23d�m. If d = 0:1, then the depth of the uidis equal to 2:3�m, which is very small for a uid layer! A typical experimental depthof 5mm gives d = 220 (2 s.f.), which is well within the validity for the large d expan-sion. The small d expansion, however, is important for comparison with the numericalsolutions in the next section.3.5.1 Shallow layer analysis (0 < d� 1)For the shallow layer, suppose that the pattern wavelength is comparable with thesublayer depth and set ~k = k=d where ~k � 1. There are six boundary conditions whichimply that we need to keep the highest order derivatives. The leading order balance inEquation (3.118) must be �D2 � �Sc�D2W = �d~k2R�: (3.144)Otherwise we obtain the trivial solution. Here and henceforth D � d=dz. Without lossof generality, we shall always assume � � 1 and hence W � dR. Close to neutrallystable solutions we can neglect � and there are then four non-trivial leading orderbalances of Equation (3.123) to be considered.� CASE I D2� = 0 (3.145)which implies R� O(d�2) and �R� O(d�2).� CASE II PVD2� = dW (3.146)which implies R � d�2 and �R� O(d�2).� CASE III PVD2� = d �W � �P5D2W � (3.147)which implies R � d�2 and �R � d�2.� CASE IV PVD2� = �d�P5D2W (3.148)which implies R� O(d�2) and �R � d�2.



Finite Depth { Linear Analysis 105This is summed up in Figure (3.1). Case III leads to lengthy numerical analysis and sothis case has not been considered further.
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Figure 3.1: Regions of the parameter space covered by the leading order balances ofthe linear equations for bioconvection in a shallow layer (d� 1). There are four majorbalances.� CASE I No terms appear on the right hand side at leading order. We dividecase I into three regions (see Figure 3.1) with similar behaviour, which coversevery possibility within the region in just three calculations.CASE Ia:Firstly consider the scaling� � 1; R � d�1; W � 1; (3.149)



Finite Depth { Linear Analysis 106and try a solution of the formR = 1Xn=�1 dnRn; W = 1Xn=0 dnWn; � = 1Xn=0 dn�n: (3.150)At this stage we shall also assume that � is of the form� = 1Xn=0 dn�n (3.151)so that it appears at leading order. Later it will be shown that � � d and that,for the whole of case Ia, � is positive and hence the solution is always unstable.The leading order gives��0ScD2W0 +D4W0 +R�1~k2�0 = 0��0�0 + PVD2�0 = 0 (3.152)with boundary conditions D�0 = W0 = DW0 = 0 on z = 0;�1. This impliesthat �0 = Aei �0PV z+Be�i �0PV z. The boundary conditions imply that either �0 = 0or � 6� 1. Hence � � O(d) and the leading order solution is�0 = 1; W0 = �R�1~k224 �z4 + 2z3 + z2� : (3.153)The second order givesD4W1 +R�1~k2�1 = �~k2R0�0 + �1ScD2W0PVD2�1 = PVD�0 � �P5D2W0 +W0 + �1�0 (3.154)with boundary conditionsD�1��0 = DW1 =W1 = 0 at z = 0;�1. A solvabilitycondition for this set of equations is that the integral of the second equation overz = 0;�1 must equal zero. This gives�1 = R�1~k2720 : (3.155)Hence � is always positive. � plays no part here and we can reduce it arbitrarilyand hence cover the whole of case Ia.CASE Ic:Now consider the scaling� � d�2; R � d; W � d2; (3.156)



Finite Depth { Linear Analysis 107at the top of the region for case Ic and hence consider a solution of the formR = 1Xn=1 dnRn; W = 1Xn=2 dnWn; � = 1Xn=0 dn�n; � = d�2��2: (3.157)At this stage assume � to be of the form� = 1Xn=1 dn�n (3.158)as we know �0 = 0 from above. The leading order givesD4W2 +R1~k2�0 = 0PVD2�0 = 0 (3.159)with boundary conditionsD�0 =W2 = DW2 = 0 on z = 0;�1. This has solution�0 = 1; W2 = �R1~k224 �z4 + 2z3 + z2� : (3.160)The second order givesD4W3 +R1~k2�1 = �~k2R2�0 + �1ScD2W2PVD2�1 = PVD�0 � ��2P5D2W2 + �1�0 (3.161)with boundary conditions D�1 � �0 = DW3 = W3 = 0 at z = 0;�1. Thesolvability condition, on the second equation as before, now implies �1 = 0. Con-sidering the second equation at third order and integrating we get the solvabilitycondition �2 = �PH~k2. Hence all modes are stable for this choice of scaling forR.CASE Ib:So now consider the scaling� � d�1; R � 1; W � d (3.162)for case Ib, and expand the variables asR = 1Xn=0 dnRn; W = 1Xn=1 dnWn; � = 1Xn=0 dn�n; � = d�1��1: (3.163)As before, assume � to be of the form� = 1Xn=1 dn�n (3.164)



Finite Depth { Linear Analysis 108as �0 = 0 from above. The leading order givesD4W1 +R0~k2�0 = 0PVD2�0 = 0 (3.165)with boundary conditions D�0 = W1 = DW1 = 0 on z = 0;�1. This has thesolution �0 = 1; W1 = �R0~k224 �z4 + 2z3 + z2� : (3.166)The second order givesD4W2 +R0~k2�1 = �~k2R1�0 + �1ScD2W1;PVD2�1 = PVD�0 � ��1P5D2W1 + �1�0 (3.167)with boundary conditions D�1 � �0 = DW2 = W2 = 0 at z = 0;�1. Thesolvability condition again implies �1 = 0. The third order givesD4W3 +R0~k2�2 = 2~k2D2W1 � ~k2R2�0 � ~k2R1�1 + �2ScD2W1;PVD2�2 = PVD�1 + PH~k2�0 +W1 � ��1P5D2W2���1P6DW1 � z��1P5D2W1 + �2�0 (3.168)and the second equation at fourth order isPVD2�3 = PVD�2 + PH~k2�1 +W2 + zW1 � ��1P5D2W3 � ��1zP5D2W2���12 P5z2D2W1 � ��1P6DW1 � ��1zP6DW1 � ��1P7~k2W1+�3�0 + �2�1: (3.169)The solution at second order is�1 = ���1 P5PV W1 + zW2 = �~k2 "R0 ��1P5R0~k2720PV � z856 + z714 + z612�+ z5120!+ R124 z4#+A2z3 +B2z2 (3.170)where A2 = ~k2R040 � ~k2R112 � ~k4R20P5��112� 720PVB2 = ~k2R060 � ~k2R124 � 3~k4R20P5��156� 720PV : (3.171)



Finite Depth { Linear Analysis 109Applying solvability at third order implies�2 = ~k2� R0720 � PH� : (3.172)It is not necessary to obtain a solution for �2 before applying solvability at fourthorder, which gives�3 = ~k2R1720 � ~k2R0720 �12 + ��1(P5 � P6)�+ ~k4R0��1720 �P7 + 3R0P57� 720PV � : (3.173)Therefore, when � = 0 we haveR = 720PH �1 + d �12 + ��1(P5 � P6)� ~k2��1�P7 + 3P5PH7PV ���+O(d2):(3.174)Now for the purpose of calculating the next order in the absence of gyrotaxisconsider fourth order with � = 0. The solvability condition, after solving thethird order equation and looking for neutral curves, givesR = 720PH �1 + 12d+ d2� 13105 + ~k2 � 121 � 5PH462PV ���+O(d3): (3.175)Linearity shows that when � � 1,R = 720PH �1 + 12d+ d2� 13105 + �(P5 � P6) + ~k2 � 121 � 5PH462PV���P7 + 3P5PH7PV ����+O(d3): (3.176)The curve of R(~k) changes behaviour at a critical value of � given by�c = � 121 � 5PH462PV ��P7 + 3P5PH7PV � ; (3.177)and leads us to the conclusion that, to �rst order for values of � smaller thanthis critical value, the most unstable mode has zero wavenumber but above it themost unstable wavenumber is non-zero.� CASE IIConsider the scaling � � d; R � d�2; W � d�1; (3.178)



Finite Depth { Linear Analysis 110which is consistent with case II, and propose a solution of the formR = 1Xn=�2 dnRn; W = 1Xn=�1 dnWn; � = 1Xn=0 dn�n; � = d�1: (3.179)We are interested in neutral curves so we will consider � = 0 ab initio. Theleading order equations areD4W�1 +R�2~k2�0 = 0PVD2�0 �W�1 = 0 (3.180)with boundary conditions D�0 = W�1 = DW�1 = 0 at z = 0;�1. Eliminating�0 gives PVD6W�1 +R�2~k2W�1 = 0 (3.181)and W�1 = DW�1 = D5W�1 = 0 at z = 0;�1. The auxiliary equation has rootsw e i�n3 where n = 1; 2; 3; 4; 5; 6 and w6 = R�2~k2=PV . HenceW�1 = A1 coswz +A2 sinwz + ewzp32 hA3 cos wz2 +A4 sin wz2 i+ e�wzp32 hA5 cos wz2 +A6 sin wz2 i : (3.182)Applying the boundary conditions gives the set of linear equationsMA = 0 (3.183)to solve where A is a column vector of constants A1 to A6 and M is a matrix ofcoe�cients. For a non-zero solution we requiredetM = 0: (3.184)This implies that either sin w2 = 0 (3.185)or cos w2 cosh2 wp32 � 2 cosh wp32 + 2 cos w2 � cos3 w2 = 0: (3.186)Di�erent solutions for w correspond to di�erent branches of the neutral curve anddi�erent modes of instability in W . The order of the solution mode is de�nedas the number of regions of di�erent sign. So a mode two solution changes signonce. Equation (3.185) implies w = 2m� where m = 1; 2; 3; :::. For large w



Finite Depth { Linear Analysis 111Equation (3.186) becomes cos w2 cosh2 wp32 � 0 which implies cos w2 � 0 andhence w = w2n+1 � (2n+ 1)� for n = 0; 1; 2; 3; :::. By plotting the curvey = cos w2 cosh2 wp32 � 2 cosh wp32 + 2 cos w2 � cos3 w2 (3.187)it is easily seen that the root at n = 0 does not exist but the root at approximatelyn = 1 does (Figure 3.2).
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Figure 3.2: Graph of Equation (3.187) against w indicating its roots.Hence, we have the in�nite set of roots w2 = 2�;w3 � 3�;w4 = 4�;w5 � 5�; ::::::.It seems reasonable to consider the smallest value of w �rst. We �nd thatR(2) = (2�)6PV~k2 d�2 +O(d�1) � 6:15 � 104PV~k2 d�2 +O(d�1) (3.188)Calculating W�1 for this case we get 3W�1 / sin�z hsinh�p3 cos �z�2 sinh�� �z + 12�p3� cosh �p32 # : (3.189)3Note: missing 2 in [42].



Finite Depth { Linear Analysis 112As W�1(�12 ) = 0 we �nd that for this case the �rst unstable mode (for lowest R)has order two. That is to say that there are two convection cells stacked one onthe other. � does not appear in this analysis and we may decrease the magnitudeof � (and complete case II) without changing the leading orders.� CASE IVThe scalings here are of the form� � d�m; R � dm�2; W � dm�1; (3.190)where m = 1; 2; 3; 4; :::. Beginning with m = 2, we look for a solution of the formR = 1Xn=0 dnRn; W = 1Xn=1 dnWn; � = 1Xn=0 dn�n; � = d�2: (3.191)where � = 0 ab initio. The leading order impliesD4W1 + ~k2R0�0 = 0D2 (PV �0 + P5��2W1) = 0 (3.192)with boundary conditions D�0 =W1 = DW1 = 0 at z = 0;�1. Hence�0 = ��2 P5PV (K �W1);W1 = A coswz +B sinwz � (A+K) coshwz �B sinhwz +K (3.193)where A, B and K are constants andw4 = ~k2R0��2P5PV : (3.194)They are related by the equations0@ cosw � coshw sinhw � sinwsinhw + sinw cosw � coshw 1A0@ AB 1A = K0@ coshw � 1� sinhw 1A : (3.195)Proceeding to the second and third orders, the cell conservation equation givesPVD2�1 + ��2P5D2W2 = PVD�0 � ��2P5zD2W1 � ��2P6DW1 (3.196)with boundary conditions D�1 � �0 = W2 = DW2 = 0 at z = 0;�1. Thesolvability condition is satis�ed identically. The third order yieldsPVD2�2 + ��2P5D2W3 = PVD�1 + PH~k2�0 +W1���2P5zD2W2 � ��2P5 z22 D2W1 � ��2P6DW2 � ��2P6zDW1+P7~k2W1��2 (3.197)



Finite Depth { Linear Analysis 113Applying the solvability condition givesZ 0�1W1dz = �FK; (3.198)where F = PHP5PV ��2~k21 + ��2P7~k2 � ��2P5�PHPV ~k2 + 1�+ ��2P6 : (3.199)Evaluating Equation (3.198), we obtain
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Figure 3.3: Graph of F against w from Equation (3.202).A sinw �A sinhw +B cosw +B coshw � 2B = K(sinhw � w � Fw): (3.200)Combining this with Equations (3.195) gives0BBB@ cosw � coshw sinhw � sinw 1� coshwsinhw + sinw cosw � coshw sinhwsinw � sinhw cosw + coshw � 2 w � sinhw + Fw 1CCCA0BBB@ ABK 1CCCA = 0:(3.201)



Finite Depth { Linear Analysis 114Hence if M is the above matrix then we require detM = 0 for there to be asolution. This impliesw(1 + F )(1� cosw coshw) = 2 [sinhw(1 � cosw) + sinw(1� coshw)] : (3.202)Consider the left hand side vanishing. This implies the roots are independent ofF . Hence, 1� cosw coshw = 0 or w = 0. As w increases coshw is exponentiallysteep. Therefore we require cosw � 0 for w quite large. Hence w � (2m + 1)�2for m = 0; 1; 2; 3; :::. By considering the graph of y = 1 � cosw coshw, we cansee that m = 0 is not a solution (as w is insu�ciently large for the argument tohold). Consider the right hand sidesinhw(1� cosw) + sinw(1� coshw) = 0: (3.203)For large w we get ew(1� cosw � sinw) = 0. The roots common with above arew � (4n+ 1)�2 for n = 1; 2; 3; :::. Then from Equation (3.201) we get K = 0 andW1 = A�coswz � coshwz +�cosw � coshwsinw � sinhw � (sinwz � sinhwz)� : (3.204)W1 is antisymmetric and this implies even modes.Now consider other solutions, dependent on F . By considering large F we canestablish the asymptotes for the curves but it is easier just to plot F as a functionof w (see Figure 3.3). Expanding around w = 0 as ~k ! 0 and F ! 0 impliesw41 ! 720PHPV P5��2~k21� (P5 � P6)��2 : (3.205)Hence from Equation (3.194)R(1)0 ! 720PH1� (P5 � P6)��2 (3.206)as ~k ! 0.3.5.2 Deep layer analysis (d� 1)Consider the case where � = 0 and k � 1 where d�1 is small.(D2 � k2)2W = �k2d�1R� (3.207)



Finite Depth { Linear Analysis 115and (PVD2 � PV dD � PHk2)� = dedz �1� �P5D2 � �dP6D + �P7k2�W: (3.208)If we expand for large d then the leading order equations do not contain the highestorder derivatives and hence the solutions cannot satisfy all of the boundary conditions.Therefore we require a solution within the boundary layer at the top which can bematched to a solution for the outer region. Consider the outer solution where the cellconcentration is exponentially small. Then(PVD2 � PV dD � PHk2)� = 0 (3.209)which, when expanding � in powers of d�1 and applying the boundary conditions atz = �1, implies � = 0. We also have(D2 � k2)2W = 0 (3.210)with W = DW = 0 on z = �1 which impliesW = �kA(z + 1) cosh k(z + 1) + (A+B(z + 1)) sinhk(z + 1) (3.211)where A and B are constants and can be formally expanded in terms of d�1.Now consider the inner region. We have(D2I � d�2k2)2W = �d�5Rk2� (3.212)and(PVD2I � PVDI � PHk2d�2)� = ezId �d�2 � �P5D2I � �P6DI + �P7k2d�2�W (3.213)where the scalings for the inner region are zI = dz and DI = d�1D. The boundaryconditions become (DI � 1)� = W = DIW = 0 on zI = 0. The �rst equation impliesthat for a non-trivial solution R � d5W . The second equation is complicated by theexponential term ezI � 1 and hence we examine the parameter ranges where the righthand side does not appear at leading order. Assuming � � 1, we require W � O(1)and �W � O(d�2) for the exponential term not to appear at leading order. We areinvestigating the equations for the case when � = 0 (on the neutral curve) so we expectthere to be only a limited region of parameter space where the equations remain self



Finite Depth { Linear Analysis 116consistent. This region is given in Figure (3.4). We are restricted to this region becauseof the balance of terms in Equation (3.213) at third order, where the term �PHk2�0�rst appears. If there are no terms on the right hand side, then we are led to thesolvability condition PHk2 = 0 which is unhelpful. If there are terms on the righthand side before third order, then the solvability condition yields R = 0 or � = 0 atleading orders which is again unhelpful. Thus we are restricted to the L-shaped regionshown. We immediately see from Figure (3.4) that, as � increases (allowingW and R tovary), R initially remains constant but at some value of � the gyrotactic terms becomeimportant and R(k = 0) starts decreasing. So, consider W � d�n where n = 1; 2; 3; :::
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Figure 3.4: Regions of parameter space corresponding to leading order balances of thelinear equations for bioconvection in a deep layer (d � 1). The shading indicates theself consistent region of parameter space where a neutral curve can exist.



Finite Depth { Linear Analysis 117and we write W = 1Xm=nW�md�m; (3.214)� = 1Xm=0��md�m (3.215)and R = d5�nR5�n + d5�n�1R5�n�1 + ::: (3.216)To �rst order D4IW�n +R5�nk2�0 = 0 (3.217)and PVDI(DI � 1)�0 = 0 (3.218)with appropriate boundary conditions. This has solutionsW�n = a�nz3I + b�nz2I +R5�nk2(zI + 1� ezI ) (3.219)and �0 = ezI (3.220)where the a's and b's are constants. At second orderD4IW�n�1 +R5�nk2��1 = �R5�n�1k2�0 (3.221)and PVDI(DI � 1)��1 = 0 (3.222)and boundary conditions at z = 0 which has a solutionW�n�1 = a�n�1z3I + b�n�1z2I +R5�n�1k2(zI + 1� ezI ) (3.223)and ��1 = 0: (3.224)To match the inner and outer solutions up to second order, consider the intermediateregion such that z� � 1 as d�1 ! 0 wherez� = z�(d�1) (3.225)



Finite Depth { Linear Analysis 118and �(d�1)! 0 as d�1 ! 0 and satis�es 0 < d�1 � � � 1 � d. Expanding the innersolution by writing z� = zI d�1� gives (where terms on the right hand side are in orderof size)W = d�n+2 ��3da�nz3� + �2b�nz2� + �3a�n�1z3� + d�1z��k2R5�n + d�1�2b�n�1z2� �+O �d�n; �4d�n� : (3.226)Expanding the outer solution by writing z = �z� gives (in order of size)W = d� [(�k cosh kA�� + sinhkA�� + sinhkB��)+(�k2 sinhkA�� + sinhkB�� + k cosh kB��)�z�+��k3 cosh k2 A�� � k2 sinhk2 A�� + k2 sinhk2 B�� + k cosh kB��� �2z2��+h:o:t: (3.227)The process now involves matching terms in z� . If we attempt to match any of the �rstthree terms in Equation (3.226) than we get that at least the �rst two terms (linearlyindependent in A� and B�) in Equation (3.227) must be zero. This leads to the trivialsolution. Hence a�n = a�n�1 = b�n = 0 and we must match the fourth term inEquation (3.226). This implies � = n� 1,(An+1 +B�n+1) sinhk � kA�n+1 cosh k = 0; (3.228)B�n+1 sinhk +B�n+1k cosh k � k2A�n+1 sinhk = k2R5�n (3.229)and�k3 cosh k2 A�n+1�k2 sinhk2 A�n+1+k2 sinhk2 B�n+1+k cosh kB�n+1 = b�n�1: (3.230)First consider the most general solution in the upper right corner of the L-shapedregion in parameter space such that two terms appear at third order on the right handside of Equation (3.213). Here we have � � d�2 and n = 1. Third order gives (cellconservation equation only)PVDI(DI � 1)��2 � PHk2�0 = ezI �W�1 � ��2(P5D2I + P6DI)W�1� : (3.231)Then, the solvability condition is obtained by integrating from �1 to 0. At third orderthis gives R4 = 2PH1� (P5 � P6)��2 ; (3.232)



Finite Depth { Linear Analysis 119where P6 is negative. Therefore, as P5 > P6, R4 can be negative for su�ciently large(P5 � P6)��2 and the asymptotics break down. This is similar to the analysis of Hillet al. (1989) [42] in which, for particular values of the gyrotaxis number, the leadingorder in the Rayleigh number became singular or negative.Solving for the constants4 we getA0 = k2 sinhkR4k2 � sinh2 k ; (3.233)B0 = (k cosh k � sinhk)k2R4k2 � sinh2 k (3.234)and b�2 = (k � cosh k sinhk)k3R4k2 � sinh2 k : (3.235)To �nd the k dependence, we consider the solvability condition at fourth order andobtain R3 = 4b�2k2 : (3.236)Hence R = 2PHd41� (P5 � P6)��2 �1 + 4d�1k (k � sinhk cosh k)k2 � sinh2 k +O(d�2)� : (3.237)This is a monotonically increasing function of k (as in [42]) and implies that, fork � O(1), the most unstable wavenumber is zero. (See Figure 3.5 where 4k(k �sinhk cosh k)=(k2 � sinh2 k) is plotted with k). The expression does not say anythingabout the global most unstable wavenumber for general k.It is easy to show that we can cover the whole region in parameter space byreducing the importance of certain terms. Going left in parameter space where � � d�2and W � d�1 we get that the solvability condition at third order givesR3 = � 2PH(P5 � P6)��1 (3.238)which implies that the asymptotics are not valid for small values of k. We clearly needto balance the advection and gyrotaxis terms, and not let the gyrotaxis terms dominate,to keep the Rayleigh number �nite for small k. Going down in the L-shaped region(� � d�3 and W � d�1) the solvability conditions giveR = 2PHd4 �1 + d�1���3(P5 � P6) + 4k(k � sinhk cosh k)k2 � sinh2 k �+O(d�2)� : (3.239)4corrected from [42]
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kFigure 3.5: A monotonically increasing function, 4k(k � sinhk cosh k)=(k2 � sinh2 k),of k.This function is a monotonically increasing function of k and gives a most unstablewavenumber of zero (for small k � O(1)).3.5.3 A summary of the asymptotic resultsShallow layer, d� 1� � � O(1) Mode one solutions belong to Case Ib, Equation (3.175), where R � 1andR(1) = 720PH �1 + 12d+ d2� 13105 + ~k2 � 121 � 5PH462PV ���+O(d3): (3.240)Modes of order greater than two belong to Case II and imply that R � d�2.Equation (3.188) gives R for a mode two solution with similar expressions forother modes, R(n) = w6nPV~k2 d�2 +O(d�1) (3.241)where n = 2; 3; :::, wn = n� if n is even and wn � n� if n is odd.



Finite Depth { Linear Analysis 121� � � 1 Modes of order one again come from Case Ib and R is given by (Equa-tion 3.176)R(1) = 720PH �1 + 12d+ d2� 13105 + �(P5 � P6) + ~k2 � 121 � 5PH462PV���P7 + 3P5PH7PV ����+O(d3): (3.242)modes of higher order belong to Case III and it can be seen thatR(n) � d�2 (3.243)where n = 2; 3; :::.� � � d�1 Mode one is from Case Ib, Equation (3.174),R(1) = 720PH �1 + d �12 + ��1(P5 � P6)� ~k2��1�P7 + 3P5PH7PV ���+O(d2):(3.244)Modes of higher orders are from Case IV (where m = 1), Equation (3.194),R(n) = w4nPV~k2��1P5 d�1 +O(1) (3.245)where n = 2; 3; :::, w2 = 5�2 and 5�2 � w3 � 9�2 (see Figure 3.3 for the values of was functions of F ).� � � d�2 All modes are determined in Case IV, Equation (3.194), and giveR(n) = w4nPV~k2��2P5 +O(d) (3.246)where n = 1; 2; 3; :::. Even modes have a constant wn with ~k, but odd modes havewn = wn(F (~k2)), where (2n�1)�2 � wn � (2n+3)�2 . This is outlined in Figure 3.3.For ��2 < 1P5 where w �! 0 and ~k 2 IR thenR(1) �! 720PH1� (P5 � P6)��2 (3.247)as ~k �! 0.� � � O(d�m) where m � 3 All modes are covered by Case IV,R(n) = w4nPV~k2��mP5 dm�2 +O(dm�1) (3.248)where the wn are given in Figure 3.3.



Finite Depth { Linear Analysis 122Deep layer, d� 1� � � O(d�4)R(1) = 2PHd4 �1 + d�1� 4kk2 � sinh2 k (k � sinhk cosh k)�+O(d�2)� : (3.249)� � � d�3 (Equation 3.239)R(1) = 2PHd4 �1 + d�1� 4kk2 � sinh2 k (k � sinhk cosh k) + ��3(P5 � P6)�+O(d�2)� :(3.250)� � � d�2 (Equation 3.237)R(1) = 2PHd41� (P5 � P6)��2 �1 + d�1 4k(k � sinhk cosh k)k2 � sinh2 k +O(d�2)� : (3.251)� � � O(d�1) (Equation 3.238)R(1) = � 2PHd3P5 � P6��1 +O(d2); (3.252)and asymptotics break down for small k.3.6 Numerical analysisIn this section we pursue solutions to the full linear equations in a similar mannerto that of [42]. A numerical scheme implemented by Cash & Moore (1980) [14] andsupplied by Dr. D. R. Moore, called \NRK", was used. The scheme is a fourth-order�nite di�erence scheme that iterates using the Newton-Raphson-Kantorovich algorithm.The program was supplied in FORTRAN and routines were written to search for theneutral curves of the equations given initial guesses for the concentration and velocity�elds, � and W , and the Rayleigh number, R. An initial value of the wavenumber,k, was provided and trial solutions were guessed until a solution was found. Thissolution formed the basis of the next solution estimate for a higher value of k. In thisway, provided the steps in k were su�ciently small the neutral curve could be tracedwith an e�cient number of iterations. Guessing a good initial value of R was highlyimportant and this was where the asymptotic solutions in the previous section proveduseful. The form of the mesh used in the z direction was also highly important. Thiswas especially true for the deep layer and large k solutions where most of the activity
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Figure 3.6: Curves of neutral linear stability for a shallow layer (d = 0:1 and �0 = 0:2)and varying d2�. Dotted lines are curves from the asymptotic results and solid linesare from the numerical results.in � occurs in a small fraction of the layer depth at the top. Hence, a variety ofcontinuously varying meshes were used to both gain a solution and check its validity.A grid point doubling algorithm was also used so that a rough solution could be found(such as with six grid points) and then a number of re�nements could be made toimprove the solution accuracy by doubling the number of grid points and interpolatingthe previous solution. Up to eighty-one grid points were used to obtain convergentsolutions but this was not always neccessary. An accuracy of six signi�cant �gureswas always achieved for convergence. The convergence of some numerical solutions wasslow if a) extreme parameter values were used, b) the trial solution curve was dissimilarto the actual solution, c) the trial Rayleigh number was not a good estimate or d) thenumerical grid did not contain enough nodes in signi�cant areas. There are a numberof parameters that can be varied. PV and PH are functions of the parameter � alonebut P5, P6 and P7 are functions of � and �0. d is the non-dimensional layer depth,�(d) is the gyrotactic orientation parameter, k is the wavenumber and R(d; k; �; �; �0)
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Figure 3.7: Curves of neutral linear stability for a deep layer (d = 40 and �0 = 0:2)and varying d2�. Dotted lines are curves from the asymptotic results and solid linesare from the numerical results.is the Rayleigh number based on the whole suspension depth and is the eigenvalue tobe determined. We choose to �x � = 2:2 (following Pedley & Kessler 1990 [85]) thusleaving four parameters to vary. Figures (3.6) to (3.8) show comparisons between thenumerical and asymptotic solutions. The values of the parameters have been chosen sothat comparisons with [42] and [19] can be made. Good agreement was always obtainedbetween asymptotic and numerical solutions, for k � O(1), provided either d � 1, forshallow layers, or d�1 � 1 and Pi, for deep layers. In fact, many of the asymptoticresults hold true for orders of k larger than one, especially for very deep layers. Clearly,the new terms due to gyrotaxis also a�ect the di�usion tensor and, hence, we no longerhave a simple balance of identi�able terms.For shallow layers (d� 1) non-zero wavenumbers are destabilized with increasing� and zero wavenumbers are very slightly stabilized (Figure 3.6). The most unstablewavenumber is non-zero for su�ciently large d2�. Figure (3.11) shows the ow andconcentration pro�les for a mode one solution, where it can be seen that the perturba-
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Figure 3.8: Curves of neutral linear stability for a deep layer (d = 200 and �0 = 0:2)and varying d2�. Dotted lines are curves from the asymptotic results and solid linesare from the numerical results.tions act over the whole suspension layer and are almost symmetrical. For deep layers(d� 1) the perturbations are greatest towards the upper surface (see Figures 3.12 and3.13). For deep layers, large wavenumbers are destabilized and small wavenumbers arestabilized with increasing �. In particular, we �nd that for � = 0, the most unstablewavenumber is zero but as � increases and exceeds some critical value the most unsta-ble wavenumber jumps to a non-zero value. The asymptotics presented here can notpredict the critical value or the non-zero most unstable wavenumber as the dynamicsoccur for k � O(1). Figure (3.10) shows a curve where it is clear that minimums of theneutral curve occur at a zero and a non-zero wavenumber. As � increases still furtherR(k = 0) ! 1. The value of � for which R(k) ! 1 �rst as k ! 0 can be calculatedfrom the asymptotics (Equation 3.237) to be�c = d�2P5 � P6 : (3.253)If � = 2:2 and �0 = 0:2 then d2�c � 4:2. The asymptotics also suggest that in all cases
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Figure 3.9: Numerical curves of neutral linear stability for a deep layer (d = 200),with d2� = 4 and varying �0. Increasing �0 stabilizes modes with long horizontalwavelengths.where � < �c the neutral curve increases slightly with k for k � O(1) before increasingor decreasing when k > O(1). Figure (3.9) describes the dependence of the neutralcurve on �0. The value of �0 does not a�ect the neutral curve signi�cantly for large kbut increasing �0 stabilizes modes with long length scales. This is due to the decreasein P5 and P6 when �0 increases. If the cells become less rod-like (�0 ! 0), then thecells will be less constrained to swim along streamlines and di�usive processes couldlead to long wavelength instabilities.The Rayleigh number, R, based on the suspension depth, H (following [42]), isrelated to the Rayleigh number of [19], R̂, based on the sublayer depth, ��1, by theequation R = d3R̂: (3.254)Childress et al. (1975) [19] found that, in their model for two rigid boundaries (forisotropic di�usion), the critical value of their Rayleigh number, R̂c, behaved like 720=d4
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Figure 3.10: Numerical curve of neutral linear stability for a deep layer (d = 200), withd2� = 3:3, �0 = 0. Here we see a combination of both zero and non-zero dominantunstable wavenumbers. For every d we �nd that there is a critical � that determinesthe bifurcation between there being a zero and a non-zero most unstable wavenumber.for small d and R̂c decreased to 2 as d ! 1. For free-rigid boundary conditions theyfound that R̂c � 320=d4 for small d and R̂c � 4=d for large d. Hill et al. (1989)[42] derive an equation in their asymptotic analysis similar to Equation (3.237) whichdescribes the behaviour of the neutral curve close to k = 0. Hence, for small k,R � 2PHd41� (P5 � P6)�̂ (3.255)where the depth independent gyrotaxis number is de�ned as (following Hill et al. 1989[42]) �̂ = d2�: (3.256)Equation (3.255) is only valid for small enough �̂, but we �nd from Figures (3.7) and(3.8) that if d is large and �̂ = 32 then the minimum of the neutral curve is a factor of2 larger than this value when �̂ = 0. Hence, the critical Rayleigh number is given byRc � 4PHd4. Therefore, we �nd (as the qualitative results of Hill et al. 1989 [42] also
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Figure 3.11: Pro�les of neutrally stable numerical solutions for a shallow layer (d = 0:1)with � = 0:1, �0 = 0:2 and k = 10, for which it is found that R � 1155. This is a modeone solution.suggest) that R̂c=d is initially large and decreases to a constant value as d!1. FromFigures (3.6) to (3.8) we �nd that if �̂ = 33 then R̂c=d = 300 for d = 0:1, R̂c=d = 1:17for d = 40 and R̂c=d = 1:12 for d = 200. The approximate limit of R̂c=d, from above,of 4PH is equal to 1:04.The experimental results of Chapter 2 indicate that the wavenumber of the initialpattern depends only on the suspension depth, whereby the wavenumber decreaseswith increasing depth. The theoretically determined dimensional pattern wavelength,after scaling with H � 2:3� 10�3d, is seen from Figures (3.6) to (3.8) to increase withincreasing depth, thus agreeing with the measurements of Chapter 2.Thus, the present model appears to agree, at least qualitatively, with experimentalobservations. In contrast, a most unstable wavenumber of zero, as in the model ofChildress et al. (1975) [19], appears to contradict that seen in experiments. However,[19] show that, in their model, the growth rate is zero at zero wavenumber but increaseswith the wavenumber until a maximum is reached. They argue that, immediately
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Figure 3.12: Pro�les of neutrally stable numerical solutions for a deep layer (d = 10)with � = 0:1, �0 = 0:2 and k = 10, for which it is found that R � 22024. This is amode one solution.
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Figure 3.13: Pro�les of neutrally stable numerical solutions for a deep layer (d = 200)with d2� = 8, �0 = 0:2 and k = 100, for which it is found that R � 8:5 � 109. This isa mode one solution.



Finite Depth { Linear Analysis 131above the neutral curve, the wavelength with the greatest linear growth rate is theone observed in experiments. However, Childress & Spiegel (1978) [21] show that thebifurcation to instability is subcritical and, hence, linear analysis cannot predict theobserved initial pattern wavelength. Hill et al. (1989) [42] �nd that, in their modelof deterministic gyrotactic bioconvection, a non-zero most unstable wavenumber existsfor a su�ciently large gyrotactic orientation parameter. They also prove, for the thecase of free-free boundary conditions, that the bifurcation to instability is stationary,using the method of the exchange of stability ([42], Appendix A). However, they �ndthat the method does not work with rigid-rigid or rigid-free boundary conditions. Wecan use the same method with our model and obtain exactly the same conclusions. Hillet al. (1989) [42] were then able to demonstrate the existence of oscillatory solutionsnumerically for a range of extreme parameter values. We were unable to �nd oscillatorysolutions for our model.Recently Jones et al. (1994) [55, 54] show that it is su�cient to assume thatChlamydomonas nivalis is a self-propelled spheroid, provided certain parameters areadjusted, without involving explicit details of the cells' locomotory machinery. Thussupporting the model used in the present analysis. They show that �0; �? and B shouldbe adjusted to 0:40, 12:6 and 6:3, respectively, to allow for the e�ects of the agellaof Chlamydomonas nivalis and its swimming characteristics (see Section 3.8 for morenumerical analysis on the adjusted parameter ranges and Section 3.9 for a comparisonwith experiments).3.7 The e�ect of swimming speed as a random variableIt is clear from the discussion given in Pedley & Kessler (1990) [85] that randomnessin the cell swimming direction is important for a number of reasons. Most importantlyit alters the mean cell response to the external torques and changes the form of thedi�usion tensor. It is neccessary to include these factors in the model for the sake ofconsistency. From the previous section, it is also apparent that the linear behaviour ofthe di�usion tensor, and hence the existence of a non-zero most unstable wavenumber,is dependent on the balance between deterministic processes and randomness in the cellswimming direction. But how else does the cell swim in a random manner? A feature



Finite Depth { Linear Analysis 132that has been overlooked so far is that the individual cells swim at vastly di�erentspeeds. In this section we shall investigate the e�ect of modelling the cell swimmingspeed as an independent random variable and discuss how it a�ects the di�usion tensorand linear analysis. In the real world, with inhomogeneous cultures of Chlamydomonasnivalis, it should be expected that there will be a large variance in cell swimming speedcorresponding to di�erent stages in the cells' life. Unfortunately it is rather di�cultto get data on such things. Hill & H�ader (1996) [41] investigated cell swimming speedwith cell orientation. They found that experimental calculations of swimming speedwere dependent on the choice of time step size between measurements of position. Thecells swim in a smooth fashion and their mean swimming direction is a�ected by thevarious taxes. In two experiments Hill & H�ader (1996) [41] tracked swimming micro-organisms, �rstly in a vertical plane and then in a horizontal plane. Both planes wereof small focal depths. Using new techniques of data analysis they were able to calculatemean cell swimming velocities and standard deviations as functions of the time stepsize and orientation. The data were extrapolated back to a time step size of zero togive the actual swimming velocities. For the vertical plane hV i = 52� 5�ms�1 with astandard deviation of 30�5�ms�1 and for the horizontal plane hV i = 65�5�ms�1 witha standard deviation of 30 � 5�ms�1. The �rst experiment means that the standarddeviation is 0:58 of the mean and the second 0:46 of the mean.Theoretically we begin by considering again the calculation for the di�usion tensorD given in Chapter 1 (Equation 1.21) and assume that it takes a cell � seconds to settleto a preferred direction (the direction correlation time). Hence,D = � �hVVi � hVi2� ; (3.257)where V is a random variable. Assuming that the swimming speed, V , and swimmingdirection, p, are independent, we can write V = V p. We know that hV i = Vs and,hence, we have D = V 2s � �hV 2iV 2s hppi � hpi2� : (3.258)By varying the ratio N = hV 2iV 2s (3.259)we can change the nature of the di�usion tensor. The data of Hill & H�ader (1996)[41] gives N as bounded by 1:15 and 1:45. From Equation (3.79) we can calculate the



Finite Depth { Linear Analysis 133modi�ed di�usion tensor to be1V 2s �D = 0BBB@ K1� N 0 00 K1� N 00 0 �1� 2K1� �N �K21 1CCCA+ �26664� (J2N � J1K1)0BBB@ 0 0 !20 0 �!1!2 �!1 0 1CCCA� 2�0�0BBB@ ��34e33K5 + 14(e11 � e22)J6�N 12e12J6N e13(J5N �K1J4)12e12J6N ��34e33K5 � 14 (e11 � e22)J6�N e23(J5N �K1J4)e13(J5N �K1J4) e23(J5N �K1J4) 32e33(K5N � 2K1K4) 1CCCA37775+ O(�2): (3.260)Substituting the di�usion tensor into the governing equations we �nd that it only altersthe de�nitions of the Pi. If we assume that � = 2:2 then they becomePH = 0:26NPV = 0:48N � 0:33P5 = 0:38� 0:21�0 �N (0:16 � 0:20�0)P6 = �0(�0:43 + 0:33N )P7 = 0:38� 0:22�0 �N (0:16 � 0:13�0): (3.261)P6 is the only term which can change sign for N < 2 and it does so if N > 1:3. Thisis the average of the bounds determined above from the experiments of Hill & H�ader(1996) [41]. If �0 = 0:4 and N > 3:75 then all of the parameters will have changed signand this will have a major e�ect on the linear analysis. It is, however, unlikely that Ncould be so large. Figure (3.14) describes how the neutral curve varies as a function ofN given � and �0. The ratio of the leading order horizontal and vertical di�usions,PH=PV � 0:26N0:48N � 0:33 ; (3.262)also has some signi�cance. Clearly, if N = 1 then the ratio is greater than one (asdiscussed in Pedley et al. 1990 [83]), but if N > 1:5 then the ratio is less than one (asproposed in Childress et al. 1975 [19]). The true nature of the di�usion tensor and,hence, the value of N should be established by independent experiments. Thus, theevidence is inconclusive for a negative or a positive value of P6. Perhaps the best thatwe can do is to assume that P6 is small, even when d is large, and therefore we mayassume P6 = 0. This is not altogether convincing and more accurate experiments may
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Figure 3.14: Neutral curves for a deep layer (d = 200) where d2� = 4, �0 = 0:2 and Nvaries.need to be performed to elucidate the problem. Alternatively, a better approximationto the di�usion tensor might improve the situation.As a further example of modelling swimming speed as a random variable, considerthe Gamma distribution which has a realistic behaviour (see Figure 3.15) where P (V =0) = 0 and P (V = x)! 0 quickly as x!1.P (V = x) = 1�(�)��x��1e��x (3.263)where x 2 [0;1) and � and � are variables. Kessler (1995, personal communication)has been using this distribution to �t data obtained on the swimming speed of bacteria.We �nd that D = V 2s � �� + 1� hppi � hpi2� (3.264)and, hence, we require � < 3:3 for P6 to change sign.



Finite Depth { Linear Analysis 135

Vs
x

V(x)

0Figure 3.15: The Gamma distribution P (V = x) where Vs is its mean.3.8 Numerical analysis for our best parameter measure-mentsAs mentioned in Section 3.6, Jones et al. (1995) [54] suggest that allowances maybe made for the swimming behaviour of Chlamydomonas nivalis and its agella byincreasing �0 to 0:40 and B to 6:3 s. Also, it has been suggested ([85]) that the valueof 1:3 used above of the direction correlation time, � , is \signi�cantly shorter than theobservational estimate of 5 s". In this section, we will take � = 5 s. We also choose totake N = 1:3, for the reasons given in Section 3.7, such that P6 = 0. Neutral curvesfor the updated parameter ranges are displayed in Figure (3.16) where it can be seenthat, for the realistic parameter value of � = 16d�2, there is most de�nitely a non-zeromost unstable wavenumber and a reduction in this value dramatically alters the neutralcurve such that zero becomes the most unstable wavenumber for � � 4d�2. Given alarge enough value of d2�, a non-zero most unstable wavenumber will always exist forall d. Figure (3.16) has the same general characteristics of the previous curves but hasa diminished response to an increase in � due to the reduction in (P5 � P6).3.9 Comparison with experimentsAlthough we have no way of drawing a neutral curve from the experiments, becausewe have no reliable data for the non-existence of pattern, (especially as d changes witheach experiment) the data points from Chapter 2 should lie above the neutral curve
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Figure 3.16: Neutral curves for d = 40 using parameter estimates and measurementsof �0 = 0:4 and N = 1:34.



Finite Depth { Linear Analysis 137for a given measured value of d. Here, we are assuming that the initially observedpattern consists of rolls (as we can reasonably assume from Chapter 2). Before directcomparisons are made between the theoretical predictions and the experimental data,it is necessary to investigate some important timescales. Firstly, we must establishwhether the ows caused by the initial mixing have diminished and secondly, we mustconsider whether the cells have had su�cient time to form the exponential equilibriumsolution as assumed in this linear analysis. Similar arguments were presented in thepapers by Hill et al. (1989) [42] and Pedley et al. (1988) [83]. We assume that thepetri dish and suspension are in solid body rotation with angular velocity 


 until thecontainer is instantaneously brought to rest (as in Hill et al. (1989) [42]). Hence, thetime for spin-down of the suspension is O(E 12


�1) where E is the Ekman number.Hill et al. (1989) [42] show that if 


 � 1 s�1 then the decay time is approximately10 s, which is larger than the estimate of Pedley et al. (1988) [83]. If we take the cellswimming speed to be 63�ms�1 upwards (Table 3.2) then the cells would require 100seconds to swim a typical depth of 6mm from bottom to top. The cells typically formpatterns 30 seconds after the initial mixing. Hence, we can assume that the majorityof the uid motion due to mixing has decayed away before the onset of instability butthat the cells do not always have su�cient time to swim and form the exponentialequilibrium pro�le assumed in the linear analysis of this chapter. In some situations inwhich the suspension is deep it may be more appropriate to use the linear analysis ofPedley & Kessler (1990) [85] (see Chapter 5).Seven experiments share a similar depth of approximately 0:4 cm, and these willbe considered as this depth implies that d � 200 for � = 1:3 and d � 40 for � = 5,as can be seen from Table 3.4. These results can be compared directly with existingresults from the linear analysis. In computing Table 3.4, the following expressions ford, R and � were used in conjunction with Table 3.2.d = �H; (3.265)R = vg���2��V 2s � � H5�n1� e��H� (3.266)and � = K1K2Vs� : (3.267)



Finite Depth { Linear Analysis 138As � = BV 2s �H2 = BV 2s ��2d2 ; (3.268)and if � = 1:3s and B = 3:4s (the original estimates), then � � 33d�2. For the newestimates of � = 5 and B = 6:3 (see Jones 1995 [54]), � = 16d�2.� B � d R �1:3 3:4 435 435H 9170H5�n 33d�25 6:3 113 113H 161H5�n 16d�2Table 3.4: Calculations of parameters from original and more recent measurements andestimates of B and � .
Experiment �0 ~�0 ~k0 d R (�106) d R (�106)Name (cm) � = 1:3 � = 5x108b 0:486 1:23 5:11 172 185 44:7 3:25x108d 0:468 1:05 5:98 193 484 50:2 8:50x114c 0:417 1:05 5:98 174 82:2 45:2 1:44x208j 0:708 1:51 4:16 204 393 53:07 6:90x208k 0:354 0:755 8:32 204 393 53:0 6:90x208l 0:603 1:29 4:87 204 393 53:0 6:90x215f 0:375 0:801 7:84 204 863 53:0 15:2Table 3.5: Experimental measurements of wavenumbers and corresponding calculationsof d and R depending on the value of � . Seven experiments have been chosen withsimilar depths so that they can be compared with the theoretical predictions.Comparing the data from the � = 1:3 and ~k0 columns of Table 3.5 with Figure (3.8)(for � = 32d�2 we �nd that the measured Rayleigh numbers are all less than theminimum value, 2�109, of the neutral curve. Also, the wavenumbers are 20 to 40 timessmaller than the predicted values. Comparing the data from the � = 5 and ~k0 columnsof Table 3.5 with Figure (3.16) reveals that the measured Rayleigh numbers are now ofcomparable order to the neutral curve but the measured wavenumbers are 5 to 10 times



Finite Depth { Linear Analysis 139smaller than those predicted. Reducing � to 4d�2 would have the desirable e�ect ofmaking the predicted most unstable wavenumber to be similar to the measured value.In general, increasing � and decreasing B improves the agreement between experimentsand theoretical predictions. It is also possible to adjust other parameters in the Rayleighnumber such that the neutral curve coincides more precisely with the measured datapoints but the choice of values would be somewhat arbitrary and it should be thepriority of experimental work to establish more precise independent measurements ofthese parameters. The stochastic and deterministic models of gyrotactic bioconvection([42]) di�er in their quantitative predictions of initial pattern wavelengths. TypicallyHill et al. (1989) [42] predict a wavelength of 2 to 3 cm in a suspension of depth 1 cmand we predict a wavelength of approximately 1mm. Experimental measurements givea typical wavelength of between 4 and 7mm, halfway between the two predictions.3.10 DiscussionThe asymptotic analysis described in the previous sections is a useful tool as it gives usan initial estimate for the value of the Rayleigh number and provides us with an under-standing of the underlying instabilities through the balancing of di�erent terms. In thischapter we have sucessfully solved the linear equations asymptotically and have demon-strated the accuracy that can be obtained by making quite loose statements about theorder of various parameters. Good agreement between numerical and asymptotic solu-tions was always obtained provided the expansion parameter, d (or d�1), was su�cientlysmall so as to be able to consider parameters such as k, P6 and S�1c to be of order one.No evidence of oscillatory solutions was discovered as in [42].We have shown that modelling the organisms' swimming in a non-deterministicfashion has important consequences for the shape of the neutral curves. We havealso shown that a non-zero most unstable wavenumber will always exist (as in thedeterministic model for �nite depth by [42] but not in the non-gyrotactic model of [19])provided the gyrotactic orientation parameter is su�ciently large.Perhaps we may speculate that through evolution the cells have optimized theirswimming strategies so as not to waste energy on random events and such that, for agiven depth, colonies will self-organise into patterns with non-zero wavenumber once a



Finite Depth { Linear Analysis 140critical concentration of cells is surpassed. This enables the cells to collide more oftenand hence to mate more e�ciently. For suspensions of low cell concentration wherebioconvection is not possible, the cells will swim to the two-dimensional uid surfacewhere there is also a strong likelihood that they will come into contact with anothercell and can mate. Improvements to the di�usion approximation may be needed toclarify the situation.Weakly non-linear analyses have been sucessfully performed by a number of au-thors for cellular instabilities in Rayleigh-B�enard convection, where there is a non-zeromost unstable wavenumber, such as Fauve (1985) [32], Lennie et al. (1988) [73], Malkus& Veronis (1958) [78], Newell & Whitehead (1969) [81] and Schl�uter et al. (1965) [101]to name but a few. Childress & Spiegel (1978) [21] investigated the weakly non-linearanalysis of the Childress et al. (1975) [19] model where there is a zero most unstablewavenumber. Using a multiple scale expansion they found that the stationary bifur-cation was subcritical. Similar analyses have been performed by Chapman & Proctor(1980) [16] and Proctor (1981) [90] for thermal convection between poorly conductingslabs. For stochastic gyrotactic bioconvection we �nd from the linear analysis that it ispossible to obtain either a zero most unstable wavenumber or a non-zero most unstablewavenumber depending on the values of the gyrotactic orientation parameter, �0 andvariance of the cell swimming speed. It is also possible to obtain a balance betweenthese two instabilities (see Figure 3.10) and future research could investigate the weaklynon-linear analysis of this system. Depassier & Spiegel (1981) [28] have completed asimilar analysis of a far simpler system where multiple scales were used to balance longwavelength instabilities with the smaller scale instabilities. However, in our system aprocess of simpli�cation would be required before such analysis could be pursued.



Chapter 4
Spherical Harmonic Expansion ofthe Fokker-Planck Equation
4.1 IntroductionThe steady form of the Fokker-Planck equation for gyrotaxis (see Section 1.6.3) isr � ( _pf) = Drr2f; (4.1)where _p = 12B [k� (k � p)p] + 12


 ^ p+ �0p �E � (I� pp): (4.2)Brenner & Weissman (1972) [12] also studied this form of equation when �0 = 0.For convenience, they used a coordinate system where the vorticity is perpendicularto the plane of � = �2 and then expanded the solution f(�; �) as a doubly in�nitesum of spherical harmonics. Using identities for the associated Legendre polynomials,the Fokker-Planck equation is reduced to an in�nite set of linear di�erence equationswith an in�nite number of unknowns. Truncating the spherical harmonic expansionto order R, they then obtain \...R(R + 3) + 2 linear algebraic equations in an equalnumber of unknowns". Resorting to a numerical method seems to be the only optionfor R > 3 and [12] report that \...the required computer time increases roughly as R3,and rapidly becomes excessive as R exceeds 15". For the case in which the external �eldis perpendicular to the vorticity vector, the number of equations and unknowns can bereduced by a factor of two due to the symmetries of the system (i.e. by expanding only141



Spherical Harmonic Expansion of the Fokker-Planck Equation 142in terms of Amn cosm�Pmn (cos �) where the A's are constants and the P 's are associatedLegendre polynomials).Spherical harmonics are the natural choice of eigenfunctions to use in such anexpansion. Strand & Kim (1992) [106] have used spherical harmonic expansions fordipolar non-spherical particles in an external �eld. Previous to that Kim & Lawrence(1987) [68] constructed similarity solutions, valid for small times, for orientation dis-tributions of axisymmetric particles with external couples. Both papers used theirsolutions to investigate the rheological properties of suspensions of particles.In this chapter, we shall initially consider a micro-organism in a vertical two-dimensional ow �eld, independent of y. Later, this will be extended to a three dimen-sional ow �eld in the absence of vertical vorticity. For a two-dimensional ow �eld, itis still essential to model the cell swimming direction on a full sphere rather than on acircle. A coordinate system in which the vorticity is perpendicular to the plane � = 0,is used together with an expansion in terms of cosm�Pmn (cos �). By applying a setof identities for spherical harmonics recursively, using the computer algebra packageMaple (reducing the potential for human error), a set of R(R + 3)=2 equations in asmany unknowns was generated, together with a normalisation condition. Maple wasthen employed to solve this set of equations using exact arithmetic. See Appendix Cfor the Maple code.For the case in which �0 is zero, spherical harmonics of order two are found tocapture the essential behaviour of the system and the expansion to order three is almostindistinguishable from higher orders. The second order approximation can thereforebe used in any further non-linear analysis of bioconvection (in which �0 = 0) whererelatively simple expressions are bene�cial.The case of non-zero �0 is not so well behaved. Low order expansions representthe solution adequately only in certain ranges of the rate of strain and vorticity com-ponents. To calculate hpi and D only the coe�cients of the spherical harmonics up toorder 2 are required. The implementation of the methods used here is designed to beadaptable (such that other taxes or combinations of taxes, may be investigated) andcould potentially be used in other similar problems.



Spherical Harmonic Expansion of the Fokker-Planck Equation 1434.2 The coordinate systemThe spherical polar coordinate system is chosen such that the vorticity, given by !!! = !j,is perpendicular to the plane where � = 0 (see Figure 4.1). The swimming direction,
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Figure 4.1: The choice of coordinate system on a sphere.p, and unit vectors �̂�� and �̂�� are given byp = 0BBB@ sin � cos�sin � sin�cos � 1CCCA ; �̂�� = 0BBB@ cos � cos�cos � sin�� sin � 1CCCA ; �̂�� = 0BBB@ � sin�cos�0 1CCCA (4.3)and also !!! � p ^ �̂�� = ! cos�!!! � p ^ �̂�� = �! cos � sin�: (4.4)The rate-of-strain tensor e is e = 0BBB@ e11 0 e130 0 0e13 0 �e11 1CCCA (4.5)



Spherical Harmonic Expansion of the Fokker-Planck Equation 144and then p � e � p = e11 �14(cos 2�+ 3)(1 � cos 2�)� 1�+ e13 sin 2� cos�p � e � �̂�� = e11 �14(cos 2�+ 3) sin 2��+ e13 cos 2� cos�p � e � �̂�� = e11 ��12 sin 2� sin ��� e13 cos � sin�: (4.6)Hence the Fokker-Planck equation (4.1) becomes��1sin �@�(sin �@�f) + ��1sin2 �@2�f + sin �@�f + 2 cos �f = ��! cos�@�f � ! cos �sin � sin�@�f�+2�0� �(e11(cos2 �+ 1) sin � cos � + e13(cos2 � � sin2 �) cos�)@�f��e11 cos� sin�+ e13 sin�cos �sin �� @�f�3 �e11(sin2 � cos2 �� cos2 �) + 2e13 sin � cos � cos�� f� ; (4.7)where � = (2DrB)�1, � = B
 and !, e11 and e13 are scaled with respect to vorticity.For a two dimensional ow, the cell swimming direction distribution will be symmetricabout the ow plane and so only even spherical harmonics in � are needed. Henceconsider the series f = 1Xn=0 nXm=0Fmn (4.8)where we de�ne for ease of writingFmn (�; �) � Rmn (�)Pmn (cos �) � Amn cosm�Pmn (x) � Amn Qmn (�; �): (4.9)Here x � cos �, the Amn are constants and Pmn are associated Legendre polynomials.Substituting this series into the above equation, making use of the associatedLegendre equation (see Appendix A), givesXm;n ���1Fmn [�n(n+ 1)]�Rmn Pmn 0 sin2 � + 2 cos �Fmn 	=Xm;n ��� �! cos� sin �Rmn Pmn 0 + ! cot � sin�Rmn 0Pmn ��2�0� ��e11(cos2 �+ 1) sin2 � cos � + e13(cos2 � � sin2 �) cos� sin ��Rmn Pmn 0+(e11 cos� sin�+ e13 sin� cot �)Rmn 0Pmn+3 �e11(sin2 � cos2 �� cos2 �) + 2e13 sin � cos � cos��Rmn Pmn �	 (4.10)where 0 denotes di�erentiation with respect to the dependent variable.



Spherical Harmonic Expansion of the Fokker-Planck Equation 145The normalisation condition that f integrates to 1 over the surface of the sphereimplies that A00 = 14� : (4.11)4.3 Calculating the mean quantitiesIn this section it is shown that only the spherical harmonics up to order two are requiredto calculate hpi and D and therefore we shall concentrate purely on the convergence ofthese coe�cients.Firstly, consider hpi with f given by spherical harmonics (Equation 4.9). If Srepresents the surface of a unit sphere thenhpi = ZS0BBB@ sin � cos�sin � sin�cos � 1CCCA f(�; �) dS � ZS0BBB@ Q110Q01 1CCCA f(�; �) dS (4.12)and hence we require the integrals of RS Q11fdS and RS Q01fdS. Using the identitiesZS Qmn Qm0n0 dS = �mm0�nn0 2�2n+ 1 (n+m)!(n�m)! (4.13)for n; n0 � m;m0 = 1; 2; ::: andZS Q0nQm0n0 dS = �0m0�nn0 4�2n+ 1 ; (4.14)we �nd that hpi = 4�3 0BBB@ A110A01 1CCCA : (4.15)Similarly, using the identitiessin2 � cos2 � = 12 sin2 �(1 + cos 2�) = 13Q00 � 13Q02 + 16Q22; (4.16)sin � cos � cos� = 13Q12; (4.17)cos2 � = 23Q02 + 13Q00 (4.18)and sin2 � sin2 � = 12 sin2 �(1 + cos 2�) = 13Q00 � 13Q02 � 16Q22 (4.19)



Spherical Harmonic Expansion of the Fokker-Planck Equation 146giveshppi = �0BBB@ 43A00 � 415A02 + 85A22 0 45A120 43A00 � 415A02 � 85A22 045A12 0 815A02 + 43A00 1CCCA : (4.20)Hence, de�ning the di�usivity (as in Section 1.6.3) asD = V 2s � �hppi � hpi2�, we obtainDV 2s �� =0BBB@ 43A00 � 415A02 + 85A22 � 16�9 (A11)2 0 45A12 � 16�9 A11A010 43A00 � 415A02 � 85A22 045A12 � 16�9 A11A01 0 815A02 + 43A00 � 16�9 (A01)2 1CCCA :(4.21)Thus, only the expressions for the �ve coe�cients A01; A11; A02; A12 and A22 in the sphericalharmonic expansion are required.4.4 Recursion relationsBelow is a summary of the operations or recursion relations that will be used in thefollowing analysis. These relations allow expressions on the LHS to be written in asimpler functional form (RHS). A reference for each relation and the name of thecorresponding functional is also given.� Xc (Equation A.7) : xPmn � n+m2n+ 1Pmn�1 + n�m+ 12n+ 1 Pmn+1 (4.22)Xc(Tmn ) : Tmn 7�! n+m2n+ 1Tmn�1 + n�m+ 12n+ 1 Tmn+1: (4.23)� Xss : Xss(Tmn ) : Tmn 7�! Tmn �Xc(Xc(Tmn )): (4.24)� Xssp (substitute Equations A.8 and A.9 in A.10) :(1� x2)Pmn 0 � 12n+ 1 �(n+m)(n+ 1)Pmn�1 � n(n�m+ 1)Pmn+1� (4.25)Xssp(Tmn ) : Tmn 7�! 12n+ 1 �(n+m)(n+ 1)Tmn�1 � n(n�m+ 1)Tmn+1� : (4.26)



Spherical Harmonic Expansion of the Fokker-Planck Equation 147� Xsu (Equation A.8) : (2n+ 1)p1� x2Pmn � Pm+1n+1 � Pm+1n�1 (4.27)Xsu(Tmn ) : Tmn 7�! Tm+1n+1 � Tm+1n�1 : (4.28)� Xsd (Equation A.9) :(2n+1)p1� x2Pmn � (n+m)(n+m�1)Pm�1n�1 �(n�m+1)(n�m+2)Pm�1n+1 (4.29)Xsd(Tmn ) : Tmn 7�! (n+m)(n+m�1)Tm�1n�1 �(n�m+1)(n�m+2)Tm�1n+1 : (4.30)� Xspu (substitute Equation A.6 in A.10) :p1� x2Pmn 0 � Pm+1n � mxp1� x2Pmn (4.31)Xspu(Tmn ) : Tmn 7�! Tm+1n � mxp1� x2Tmn : (4.32)� Xspd (substitute Equation A.6 in A.10) :p1� x2Pmn 0 � �(n�m+ 1)(n+m)Pm�1n + mxp1� x2Pmn (4.33)Xspd(Tmn ) : Tmn 7�! �(n�m+ 1)(n+m)Tm�1n + mxp1� x2Tmn : (4.34)� Xsin : S1Sm � 12Cm�1 � 12Cm+1 (4.35)Xsin(S1Sm) : S1Sm 7�! 12Cm�1 � 12Cm+1: (4.36)� Xcos : C1Cm � 12Cm�1 + 12Cm+1: (4.37)Xcos(C1Cm) : C1Cm 7�! 12Cm�1 + 12Cm+1: (4.38)Here we have made use of the shorthand Sm = sinm� and Cm = cosm�.4.5 Simpli�cationConsider Equation (4.10) a term at a time, trying at each stage to express the wholeterm as an expression in spherical harmonics with simple non-trigonometric coe�cients.Henceforth x � cos � without mention. The special cases of low and high values of mand n are dealt with later.



Spherical Harmonic Expansion of the Fokker-Planck Equation 1484.5.1 Left hand sideThe �rst term on the left hand side is in the right form. If we apply Xssp to the secondterm we will get terms in Qmn�1. Similarly applying Xc to the third term gives us termsin Qmn�1.4.5.2 Right hand side - vorticity termsThe �rst term on the right hand side contains a C1 so we will make use of the identityXcos and turn the Rmn into Amn2 (Cm�1+Cm+1). Now we should try and convert the Pmn 0into terms like Pm�1n . This proves possible with the identities Xspu and Xspd. However,there appears to be an undesirable term, � mxp1�x2Pmn . If this term were to remain inthe equation, then it would lead to the problematic integralZ 11� x2Pmn (x)Pmp (x)dx (4.39)which, on explicit evaluation, gives not one delta function in terms of n and p, but anin�nite series of delta functions in n and p (the integral has a curious behaviour as onlymin (n; p) is relevant and not max (n; p); see Appendix B), asZ 11� x2Pmn (x)Pmp (x)dx = 8<: 1m (min (p;q)+m)!(min (p;q)�m)! p+ q even0 otherwise : (4.40)This would ultimately give an in�nite set of in�nite-length recursion relations for theAmn . Fortunately, these terms completely cancel out with similar terms produced bythe second term on the right hand side, after application of the identity Xsin. Thus,the vorticity terms become!�Amn2 ��Qm+1n + (n�m+ 1)(n+m)Qm�1n � : (4.41)4.5.3 Right hand side - rate of strain termsThese terms naturally fall into two groups: the third, �fth and seventh terms multipliedby e11, and the fourth, sixth and eighth terms multiplied by e13. Using the operatorsXcos and Xsin, the terms in the �rst group can be written in terms of Cm�2 and Cm,with the \undesirable" terms always cancelling. Except for a factor of �2�0�e11, theseterms are Amn Cm�2��14 cos � sin �(n�m+ 1)(m + n)Pm�1n + 3�m4 sin2 �Pmn �



Spherical Harmonic Expansion of the Fokker-Planck Equation 149+Amn Cm+2�14 cos � sin �Pm+1n + 3 +m4 sin2 �Pmn �+Amn Cm�32Pmn sin2 � � 3 cos2 �Pmn+32 cos � 12n+ 1 �(n+m)(n+ 1)Pmn�1 � n(n�m+ 1)Pmn+1�� (4.42)and they becomeAmn ��14(n�m+ 1)(m+ n)Cm�2Xc(Xsd(Pm�1n )) + 3�m4 Cm�2Xsd(Xsd(Pmn ))+14Cm+2Xc(Xsu(Pm+1n )) + 3 +m4 Cm+2Xsu(Xsu(Pmn ))+32CmXss(Pmn )� 3CmXc(Xc(Pmn ))+32 12n+ 1CmXc �(n+m)(n+ 1)Pmn�1 � n(n�m+ 1)Pmn+1�� (4.43)Hence, we can writeAmn ��14(n�m+ 1)(m+ n)Xc(Xsd(Qm�1n )) + 3�m4 Xsd(Xsd(Qmn ))+14Xc(Xsu(Qm+1n )) + 3 +m4 Xsu(Xsu(Qmn )) + 32Xss(Qmn )� 3Xc(Xc(Qmn ))+32 12n+ 1Xc �(n+m)(n+ 1)Qmn�1 � n(n�m+ 1)Qmn+1�� : (4.44)The second group of terms multiplied by �2�0�e13 can be expressed in terms of Cm�1using Xcos and Xsin. In a similar manner to the above they becomeAmn �Xc(Xc(�(n�m+ 1)(n+m)Qm�1n +Qm+1n ))�12 ��(n�m+ 1)(n+m)Qm�1n +Qm+1n ��mXc(Xsd(Qmn )�Xsu(Qmn ))+ 32n+ 1Xc �(n+m)(n+m� 1)Qm�1n�1 � (n�m+ 1)(n�m+ 2)Qm�1n+1+Qm+1n+1 �Qm+1n�1 �� : (4.45)On summing over m and n, but forgetting for the moment about the extremecases, the whole equation (4.1) becomes0 = ��1n(n+ 1)Amn Qmn +Amn Xssp(Qmn )� 2Amn Xc(Qmn )+!�2 Amn ��Qm+1n + (n�m+ 1)(n+m)Qm�1n ��2�0�e11Amn ��14(n�m+ 1)(m+ n)Xc(Xsd(Qm�1n )) + 3�m4 Xsd(Xsd(Qmn ))+14Xc(Xsu(Qm+1n )) + 3 +m4 Xsu(Xsu(Qmn )) + 32Xss(Qmn )� 3Xc(Xc(Qmn ))



Spherical Harmonic Expansion of the Fokker-Planck Equation 150+32 12n+ 1Xc �(n+m)(n+ 1)Qmn�1 � n(n�m+ 1)Qmn+1���2�0�e13Amn �Xc(Xc(�(n�m+ 1)(n+m)Qm�1n +Qm+1n ))�12 ��(n�m+ 1)(n+m)Qm�1n +Qm+1n ��mXc(Xsd(Qmn )�Xsu(Qmn ))+ 32n+ 1Xc �(n+m)(n+m� 1)Qm�1n�1 � (n�m+ 1)(n�m+ 2)Qm�1n+1+Qm+1n+1 �Qm+1n�1 �� : (4.46)This equation will be referred to as Gmn .There are a number of parameters involved here. The search of parameter spacehas been limited by assuming that � is given. For the micro-organism Chlamydomonasnivalis � � 2:2 and, for the purposes of computer algebra, can be written as 2210 . Thisvalue will be used throughout the following analysis.4.6 Special cases - extremal termsThere are two cases connected with the �nite order of the expansion. One concerns theupper extreme of the expansion and the other concerns special cases around the lowerextremity. The �rst is easily dealt with by just setting all coe�cients of order greaterthan the truncation order to zero. In the second case, note that Amn = 0 if m;n < 0 orn � m, and such terms should not appear in Equation (4.46). Consider �rst the casewhere m = 0: S1S0 = 12C�1 � 12C1 = 0 (4.47)and C1C0 = 12C�1 + 12C1 = C1; (4.48)in which Cm = cosm� and Sm = sinm�. This indicates how the de�nitions (4.37) and(4.35) for Xcos and Xsin need to be modi�ed. In general, if m = 0 then terms in Qpqwhere p is positive are doubled and where p is negative are set to zero. Terms wherep = 0 are unchanged. This gives us the following relations (8n), which will be summedover n later:F0n := ��1n(n+ 1)A0nQ0n +A0nXssp(Q0n)� 2A0nXc(Q0n)� !�A0nQ1n +�2�0�e11Amn �12Xc(Xsu(Q1n)) + 32Xsu(Xsu(Q0n)) + 32Xss(Q0n)� 3Xc(Xc(Q0n))



Spherical Harmonic Expansion of the Fokker-Planck Equation 151+32 12n+ 1Xc �n(n+ 1)Q0n�1 � n(n+ 1)Q0n+1���2�0�e13A0n �2Xc(Xc(Q1n))�Q1n + 62n+ 1Xc �Q1n+1 �Q1n�1�� : (4.49)The next case to consider is m = 1. The only terms which may cause concern hereare those that involve expressions in Qm�2n . These type of terms are restricted to thosewith the coe�cient �0�e11. By considering12(C2 + 3)C1 = 14C�1 + 14C3 + 32C0 = 14C1 + 14C3 + 32C0 (4.50)we get the equationsF1n := ��1n(n+ 1)A1nQ1n +A1nXssp(Q1n)� 2A1nXc(Q1n)+!�2 A1n ��Q2n + n(n+ 1)Q0n��2�0�e11A1n ��14n(1 + n)Xc(Xsu(Q0n)) + 12Xss(Q1n)+14Xc(Xsu(Q2n)) +Xsu(Xsu(Q1n)) + 32Xss(Q1n)� 3Xc(Xc(Q1n))+32 12n+ 1Xc �(n+ 1)2Q1n�1 � n2Q1n+1���2�0�e13A1n �Xc(Xc(�n(n+ 1)Q0n +Q2n))�12 ��n(n+ 1)Q0n +Q2n��Xc(Xsd(Q1n)�Xsu(Q1n))+ 32n+ 1Xc �n(n+ 1)Q0n�1 � n(n+ 1)Q0n+1+Q2n+1 �Q2n�1�� : (4.51)4.7 ImplementationThe complete expansion of Equation (4.1) in spherical harmonics is0 = RXn=0F0n + RXn=1F1n + RXn=2 nXm=2Gmn ; (4.52)where R is the order of the approximation and the spherical harmonic coe�cients, Apq(see Equation 4.9), are zero if p > q, p < 0, q > R or q < 0.As the surface spherical harmonics form an orthonormal basis, we can �nd the innerproduct of Equation (4.52) with any other surface spherical harmonic and hence extracta set of R(R+ 3)=2 simultaneous equations for the R(R+ 3)=2 unknown coe�cients.



Spherical Harmonic Expansion of the Fokker-Planck Equation 152The implementation in Maple is straightforward. See Appendix C for the Maplecode. Equation (4.52) is calculated and simpli�ed using the recursion functions ofSection (4.4). The inner product of this equation with Qpq is then evaluated usingEquations (4.13) and (4.14). This is repeated for all allowed values of m and n, andeventually this set of equations is solved explicitly using Maple's inbuilt algebraic solver.The most signi�cant cost in computer time and memory is due to solving the equations.The shorthand � = �!; (4.53)� = �0�e11 (4.54)and � = �0�e13 (4.55)is used throughout the following analysis.4.8 Results for �0 = 0
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Figure 4.2: Graph of the coe�cient A01 with � for orders of approximation of 2, 3 and4. If we set �0 = 0, so that the cell is spherical and the e�ects of rate-of-strain vanish,we look at the case where there is a balance between the gravitational and vorticitydriven torques. This case is easy to visualise and one can imagine the deterministicsituation in which vorticity increases and the cells' swimming angle to the vertical
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Figure 4.3: Graph of the coe�cient A11 with � for orders of approximation of 2, 3 and4.increases with it. If the vorticity increases too much, then the terms no longer balanceand the cell tumbles. We expect to see a similar situation with the stochastic model,with the cells' average swimming angle with the vertical increasing with vorticity. Forvery high values of vorticity, the cell orientation distribution function is no longersharply peaked but almost uniform.The �ve simultaneous equations for the second order approximation are2033A01 + 23�A11 + 415A02 � 13� = 0�23�A01 + 2033A11 + 25A12 = 0�45A01 + 1211A02 + 65�A12 = 0�65A11 � 65�A02 + 3611A12 + 125 A22 = 0�125 �A12 + 14411 A22 = 0: (4.56)This set of equations is remarkably simple. It could be easily extended to the timedependent problem and the resulting linear dynamical system could be easily studied.Solving the above equations results in the expressionsA01 = 8254� 5589 + 2420�21098075�4 + 2363735�2 + 2772144A11 = 1815�4� 1887 + 1210�21098075�4 + 2363735�2 + 2772144



Spherical Harmonic Expansion of the Fokker-Planck Equation 154A02 = 6058� 11178 � 4235�21098075�4 + 2363735�2 + 2772144A12 = 24956254� �1098075�4 + 2363735�2 + 2772144A22 = 183012516� �21098075�4 + 2363735�2 + 2772144 : (4.57)These expressions, together with Equations (4.15) and (4.21), will be used in the non-linear analysis of Chapter 5. The order three approximation is also su�ciently simpleto express here. The nine equations are2033A01 + 23�A11 + 415A02 � 13� = 0�23�A01 + 2033A11 + 25A12 = 0�45A01 + 1211A02 + 65�A12 + 1235A03 = 0�65A11 � 65�A02 + 3611A12 + 125 A22 4835A13 = 0�125 �A12 + 14411 A22 + 487 A23 = 0�2435A02 + 12077 A03 + 127 �A13 = 0�9635A12 � 9635A12 + 72077 A13 + 607 A23 = 0�967 A22 � 607 A13 720077 A23 + 3607 �A33 = 0�3607 �A23 + 4320077 A33 = 0: (4.58)This has solutions for the �rst two coe�cients ofA01 = 334� �12152908460�6 + 454816501139�4 + 2112839412992�2 + 3718545506304D(�) �A11 = 363�20� �6076454230�6 + 222850909897�4 + 893263682080�2 + 1354356023296D(�) �(4.59)where D(�) = 220575288549�8 + 8220314088833�6 + 37561155901808�4+80481969512384�2 + 71589467955200: (4.60)Figures (4.2) and (4.3) show the graphs of A01 and A11 after truncating at orders 2; 3and 4. It can be seen that orders 3 and 4 are almost indistinguishable (and all higherorders) and that even the second order approximation captures the essential behaviour



Spherical Harmonic Expansion of the Fokker-Planck Equation 155of the system. This is also true for the coe�cients A02; A12 and A22 (Figures 4.4 to 4.6).However, the size of the algebraic expressions for the coe�cients vary markedly. Theexpressions quickly become cumbersome and unmanageable after the fourth order.
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Figure 4.4: Graph of the coe�cient A02 with � for orders of approximation of 2, 3 and4.
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Figure 4.5: Graph of the coe�cient A12 with � for orders of approximation of 2, 3 and4. Section 4.3 above shows that A11 represents the x component of the average swim-ming direction and A01 the z component. Figures (4.7) to (4.10) show how the prob-ability distribution, f , varies for increasing vorticity. It is straightforward to see thatthe results are as expected. Note that the line � = 0 stands for a single point on the
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Figure 4.6: Graph of the coe�cient A22 with � for orders of approximation of 2, 3 and4.
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Figure 4.8: A third order approximation to the probability density function, f(�; �) for�0 = 0 when � = 1; � = 0 and � = 0.
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Figure 4.9: A third order approximation to the probability density function, f(�; �) for�0 = 0 when � = 2; � = 0 and � = 0.
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Figure 4.10: A third order approximation to the probability density function, f(�; �)for �0 = 0 when � = 5; � = 0 and � = 0.sphere as does � = �.Convergence is rapid in this case. There are no physical mechanisms that resultin sharply peaked distributions which may cause resolution problems for � = 2:2. Thisis not typically the case for �0 6= 0 as described in the next section. Here, we havechosen a typical value of the parameter �, and in general as � increases (i.e. either Dror B decreases) the distribution becomes more sharply peaked.4.9 Results for �0 6= 0We consider, �rst, the individual terms in � (= �0�e11) and � (= �0�e13) beforecombining them in Section 4.9.3.4.9.1 � varies while � = 0 and � = 0We �nd that the approximation to the cell orientation distribution function, in which� and � = 0, converges rapidly close to � = 0. Otherwise, for low orders of theapproximation, we �nd spurious singularities in the values of the coe�cients A01(�),A11(�), A02(�), A12(�) and A22(�), all of which share the same denominator. As theorder of approximation, R, increases, the singularities get further from the origin (seeFigures 4.11, 4.12 and 4.13). When R = 10 the approximation is well behaved inthe region j�j � 10 but singularities still exist in the region j�j � 10. None of the



Spherical Harmonic Expansion of the Fokker-Planck Equation 159coe�cients are symmetric functions of � about the origin and this is because of the verydi�erent ow �elds, with respect to gravity, for positive or negative e11 (see Figure 4.14).Negative values of e11 reinforce the upswimming of the cell whereas positive valuesdestabilize it. The existence of spurious singularities leads us to the conclusion that
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Figure 4.11: Graph of the coe�cient A01 versus � for a third order approximation.� = � = 0.
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Figure 4.12: Graph of the coe�cient A01 versus � for a seventh order approximation.� = � = 0.there is a physical problem in trying to represent the solutions as spherical harmonics. Ife11 increases (implying e33 decreases, see Figure 4.14) then the cell swimming directionbecomes more and more likely to be along the x axis and less random. This implies
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Figure 4.13: Graph of the coe�cient A01 versus � for a tenth order approximation.� = � = 0.

Figure 4.14: Streamlines at the stagnation point of a pure straining ow, acting on aswimming cell (where ! = e13 = 0). Here, e11 is positive and, hence, e33 is negative.
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Figure 4.15: A seventh order approximation to the probability density function, f(�; �)for �0 = 0 when � = 0; � = 1 and � = 0.
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Figure 4.16: A seventh order approximation to the probability density function, f(�; �)for �0 = 0 when � = 0; � = 2 and � = 0.



Spherical Harmonic Expansion of the Fokker-Planck Equation 162
0

2

1.5

1

0.5

0

-0.5
0

3

2.5

2

1.5

1

0.5

0

0

3

2

1

0

-1

-2

-3

ξ = 4

θϕ

Figure 4.17: A seventh order approximation to the probability density function, f(�; �)for �0 = 0 when � = 0; � = 4 and � = 0.that the distribution becomes more peaked and the number of spherical harmonics maybe insu�cient to represent it. As the order of approximation increases, the problemis alleviated. Figures (4.15) to (4.17) are plots of the probability distribution, f , withincreasing e11 when ! = e13 = 0 and R = 7. It is clear that the distribution becomesmore peaked with the increase in e11. In fact in Figure (4.17) the approximationbecomes negative as the spherical harmonics attempt to resolve f . This is where theapproximation breaks down and is a manifestation of the Gibbs phenomenon in whichthe approximation overshoots the probability density function when it sharply varies.For R > 10 the computer time and space required becomes excessive, and the solutionsbecome unmanageable.4.9.2 e13 varies where ! = 0 and e11 = 0In the same way, we can deal with the case where e13 is the parameter. If ! = e11 = 0then the streamlines are similar to Figure (4.14) but rotated through 45o. A similarargument as before applies, and consequently the cell swimming direction distributionbecomes more and more peaked with e13. A limited range of e13 space has convergentsolutions and this region increases with the approximation order. However, A01(�) isseen to be symmetric about the origin, indicating that the vertical component of theswimming direction is una�ected by the sign of �.



Spherical Harmonic Expansion of the Fokker-Planck Equation 1634.9.3 Combining vorticity and rate-of-strainConsider, for simplicity, the case where e13 is zero but ! and e11 are allowed to vary.One can imagine the situation in which we �x ! to be su�ciently large that the celltumbles, and allow e11 or �0 to increase from zero (see Figure 4.18). For reasonably
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Figure 4.18: Graphical representation of a combined straining ow with vorticity.small values of e11 the cell will continue to tumble but will favour pointing in thedirection of the uid e�ux, i.e. along the x axis. As e11 increases, the cell will spendmore time in the regions marked A and C and less in the regions marked B and D. This
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Spherical Harmonic Expansion of the Fokker-Planck Equation 164process will continue to occur until e11 becomes large enough to prevent the cell frompointing along the z axis and, hence, from tumbling. The gravitational torque acts such
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Figure 4.20: A seventh order approximation to the probability density function, f(�; �)for �0 = 0 when � = 9; � = 2 and � = 0.that it is easier for the cell to escape region A than C. As e11 increases still further, thecell will be constrained in region C or less so in region A. This will lead to a sharplypeaked distribution and, thus, for low orders of the approximation, the method will failand produce unreliable results. As the order of approximation increases, the sphericalharmonics have more of a chance to resolve the true distribution for higher values ofe11. Figure (4.19) shows the two dimensional streamlines for a typical shear ow (ora balance between viscosity and rate-of-strain), and Figures (4.20) to (4.22) show anexample of the distribution becoming peaked, using a seventh order approximation (inthis case for negative �). Figure (4.22) shows that the probability distribution becomesnegative for some values of � and �, in an attempt to resolve the true distribution f .In the absence of vorticity, the solutions behave as in Section 4.9.1, but a smallamount of vorticity broadens the distribution and increases the critical value of �, abovewhich problems of resolution occur. Figures (4.23) and (4.24) show an approximationof order �ve with � and � as parameters. One can clearly see that the solution breaksdown in di�erent regions, with the coe�cient A01 going to plus or minus in�nity. Asimilar picture is produced with � and � as parameters.
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Figure 4.21: A seventh order approximation to the probability density function, f(�; �)for �0 = 0 when � = 9; � = 4 and � = 0. In this case, the cell is almost always pointingdownwards, due to the \barrier" formed by the large values of �.
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Figure 4.23: A �fth order approximation of A01(�; �) with � = 0 (/ e13).
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Figure 4.25: ! and e11 space - highlighting the regions of validity. The solid linesindicate the possibility of spurious singularities and the surrounding shaded regionsindicate unreliable results.resolving problems are identi�ed and a region where reliable results are obtained isproposed. Although Figures (4.23) and (4.25) seem to imply that the function is highlydiscontinuous for most realistic values of N , it does not imply that the method is afaliure. The coe�cient A01(�; �; �) converges to the real distribution for reasonablylarge regions of parameter space. But what are realistic/experimental values for theparameters? Using the de�nition of � as B
 (Equation 3.9), where 
 is a typicalscale for vorticity and rate-of-strain and B is the gyrotaxis orientation parameter (seeTable 3.2), we get � = �0BE11; (4.61)where E11 is a dimensional component of the rate-of-strain tensor. From observations,a typical uid velocity will not exceed 1mm=s and will change over a distance of 1mm.This indicates that in experiments E11 � O(1). Hence, � � O(1). Hence, in normalsituations, the fourth order approximation should be valid.



Spherical Harmonic Expansion of the Fokker-Planck Equation 1684.9.5 Including swimming speed as a random variableIf we also include the e�ects of a random swimming speed, we can calculate the di�usiontensor using Equation (4.21) but in a similar manner to Section 3.7. Figure (4.26)displays a second order approximation for Dxx versus �, in which � = � = 0, withdi�erent values of N (N is de�ned in Section 3.7). Figures (4.27) and (4.28) displayDyy andDzz respectively. From Figures (4.26) to (4.29) we see that the di�usion varies
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Figure 4.26: A graph of Dxx with varying � and N for a second order approximationto f(�; �) with �0 = 0. N increases with Dxx(0) from 1:0 to 2:0.only a small amount and perhaps an isotropic di�usion is justi�ed, however, notice thedi�erences in behaviour between Dxx, Dyy and Dzz around � = 0. The value of N of1:3, for which P6 vanishes in the linear analysis, also has a signi�cant e�ect on the typeof stationary point of Dzz and the sign of the gradient of Dxy at � = 0. In fact Dxylooks very at, at this value of N , for all �. Otherwise, increasing N increases the sizeof the diagonal terms in the di�usion tensor. The linear analysis of the Fokker-Planckequation (Chapter 3) gave values for the di�usion tensor of DH = 0:26 and DV = 0:16for zero ow. The spherical harmonic approximation at second order provides valuesof DH � Dxx(� = 0) = Dyy(� = 0) = 0:2520 (4 d.p.) and DV � Dzz(� = 0) = 0:1886(4 d.p.). Better agreement is obtained for higher orders of approximation. Theexpressions for the di�usion coe�cients, for �0 = 0, will be used in the non-linearanalysis of the next chapter.
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Figure 4.27: A graph of Dyy with varying � and N for a second order approximationto f(�; �) with �0 = 0. N increases with Dyy(0) from 1:0 to 2:0.

0

0.2

0.4

0.6

0.8

-10 -5 0 5 10

ζ

N = 2.0

N = 1.8

N = 1.6

N = 1.4

N = 1.2

N = 1.0

Dzz

Figure 4.28: A graph of Dzz with varying � and N for a second order approximationto f(�; �) with �0 = 0. N increases with Dzz(0) from 1:0 to 2:0.



Spherical Harmonic Expansion of the Fokker-Planck Equation 170

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-10 -5 0 5 10

N = 2.0

N = 1.8

N = 1.4

N = 1.2

N = 1.0

N = 1.6

ζ

Dxz

Figure 4.29: A graph of Dxz with varying � and N for a second order approximationto f(�; �) with �0 = 0. N increases from 1:0 to 2:0.4.10 Extension to a three dimensional ow �eldIn this section we assume that �0 = 0 and, hence, the rate-of-strain in the uid doesnot a�ect the cell orientation. It is reasonable to assume also, owing to the symmetriesof the patterns observed in experiments, that there is no component of vorticity in thez direction. In doing so we can construct an approximation to the di�usion tensor, ina similar manner to the previous sections, with the aim of using the results in a non-linear analysis in order to explore the three-dimensional structure of bioconvection.In particular, the ow �eld can be written in terms of a poloidal velocity �eld (seeSection 5.8.2).We rotate the \plane of solution" about a vertical axis, such that !!! will be per-pendicular to the plane � = 0. The Fokker-Planck equation can be expanded in termsof surface spherical harmonics, as before, and can then be rotated back to its originalcoordinate system within the integral de�nitions of hpi and D.We de�ne the angle of rotation,  , to be = arctan�!1!2�; (4.62)



Spherical Harmonic Expansion of the Fokker-Planck Equation 171where !!! = 0BBB@ !1!20 1CCCA (4.63)and put !2 = !21 + !22. Then hpi = ZS f(�; ��  )p dS: (4.64)Putting �� = ��  thenhpi = ZS f(�; ��)0BBB@ sin � cos (��+  )sin � sin (��+  )cos � 1CCCA dS; (4.65)where we can expand cos (��+  ) = cos �� cos �sin �� sin and sin (��+  ) = sin �� cos +cos �� sin . Hence, hpi = ZS f(�; ��)0BBB@ Q11 cos Q11 sin Q01 1CCCAdS (4.66)which, when f is written as a sum of spherical harmonics as in Section 4.3, implieshpi = 43�0BBB@ A11 cos A11 sin A01 1CCCA : (4.67)In a similar way hppi = ZS f(�; ��)MdS (4.68)where M is equal to0BBB@ sin2 � cos2 ( ��+  ) sin2 � cos (��+  ) sin (��+  ) cos � sin � cos (��+  )sin2 � cos (��+  ) sin (��+  ) sin2 � sin2 ( ��+  ) cos � sin � sin (��+  )cos � sin � cos (��+  ) cos � sin � sin (��+  ) cos2 � 1CCCA :(4.69)Substituting the surface spherical harmonics for f , expanding and evaluating, giveshppi = �0BBB@ 43A00 � 415A02 + 85A22 cos 2 85A22 sin 2 45A12 cos 85A22 sin 2 43A00 � 415A02 � 85A22 cos 2 45A12 sin 45A12 cos 45A12 sin 815A02 + 43A00 1CCCA :(4.70)



Spherical Harmonic Expansion of the Fokker-Planck Equation 172The A's are all functions of ! =p!21 + !22 and by using tan = �!1!2� we can writecos = !1! ;sin = !2! ;cos 2 = !22 � !21!2 ;sin 2 = 2!1!2!2 : (4.71)4.11 DiscussionIn this Chapter we have demonstrated that exact expressions can be obtained, in termsof the �rst �ve coe�cients of the spherical harmonics, for the mean cell swimmingdirection and the approximation to the di�usion tensor.For the case of spherical cells, where �0 = 0, the coe�cients converge very rapidly.The second order approximation captures all of the behaviour (see Figure 4.2), and yetis su�ciently simple to be used in the non-linear analysis of Chapter 5. We also showthat these results can easily be extended to a three-dimensional ow �eld in which thereis no vertical vorticity. This will aid future analysis on non-linear planform selection(see Section 5.8).For the case of non-spherical cells where �0 6= 0 the method may not be the moste�cient means of obtaining a solution, as we require the expressions to be large in orderto obtain reliable results. This is due to the appearance of spurious singularities forlow orders of approximation, related to the physical interaction of vorticity and rate-of-strain. Methods such as �nite di�erences may produce more reliable results. However,there are regions in parameter space where convergence is rapid and it may be possi-ble to patch or smooth over irregularities. This may be particularly straightforward ifwe assume that there are no additional, unexpected features of the coe�cients associ-ated with the interactions of the external couples. Simple, smooth functions could beconstructed from the convergent regions of the coe�cients and known asymptotes fordominant ow conditions (see Brenner & Weissmann 1972 [12] and Pedley & Kessler1992 [86]).Finally, the methods described in this Chapter are su�ciently exible such thatsolutions could be obtained for combinations of taxes. In particular, the interaction of



Spherical Harmonic Expansion of the Fokker-Planck Equation 173geotaxis, gyrotaxis and phototaxis (see Kessler et al. 1992 [67]) could be investigated.



Chapter 5
Non-Linear Analysis
5.1 IntroductionThere are many papers on constructing weakly nonlinear theories in terms of ampli-tude modulations for solutions close to the neutral curve (see Fauve 1985 [31]). Thebioconvection equations do not exhibit Boussinesq symmetry, the reective symmetryabout a horizontal plane due to the application of the Boussinesq approximation, asin the standard Rayleigh-B�enard problem so the analysis is more di�cult. Childress& Spiegel (1978) [21] have obtained an amplitude equation for the weakly non-linearnon-gyrotactic bioconvection model of Childress et al. (1975) [19], with a zero mostunstable wavenumber, and their methods have been used in other contexts (e.g. Chap-man & Proctor (1980) [16], Proctor (1981) [90]). They show that, in their case, thebifurcation to instability is subcritical and, hence, the linear analysis cannot alwaysbe used to predict the wavelength of the initial disturbance. Poyet (1981) [88] andDepassier & Spiegel (1981) [28] have extended these methods for situations in whichthere is a double minimum of the neutral stability curve. With �nite depth gyrotacticbioconvection, however, this process would be very time consuming and may not be ane�cient method of analysis. The di�culties arise from the complexity of the equationsand the uncertainty of the existence of a unique most unstable wavenumber, i.e. therecould exist a balance between a zero and a non-zero most unstable wavenumber, seeChapter 3. We have instead opted to investigate the non-linear mechanisms for gy-rotaxis in \deep" gyrotactic bioconvection. Purely upswimming models ([19]) are notunstable for suspensions of in�nite depth, unlike models incorporating gyrotaxis. Fig-174



Non-Linear Analysis 175ure (5.1) contains pictures of suspensions of Chlamydomonas nivalis being cultured inasks under a bright white light source and shows evidence of long plume structuresin deep suspensions. The �gure also displays evidence of vertically travelling pulsesthat move down the plumes. Observations indicate that larger pulses travel faster thansmaller pulses. The larger pulses can catch the smaller pulses, whereupon they merge(also see Kessler 1985 [62] where pulses are observed in the focusing experiment inFigure 1.5).In this chapter, we consider the fully non-linear equations for in�nite depth and usethe expressions obtained from the spherical harmonic expansion of the Fokker-Planckequation in Chapter 4. Initially, in Section 5.2, we explore the linear analysis consideredby Pedley et al. (1988) [83], which highlights the scalings required for the weakly non-linear analysis of Section 5.4. Then, in Section 5.3, we consider the experimentallyrealisable case of long vertical wavelengths in deep suspensions in order to simplify theequations. This provides us with a set of non-linear partial di�erential equations, the�rst of which involves z in a passive manner. Section 5.4 considers the weakly non-linearanalysis of deep bioconvection for long vertical wavelengths and aims to characterize thebifurcation to instability, thus determining whether the linear analysis can be used topredict the initial pattern wavelengths. In Section 5.5 we consider the horizontal steadystate solutions for long vertical wavelengths by numerically integrating the equationsand in Section 5.6 time dependence is included in the form of horizontally travellingvertical plumes subject to a small forcing ow �eld. Section 5.7 derives an equation forvariations in the z direction and calculates the wavespeed of small amplitude verticallytravelling pulses. Eventually, improvements of the present system are discussed, suchas the inclusion of vertical dependence in the weakly non-linear analysis and possibleextensions to three-dimensional space.We begin by stating the main equations governing the ow and concentration �eldsin an in�nite domain (see Chapter 1):r � u = 0; (5.1)��@u@t + u � ru� = �rpe + nv��g+ �r2u (5.2)and @n@t = �r � [n (u+ Vshpi)�D � rn] : (5.3)
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Figure 5.1: Chlamydomonas nivalis being cultured in asks. Plumes with long verticalscales can be clearly seen. Pulses are generally observed travelling down the plumes.



Non-Linear Analysis 177Non-dimensionalising time with � , velocity with Vs, length with Vs� and concentrationwith n0 (following Pedley et al. 1988 [83], but see Equations 3.92 where we used thesuspension depth to scale distance) thenr � u = 0; (5.4)@tu+ u � ru = �rpe �Rank+ 1Rer2u (5.5)and @tn = �r � [n (u+ hpi) �D � rn] (5.6)where Ra = n0v��g��Vs (5.7)is a Rayleigh number and Re = �V 2s� (5.8)is a type of micro-organism Reynolds number. The non-dimensional gyrotaxis param-eter is now given by � = B� (5.9)(which is a form of P�eclet number), � is still given by� = 12BDr (5.10)and the di�usion tensor is O(1). For the subsequent analysis the problem will be simpli-�ed by assuming �0 = 0. Analytic solutions to the gyrotactic Fokker-Planck equation,as determined in Chapter 4, will be used throughout this chapter. In particular, weintroduce the shorthand for the expressions for hpix and Dxx of Chapter 4, which arenon-linear in � and !. E(�!) � �hpix = �a11 + b11�2!2R(�!) �! (5.11)andA(�!) � Dxx = �13R2 � �a02 � (b02 + b22)�2!2�R� �a11 + b11�2!2�2 �2!2�R2(�!) (5.12)where R(�!) = 1 + r2�2!2 + r4�4!4 (5.13)and the a's, b's and r's are constants which were determined in Chapter 4 (see Table 5.2).
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parameter name expression typical valueCASE 1: � = 1:3s and B = 3:4sRe �V 2s� 5:2� 10�5Ra n0v��g��Vs 5:2� 10�6n0� � = B� 2.6CASE 2: � = 5s and B = 6:3sRe �V 2s� 2� 10�4Ra n0v��g��Vs 2� 10�5n0� � = B� 1.3Table 5.1: Parameter expressions and estimates.

Name Valuea11 0.41182a02 0.081317b11 0.26407b02 0.030809b22 0.066018r2 0.85267r4 0.39611Table 5.2: Table of constants for the mean cell swimming direction vector and di�usiontensor (to 5 s.f.).



Non-Linear Analysis 1795.2 Linear analysisOn perturbing the uniform solution in a suspension of in�nite depth and making thesubstitutions u = �u1 and n = 1+�n1 in Equations (5.4) to (5.6), where � � 1, we canestablish the linear stability of the uniform solution. We use the analysis of Chapter 3,where we make allowances for the di�erent scalings in Equation (3.115), to obtain anequation for the z component of u1;@t �r2u13� = 1Rer4u13 �Rar2n1 +Ra @3@3n1: (5.14)Equation (5.6) becomes@tn1 + hpi0z@zn1 �D0xx@2xn1 �D0zz@2zn1 = �hpi1x(0)r2u13; (5.15)where D0zz and D0xx are vertical and horizontal di�usivities for the zero ow solutionand hpix = hpi0x + ��!hpi1x: (5.16)Consider solutions of the form u13 = Cue�t+i(kx+mz) (5.17)and n1 = Cne�t+i(kx+mz); (5.18)where Cu and Cn are constants to be eliminated. Then�2 +�imhpi0z +D0xxk2 +D0zzm2 + k2 +m2Re ��+k2 +m2Re �imhpi0z +D0xxk2 +D0zzm2��Ra�k2hpi1x = 0: (5.19)This is a rewritten form of the equations found by Pedley et al. (1988) [83] andthe subsequent analysis in this section can be compared with their results. Writing� = �R + i�I and solving for �R and �I gives�I = �0BB@ k2 +m2Re mhpi0z +mhpi0z�RD0xxk2 +D0zzm2 + k2 +m2Re + 2�R1CCA (5.20)and�2R�F 24 (F2 + �R)2(F1 + F2 + 2�R)2 +F4 (F2 + �R)(F1 + F2 + 2�R) +(F1+F2)�R+F1F2�F3 = 0 (5.21)



Non-Linear Analysis 180where F1 = D0xxk2 +D0zzm2, F2 = k2+m2Re , F3 = Ra�k2hpi1x and F4 = mhpi0z. Theneutral curve for modes with zero linear growth is given by �R = 0. This implies(F1 + F2)2(F1F2 � F3) + F 24F1F2 = 0: (5.22)For no vertical variation m = 0, and thenk2c = Khpi1xD0xx ; (5.23)where K = RaRe � (5.24)(see Figure 5.2). But if m 6= 0 then the neutral curve is given by the relationshipK = (k2 +m2)(D0xxk2 +D0zzm2)k2hpi1x 0B@1 + m2hpi0z�k2+m2Re +D0xxk2 +D0zzm2�21CA ; (5.25)and on this curve � has an imaginary part given by Equation (5.20) and thus the per-turbation is oscillatory. Hence, the curve in Figure (5.2) represents a Hopf bifurcationand it is apparent that the modes become more unstable as m decreases to zero. The
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Figure 5.2: Curves of marginal stability for a homogeneous suspension of large depth.Two cases are indicated. If m = 0 then the bifurcation is stationary and the growthrate is zero along the solid diagonal line and the line k = 0. If m 6= 0 then we havea Hopf bifurcation in which the real part of the linear growth rate is zero along thedotted line.most unstable mode occurs when m = 0 and here the neutral curve represents a sta-tionary bifurcation. In this case, the linear growth rate of a slightly supercritical mode



Non-Linear Analysis 181may be rewritten, using Equations (5.11) and (5.12), as� = �k22 �A(0)Re + 1Re �� k2Reqk2 (A(0)Re � 1)2 � 4ReKE0(0): (5.26)and is plotted in Figure (5.3). This expression will be expanded in Section 5.4 to
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Figure 5.3: A plot of the linear growth rate for a mode with m = 0 and horizontalwavenumber k, for a value of the parameter K slightly above the critical value of 0.Here, Re = 10�3 and K = 0:1.motivate the scalings for a weakly non-linear analysis.5.3 Long vertical wavelength approximation (m � �) for2-d non-linear solutionsWe can make use of the long length scale in the z direction by scaling z with a smallparameter, �. First, consider a two dimensional solution in the xz-plane and put u =curl(� j), where  is the stream function. Then u = @z , w = �@x and ! = r2 .Equations (5.4) to (5.6) give@tr2 � 1Rer4 + J(r2 ; ) = Ra @xn (5.27)and @tn+ J(n;  ) +r � (nhpi)�r � (D � rn) = 0 (5.28)where J is the Jacobian de�ned byJ(n;  ) = @xn@z � @zn@x : (5.29)



Non-Linear Analysis 182Putting Z = �z we obtain@t(@2x+�2@2Z) � 1Re(@2x+�2@2Z)2 +�@Z (@2x+�2@2Z)@x ��@x (@2x+�2@2Z)@Z = Ra @xn(5.30)and@tn+�@Z @xn��@x @Zn+0@ @x�@Z 1A�(nhpi)�0@ @x�@Z 1A�24D �0@ @x�@Z 1An35 = 0 (5.31)where hpi and D are both functions of �! = �(@2x + �2@2Z) . We writen(x;Z; t) = n0(x;Z; t) + �n1(x;Z; t) + :::::: (5.32)and  (x;Z; t) =  0(x;Z; t) + � 1(x;Z; t) + :::::: (5.33)where ni and  i (i = 0; 1; :::) are in general determined by non-linear partial di�erentialequations in terms of the dependent variables. To zero order in �@t@2x 0 � 1Re@4x 0 = Ra@xn0 (5.34)and @tn0 + @x �hpi0xn0�� @x �D0xx@xn0� = 0 (5.35)where we have used hpix = hpi0x + �hpi1x +O(�2) (5.36)and similarly for Dxx. Here, the superscript 0 means zeroth order in � and x meansthe x component. These equations are the same as if we had just assumed no verticalvariation, but all the functions of integration in the solution will depend on Z andcan be determined from the solvability conditions at higher orders. Rewriting theseequations with p = �@2x 0 = �! +O(�) (5.37)gives Re@tp = @x �@xp+Kn0� (5.38)and @tn0 = @x �A(p)@xn0 +E(p)n0� (5.39)



Non-Linear Analysis 183where K = RaRe �: (5.40)The linear analysis of the previous section could be repeated here by further expandingin the x direction.5.4 Amplitude equations for the non-linear saturation ofinitial disturbances from the homogeneous solutionAs unstable linear disturbances grow in an exponential fashion, non-linear terms becomemore and more signi�cant. Translational invariance in space, x ! x+ x̂, implies thatthe evolution equation of any instability of the amplitude, A, of a solution must beinvariant under the transformation A ! Aeik̂x̂, and hence the �rst translationallyinvariant term to appear up to third order is jAj2A. Eventually, the third order termsare of a comparable order to the �rst order terms and may a�ect the growth of thesolution. If third order terms counteract the linear growth then the bifurcation toinstability is said to be supercritical. If, however, the third order terms aid the growthof the linear disturbance then the bifurcation is said to be subcritical and one must lookto higher orders in order to saturate the growth of the leading order terms. Subcriticalbifurcations imply the existence of stable bioconvecting solutions below the criticalparameter value and, hence, below the neutral curve. (See Coullet & Fauve 1985 [24]and Fauve 1985 [31] for discussions on amplitude equations, and Buzano & Golubitsky(1983) [13] and Golubitsky et al. (1984) [36] for the general form of amplitude equationson a hexagonal lattice). It is possible, in most systems, to generate a long wavelengththeory of the evolution of initial disturbances close to the critical point (see Childress& Spiegel 1978 [21], Chapman & Proctor 1980 [16] and Knobloch 1990 [69]). However,for this model we are unable to �nd such an amplitude equation and, at best, thelinear theory is recovered at each attempt. We choose instead to derive a Landauequation (Schl�uter et al. 1965 [101]) which describes the weakly non-linear behaviourof the system close to a general point on the neutral curve, for which k 6= 0, andto investigate the nature of the bifurcation to instability close to the critical point atk = K = 0.First we will motivate our scaling by expanding the growth rate of Equation (5.26)



Non-Linear Analysis 184in terms of (K �Kc) and (k � kc),� = � @�@K�c (K �Kc) +�@�@k�c (k � kc) + h:o:t: (5.41)where the subscript c implies that the function is evaluated at a point on the neutralcurve. We �nd that� = �� E0(0)A(0)Re + 1� (K �Kc) +�� 2A(0)kcA(0)Re + 1� (k � kc) + h:o:t: (5.42)where kc is found from the linear analysis to be kc = q�KcE0(0)A(0) . Supposing that theamplitude of a solution on the neutral curve is modulated by f(X;T ), for long lengthand time scales X and T , then multiplying Equation (5.42) by f̂ and taking the inverseFourier transform gives the leading order form of the amplitude equation for small but�nite amplitude disturbances (see Fauve 1985 [32]). Hence,fT = �� E0(0)A(0)Re + 1� (K �Kc)f +� 2A(0)kcA(0)Re + 1� i @f@X + h:o:t: (5.43)This indicates that we should scale time, 1=(K �Kc) and x by the same small scale.We also need to scale p such that the higher order terms appear in the equations atthe same order as the terms in Equation (5.43) above. De�ning our small parameter �(where 1� � � �) by �2K2 = (K �Kc) +O(�3) (5.44)where K2 measures the distance from criticality, then this leads us to the scalings andexpansions T = �2tX = �2x@x 7�! @x + �2@Xn0(x;X; T ) = 1 + �n1(x;X; T ) + �2n2(x;X; T ) + :::p(x;X; T ) = �p1(x;X; T ) + �2p2(x;X; T ) + ::: (5.45)and, for now, consider K = Kc + �K1 + �2K2 + �3K3 + ::: (5.46)where we shall show that K1 = 0. As E is odd and A is even, we can writeE(p) = ��p1 + �2p2 + :::�E0(0) + 13! ��3p31 + :::�E000(0) + ::: (5.47)



Non-Linear Analysis 185and A(p) = A(0) + 12 ��2p21 + 2�3p1p2 + �4p22 + :::�A00(0) + ::: (5.48)Hence, substituting these expansions and scalings into Equations (5.38) and (5.39) givesRe�3@T (p1 + �p2 + :::) = � �@2x + 2�2@x@X + �4@2X� (p1 + �p2 + :::)+� �Kc + �K1 + �2K2 + :::� �@x + �2@X� �n1 + �n2 + �2n3� (5.49)and �3@T (n1 + �n2 + :::) = � �@x + �2@X� �E0(0) (p1 + �p2 + :::) �1 + �n1 + �2n2 + :::�+ �A(0) + 12A00(0) ��2p21 + :::�� �@x + �2@X� �n1 + �n2 + �2n3 + :::�� : (5.50)The lowest orders of Equations (5.49) and (5.50) are@2xp1 +Kc@xn1 = 0 (5.51)and E0(0)@xp1 +A(0)@2xn1 = 0 (5.52)which imply that 0@ p1n1 1A = f(X;T )0@ �A(0)kiE0(0)1 1A eikx + c:c: (5.53)where k = 0 or q�KcE0(0)A(0) . This de�nes the piecewise continuous neutral curve seenin Figure (5.2). We choose to take the non-trivial root and, hence, consider a solutionnear that part of the neutral curve that gives spatial pattern. If Kc is small then thissolution is close to the trivial critical solution at k = 0. The next order gives the twoequations @2xp2 +Kc@xn2 = �K1@xn1 (5.54)and E0(0)@xp2 +A(0)@2xn2 = �E0(0)@x (p1n1) : (5.55)Clearly @xn1 is a secular term and @x (p1n1) is not. Solvability implies that the secularterm is orthogonal to the solution of the homogeneous equation and, in this case, thisimplies that the secular term should vanish and, hence, that K1 = 0. This is consistent



Non-Linear Analysis 186with our predicted scalings (Equation 5.44). The general solution for these equationsis 0@ p2n2 1A = f2(X;T )0@ ab 1A eikx + c:c:+ g(X;T )0@ de 1A e2ikx + c:c: (5.56)We choose a = b = 0 as this part of the solution can be combined with the leadingorder solution. Substituting Equation (5.56) back in to Equations (5.54) and (5.55),we get that g(x; T ) = f2(X;T ); (5.57)d = ikA(0)6E0(0) and e = 13 : (5.58)The next orders give@2xp3 +Kc@xn3 = Re@T p1 �K2@xn1 �Kc@Xn1 � 2@x@Xp1 (5.59)and E0(0)@xp3 +A(0)@2xn3 = @Tn1 �E0(0)@x (p2n1)�E0(0)@x (p1n2)�E0(0)@Xp1 � 2A(0)@x@Xn1 � 12A00(0)@x �p21@xn1� : (5.60)The solvability condition (see Ince 1956 [51]) requires thatZ 2�k0 uHNdx = 0 (5.61)where H means the Hermitian, u is the solution to the adjoint problem andN indicatesthe secular terms in the inhomogeneous problem. Hence, asuH / � E0(0)ik ; 1 � e�ikx + c:c: (5.62)then the solvability condition becomes0 = Z 2�k0 �E0(0)k �ie�ikx � ieikx���RefT A(0)kiE0(0) eikx +Re �fT A(0)kiE0(0) e�ikx� K2ikfeikx +K2ik �fe�ikx �KcfXeikx �Kc �fXe�ikx � 2fXA(0)k2E0(0) eikx�2 �fXA(0)k2E0(0) e�ikx�+ �e�ikx + eikx��fT eikx + �fT e�ikx� E0(0) ��2k2A(0)6E0(0) f2e2ikx + 2k2A(0)6E0(0) �f2e�2ikx��feikx + �fe�ikx�+ ��ikA(0)6E0(0) f2e2ikx + �ikA(0)6E0(0) �f2e�2ikx��ikfeikx � ik �fe�ikx�



Non-Linear Analysis 187+ �2ikA(0)3E0(0) f2e2ikx � 2ikA(0)3E0(0) �f2e�2ikx���A(0)ikE0(0) feikx + A(0)ikE0(0) �fe�ikx�+ �13f2e2ikx + 13 �f2e�2ikx��A(0)k2E0(0) feikx + A(0)k2E0(0) �fe�ikx��A(0)ikfXeikx +A(0)ik �fXe�ikx + 2A(0)ikfXeikx � 2A(0)ik �fXe�ikxi�A00(0)� A(0)E0(0)�2 h��ikfeikx + ik �fe�ikx��k2feikx + k2 �fe�ikx��ikfeikx � ik �fe�ikx�+ 12 ��ikfeikx + ik �fe�ikx�2 ��k2feikx � k2 �fe�ikx���� dx: (5.63)This implies thatfT = � �K2E0(0)A(0)Re + 1� f ���KcE0(0) + 9K2cA00(0)6(A(0)Re + 1) � jf j2 f + 2p�KcE0(0)A(0)A(0)Re + 1 ! ifX(5.64)(and a conjugate equation for the complex conjugate of f) and represents the non-linearsaturation of linear modes.The ifX term is invariant to all of the relevant symmetries and is a consequenceof prescribing a periodic domain of size L = 2�=kc. The term represents correctionsto the amplitude equation for small variations of the wavenumber from kc and can beremoved by the transformations X 0 = X + i�T (5.65)and T 0 = T; (5.66)where � =  2p�KcE0(0)A(0)A(0)Re + 1 ! ; (5.67)such that fT �! fT 0 + i�fX0 : (5.68)For the special case at the critical point, where k = 0, the ifX term vanishes. As Kcdecreases to zero, the third order term tends to zero but, crucially, does so from below.The multiplier of the jf j2f term is negative provided Kc > 0 and�E0(0) > �9KcA00(0): (5.69)E0(0) is always negative and A00(0) is positive provided A(p) has a minimum at p = 0.This occurs if and only if N > 1:0206 (see Chapter 4 and Figure 4.26). Hence, if either



Non-Linear Analysis 188N > 1:0206 (very likely) orKc is small but positive, then the multiplier of the jf j2f termis negative. We conclude that the bifurcation to instability is supercritical (for examplesee Coullet & Fauve 1985 [24]; Schl�uter et al. 1965 [101]) and is our main result in thissection. This implies that the linear analysis is useful for predicting the wavenumberof the initial disturbance from equilibrium. We could go on to explore solutions andstabilities of the amplitude equation as in Fauve (1985) [32, 31], where the Eckhausand zig-zag instabilities are investigated, but solutions of an obvious extension to thetheory, where the vertical wavelength is non-zero, may be more illuminating (see thediscussion in Section 5.8). In particular, we would obtain a Ginzburg-Landau equationto describe temporal and spatial evolution of the solution amplitude (see Newell &Whitehead 1969 [81]; Chat�e 1994 [17]).5.5 Steady state solutionWe look for a steady solution to Equations (5.38) and (5.39). The time-independentequations can be integrated directly to obtain the equationspx +K �n0 � �� = 0 (5.70)and A(p)n0x +E(p)n0 = C2 (5.71)where C2 and � are in general unknown functions of Z. Applying boundary conditionssuch that p = 0 when n0x = 0 (i.e. that vorticity is zero in the centre of the plume)then C2 � 0. These are the only boundary conditions imposed. Integrating the �rstequation over x we �nd that �n0	x = �(Z) (5.72)where f�gx is a space average over x. As n0 is a normalized quantity then��n0	x	Z = f�(Z)gZ = 1: (5.73)To reduce the number of parameters, we could consider the equations space averagedover the vertical direction and this would result in � being replaced by a 1 and thesolutions would be vertically averaged. However, we choose instead to consider thechange of variables N = n0�(Z) (5.74)
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Figure 5.4: Orbits for K� = 0:1 going clockwise with increasing x.and K�(Z) = �(Z)K: (5.75)This implies that the time-dependent equations becomeRe pt = (px +K� (N � 1))x (5.76)and Nt = (A(p)Nx +E(p)N)x ; (5.77)where there is now only one parameter, K�(Z). Changing variables again by puttingq = ln (N) (5.78)we �nd that the time dependent equations becomeRe pt = (px +K� (eq � 1))x (5.79)and eqqt = (eqA(p)qx + eqE(p))x : (5.80)
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Figure 5.5: Pro�les of the orbits given in Figure 5.4. Examples of q (= ln (n0)) varyingin the x direction for K� = 0:1.The new steady system is Hamiltonian and can be written as@xp= � @qH (5.81)and @xq = @pH; (5.82)where H is given by H = K� (eq � q)� Z p0 E(p0)A(p0)dp0: (5.83)This system of equations can be integrated explicitly using methods such as fourthorder Runge-Kutta schemes, and the easiest way to do this is to consider the equationsas a dynamical system in the dependent variable x and to use one of the dynamical sys-tems packages available, such as DsTool2 by Guckenheimer, Myers, Wicklin & Worfolk(Cornell University, 1995). All of the orbits are closed and thus all of the solutions areperiodic. Some of the closed orbits of this system are represented in Figures (5.4) and(5.6) and clearly there are an in�nity of possible solutions. Their wavenumbers, how-ever, are restricted to a small range from zero to some maximum value obtained from
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Figure 5.6: Orbits for K� = 1 going clockwise with increasing x.the numerical solutions. Thus, in a periodic domain of a speci�ed size, there are �nitelymany steady state solutions. Figures (5.4) and (5.5) display the periodic curves of p(x)and q(x) for K� = 0:1, and shows how they increase their wavelength with increasingamplitude. Figures (5.6) and (5.7) describe the system when K� is raised to 1. Forall values of K� the pattern wavelength increases with its amplitude. Therefore, smallamplitude solutions give the maximum wavenumber. The small amplitude solutionsare precisely those given by the linear analysis of Section 5.2. Hence, the maximumwavenumber is given by kc =s�KcE0(0)A(0) ; (5.84)from Equation (5.23). This is consistent with the form of the amplitude equationgiven in Section 5.4. However, the system is structurally unstable in that if a smallperturbation displaces a solution from one trajectory to another then it will stay on thenew trajectory (see an example of a similar system, by Lotka and Volterra, in Murray,1990 [80]). We do not know the �nal pattern unless we know every perturbation fromthe homogeneous state. It is thus necessary to consider higher orders in order to
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Figure 5.7: Pro�les of the orbits given in Figure 5.6. Examples of q (= ln (n0)) varyingin the x direction for K� = 1.



Non-Linear Analysis 193establish the stability of the greater system.We have shown, here, that it is possible to construct steady state solutions from the�rst order equations, non-linear in x, describing a horizontal balance between di�usionand gyrotaxis. These solutions are only dependent on Z through the functions ofintegration, and will be used in later sections when investigating the system at higherorders.5.6 Travelling wave solutionIn certain special situations it is possible to obtain time dependent solutions. In Sec-tion 5.8 we shall discuss the construction of similarity solutions for the time dependentproblem and in this section we shall describe a class of solutions that provide horizon-tally travelling waves. In particular we shall investigate a travelling wave solution thatleaves in its path a regular array of travelling plumes. It is �rst necessary to breakthe symmetry of the system and impose a \background vorticity", in which we simplyenforce that p = p0 at x =1 where p0 is a positive constant. For example, a constantuid velocity gradient in the horizontal direction would be su�cient.Consider � = x� ct, where without loss of generality we assume c � 0, then�cRe p0 = �p0 +K�N�0 (5.85)and �cN 0 = �A(p)N 0 +E(p)N�0 (5.86)where 0 means di�erentiation with respect to �. This implies thatp0 = K�(1�N)� cRe p+ C1 (5.87)and N 0 = �E(p)N + cN + C2A(p) : (5.88)For a rightward travelling wave, we require that N = 1, p = p0 and N 0 = p0 = 0 at� = 1 where p0 is our background vorticity. As N represents the concentration ofcells, then we need to enforce N � 0 8 � 2 IR. That is to say that no trajectory thatasymptotes to (p;N) = (p0; 1) should cross the line in phase space given by N = 0.
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Figure 5.8: Nullclines for a typical travelling wave system where c + E(p0) � 0. Thesaddle point, B, allows the possibility of a homoclinic orbit around the focus, A, andas the focus, A, changes stability a limit cycle can develop. This ensures the existenceof a Hopf bifurcation. The equilibrium point C is not within the region of realistic cellconcentrations.



Non-Linear Analysis 195Applying the boundary conditions to Equation (5.85) implies that C1 = cRe p0. Theboundary conditions applied to Equation (5.86) imply thatc+ C2 = �E(p0): (5.89)This enables us to rewrite the equations asp0 = cRe(p0 � p) +K�(1�N) (5.90)and N 0 = [c (1�N) + (E(p0)�E(p)n)]A(p) : (5.91)Hence, there is a point of equilibrium at (p0; 1). Linearizing about this point andcalculating the eigenvalues, �, corresponding to the principal linear growth rates, we�nd � = �12 �cRe + c+E(p0)A(p0) �� 12s�cRe� c+E(p0)A(p0) �2 + 4K�E0(p0)A(p0) (5.92)and this implies that we have either a stable (with respect to �) focus or node or asaddle point. We are particularly interested in the stable focus as is represents growingoscillations travelling to the right. The other two possibilities allow unbounded cellconcentrations and will not be considered further. For the stable focus to exist werequire <(�) < 0, which implies c > �E(p0)A(p0)Re + 1 � 0; (5.93)and =(�) 6= 0, which implies c� < c < c+ (5.94)where c� = E(p0)A(p0)Re� 1 � 2A(p0)A(p0)Re� 1s�K�E0(p0)A(p0) : (5.95)Hence, we require E0(p0) < 0 (5.96)for real, non-zero values of c�. The nullclines for this system are given byn = cReK� (p0 � p) + 1 (5.97)
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Figure 5.9: Travelling wave solutions exist for a small range of wavespeeds, c, given theparameters Re, K� and p0. Here K� = 0:1, Re = 0:4 and p0 is plotted along the x axis.The hatched region indicates where travelling wave solutions exist. Here, the value ofRe is arti�cially large in order to indicate the hatched region. Normally Re � 10�4 andthe region is much smaller.
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Figure 5.10: Trajectories for the travelling wave system (clockwise with �) where anunstable limit cycle is clearly observed. The + indicates the location of the saddlepoint. K� = 0:1, p0 = 0:4, Re = 0:4 and c = 0:15.
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Figure 5.11: Cell concentration varying with x � ct for waves travelling to the right.K� = 0:1, p0 = 0:4, Re = 0:4 and c = 0:15.and n = c+E(p0)c+E(p) (5.98)and are plotted in Figure (5.8). This �gure enables us to see the location of two otherequilibrium points and to establish their stability from geometrical considerations. Thesaddle point is the second most important feature and it clearly allows the possibil-ity for the usual homoclinic orbit bifurcation to a limit cycle around the focus (seeBalmforth 1995 [2]). A Hopf bifurcation potentially exists and it is the objective of thesubsequent analysis to establish conditions for the existence of the Hopf bifurcation. Ifthe trajectory starts in the neighbourhood of (p;N) = (p0; 1), then we also require thatN 0 � 0 on N = 0 for N to be bounded below by at least N = 0. If N = 0 thenN 0 = � C2A(p) (5.99)and hence we require that C2 be positive. This implies that0 � c � �E(p0): (5.100)



Non-Linear Analysis 199The maximum wavespeed is given by c = �E(p0) and this occurs when C2 = 0. Clearlyno travelling wave solutions exist if there is no background vorticity as c = 0 if p0 = 0.Collecting all of these necessary conditions together for a limit cycle to exist gives0 � �E(p0)A(p0)Re + 1 < c � �E(p0) (5.101)and c� < c < c+; (5.102)where c� = E(p0)A(p0)Re� 1 � 2A(p0)A(p0)Re� 1s�K�E0(p0)A(p0) (5.103)and E0(p0) < 0 (5.104)(see Figure 5.9). If K� increases then the region described by Equation (5.102) growsin size. Decreasing K� has the opposite e�ect but the region only vanishes if K� � 0.Similarly, if Re increases the region described by Equation (5.101) increases in size andif Re decreases the region also decreases but only vanishes if Re � 0. The two regionsalways coincide near to p0 = 0 and c = 0. A limit cycle is seen to exist for certainlimited choices of c by direct integration of the governing equations (see Figures 5.10and 5.11) which corresponds exactly with the region given in Figure 5.9. This impliesthat if the pattern nucleates at a point then plumes will spread out, where the wavespeed is con�ned to a small range, and increase in amplitude until a regular pattern isreached. This theoretical prediction for a small range of values of c could be comparedwith experiments once a suitable experimental arrangement has been formulated.5.7 Vertical variation of the steady state solutionsIn this section we develop a theory to help explain the pulses that travel down thelong plume structures, as seen in Figure (5.1). Consider the steady state solutionsof Section 5.5 and allow these solutions to vary slowly with time and in the verticaldirection. If we rescale time with the small parameter �, such that T = �t, then wecan use the equations of Section 5.3 to obtain the leading order equations for a smallvariation in the z direction. Hence, the �rst order equations arepx +K �n0 � �(Z; T )� = 0 (5.105)



Non-Linear Analysis 200and n0x + E(p)A(p)n0 = 0; (5.106)and at second order we get1Re(@4x 1) + Ra @xn1 = @T (@2x 0) + @Z 0@3x 0 � @x 0@2x@Z 0 (5.107)and@x �n1hpix(�@2x 0) + �@2x 1n0hpix0(�@2x 0)�Dxx(�@2x 0)@xn1 � �@2x 1@xn0Dxx0(�@2x 0)�= �@Tn0 + @x �Dxz(�@2x 0)@Zn0�+ @Z �Dxz(�@2x 0)@xn0 � hpiz(�@2x 0)n0�+@x 0@Zn0 � @Z 0@xn0 (5.108)where Dxz(�@2x 0) = 45A12(�@2x 0)� 16�9 A11(�@2x 0)A01(�@2x 0); (5.109)hpiz(�@2x 0) = 4�3 A01(�@2x 0) (5.110)and the Aij are given in Equation (4.57). The solvability condition can be found byintegrating the second of these equations over a horizontal wavelength. If f�gx representsa space average in the x direction, as before, then@T �n0	x = @Z �Dxz(p)@xn0 � hpiz(p)n0 + p2K��x (5.111)where p = �@2x 0. We can simplify this equation to be in terms of p and �, using the�rst order equations. Hence,@T�(Z; T ) = @Z �B(p)�(Z; T ) + p2K��x : (5.112)where B(p) = hpiz(p)�Dxz(p)E(p)A(p) : (5.113)Clearly this equation possesses travelling wave solutions and is similar to the equationsdiscussed by Whitehead (1988) [121] where soliton like pulses were discovered travellingup magma ducts in a viscous matrix. It is the purpose of the following analysis toinvestigate small amplitude solutions where we will be able to derive the wave speedbut not its form.



Non-Linear Analysis 201First, we write �(Z; T ) = 1 +M(Z; T ); (5.114)where jM(Z; T )j � 1, and expand p and n0 in terms of M(Z; T ) such thatp(x;Z; T ) = p0(x) +M(Z; T )p1(x) +O(M2) (5.115)and n0(x;Z; T ) = n0(x) +M(Z; T )n1(x) +O(M2): (5.116)At �rst order we regain the non-linear equations for solutions in the horizontal directionwith zero vertical variation, i.e. p0x +K (n0 � 1) = 0 (5.117)and n0x + E(p0)A(p0)n0 = 0: (5.118)The next order in M(Z; T ) provides a set of linear equations for the perturbations tothe steady state solutions which are both independent of M(Z; T ), Z or T . Namely,p1x +K (n1 � 1) = 0 (5.119)and n1x + E(p0)A(p0)n1 +�E(p0)A(p0)�0 n0p1 = 0: (5.120)This last system describes a forced oscillator (see Thompson & McRobie 1993 [107] fora discussion of the complexities of driven oscillators) and potentially has solutions withwavelengths that are quotient multiples of the unperturbed system. We can explicitly�nd solutions with a multiple of the wavenumber of the unperturbed system such thatthey abide by the same boundary conditions. Hence, more than one closed orbit ispossible for p1 and n1 given p0 and n0.Hence, using Equations (5.114) and (5.115) in Equation (5.112) gives@TM(Z; T ) = �B0(p0)p1 + 2p0p1K� �x @ZM(Z; T ) +O(M2): (5.121)If we look for a travelling wave solution (see Figure 5.1) and put � = Z � ct then@�M(�) (B + c) = 0 (5.122)
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Figure 5.12: Perturbation, p1, to p0 varying with x for a vertically travelling pulse.Here K� = 0:01 with the initial conditions n0 = 5, p0 = 0, n1 = 13:8 and p1 = 0.where B = �B0(p0)p1 + 2p0p1K� �x (5.123)and, thus, we can determine the wave speed, c = �B, but not the wave form. The fullproblem in Equation (5.112) is su�cient to determine the waveform. As an example,we �nd a particular solution for n1, p1 and c given the parameter K = 0:01 and theconditions n0 = 5 when p0 = 0 (i.e. just one of an in�nite number of possible orbits).We �nd a closed orbit with the initial conditions p1 = 0 and n1 = 13:8, as illustrated inFigures (5.12) and (5.13), which has the same wavelength as the unperturbed solution.Hence, we can use the functions p0 and p1 to calculate c.To compare the theory with the experiments we should measure in the experimentsthe minimum and maximum concentration pro�les. Linear theory (Equation 5.116)gives n0 as the average of the two and n1 as half of their di�erence. Substituting n0and n1 into Equations (5.118) and (5.120), solving for p0 and p1 and substituting inEquation (5.123) gives the wavespeed, c. This should be compared with the observedwavespeed.
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Figure 5.13: Perturbation, n1, to the cell concentration, n0, varying with x for avertically travelling pulse. Here K� = 0:01 with the initial conditions n0 = 5, p0 = 0,n1 = 13:8 and p1 = 0.5.8 Discussion and future improvementsIn this section we shall discuss the work from the whole chapter paying particularattention to areas of possible future research. Some detail of the theories for two likelyadvances will be given explicitly.We have shown that it is possible to expand the full non-linear equations forstochastic, gyrotactic bioconvection in the vertical direction, guided by experimentalobservations of plumes and the linear analysis. At �rst order, we obtain a set of partialdi�erential equations in x and t for which we derive a Landau equation for the non-linear saturation of linear modes close to the curve of neutral stability. We show thatthe bifurcation to instability is supercritical and, hence, that the linear theory is usefulfor predicting the wavenumber of the initial instability from equilibrium in a deepchamber. This analysis should be repeated on the full non-linear equations allowing forthe Hopf bifurcation resulting from non-zero vertical variation. The �nite depth of arealistic suspension may indicate that we should investigate the system for a small, but



Non-Linear Analysis 204non-zero, �xed value of the vertical wavenumber, m, and we would therefore obtain anon-zero critical wavenumber and a non-zero critical parameter, K (see Figure 5.2).From the long vertical wavelength expansion we have obtained, at �rst order, aHamiltonian system which describes steady state solutions. These solutions are depen-dent on a function of integration, K�, which is itself dependent on z.We go on to consider a horizontally travelling vertical plume solution of the �rstorder non-linear partial di�erential equations. We obtain a set of waveforms and a verysmall range of possible wavespeeds. These results could be directly compared withexperiments once a suitable experimental arrangement has been formulated.Finally, we investigate the second order equations for the long vertical wavelengthapproximation and obtain an amplitude equation from a solvability condition thatdescribes vertically travelling pulse solutions on top of the steady state solutions alreadyderived. We then assume that the vertical variation is itself small and obtain a set offour ordinary di�erential equations independent of z. We use the solutions of theseto calculate the wavespeed. However, for this approximation, we cannot calculate thewaveform. A future improvement would be to investigate the weakly non-linear theoryof this amplitude equation and, hence, solve for the waveform. Again, these resultscould be compared with experiments once careful measurements have been obtainedfor both wavespeeds of small amplitude pulses and pro�les of the plume concentrations.This is necessary as the wavespeed is dependent on the cell concentration pro�le of theplume.5.8.1 Similarity solutionsSimilarity solutions for Equations (5.38) and (5.39) describing zero vertical variationcannot be obtained for the general forms of the di�usion, A(p) (Equation 5.12), andthe gyrotaxis, E(p) (Equation 5.11), terms. Following a suggestion of Dr. Peter Hydon(personal communication, 1996) a simpli�cation of A(p) and E(p) could lead to sim-ilarity solutions with a similar behaviour to the original system. The di�usion term,A(p), is plotted in Figure (4.26) and it can be seen that it is rather at. Therefore, weassume that A(p) = a0; (5.124)



Non-Linear Analysis 205where a0 is a constant. Equation (5.11) implies that for small pE(p) � e0p; (5.125)for constant e0, and if p is large then E(p) � e1=p (see Figure 4.3). Thus, we considerthe di�usion to be constant and E(p) to be made up of a piecewise continuous functionof a linear part and a decay. For small p we have the set of equationsRept = (px +Kn)x (5.126)and nt = (a0nx + e0pn)x (5.127)with particular solutions n = 1t N(�) (5.128)and p = 1ptP (�); (5.129)where � = xpt : (5.130)This leads to the two ordinary di�erential equationsP 00 +KN 0 = �Re2 (P + �P 0) (5.131)and a0N 00 + e0(N 0P +Np0) = ��N + �2N 0� : (5.132)We can integrate the �rst to giveP 0 = �K(N � 1) + Re2 �P: (5.133)Hence we have a three-dimensional non-autonomous dynamical system or, by introduc-ing a new parameter, Q, such that Q0 = 1, a four-dimensional autonomous dynamicalsystem.Similarly, for large p we have the systemRept = (px +Kn)x (5.134)



Non-Linear Analysis 206and nt = (a1nx + e1np )x (5.135)where we may assume the di�usion to be a di�erent constant to the one above. Thishas particular solutions n = N(�) (5.136)and p = ptP (�); (5.137)where � = xpt : (5.138)This leads to the two ordinary di�erential equationsP 00 +KN 0 = Re2 (P � �P 0) (5.139)and a1N 00 + e1�NP �0 = ��2N 0: (5.140)Both of these systems could display complex behaviour and should be studied indetail. Time and space do not permit that here.5.8.2 Extension to a three-dimensional ow �eldAnother possibility for future work would be to investigate the three-dimensional struc-ture of deep bioconvection. It may be assumed, from observations, that the vorticity inthe vertical direction is zero. Hence, we can use the spherical harmonic approximationsdeveloped in Section 4.10 for a three-dimensional ow �eld in the absence of vorticityin the vertical direction. Therefore, we propose the purely poloidal velocity �eld, F ,such that u = r^r ^ (Fk) (5.141)which gives r^ (Fk) = 0BBB@ @yF�@xF0 1CCCA ; (5.142)



Non-Linear Analysis 207u = 0BBB@ @x@zF@y@zFr2HF 1CCCA (5.143)and !!! = r^ u = 0BBB@ �@yr2F@xr2F0 1CCCA ; (5.144)where r2H is the horizontal Laplacian. We again make use of the method used to deriveEquation (3.115) and apply Equations (5.142) to (5.144) which gives�@tr2r2HF = �A1(F )�A2(F ) + Rar2Hn+ 1Rer4r2HF (5.145)and @t = �@xn@x@zF � @yn@y@zF + @znr2HF �r � (nhpi �D � rn) ; (5.146)where the non-linear operators, A1(F ) and A2(F ), are given in Appendix D. We canproceed as in Section 5.3 by introducing a long vertical wavelength, Z = �z where�� 1, to obtain @tr4HF 0 = Rar2Hn0 + 1Rer6HF 0 (5.147)and @tn0 = �rH � �n0hpi(r2HF 0)�D(r2HF 0) � rHn0� ; (5.148)where n(x;Z; t) = n0(x;Z; t) + �n1(x;Z; t) + :::::: (5.149)and F (x;Z; t) = F 0(x;Z; t) + �F 1(x;Z; t) + :::::: (5.150)As before, these equations are not explicitly dependent on Z but the functions ofintegration will be.We can now use the expressions given in Section 4.10 for the terms hpi and D. Toproceed further we will have to consider particular forms for n0 and r2HF 0, for examplewe may introduce hexagonal or square planforms (see Buzano & Golubitsky 1983 andGolubitsky et al. 1984). These equations may be used in future analysis to predict thethree-dimensional patterns in gyrotactic bioconvection and to analyse their stability.



Chapter 6
Conclusions
Bioconvection occurs as a result of the passive or active orientation mechanisms of manymicroscopic swimming individuals and is realised as the bulk motion of suspensions onmuch larger scales than the individuals involved. Therefore, it requires modelling atevery scale to fully understand the system.In this thesis we have shown that it is possible to perform controlled experimentson bioconvection and to develop theoretical techniques to analyse mathematical modelsof stochastic, gyrotactic bioconvection. We have also compared the experiments withtheoretical predictions. In this way, we hope to have highlighted the strengths andweaknesses of the models.In Chapter 2 we described robust and reliable experiments, measuring the domi-nant pattern wavenumber with cell concentration, suspension depth and time. It wasfound that, for some regions of parameter space, the initially observed patterns werehighly dependent on the initial conditions. The method of mixing the suspension hada strong inuence on the initial pattern wavenumber. In general, roll patterns werethe �rst to appear but quickly became unstable to three-dimensional modes. The welldeveloped patterns were not sensitive to the initial conditions and eventually evolvedinto steady patterns of dots in either square or hexagonal arrays. Fourier analysis wasused to extract the dominant unstable wavelengths. It was found that the initial mostunstable wavelength increased with depth but hardly varied at all with concentration.In contrast, the �nal most unstable wavelength decreased with increasing concentra-tion and slightly decreased with increasing depth. In general, the pattern wavelengthdecreased with time from the initial to the �nal states. The transient patterns were208



Conclusions 209also investigated and annular patterns were seen in some cases of shallow, concentratedsuspensions. Observations of the pattern evolution showed a mechanism whereby de-scending plumes reach the lower boundary and spread out. Clear uid is entrained inthe plume and an annulus pattern is formed when this uid reaches the lower boundary.The structures of the transient patterns were then studied using techniques from surfacegeometry. The images were associated with surfaces in Euclidean three-space where theintensity at a point on the image signi�ed the height of the surface. Thus, the surfacecurvatures could be analysed such that the local surface topography could be identi-�ed. It was found that two-dimensional patterns were unstable to three-dimensionalpatterns, as expected. Other features of the images that were not immediately obvi-ous were highlighted by the method. Linear structures were seen to persist for longperiods of time during the evolution of the pattern and may not altogether disappear.Hence, the method provides a good measure of the quantitative pattern evolution andcould be used to study the patterns in greater detail. Some experiments using an un-reactive agent, which was denser than the cell culture medium, to vary the e�ects ofgeotaxis and gyrotaxis were unsuccessful. Further studies should be conducted usinga selection of agents. Finally, other experiments were discussed that could lead to agreater understanding of the pattern forming capabilities of suspensions of swimmingmicro-organisms.In Chapter 3 we completed a linear analysis for the stochastic, gyrotactic biocon-vection model (Pedley & Kessler 1990 [85]) in a suspension layer of �nite depth. Wefound the general results below which can be compared with the deterministic, gyro-tactic �nite depth model (Hill et al. 1989 [42]) and the purely upswimming �nite depthmodel (Childress et al. 1975 [19]) in the following ways.� For very shallow layers the model predicts a non-zero most unstable wavenumber,in a similar manner to Hill et al. (1989) [42], given su�ciently large values of thegyrotactic orientation parameter.� Otherwise a zero most unstable wavenumber is predicted, as in Childress et al.(1975) [19].� The Rayleigh number, based on suspension depth, was shown to behave like aconstant for small wavenumbers in shallow layers and like d4 for deep layers where



Conclusions 210d is the ratio between layer and sub-layer depth.� Double minimums of the neutral curve were shown to exist, where the minimumsoccured at long and �nite wavelengths.� Inreasing the suspension depth increased the predicted most unstable wavelength,as found in the experiments of Chapter 2.We proposed that the model should contain the e�ects of the random natureof the cells swimming speed as well as its direction. This was shown to a�ect thenature of the �rst order perturbation to the di�usion tensor and, thus, a�ect the shapeof the neutral curve. We found that increasing the variance of the cell swimmingspeed, destabilized modes with small wavenumbers until the most unstable wavenumberbecame zero. Experiments by Hill & H�ader (1996) [41] provide a range of valuesfor the variance of the cell swimming speed. Using updated parameter values fromJones (1995) [54] and above, we obtained the same general conclusions as before butdi�erent quantitative predictions. Comparisons with the experiments of Chapter 2suggested that the updated parameter values were an improvement. Good agreementfor the predicted Rayleigh numbers was obtained but the predicted wavenumbers werean order larger. It was found that better agreement could be obtained by adjustingsome of the parameters. Therefore, it was suggested that more accurate, independentmeasurements of sensitive parameters should be a priority.However, in most of the experiments the cells did not always have su�cient time toswim upwards and form the exponential equilibrium distribution, assumed in the linearanalysis, before the onset of an instability. In some cases (such as for deep chambers)the stability analysis of a uniform distribution may be more appropriate.In Chapter 4 we performed a surface spherical harmonic expansion of the steadygyrotactic Fokker-Planck equation, which describes the probability density functionfor the orientation of the micro-organisms, in order to obtain solutions for the wholerange of vorticities and strain-rates expected in the uid. Analytic expressions werefound for the mean cell swimming direction and di�usion tensors in terms of the �rst�ve coe�cients of the spherical harmonics for a two-dimensional ow �eld. Exactcomputer algebra was employed to minimize errors and deal with the large quantityof standard operations. The expansion was truncated at a particular order, providing



Conclusions 211analytic expressions for the desired quantities. Later, these solutions were extended toa three-dimensional ow �eld when there is no vertical component of vorticity. Theexpansion converged rapidly for spherical cells but spurious singularities occured inthe solutions for spheroidal cells at high rates of strain. However, a relatively loworder of approximation was required, for all cells, to obtain convergent expressions forthe range of ow parameters expected in standard bioconvection experiments. Forparameters outside this range it may be necessary to use other numerical methods toobtain solutions.The analytic expressions from Chapter 4 were used in Chapter 5 in the �rst non-linear analyses of the gyrotactic instability in a suspension of in�nite depth. A weaklynon-linear analysis with zero variation in the vertical direction demonstrated that thisinstability is supercritical. A plan for future research is to conduct a similar weakly non-linear analysis with a non-zero vertical wavenumber which may be physically realisablein a suspension of large but �nite depth. A long vertical wavelength approximation wasused to obtain partial di�erential equations describing long vertical plume structures.Analysis showed that a horizontally travelling wave of plumes of �nite concentrationcould exist in the presence of a small background vorticity. Consideration of realisticconcentration pro�les con�ned the possible wavespeeds to a very small range of values.The theoretical predictions should be compared with future experiments once a suitableapparatus has been designed. A solvability condition was obtained at a higher order ofthe small vertical variation approximation that described the z dependence of the hori-zontally space averaged cell concentration. Pulses travelling down steady state plumeswere shown to exist. Consideration of this equation for small amplitude variations gavea set of ordinary di�erential equations which could be solved to give the wavespeed,the predictions of which could in principle be compared with suitable experiments.These last theories help to explain some of the more complex bioconvection structuresobserved in deep suspensions. Finally, we discussed the possibility of constructing sim-ilarity solutions describing the time and space evolution of two-dimensional structuresfor slightly modi�ed equations. We derived two, four-dimensional dynamical systemsfor the asymptotic behaviours, that need to be matched together to describe the fullsystem. We also derived some of the governing equations for a three-dimensional ow�eld that could be used in future analysis to study pattern selection.



Appendix A
Special functions
A.1 Identities for associated Legendre polynomialsLegendre's associated equation is de�ned as�(1� x2)y0�0 + �n(n+ 1)� �2(1� x2)� y = 0; (A.1)where x 2 [�1; 1], y(x) is �nite at the end points and 0 � n; � 2 Z. Making thesubstitution y(x) = (1�x2)�2 u(x) and dividing by (1�x2)�2 , gives Legendre's equationdi�erentiated � times. Hencey(x) = P �n (x) = (1� x2)�2 d�dx�Pn(x); (A.2)where Pn(x) are Legendre polynomials and P �n are called associated Legendre polyno-mials. Rodrigues' formula for associated Legendre polynomials isP �n (x) = (1� x2)�22nn! d�+ndx�+n (x2 � 1)n: (A.3)Associated Legendre polynomials are orthogonal in the lower index;Z 1�1 P knP kmdx = �mn 22n+ 1 (n+ k)!(n� k)! (A.4)where 0 � k � n;m. They are also orthogonal in the upper index;Z 1�1 P nk Pmk1� x2 dx = �mn 1m (k +m)!(k �m)! (A.5)where 1 � n � m � k. Arfken (1985) [1] gives a list of recurrence relations (page 660):Pm+1n � 2mx(1� x2) 12 Pmn + [n(n+ 1)�m(m� 1)]Pm�1n = 0; (A.6)212



Appendix A 213(2n+ 1)xPmn = (n+m)Pmn�1 + (n�m+ 1)Pmn+1; (A.7)(2n+ 1)(1 � x2) 12Pmn = Pm+1n+1 � Pm+1n�1 ; (A.8)(2n+1)(1�x2) 12Pmn = (n+m)(n+m�1)Pm�1n�1 � (n�m+1)(n�m+2)Pm�1n+1 ; (A.9)and (1� x2) 12Pm0n = 12Pm+1n � 12(n+m)(n�m+ 1)Pm�1n : (A.10)A.2 The gamma functionThe incomplete gamma function is de�ned as�(z) = Z 10 e�ttz�1dt; Re(z) < 0: (A.11)In particular, �(n) = (n� 1)!; n = 1; 2; 3; :::; (A.12)�(12) = � 12 (A.13)and �(n+ 32) = � 12 (2n+ 1)!!2n+1 n = 0; 1; 2; 3; 4; ::: (A.14)where the n!! = n(n� 2)(n� 4):::1 (the last number being 2 if n is even). Also�(� + 1) = ��(�): (A.15)



Appendix B
An integral identity
Consider the evaluation of Z 1�1 11� x2Pmp (x)Pmq (x)dx: (B.1)Gradshteyn & Ryzhik (1980) [38] giveZ 1�1 11� x2Pmp (x)Pmq (x)dx = 1m (p+m)!(p�m)! if p = q (B.2)but what if p 6= q?Theorem B.1 If p; q � m > 0 and p; q;m 2 Z thenZ 1�1 11� x2Pmp (x)Pmq (x)dx = 8<: 1m (min (p;q)+m)!(min (p;q)�m)! p+ q even0 otherwise: (B.3)The proof below is similar to the standard orthogonality proof in Arfken (1985) [1]using Rodrigues' formulaPmn (x) = 12nn! �1� x2�m2 Dn+m �x2 � 1�n ; (B.4)where D � ddx . However, in the orthogonality proof, when integrating by parts, theintegrated parts vanish. In this case, this is not true.Proof B.1 De�ne X � x2 � 1 and put A � (�1)m�12p+qp!q! where m > 0, thenZ 1�1 Pmp Pmq�X dx = AZ 1�1Xm�1Dp+mXpDq+mXqdx: (B.5)

214



Appendix B 215Integrating by parts q + m times and denoting the integrated parts by I (I will beconsidered later) impliesZ 1�1 Pmp Pmq�X dx = I +A(�1)q+m Z 1�1XqDq+m �Xm�1Dp+m�Xpdx: (B.6)Expanding the integrand on the right hand side using the Leibnitz formula givesXqDq+m �Xm�1Dp+mXp� � Xq q+mXi=0 (q +m)!i!(q +m� i)!Dq+m�iXm�1Dp+m+iXp: (B.7)Since Xm�1 contains no power of x greater than x2(m�1) we must haveq +m� i � 2(m� 1) (B.8)or the derivative will vanish. Similarlyp+m+ i � 2p: (B.9)Thus, i � q �m+ 2 and i � p�m. Hence,p � q + 2: (B.10)By exchanging the indices p and q we also have the requirement for a non-zero integrandthat q � p+ 2: (B.11)Hence, the integral must vanish 8 p; q. Now consider the integrated parts, I, andassume without loss of generality that p � q.I = 24A q+m�1Xj=0 (�1)jDj �Xm�1Dp+mXp�Dq+m�j�1Xq351�1 : (B.12)We have that D � ddx � dXdx ddX and clearly Dp+qXp will always produce some terms in-dependent of X and, hence, will not a�ect the lowest order of X in Dj �Xm�1Dp+mXp�.Hence, Dj �Xm�1Dp+mXp� will contain a term independent of X if j � m� 1. Simi-larly q +m� j � 1 � q which implies j � m� 1. If a term is dependent on X then itwill vanish at �1. This implies thatI = �A(�1)m�1Dm�1 �Xm�1Dp+mXp� q!(2x)q�1�1 : (B.13)



Appendix B 216By the Leibnitz formulaDm�1 �Xm�1Dp+mXp� = m�1Xj=0 (m� 1)!j!(m � 1� j)!DjXm�1D(m�1)�j+(p+m)Xp: (B.14)The necessary condition for DjXm�1 to be independent of X is that j � m� 1 whichimplies j =m� 1. Hence,Dm�1 �Xm�1Dp+mXp� = (m� 1)!(2x)m�1Dp+mXp= (m� 1)!(2x)m�12pp! dmdxmPp(x): (B.15)Thus, I = (�1)2(m�1)2p+qp!q! �q!2qxq(m� 1)!2m�1xm�12pp! dmdxmPp(x)�1�1= �(m� 1)!xq+m�12m�1 dmdxmPp(x)�1�1 : (B.16)This implies that for p � qZ 1�1 Pmp (x)Pmq (x) 11 � x2 dx = 8<: (m� 1)!2m dmdxmPp(x)��x=1 p+ q is even0 p+ q is odd :(B.17)For a non-trivial solution p + q must be even, for which the right hand side isindependent of q. In this case, the right hand side must be equal to the result whenp = q (i.e. Equation B.2). Hence, the theorem is proved.This is quite an unusual result as it is independent of the associated Legendrepolynomial of the higher order. As far as we are aware, this result has not been provedpreviously.



Appendix C
Maple program for the sphericalharmonic expansion of theFokker-Planck equation
The following Maple program is used in the spherical harmonic analysis of Chapter 4.See Chapter 4 for an explanation.`Function definitions`;B := (mmm,nnn) -> if (mmm <= nnn and mmm >= 0 and nnn <= order)then C(mmm,nnn) else 0 fi:N := (w,x,y,z) -> if (w > x or x < 0 or w < 0) then 0 else(delta(w,0)+1) * delta(w,y)* delta(x,z) * (x+w)! / ((2*x+1) * (x-w)!) fi:delta := (z,y) -> if evalf(z) = evalf(y) then 1 else 0 fi:
xc := proc(e,m,n) local c,d:integer:sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * Q[m+c,n+d-1]217



Appendix C 218/ (2*(n+d)+1) + (n+d-m-c+1) * Q[m+c,n+d+1]/ (2*(n+d)+1) , d=-5..5), c=-3..3)}:subs(sbsq,e)end:xss := proc(e,m,n)e - xc(xc(e,m,n),m,n)end:xssp := proc(e,m,n) local c,d:integer:sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * (n+d+1) * Q[m+c,n+d-1]/ (2*(n+d)+1) - (n+d) * (n+d-m-c+1) * Q[m+c,n+d+1]/ (2*(n+d)+1), d=-5..5), c=-3..3)}:subs(sbsq,e)end:xsu := proc(e,m,n) local c,d:integer:sbsq := {seq(seq(Q[m+c,n+d] = Q[m+c+1,n+d+1] / (2*(n+d)+1)- Q[m+c+1,n+d-1] / (2*(n+d)+1), d=-5..5), c=-3..3)}:subs(sbsq,e)end:xsd := proc(e,m,n) local c,d:integer:sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * (m+c+n+d-1)* Q[m+c-1,n+d-1] / (2*(n+d)+1) -(n+d-m-c+1) * (n+d-m-c+2)* Q[m+c-1,n+d+1] / (2*(n+d)+1) , d=-5..5), c=-3..3)}:subs(sbsq,e)end:
`Spherical Harmonics`;h := proc(m,n,t,p) local xx;



Appendix C 219p.m.n.order * cos(m*p) * qq(m,n,xx);xx := cos(t);""end;`Associated Legendre polynomials`;qq := proc(m,n,x) if m = 0 then P(n,x) else(1-x^2)^(m/2)*diff(P(n,x),x$m) fiend;`Approximation to f`;g := proc(t,p) local j,k;s := 0;for k from 0 to order dofor j from 0 to k dos := s + h(j,k,t,p)od:od:end;
# User defined flow parameters# zeta := 0;# xi := 1;chi := 0;l := 10/22; #l = 1 / lambda
`Main Program`;



Appendix C 220for order from 3 to 5 doprint(``);print(`order = `+order);print(`Fokker-Planck Equation for m = 0 (special case)`);eq1a := A(0,n)*( l*n*(n+1)*Q[0,n] + xssp(Q[0,n],0,n) -2*xc(Q[0,n],0,n) + zeta * (-Q[1,n] )-2*xi*( xc(xsu(Q[1,n],0,n),0,n)/2 +3*xsu(xsu(Q[0,n],0,n),0,n)/2 + 3*xss(Q[0,n],0,n)/2 -3*xc(xc(Q[0,n],0,n),0,n) +3/(2*(2*n+1)) *xc(n*(n+1)*Q[0,n-1] - n*(n+1)*Q[0,n+1],0,n))-2*chi*(xc(xc(2* Q[1,n],0,n),0,n) -Q[1,n] + 6*xc(Q[1,n+1] - Q[1,n-1] ,0,n) / (2*n+1) ) ) :
print(`Fokker-Planck Equation for m = 1 (special case)`);eq1b := A(1,n)*( l*n*(n+1)*Q[1,n] + xssp(Q[1,n],1,n) -2*xc(Q[1,n],1,n) + zeta/2 * (-Q[2,n] + n*(n+1)*Q[0,n])-2*xi*(-(n)*(1+n)*xc(xsu(Q[0,n],1,n),1,n)/4 +(3-1)*xss(Q[1,n],1,n)/4 + xc(xsu(Q[2,n],1,n),1,n)/4 +(3+1)*xsu(xsu(Q[1,n],1,n),1,n)/4 + 3*xss(Q[1,n],1,n)/2 -3*xc(xc(Q[1,n],1,n),1,n) +3/(2*(2*n+1)) *xc((n+1)*(n+1)*Q[1,n-1] - n*(n)*Q[1,n+1],1,n))-2*chi*(xc(xc(-(n)*(n+1)*Q[0,n] + Q[2,n],1,n),1,n) -(-(n)*(n+1)*Q[0,n] + Q[2,n])/2 -xc(xsd(Q[1,n],1,n)-xsu(Q[1,n],1,n) ,1,n) +3*xc((n+1)*(n)*Q[0,n-1]-(n)*(n+1)*Q[0,n+1] +Q[2,n+1] - Q[2,n-1] ,1,n) / (2*n+1) ) ):
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print(`Fokker-Planck Equation m > 1`);eq1 := A(m,n)*( l*n*(n+1)*Q[m,n] + xssp(Q[m,n],m,n) -2*xc(Q[m,n],m,n) + zeta/2 * (-Q[m+1,n] + (n-m+1)*(n+m)*Q[m-1,n])-2*xi*(-(n-m+1)*(m+n)*xc(xsd(Q[m-1,n],m,n),m,n)/4 +(3-m)*xsd(xsd(Q[m,n],m,n),m,n)/4 + xc(xsu(Q[m+1,n],m,n),m,n)/4 +(3+m)*xsu(xsu(Q[m,n],m,n),m,n)/4 + 3*xss(Q[m,n],m,n)/2 -3*xc(xc(Q[m,n],m,n),m,n) +3/(2*(2*n+1)) *xc((n+m)*(n+1)*Q[m,n-1] - n*(n-m+1)*Q[m,n+1],m,n))-2*chi*(xc(xc(-(n-m+1)*(n+m)*Q[m-1,n] + Q[m+1,n],m,n),m,n) -(-(n-m+1)*(n+m)*Q[m-1,n] + Q[m+1,n])/2 -m*xc(xsd(Q[m,n],m,n)-xsu(Q[m,n],m,n) ,m,n) +3*xc((n+m)*(n+m-1)*Q[m-1,n-1]-(n-m+1)*(n-m+2)*Q[m-1,n+1] +Q[m+1,n+1] - Q[m+1,n-1] ,m,n) / (2*n+1) ) ):print(`Summing equations`);SS := sum(sum(eq1,m=2..n),n=2..order+3)+ sum(eq1b,n=1..order+3) +sum(eq1a,n=0..order+3):sqs := seq(seq(A(mm,nn)=B(mm,nn),mm=-3..order+6),nn=-3..order+6):for r from 0 to order dofor q from 0 to r doQES := {seq(seq(Q[i,j]=N(i,j,q,r),i=-2..order+6),j=-2..order+6)};tot := subs(QES, SS);tot := subs(sqs,tot);eq.q.r := simplify(tot, factorial):



Appendix C 222od:od:print(`Solving equations`);parlist := seq(seq(C(mm,nn),mm=0..nn),nn=1..order);eqlist := seq(seq(eq.mm.nn = 0,mm=0..nn),nn=0..order);sols := (solve({eqlist},{parlist}));C(0,0) := 1/(4*Pi);p00.order := C(0,0);for r from 1 to order dofor q from 0 to r dop.q.r.order := subs(sols,C(q,r)):od:od:od:
save p013,p014,p015, p113,p114,p115, p023,p024,p025,p123,p124,p125 ,p223,p224,p225,`output.m`;`END`;



Appendix D
Some operator expressions
Below are the de�nitions for the operators A1(F ) and A2(F ) used in Section 5.8.A1(F ) = r2 �(u � r)r2HF �� �@2x + @2y + @2z� �@x@zF@xr2HF + @y@zF@yr2HF �r2HF@zr2HF � (D.1)and A2(F ) = @zr � ((u � r)u)� @z@x �@x@zF@2x@zF + @y@zF@x@y@zF �r2HF@2z@xF �+@z@y �@x@zF@x@y@zF + @y@zF@2y@zF �r2HF@2z@yF ��@2z �@x@zF@xr2HF + @y@zF@yr2HF �r2HF@zr2HF � ; (D.2)where u = r^r ^ (Fk) : (D.3)
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