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Abstract

This thesis explores the non-linear effects of gyrotaxis on the bioconvection patterns
formed in a suspension of swimming micro-organisms. The cells are denser than the
medium in which they swim and the patterns are formed spontaneously by aggrega-
tions of cells which drive bulk fluid motion. The micro-organisms under consideration
are orientated by a balance between a gravitational torque, due to them being bottom
heavy, and a viscous torque arising from local fluid velocity gradients. This mecha-
nism is known as gyrotaxis. A wide range of investigative techniques are employed,
from experiments in the laboratory to computer algebra and bifurcation analysis using
amplitude equations.

Firstly, a series of experiments is described in which images of bioconvection pat-
terns are captured and Fourier analysed. The most unstable pattern wavelength is
extracted as a function of suspension concentration, depth and time. Ideas from sur-
face geometry are exploited to produce a measure of pattern. Some other experiments
are also discussed.

Secondly, a full linear analysis of a stochastic, gyrotactic continuum model in a
suspension of finite depth is conducted and an extension of the theory to include the
random nature of the micro-organisms’ swimming speeds is proposed.

Thirdly, an approximation to the steady Fokker-Planck equation describing the
stochastic nature of the micro-organism swimming direction using surface spherical
harmonics is investigated. The limitations of this method are explored.

Finally, the non-linear mechanisms involved in a gyrotactic instability are eluci-
dated by exploiting the long vertical scale for descending plumes in a deep suspension.
Initially, a weakly non-linear analysis provides an amplitude equation that implies that
the bifurcation to instability is supercritical. Secondly, non-linear solutions are seen
to undergo a Hopf bifurcation when there is a weak background vorticity. The result-
ing limit cycle provides the basis for horizontally travelling, vertical plume solutions.
Equations describing the slow vertical variations along plume solutions admit travelling
waves, for which the wavespeed is found. The travelling waves are thought to describe

the varicose instabilities seen on bioconvection plumes in experiments.
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Figure 1: A micro-organism soup - “Not even Martin’s imagination can reproduce the

variety seen in life”, N. A. Hill, October 1995.



Chapter 1

General Introduction

1.1 Introduction

Why study patterns formed by swimming micro-organisms (see Figure 1.1)?7 Surely
the micro-organisms and their patterns are so small as to be insignificant to our daily
lives. The lengthscales for these micro-organisms are of the order of 1um for bacteria
and 10pum for algae, and lem for the patterns that they produce (see Figures 2.10 to
2.23). Even if the micro-organisms are important, we should be studying how they
feed, mate and die. This is what pattern formation is all about. Over millions of
years these organisms have evolved (they are some of the oldest species known to man)
to fill niches, whether they are in your stomach or affecting the global weather by
photosynthesizing in the sea. The patterns that they form are there for a reason, that
may not be obvious, but definitely an essential part of the organism’s life cycle. It is
crucial that we understand how and why these organisms, at the base of the whole
food chain, behave (at least under ideal conditions in the laboratory). After all, they
consist of the majority of the Earth’s biomass and a variation in their numbers could
have catastrophic consequencies (e.g. positive or negative feedback effects in global
warming, Goodess & Palutikof 1992 [37] pp. 53-55, or species extinction due to high
levels of bacteria in our rivers).

There is also the possibility of harnessing the power of micro-organisms. Some
algae and bacteria produce alcohol as an unwanted byproduct but to us this is a valuable
commodity not least for its use as a fuel. Plastics, fertilizers, waste treatment plants

and solid fuels are other possible applications for algae, bacteria and their byproducts.
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Figure 1.1: A typical labyrinth pattern formed in a suspension of Chlamydomonas
nivalis, for a concentration of 1.5 x 107 cells per ¢m? and a depth of 2 mm, viewed from
above after several minutes. The dark regions indicate a high cell concentration and

the scale on the left is in em.

If we can understand the patterns formed by some of the simplest organisms on Earth
then maybe we could understand patterns formed by more complex organisms such
as insects (e.g. locusts, ants and bees), fish and even humans (their migration and
immune systems). This thesis aims to explain the patterns observed in suspensions of

swimming micro-organisms whose behaviour is determined by a set of simple rules.

1.2 Taxes - what are they?

Taxis is Greek for an arrangement. Henderson’s dictionary of biological terms, [48],

defines it as

“a movement of a freely motile, usually simple organism, especially Pro-
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tista, or part of an organism, towards (positive), or away from (negative), a
source of stimulation, such as light, temperature, chemicals; an orientation

behaviour related to a directional stimulus.”

Taxes represent simple rules for biasing the direction in which organisms move. Typi-
cal examples of taxes include chemotaxis (where organisms sense gradients in chemical
concentrations around them and can change their swimming direction in response to
them), phototaxis (which could be sensitivity to light intensity, direction or polarisa-
tion) and geotaxis (which is also known as gravitaxis and is where gravity gives a bias
to the direction of movement). Taxes represent both the measurement of the surround-
ing environment and the physical mechanisms by which individuals move in response
to that physical stimulus. Without taxes, organisms would move in a random manner
in the hope that their situation will improve. Most organisms use a combination of
random movement and taxes. Natural selection ensures that the optimal tactics are
always employed (see Weiner 1994 [120]; Futuyma 1994 [34]).

The algae Chlamydomonas nivalis are “negatively geotactic” (they have a tendency
to swim wupwards due to being bottom heavy, Kessler 1985 [61]), phototactic (they
need light for photosynthesis and hence swim towards it; Boscov & Feinlieb 1979 [9];
Foster & Smyth 1980 [33]; Kessler 1986 [63]; Witman 1993 [123]; Vincent 1995 [116])
and gyrotactic (a term coined by Kessler (1984) [60] to describe the phenomenon in
which cells swim towards regions of down-flowing fluid and away from up-flowing fluid).
Gyrotaxis (gyro is Greek for circle) is due to the cells’ geometry and mass distribution
and describes the balance between viscous and gravitational torques. Rheotaxis (from
the Greek rheein meaning to flow) is a similar taxis that represents the alignment of
cells along streamlines because of their shape but is independent of gravity.

In this thesis gyrotaxis will be shown to be a significant mechanism for pattern

formation.

1.3 Micro-organisms and how they swim

The term organism represents anything with animal or plant-like characteristics. Pro-
tista was originally defined (][48]) as a kingdom of living organisms including bacteria,

protozoans (Greek, meaning first animals, and representing “a subkingdom and phylum
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of microscopic animals whose body is equivalent to a single cell” [48]), algae and fungi.
More recently the term is used for unicellular and colonial algae (or fungi) or for organ-
isms showing both plant and animal characteristics, and is used as a collective noun
for the groups protozoa and protophyta (Greek, meaning first plants, and representing
all unicellular plants). The term algae is from the Latin word alga meaning seaweed.

Henderson’s dictionary of biological terms defines algae as

“a major division of the plant kingdom consisting of simple non-vascular
photosynthetic plants with a unicellular, colonial, filamentous, or thalloid
body, and being aquatic in marine or fresh water or found in damp habitats

on land.”

The label plankton (from the Greek, plangktos, meaning wandering) is in common
use for a class of micro-organisms. Plankton also produce both small and large scale
patterns (Steele & Henderson, 1979 [104]; Truscott & Brindley, 1994 [109]; Solow &
Steele, 1995 [102]) but the mechanisms may be very different. Henderson’s dictionary

defines plankton as

“the usually small marine or freshwater plants (phyto-) and animals (z00-)
drifting with the surrounding water, including animals with weak locomo-

tory power.”

Clearly, swimming algae and bacteria are not subsets of plankton. However, the same
publication mentions that unicellular motile flagellates can be classified in a section
of the animal kingdom. This thesis is chiefly a mathematical thesis and we are free
of such semantic restrictions and we may generalise our arguments to the idealized
swimming micro-organism, paying attention purely to its mechanical and behavioural
charateristics independently of its genealogical background. Bearing in mind the pos-
sible extensions of this work to other micro-organisms, we choose to study in detail the
green biflagellated algae Chlamydomonas nivalis (Figure 1.2).

There are a number of forces acting on the algae, some external but others inter-
nally influenced. Figure (1.3) describes the main forces affecting the cell, under the
assumption that the method of swimming contributes only a propulsive force to the
cell and does not affect the flow field or the cell otherwise. Gyrotaxis is caused by the

balance between gravitational and viscous torques. The micro-organisms’ geometry
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Figure 1.2: Chlamydomonas nivalis - anatomy.

and mass distribution imply that they swim towards regions of down flowing suspen-
sion and away from up flowing suspension. The viscous torques can effectively bias
the direction in which the micro-organism swims and can lead to the cells aggregating.
Chlamydomonas nivalis have a higher density than the medium in which they swim and
so aggregations of cells will cause bulk fluid motion and lead to more cells swimming
towards cell rich down flowing regions.

Jones et al. (1994) [55] has looked into the effects of biflagellar swimming in greater
detail and has come to the conclusion that more realistic models can be approximated by
assuming that the micro-organism is a self propelled spheroidal cell. They recommend
that an adjustment should be made to the measured parameters of geometry and mass

distribution to allow for the effects of the flagella.
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Figure 1.3: The forces acting on Chlamydomonas nivalis.

Swimming at small Reynolds number is very different to the way that we swim
(Purcell 1977 [91]; Lighthill 1975 [76]). It has been likened to us swimming through
thick syrup or “a vat of warm pitch” (Childress 1981 [18]). One of the keys to being
able to swim is to have a stroke that is not symmetric in time otherwise the reversible
viscous fluid flow prevents ground from being gained (Childress 1981 [18], pages 16—
21). Figure (1.4) explains the breast stroke like swimming style of Chlamydomonas
nivalis. There are two stages: an effective or power stroke in which the micro-organism
gains ground, and a recovery stroke in which the flagella are returned to their original
positions at the expense of losing some ground (see the analysis of Jones et al. 1994
[55]). The flagella do not perform their stroke symmetrically and hence the cells revolve
about an axis with the swimming direction. It has been proposed by Crenshaw (1993)
[25] and Hill & Vincent (1993) [43] that the cell takes advantage of this rotation in
that its eye spot is able to survey the surrounding light field and hence control its
phototaxis ([116, 117]). The typical swimming speed of Chlamydomonas nivalis is
60pum s~! (or 6 bodylengths s~!'). The sedimentation velocity of a spheroidal cell

with the dimensions of Chlamydomonas nivalis is found from analysis by Van de Ven
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Stroke

Recovery

Figure 1.4: How Chlamydomonas nivalis swims. a) The power stroke in which the
micro-organism moves forward as the flagella are thrust back, and b) the recovery

stroke in which ground is lost but the flagella are returned to their initial positions.

(1989) [113] to be about 1ums~! (see Jones 1995 [54] and Batchelor 1972 [4]) and it
is, therefore, reasonable to ignore sedimentation of the cells with respect to the cells
swimming. However, the rotational torque due to sedimentation is not quite so easily
dispensed with. It was proposed by A. M. Roberts (1995, personal communication ),
via Roberts (1970) [97] and Roberts (1975) [98], that the viscous drag of the flagella on
the cell due to sedimentation is responsible (at least in part) for the upswimming of the
micro-organism. A series of independent calculations by Hill, Pedley and Jones (1995,
personal communication) indicate that the mechanism is of an order of magnitude less
than that due to the bottom heaviness of the cell. In this thesis the upswimming will

be modelled as due to the cell being bottom-heavy. Nonetheless, a section in Chapter 2
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is dedicated to some experiments aimed at distinguishing the two mechanisms.
Euglena gracilis has one main flagellum along which it passes a helical wave to
power its swimming. Fuglena also exhibits upswimming tendencies (Wager 1911 [119])
but is mainly phototactic. Other organisms may use flagella or cilia to swim. Ramia
(1991) [93] has investigated the swimming capabilities of Spirillia with single trailing or
leading, and bipolar flagella by simulating its movement in a fluid using the boundary
element method. Ramia & Swan (1993) [94] compare these results with rotations and
velocities observed in experiments on Spirillium volutans and report good agreement.
Ramia et al. (1993) [95] further consider a general boundary element method which
they benchmark with slender body results. They use their model to investigate a
micro-organism with a spherical cell body and one flagellum. They go on to explore
the interaction of parallel swimming individuals and hydrodynamic interactions with
plane boundaries. Their general conclusion is that hydrodynamic interactions are only
significant when separation distances are smaller than or equal to the micro-organisms
largest physical length scale. These results indicate that it is reasonable to ignore cell-
cell interaction when suspension concentrations are low. The particular shape of the
cells used in Ramia et al. (1993) [95] could be applicable to the swimming of Fuglena

gracilis.

1.4 Bioconvection - a brief history of observations

Far from being a recently discovered phenomenon, pattern formation in suspensions
of swimming cells has been observed for some time. Ever since some common algae,
such as Chlamydomonas nivalis, Fuglena viridis, C. cohnii and the ciliated protozoan
Tetrahymena pyriformis had been isolated, plumes of aggregating cells have been no-
ticed in the culturing flasks. The term “bioconvection” was first coined by Platt in
1961 to describe the phenomenon of pattern formation in shallow suspensions of motile
micro-organisms. However, this is by no means the first documentation, which in fact
goes back to at least 1848 (see Wagner 1911 [119]). Other investigators have included
Loeffer & Mefferd (1952) [77], Nultsch & Hoff (1973) [82], Plesset & Winet (1974) [87]
and recently Kessler [61, 60].

In a series of papers, Kessler has looked into the pattern forming capabilities of
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micro-organisms ([59, 61, 63, 64, 65, 66]). He noticed that the regions of downwelling
fluid which contained large quantities of micro-organisms were narrower than the up-
welling clear fluid. Kessler demonstrated the phenomenon of cell focusing ([62, 61]) by
considering Poiseuille flow through a long vertical U-tube, as in Figure 1.5, and found
that the cells “focused” into a thin plume in the centre of the tube only on the side

of the U-tube where the fluid flowed downwards. Cells collected on the outside of the

other half of the U-tube.
,/_\ peristaltic
pump

b r N 4
k\ 1
downflowing L / upflowing
fluid fluid
|
) (
Y [
) incoherent
\/ structure
cells gather
plume Y% on walls

Figure 1.5: Gyrotaxis in Poiseuille flow through a U-tube. Cells swim towards relatively
downwards flowing fluid and away from upward flowing fluid. This forms a “focused”
plume on the left hand side of the U-tube and cells gather on the wall of the right hand

side.

Kessler invented the term “gyrotaxis” to describe the mechanism behind this cell

focusing.

1.5 Geotaxis and Gyrotaxis - why bother?

A possible explanation for the reason behind aggregation of cells in bioconvection pat-
terns is provided by Tomson & Demets (1989) [108]. The micro-organisms mate sexually
and as the volume fraction of the cells is very small (typically of the order of 0.001 for

a cell concentration of 1 million per ¢m?) they need some mechanism so that they can



Introduction 11

side view

Figure 1.6: An overturning Rayleigh-Taylor type instability. Cells swim to the top and

form a suspension layer of greater density than that below.

come into close proximity and, hence, chemotaxis can effectively drive sexual aggrega-
tion (see for example Clayton 1957 [22]). Tomson & Demets (1989) [108] call this the
mating trap which they say “can only be effective at the beginning of the day, when
the diurnally fluctuating sexual agglutinability is high and when the dark/light switch
is on”. Only then, can the mating process begin. Geotaxis and gyrotaxis result in
pattern formation and hence self-concentration and are two mechanisms that are avail-
able to Chlamydomonas nivalis. Gyrotaxis even works in the absence of an upper fluid
boundary (see Figure 1.7) and drives the cells into increasingly concentrated regions.
This increase in concentration is only halted by the diffusion of cells away from regions
of high concentration. If the conditions for mating are wrong, then the cells are free to
move as individuals, otherwise the cells become tactile and form pairs or much larger
cell aggregates. Why then are the micro-organisms still geotactic and gyrotactic at
times when they do not wish to mate? The reason could simply be that there is more
sunlight at the surface of a pond for photosynthesis and in a murky pond, phototaxis
may be ineffective. However, the cells also need nutrients and diffusion alone could not
provide enough nutrients for a colony of cells living at the surface of a pond. Therefore
it is perhaps beneficial for the cells to travel to the bottom of the pond once in a while.
If they drive bulk motion at the same time then this may be helpful to the whole colony

of cells by mixing the nutrients throughout the fluid. However, in all but very small
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Figure 1.7: A gyrotactic instability. Cells swim towards downwelling fluid making it

denser and, hence, sink faster.

puddles, mixing is likely to be driven by wind shear or thermal convection. Figure (1.8)
shows how, in the absence of wind shear or thermal convection, gyrotaxis might work
to extract more nutrients from the bed of a pond than a mere geotactic instability,
involving organisms that do not exhibit gyrotaxis, by increasing the width of upflowing
fluid and creating higher wall shear stress.

Maybe we are asking too much to explain an individual species’ behaviour by con-
sidering them in isolation. Perhaps they have diversified into a niche that is only appar-
ent when considering the wider ecosystem of a mixture of swimming micro-organisms
and larger animals as will be found in nature (see Bees 1994 [5]; Bees & Spiegel 1996
[6]; Dawkins 1989 [27]).

1.6 A review of modelling techniques

Bioconvection is similar to the thermal convection problem between two horizontal

plates (Chandresekar 1961 [15]; Childress & Peyret 1976 [20]) but the energy input
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high wall

large regions of upwelling fluid “shear stress

Figure 1.8: Nutrient uptake from pond bed in a suspension of gyrotactic micro-
organisms. Streamlines indicate high wall shear stress and large regions of upwelling

fluid on the pond bed, increasing the area of nutrient uptake.

is via the individual micro-organisms and not through the boundaries as in thermal
convection (Whitehead 1988 [121]; Goldstein et al. 1993 [35]). However, much of the
established linear and non-linear theory can be borrowed (Schliiter, Lortz & Busse 1965
[101]; Joseph 1971 [56]; Malkus & Veronis 1958 [78]; Proctor 1981 [90]), and of course,
ideas from the comparable field of magnetohydrodynamics (Hughes & Proctor 1988
[49], 1992 [50]) can also be used. The necessary inclusion of fluid flow in convection
and bioconvection modelling generally distances the theory from Turing type patterns
(Turing 1952 [111]), however, many of the techniques involved in the analysis of both
systems are common (Levin & Segel 1985 [75]; Eilbeck 1986 [30]). (See Spiegel &
Zaleski 1984 [103] for a combination of shear flow and reaction diffusion.) On modelling
the individual micro-organisms, existing theories for suspensions of particles can be
exploited (Jeffrey 1922 [53]; Batchelor 1970 [3]; Leal & Hinch 1972 [71]) and ideas from
the statistics of random walks employed (Hill & Héader 1996 [41]; Mardia 1972 [79]).

1.6.1 Pure upswimming models

The first models of bioconvection were developed by Plesset & Winet (1974) [87]. They

considered a Rayleigh-Taylor instability in a continuously stratified, two-layer model
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and were able to investigate the preferred pattern wavelength as a function of the upper
layer depth and the cell concentration. Levandowsky et al. (1975) [74] investigated
bioconvection and proposed a more realistic model (Childress et al. 1975 [19]) in which
the micro-organisms could swim but were constrained to swim in the vertical direction

only. They introduced an orthotropic diffusion,

Dy, 0 0
0 0 D,

(with differing horizontal and vertical diffusion coefficients) to account for the ran-
dom motions. Their model consisted of the Navier-Stokes equations, incorporating the

Boussinesq approximation (e.g. Chandresekar 1961 [15]),

Du
on + Vp — uV?u = —gp(1 + aec)k (1.2)
and

V-u=0 (1.3)

where u is fluid velocity, p is viscosity, g is gravity, p is fluid density and a.c is the
extra density due to micro-organisms of concentration ¢ at a point. The Boussinesq
approximation implies that the only way in which the cell concentration affects the fluid
flow is through a change in the fluid density. Other effects of a change in viscosity and
a non-Newtonian stress are considered negligable. Childress et al. (1975) [19] modelled

the swimming cells with a cell conservation equation

Oc
a%—V-J—O, (1.4)

where the flux is given by

J=cU(c,z)k —D - Vg, (1.5)

and Uf(c,z) is the cell swimming speed. These equations are very similar to the
Rayleigh-Bénard equations for convection between two horizontal planes and a negative
vertical temperature gradient (Chandresekar 1961 [15]). However, in bioconvection, en-
ergy is provided internally by the action of swimming micro-organisms, which get their
energy from nutrients in the medium and the incident light by photosynthesis. The

Boussinesq vertical symmetry of the standard Rayleigh-Bénard problem is lost due to
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the biased swimming behaviour of the micro-organisms. Linear analysis predicted that
the most unstable wavenumber is zero, and Childress & Spiegel (1978) [21] were able to
show from weakly non-linear theory that the bifurcation to instability was subcritical.
This means that linear analysis cannot be used to predict a most unstable wavenumber.
Harashima et al. (1988) [40] produced a simulation of bioconvection from the equations
of [19] and found that in all cases the pattern wavelength increased with time, on a
parallel with studies of weakly non-linear Rayleigh-Bénard convection with insulating
boundaries (Chapman & Proctor 1980 [16]). It is found experimentally, in Chapter 2
of this thesis, that exactly the opposite occurs in bioconvection and indeed the first

(linear) instability to occur has non-zero wavenumber.

1.6.2 Modelling gyrotaxis

We start, as in [84], by considering the total torque, Ly on a cell, such as that in

Figure 1.3. L is the sum of two terms
Lr=L,+L, (1.6)

where L, is the gravitational torque and L, the viscous torque. For a bottom-heavy

micro-organism such as Chlamydomonas nivalis then
Ly; = hmg €;jpjk (1.7)

where 4, j and [ are indices and the summation convention is assumed. h is the displace-
ment of the centre of mass of the cell from its geometrical centre along the swimming
direction p, m is the cell’s mass, g is the magnitude of the acceleration due to gravity,
€1 is the Levi-Civita tensor and k is the unit vector in the vertical direction. Rallison

(1978) [92] wrote the viscous torque on a solitary body with zero Reynolds number as

1
Ly, = —pv P,‘j(vj — u]') + Y,‘j (ch — EQ]> + Rz-jleﬂ] (1.8)
where p is fluid viscosity, v is the cell volume, v is the cell velocity, w® is the cell’s
angular velocity, u is the fluid velocity, € is the vorticity and e is the rate-of-strain
tensor. This is a linear expression assuming that the length scale for the changes in the

flow is much larger than the cell diameter. P, Y and R are tensors depending only on

the surface geometry and orientation of the cell. For a rigid prolate spheroid (Batchelor
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1970 [3))
P =0, (1.9)
Yij = a|pipj + a—(qiq; + rir;) (1.10)
and
Riji = —aoYu(ripjar — aipkr;), (1.11)

where p,q,r form an orthonormal right-handed set of coordinates and ap, ) and a_

are shape parameters. «aq is the eccentricity and is given by

a’ — b?
where a is length and b is breadth of the cell. As e;; is symmetric we can write
. 1
Ly = —pv |Yij | wj — 593‘ — oYl €klmPmPj€jk | - (1.13)

Putting L7 = 0 gives

1
hmg Gijlpjkl — Qv [(a”pipj + Ckf(Qin + m"j)) <ng0 - §Qj - CkUEkjmpmplelk>] = 0.

(1.14)
Multiplying this expression by €;5ps and using the identity
€ijk€stk = 0is0jt — 0itdjs (1.15)
where §;; is the Kronecker delta, then
1 c 1
55 k= (kp)p] =w'Ap— QAP —ao(pA(E-p) AP (1.16)
where
o
B=— 1.17
g (1.17)
is the gyrotaxis number. Hence, as p = w® A p, so
. 1 1
p=gplk—(k-p)p]+2Ap+a[E-p-pp-E-p]. (1.18)

The above equation combines expressions from Leal & Hinch (1972) [71] and Hinch &
Leal (1972) [47] which were both initially derived by Jeffrey (1922) [53].
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1.6.3 A new continuum model

Pedley & Kessler (1990) [85] reasoned that by considering D as isotropic and, hence,
“strongly random” and independent of the mechanisms involved in gyrotaxis, Pedley et
al. (1988) [83] were being inconsistent in that they were considering the determination
of the swimming velocity, Vg, as “weakly random”. That is to say that calculating the
cell swimming direction, in a deterministic manner, for all of the cells, and then assum-
ing that there was no bias in the direction of diffusion of these cells was inconsistent.
Therefore, instead of assuming constant orthotropic diffusion tensor (as in [19]) they
modelled the cell swimming direction in a probabilistic fashion. A model analogous to
that of suspensions of colloidal particles subject to rotary Brownian motion was applied
(Brenner & Weissmann 1972 [12]; Brenner [10, 11]; Hinch & Leal [46, 47, 70, 71]). From
this, they calculated the average swimming direction and the cell diffusion tensor.
Consider a cell swimming direction probability density function (p.d.f.) defined

on a sphere, f(p), where

sin @ cos ¢
P=| sinfsing |- (1.19)
cos
where 6 and ¢ are the unit spherical polar angles. 6 is the colatitude measured relative

to k. The mean cell swimming direction, (p), is defined by

(p) = /5 p/(p)dS (1.20)

where S is the surface of a unit sphere and

D(1) = /OOO<Vr(t)VT(t iyt (1.21)

where V. is the velocity of a cell relative to its mean value. The expression for D is, of
course, hard to calculate as it requires a knowledge of all previous cell velocities and,
hence, we are forced to make an approximation for the sake of simplicity. If the cell
swimming speed, Vj, is a constant as assumed by [85] (the effects of a non-constant Vj
on the linear analysis will be considered in Section 3.7) and assume that it takes a cell
7 seconds to settle to a preferred direction (called the direction correlation time) then

we have

D~ Vir{(p— (p))(p — (P)))- (1.22)
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The p.d.f., f(0, ), satisfies a conservation equation

o v br) = DY, (1.23)

where D, is the rotational diffusivity constant. Equations (1.18) and (1.23) are called
the forward Kolmogorov or Fokker-Planck equations (see Risken 1989 [96]; Schienbein
& Gruler 1993 [100]). Fluid flow is modelled with the Navier-Stokes equations for
an incompressible fluid that includes a term for the negatively buoyant cells. The
Boussinesq approximation is employed such that this is the only way in which the cells
affect the fluid motion. Hence,

Vou=0 (1.24)

and

D
pD—ltl = —Vp. + nvlApg+ V- 3. (1.25)

The total number of cells is conserved and the cells can be modelled using a conservation

equation of the form

% = -V -[n(u+Vy(p)) —D-Vn], (1.26)
where u(x) is the fluid velocity, (p(x)) is the mean cell direction, Vy is the mean
cell swimming speed, ¥(x) and D(x) are the fluid stress and cell diffusion tensors
respectively, n(x) is the local cell concentration, p.(x) is the excess pressure, v is the
mean volume of a cell, and Ap is the the difference between the cell and fluid density.
The boundary conditions for a suspension trapped between two solid boundaries are

the no flow condition

u=0 at 2z=0,—H, (1.27)

and zero cell flux perpendicular to the boundaries
k-(n(u+Vy(p))—D-Vn)=0 at z=0,—H. (1.28)

We shall assume throughout this thesis that the horizontal boundaries are solid for
the following reasons. Although the suspension is typically open to the atmosphere at
the upper boundary and a stress free boundary condition may appear to be the most
reasonable, there is some evidence to suggest that the upper boundary quickly becomes

“rigid” ([61, 60, 84, 42]). Cells swim up to the upper surface and form close-packed
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two-dimensional structures that float on the surface. These structures form quickly
and appear to be very stable. At subsequent times, when cells encounter the upper
boundary, they behave as if it were solid. Perhaps it would be more reasonable to
assume a mixed type of boundary condition but at the present time, evidence suggests

([19, 42]), that this would alter the general behaviour of the system very little.

1.7 What this thesis is about

This thesis describes a combination of experimental and theoretical techniques that
have been used to study the mechanics involved in bioconvection in a suspension of
gyrotactic swimming algae called Chlamydomonas nivalis.

Chapter 2 decribes experiments on bioconvection to obtain quantitative data on
the pattern wavelengths and how they vary with suspension concentration, depth and
time. Other observations are discussed, such as mode interactions and the formation
and breakup of annular patterns. A general measure of pattern is examined whereby
images are associated with a rippled surface in Euclidean three space and its Gaussian
and mean curvatures.

Chapter 3 investigates the linear analysis, both analytical and numerical, of the
recent continuum model proposed by [85] in a container of finite depth. A further
extension that the cell swimming speed is taken to be a random variable, and the
effect of this on the linear analysis is examined. The value of the variance of the cell
swimming speed is found to have a critical nature.

Chapter 4 details a computer aided, analytical expansion of the gyrotactic Fokker-
Planck equation for f(6,¢) in terms of surface spherical harmonics. It is found that
algebraic approximations for the diffusion tensor and mean cell swimming velocity can
be obtained and convergence is rapid for a range of realistic parameters. These expres-
sions can be applied directly to the fully non-linear equations for cell concentration and
fluid flow.

Chapter 5 considers the fully non-linear problem of bioconvection in a “deep”
suspension. Models of purely upswimming micro-organisms ([19]) do not possess an
instability in deep bioconvection in the absence of an upper boundary but models

incorporating gyrotaxis do. For the physically realisable situation of small vertical
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variation, a weakly non-linear analysis is constructed to give an amplitude equation
for the non-linear saturation of an initial disturbance and steady state solutions are
explicitly calculated. The possibility of horizontally travelling vertical plume solutions
is also investigated. By introducing a background vorticity, a Hopf bifurcation is gen-
erated and the ensuing limit cycle produces a travelling front of horizontally travelling,
vertical plumes. The analysis of a small vertical variation to the steady state solutions
introduces the possibility of vertically travelling pulses, or blips, down a plume, which

are also seen in experiments.



Chapter 2

An Experimental Investigation of

Bioconvection

2.1 Introduction

The purpose of this investigation is to attempt to quantify observations of pattern
formation by swimming micro-organisms in a rational and reproducible manner. In
this chapter, methods will be described that we have developed for measuring the
attributes of these patterns in suspensions of a particular micro-organism, the algae
Chlamydomonas nivalis. Observations of pattern formation have been recorded before
by such authors as Wager (1911) [119], Loeffer & Mefferd (1952) [77], Wille & Ehret
(1968) [122], [74] and recently Kessler (1984) [60] but the results have tended to be of
a qualitative nature. This is one of the first, controlled experiments aimed at quanti-
tatively cataloguing aspects of the bioconvection patterns. It is hoped that the large
data set of 39 experiments will be used in future analysis. Methods will be described
to Fourier analyse the images, with emphasis on the dominant unstable wavenumber
and how this changes with time. It will be shown that this wavenumber increases with
time, not continuously, but discretely as new modes become unstable on top of already
developed modes. Observations of pattern development and mode interactions will be
discussed and a general measure of the patterns based on curvatures of an associated
landscape will be proposed. Finally some experiments that were performed to inves-
tigate the mechanisms for gyrotaxis, by increasing the density of the medium with

respect to the algae, will be described.

21
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2.2 Culturing and concentrating the algae

Before measuring bioconvection patterns, it is necessary to breed a “homogeneous”
culture of cells that are in a fully motile stage of development. This is essential as there
are numerous forms of these organisms depending on their environmental conditions.
For example, when bad times of limited nutrients arise the algae metamorphose into
dormant cysts. There are a number of media that could be used, such as the slightly
cloudy “Soil Water Medium” or media based on Fish Meal as in James (1978) [52].
“Bolds Basal Medium” was used because it is relatively clear, mimics the natural con-
ditions of the cells and is reasonably easy to make whilst being easily adaptable (Bold
& Wynne 1978 [8]). This medium allowed normal, moderate growth and was used
in large flasks to reduce the glare of the light source and facilitate mutual shading.
Alternatively, the medium plus vitamin B12 (often recommended to increase the per-
centage of swimming cells) in smaller flasks allowed faster growth plus an assurance of
motility. However, the vitamin B12 produced some abnormal development when used
continuously over many months. The cells were subcultured every four to six weeks
and, ideally, experiments were only performed on fresh green cultures of about three
to four weeks old. There is some evidence to suggest (Kessler, personal communication
1995) that the cells are not gyrotactic within the first week after subculturing. The
cells are left to breed under two, cool white, fluorescent tubes which give a maximum
light intensity of 500 Ix. A cycle of twelve hours of darkness followed by twelve hours
of light is used. It is important to realise that the cells have their own diurnal cycles of
breeding, dividing and feeding, and it is essential to carry out experiments during the
correct motile phase. The cells’ cycle was set to coincide with my own daily cycle so
that full advantage of their motility could be taken. Like many of us Chlamydomonas
do not perform well within the first few hours of daylight! Half way through their day
they appear to perform best and produce the most robust patterns. Tomson & Demets
(1989) [108] have studied the daily cycle of Chlamydomonas eugametos in detail and
suggest that they are most motile in the middle of their day. In the first few hours
of light the cells are concerned with dividing and in their evening they begin to stick
together in preparation for mating. Tomson & Demets (1989) [108] also suggest that
the cells breed best when the suspension is not agitated, and that they do not divide at

all if the suspension is regularly well-mixed. The cells also tend to stop swimming with
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a sudden change of temperature, and hence, all steps of the breeding and experimental
processes took place at a constant temperature (25 &+ 2° C) within the laboratory, at a
set time in the day. All the equipment required in culturing was washed and rinsed in
distilled water and then carefully sterilized (autoclaved at 15 pounds per square inch
of pressure for 15 minutes) to avoid contamination by bacteria and fungi. Cleanliness
is crucial as if cultures become infected then it is very difficult to remove the infection.

Because Chlamydomonas are geotactic, it is easy to concentrate them (see Kessler
[58, 59]). By using a long-necked flask with a small piece of absorbent cotton wool
placed within the suspension, half way down the neck, the cells can be harvested from
the top. This is because the cells’ average swimming direction is upwards and they will
swim through the cotton wool but will not be convected back down, as in the absence
of the cotton wool. After 24 hours or more, clear liquid is left at the bottom of the flask
and concentrated suspension at the top. If left too long, the cells will quickly run out of
nutrients and metamorphose into a non-motile state. Alternatively, by floating a piece
of absorbent cotton wool in a suspension, the cells will swim to the highest point and
get stuck in the cotton wool. Again, if this is left too long it will dry out and kill the
cells (Figure 2.1). The concentrated suspension can be transfered by pipette to a petri

Aluminium
foil.

Non-absorbent
cotton wool.

Concentrated

cells. \

Absorbent
cotton
wool.

Figure 2.1: Two methods of concentrating the cells: a) cells swim up through absorbent
cotton wool in a thin necked flask and remain in the suspension above the cotton wool;
b) cells swim up through a floating raft of absorbent cotton wool and become trapped

within it at the surface.
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dish. It was found that plastic petri dishes were the most regularly shaped and so the
5cm diameter, circular, sterile variety were generally used. One of the first reactions
of the cells is to stick to the petri dish walls. To avoid this problem, a small amount
of clear medium from the culture flask was put into the petri dish. It was cleaned and
polished with a lens tissue before filling with the concentrated suspension. If the cells
still stuck then the dish and suspension were left in darkness for twenty four hours.
This usually gave the cells sufficient time to get used to their new environment and

reproducible patterns were generally observed.

2.3 Parameter measurement and control

As well as being geotactic and gyrotactic, Chlamydomonas are also sensitive to light
(i.e. phototactic). (Foster & Smyth 1980 [33]). It was therefore necessary to limit this
effect as much as possible. One way that was considered is to let the patterns form in
darkness and then to flash a light on for the purpose of recording visual images. The
cells, however, exhibit a photophobic response to a sharp increase in light intensity
and they stop swimming for a short period before eventually adjusting their swimming
stroke, such that their flagella are both aligned, and swimming in the reverse direction
(Witman 1993 [123]; Riiffer & Nultsch 1985 [99]). Instead, a very low, red light source
at wavelengths of about 622 — 780nm was used, to which Chlamydomonas do not
appear to respond significantly ([33]). Heating the suspension with the light source
was undesirable and so an infra-red filter was placed between the light source and the
cells. Finally, a milk glass filter was used directly under the suspension to create an
even, non-directional light source. The light intensity at the final stage did not exceed
5 1x, measured using a standard light meter.

After concentrating the suspensions of algae, it is necessary to measure their con-
centration. This was achieved after experimentation by first killing the cells, using
iodine or heating them, and then sampling from the well mixed suspension using a
microslide. A typical microslide is a hollow tube of rectangular cross-section, with di-
mensions of 0.2mm deep by approximately 1mm wide and 40mm long and thus, the
volume per unit area, when the slide is flat on the table, is easily calculated. When

the cells are dead, they sink to the bottom of the slide. Using a microscope linked to
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an image processing system the number of cells in the picture were counted automat-
ically and, after calibration with a graticule, the concentration was calculated. The
microscope was set up with a light source directly below the microslide. The light was
adjusted so that it was focused through the spheroidal cells onto the video lense and
hence pinpoints of bright light in the centres of the cells were obtained. This allowed
touching cells to be counted independently. This is good for counting purposes but not
good for calculating cross-sectional areas. The counting process was set up to reject
items that are too small or too large. Counting was repeated ten times on the same
microslide and up to three microslides were used to calculate an average concentration
for the suspension. To check the accuracy of this process a standard haemo-cytometer
was used to count cells by eye. The calculations of concentration compared well, with
the automated method giving a value of 84% of the manual method after counting
1039 cells by eye. This was within the error ranges of both methods and so it was
not necessary to scale the concentrations from the automated method. To measure the
depth of the suspensions, a calibrated microscope was used that was first focused on
the bottom of the petri dish and then on the surface of the suspension. The microscope
was calibrated by using glass slides of known thickness (measured using a micrometer).
To ease the focusing the surfaces of the slides were smeared. A combination of the
slides and fine focus was used to measure the depth to within +0.03mm of the surface
of the suspension. The surface is easily identifiable as cells group together and form
rafts of unit thickness at the surface. Realistically, however, this error bound should
be doubled to allow for small errors in calibrating the microscope and focusing on the
scratches on the bottom of the petri dish.

It was found that plastic petri dishes were the flattest and the depth did not vary
significantly over the dish (maximum error & 0.03mm). It is assumed that the depth is
constant over the majority of the central region of the suspension. In situations where
the suspension was very concentrated the bottom could not be focused on and, hence,

this had to be done prior to filling the dish with suspension.
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2.4 Experimental arrangement

All experimental work was completed on a minimal budget and use was made of what-
ever, often old, equipment was available. By far the most up to date unit was the Leitz
stereo micro/macroscope which was connected to a Z80 based Seescan image processor.
The image processor can in no way be described as state of the the art technology but
was sufficient for our purposes and was used primarily to implement the cell counting
' Y
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Figure 2.2: Experimental setup for cell concentration measurements.

algorithm. For the bioconvection experiments, the videocamera was focused directly
onto the petri dish. In general the suspensions were mixed well, and then pictures were
captured every ten seconds. Mixing correctly is very important since if unwanted fluid
motion is initiated then the initial pattern that forms may be affected. For instance,
spin-up will result in higher concentrations in the centre, whereas secondary circula-
tions in the horizontal plane could influence the generation of a sheet instability as
opposed to point instabilities. For each of the experiments a total of nine pictures were
captured and saved on 3% inch magnetic disks. These pictures were then transferred to
a PC 286, via a serial port, where they were then transferred across the network to a
Unix system. A graphics package, IDL (Research Systems Inc., Colorado), was utilized

to analyse the data on the Unix workstation.
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Figure 2.3: Experimental setup for recording images of bioconvection in a petri dish.
2.5 Image processing and characterization

The images consist of 256 x 256 pixels of 128 grey shades plus an unused bit (Figure 2.4).
This gives a total picture size of 64 kbytes. Thus, each experiment takes up a total
of 0.6 Mbytes. This can be greatly reduced after compression. It can be clearly seen
that the horizontal and vertical scales differ. This was due to the camera that was used
and it was necessary to rescale the images accordingly. The graphics package IDL was
selected to analyse the images due to its ease of use and adaptability.

The set of nine pictures each contain unwanted information such as:
e the walls of the dish,
e reflections and scratches on the dish,
e localized or irregular light sources, and
e the boundary of the picture.

The first three can be eliminated by subtracting the first image, when there is no
convection, from the next eight images. The last item becomes important when Fourier
analysing the images. Suitable use of windowing functions can solve this problem.
By Fourier transforming the images, it is possible to extract a measure of the most

dominant wavelength at a given instance and investigate how it changes with time.
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Figure 2.4: Example of a bioconvection image as initially recorded.

2.5.1 Discrete Fourier transforms

The images are composed of a two-dimensional, discrete, real data set and one would
expect there to be a corresponding two dimensional discrete complex Fourier space.
One of the best ways to obtain this is to use the Fast Fourier Transform (or FFT) algo-
rithm developed by Cooley & Tukey (1965) [23] (see Bingham 1974 [7] for a history of
the method). Press et al. in Numerical Recipes [89] (Chapters 12 and 13) describe the
workings of the FFT succinctly, and it is only necessary here to consider the approxi-
mation errors involved in the process in more detail. Firstly, we may dispel any concern
about the resolution of the picture as it contains 256 x 256 pixels and we will only be
considering up to a maximum of 60 wave lengths per picture. This gives a minimum of
four pixels per oscillation and satisfies the Nyquist condition of at least two pixels per
oscillation. However we should be aware of the problems linked with transforming dis-
crete data, such as aliasing. Aliasing occurs as a result of the information “lost” when
enforcing an upper bound on frequency in Fourier space. The “energy” misplaced due
to the higher frequencies is reflected back onto lower frequencies in Fourier space. This
is summed up in Figure (2.6). The reader is again referred to the relevent section in

Numerical Recipes [89] (page 496). The discrete Fourier transform of an image h(z, y)
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Figure 2.5: The same image as before but after the first image, where bioconvection

does not occur, has been subtracted.

of size N? in two dimensions is given by

N—1N-=1 2mix 27T'Ly

H(ky, ky) = Z Z e N eTh(m,y), (2.1)

y=0 =0

where H is in general complex, and contains phase information as well as the power
spectrum. A procedure in the graphics package IDL was used to perform the FFT on
the real, two dimensional image array. The procedure returns a complex array of the
same size. The structures of the two arrays are given in Figure (2.7) with an example
of a hexagonal pattern shown schematically. The distance in Fourier space of the dots
from the origin indicates the wavenumber (wavenumber is used here as the number of
waves in 256 pixels) and its position indicates its direction. Phase information is also

contained in the argument of each complex number in H.

2.5.2 Fourier spectrum estimation and analysis

The aim here is to extract the most dominant wavenumber contained in the image.

The Fourier spectrum is a measure of the spectral components of an image at varying

wavenumbers. The discrete Fourier spectrum, P, is defined on % intervals (called
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Figure 2.6: Aliasing and how it affects the Fourier spectrum. The energy from higher
wavenumbers beyond the cutoff wavenumber is reflected back onto the discrete Fourier

spectrum.

bins), I, = [n,n + 1) where n =0, ..., % —1, as
Po= >, [H(ks ky) (2.2)
d(ke,ky)ETR

where d(k;,ky) is the distance in Fourier space of (k;,k,) from the origin. As the
scales in h space for 2 and y are different (depending on the construction of the video
camera), it is necessary to scale the distance in the transform space, H, accordingly.
How does this Fourier spectrum compare with the continuous Fourier spectrum? As
the two dimensional FFT is essentially two FFT performed in the z and y directions
consecutively we may consider the errors involved in just one dimension. The image
has an edge and, hence, we are in effect multiplying the original infinite image by a
square windowing function. This is equivalent to finding the convolution of the image
Fourier space with that of the square window Fourier space. There is a certain amount
of “leakage” from one bin to the next due to the windowing function, and it can be
shown that it has a typical fall off rate of (ms) 2, where s is the frequency offset in
bins (Numerical Recipes [89], pages 545 — 551). The square of the transformation of

the window function determines the leakage, £, where

1 =
L(s) = 35 eV W) (2.3)
SS =0
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Figure 2.7: Discrete image and Fourier transformed space: an example of a hexagonal
pattern. The upper square indicates the input image and the lower square (with a thick
boundary) indicates the form of the fast Fourier transformed output space and how it

is to be interpreted (the square with a thin boundary).

where W(k) is the windowing function and Wy, = N S0 ' W?(k). For a square

windowing function

L(s) = — [S”ﬂ] g (2.4)

~ N? |sin 5
For Fourier spectrum analyses it is the oscillatory nature of the leakage which is un-
desireable (a manifestation of the Gibbs phenomenon whereby sharp edges introduce
oscillatory errors). A solution is to use a different windowing function that does not
have the sharp edges of the square windowing function. The Hann window was chosen
(Numerical Recipes [89], pages 545 — 549) as it removes the oscillatory nature of the

leakage and the error rapidly decreases to zero outside a small range in the Fourier
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spectrum space. The Hann window is essentially a cosine (plus a constant) about the
center of the image and reaches a minimum of zero at the edges. This has the additional
benefit of favourably weighting the information in the centre of the picture. The Hann
window in two dimensions is defined as

1 2 2
Wi (z,y) = 1 [1 — cos %] [1 — cos %] (2.5)

and is multiplied with the image before application of the FFT algorithm.

2.5.3 Dominant wavenumber analysis

In general the discrete Fourier spectrum can be graphed as a rather noisy bar chart
with one or more dominant wavenumbers. But how do we extract this wavenumber
and produce an estimate of the variance of this value? Figure (2.11) shows a typical
time series of nine images taken one every 10 seconds and Figure (2.12) the correspond-
ing Fourier spectra. As the first frame is subtracted from each subsequent frame the
background “noise” will increase with time as the differences between the two frames
become greater. Also, a range of wavenumbers become unstable with maybe one most
unstable wavenumber. An unnormalised double Gaussian distribution is fitted to the
“noise” and “not so unstable wavenumbers” and the other is fitted to the dominant most
unstable wavenumber. The unnormalized double Gaussian distribution, ? (X = n), is

defined as

?(X :n) :Al?(>\1;X :$+N1) +A27 ()\Q;X :33-*—#2), (26)

where ,
()
T X =x)=e N/ (2.7)

Figure (2.8) shows a close up of this curve fitting. The trial curve is fit using a least
squares algorithm. It was found that this method could be used on large sets of Fourier
spectra where the curve fitting was effectively implemented on a computer. However, it
was necessary to investigate some measures of the errors involved so that we could be
warned if the curve fitting was inappropriate (for example if there exists two or more

dominant peaks).
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Figure 2.8: An example of curve fitting using the unnormalised double Gaussian dis-
tribution to an image’s Fourier spectrum. The horizontal axis measures wavenumber

and the vertical axis is the Fourier density.

2.5.4 Error analysis

Due to the nature of the bar graph, standard confidence tests are not particularly
relevant here. That is to say that the Fourier spectrum contains information on the
harmonics of the patterns and it would be unreasonable to assume the spectrum has a
particular shape. What we are interested in acheiving is to fit a curve to the general
outline of the spectrum. Moreover we wish to ignore the possible large fluctuations of
the spectrum. This could be acheived by first smoothing the data, but this has the
disadvantage of losing some important information on the harmonics. Alternatively,
two statistics are chosen that describe how well the unnormalized double Gaussian
distribution fits the data. A small value (< 0.1) of both of the statistics indicates
that the curve fitting is sucessful, whereas a large value of any one statistic does not
necessarily imply that the curve fitting is inappropriate but does indicate that greater
attention should be paid. If both statistics are large then this is a strong indication that
the curve fitting is ineffectual. In only a small number of cases it is necessary to estimate
the most unstable wavenumber by eye (for example, experiment x120h, Figures 2.11
and 2.12, in which there are two dominant wavenumbers in the initial pattern). The
sum modulus error, normalised with respect to the area under the bar graph, is a good
measure of the absolute roughness of the bar graph and the Kolmorgorov-Smirnov

statistic describes variations in the trends of cumulative data (e.g. von Mises, 1964
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[118]). The sum modulus error has a different character to the chi-squared statistic in

that it represents the small errors as much as the large. It is defined as

N-1
1 _
Ev = =3 [Pa—T(X =), (2.8)

where P, is the Fourier spectrum at wavenumber n and ? (X = n) is the unnormalized

double Gaussian distribution. The normalised Kolmorgorov-Smirnov statistic is defined

as
1 n B
- @@ 5 _
s = S e > (Pa = T(X =) 29)

and measures the maximum cumulative error rather than the total sum error. A cal-
culation of the significance of £xg (e.g. Stephens 1970 [105]) is not strictly relevant
in this context as the spikes found in the Fourier spectrums are very real entities and
represent unstable modes or harmonics and not random events.

If €y is large then this indicates that the data is not very smooth and many
harmonics exist. If £xg is large then this indicates that the general trend of the
unnormalised double Gaussian distribution deviates significantly from the data.

Regardless of the form of the error estimates, the ? appears to be the natural
choice of function to fit for the majority of experiments. In this way a most unstable
wavenumber can be extracted as a function of time. In particular the first unstable
wavenumber and the final (or near final wavenumber as the pattern may take hours to

fully evolve) most unstable wavenumber can be examined as a function of concentration

and suspension depth.

2.6 Experimental examples

Below we present experimental data for each experiment and display a number of exam-
ples of the differing patterns that one might expect with Chlamydomonas nivalis. Dark
regions indicate a high local cell concentration. There are nine frames per experiment
taken consecutively every ten seconds unless otherwise stated. The very last picture
in each experiment was recorded after a sufficiently long time such that the pattern

appeared stationary (typically 5 to 10 minutes).
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2.6.1 Tables

Below, all of the experiments vital statistics are recorded detailing measurements of

initial and well developed dominant pattern wavelengths.
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Experimental data

Expt. || Conc. | Depth | kg koo Ao Aso Notes
Name || M/em3 em /dish | /dish | em cm
x108a || 2.75 0.333 | 14.09 | n/a 0.369 | n/a
x108b || 2.07 0.396 | 10.71 | n/a 0.486 | n/a
x108c || 6.31 0.365 | 19.47 | 22.57 | 0.267 | 0.230
x108d || 3.06 0.444 | 11.10 | 17.30 | 0.468 | 0.301
x114a | 0.808 | 0.522 | 10.80 | n/a 0.481 | n/a mixed modes
x114b || 1.02 0.729 | 7.50 n/a 0.693 | n/a mixed modes
x114c || 0.886 | 0.399 | 12.48 | n/a 0.417 | n/a mixed modes
x117e || 1.64 0.381 | 15.76 | n/a 0.330 | n/a slow to develop
x117f || 2.30 0.456 | 15.10 | n/a 0.344 | n/a slow to develop
x117g || 1.88 0.690 | 10.00 | n/a 0.520 | n/a slow to develop
x120a || 2.81 0.282 | 15.40 | n/a 0.338 | n/a mixed modes
x120h || 2.47 0.528 | 8.87 19.10 | 0.586 | 0.272 | 2 mixed modes, starts
in centre
x1201 || 2.15 0.645 | 10.08 | 18.61 | 0.516 | 0.279 | mixed modes, starts in
centre
x208b || 1.89 0.384 | 14.96 | 16.73 | 0.348 | 0.311 | every 30 seconds
x208c || 1.89 0.318 | 14.20 | 10.64 | 0.366 | 0.489 | every 20 seconds
x208d || 3.62 0.310 | 17.15 | 14.54 | 0.303 | 0.358
x208j || 1.89 0.469 | 07.34 | 17.18 | 0.708 | 0.303 | 2 peaks, L, dominant
x208k || 1.89 0.469 | 14.70 | 14.79 | 0.354 | 0.352 | 2 peaks, L dominant
x2081 || 1.89 0.469 | 08.63 | 15.62 | 0.603 | 0.333 | 2 peaks, R dominant
x208m || 1.89 0.723 | 09.97 | 15.11 | 0.522 | 0.344
x208n || 1.89 0.384 | 15.12 | 15.67 | 0.344 | 0.332
x209e || 2.09 0.355 | 14.25 | 16.66 | 0.365 | 0.312
continued.....

Table 2.1: Table of experimental measurements where the subscript 0 means the first

unstable mode to be measured and oo means the final pattern mode. Wavenumbers

(waves per width of dish) are indicated by k£ and the dimensional wavelength by A. For

the final pattern, n/a indicates that the images are not available.
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2.6.2 Images

Here a selection of the experiments are displayed which have been chosen for their

variety. Figure 2.9 describes the order in which the images appear.

3 6 9;

N
o1
e

S

Figure 2.9: Key. Order in which images are recorded. Pictures taken one every 10

seconds unless otherwise stated.

2.7 Dominant wavenumber results

2.7.1 The initial disturbance

The suspension is initially well-mixed such that there is a uniform concentration profile.
In general, an initial instability is apparent after 20 to 30 seconds and if the cells swim
at 50ums~! then they have only travelled 1 to 1.5mm in this time. This may not
be sufficient for the majority of cells to be involved in an overturning instability and
they will not have had sufficient time to swim to the equilibrium solution, as assumed
in the linear analysis of Chapter 3, in which vertical cell diffusion is balanced by the
up swimming cells and there is no horizontal variation (the depths in the experiments
generally being of the order of 5mm). A proportion of the cells may, however, have had
enough time to aggregate at the top and initiate the overturning. In which case, the

Rayleigh-Taylor instability is due to a reduced density gradient than that determined
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Experimental data continued.....

Name || Conc. | Depth | kg koo Ao Aoso Notes
M/em3 em /dish | /dish | em cm

x215f || 4.19 0.468 | 13.87 | 22.20 | 0.375 | 0.234
x215g || 4.19 0.291 | 17.26 | 20.62 | 0.301 | 0.252
x215h || 4.19 0.186 | 27.67 | 17.48 | 0.188 | 0.297

y11i 4.30 0.282 | 19.66 | 22.52 | 0.264 | 0.231
y11j 4.30 0.282 | 17.76 | 21.89 | 0.293 | 0.238
yl1k 4.30 0.282 | 15.75 | 24.19 | 0.330 | 0.215

y11l 4.30 0.282 | 17.45 | 23.52 | 0.298 | 0.221 | every 30 seconds
y12b 11.8 0.342 | 18.08 | 36.84 | 0.288 | 0.141
y12c 4.00 0.297 | 16.71 | 28.03 | 0.311 | 0.186

yl2d 15.0 0.195 | 28.24 | 28.02 | 0.184 | 0.186
y12e 11.8 0.118 | 34.84 | 32.95 | 0.149 | 0.158
y12f 11.8 0.168 | 30.59 | 32.72 | 0.170 | 0.159
y12m | 3.60 0.324 | 15.71 | 17.30 | 0.331 | 0.301
y12n 11.8 0.342 | 15.70 | 25.58 | 0.331 | 0.203
y02i 4.30 0.228 | 23.09 | 34.15 | 0.225 | 0.152
y02j 4.30 0.300 | 28.73 | 45.19 | 0.181 | 0.115
y02k 4.30 0.300 | 29.86 | 43.05 | 0.174 | 0.121 | every 30 seconds

Table 2.2: Table of experimental measurements (continued) where the subscript 0
means the first unstable mode to be measured and oo means the final pattern mode.
Wavenumbers are indicated by £ and the dimensional wavelength by A. For the final

pattern, n/a indicates that the images are not available.
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name || initial final
pattern pattern

x108a || D Dy
x108b || X D/L
x108c || X D
x108d || L D
x114a | D D
x114b || L D
x114c¢ || D D
x117e || D L/D
x117f | X D
x117g || X X
x120a || D D
x120h | M D
x120i | M D
x208b || D D
x208¢c || Dr D
x208d || D M
x208] || X D
x208k || D/L D
x2081 || L D
x208m | X Dy
x208n || Dr D
x209%e || X Dy

39

Table 2.3: Experimental initial and final patterns observed. The types of patterns are
indicated by D = dots, L = lines, X =dots joined by lines in X or Y shapes and M =
mixed. The subscript 7' means that the pattern evolves through a torus stage and the

subscripts H and S mean clear evidence of hexagonal or square arrays respectively.
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name || initial final
pattern pattern
x215f || L D/L
x215g || X7 D/L
x215h || D D+ empty
y02i X Dy
y02j X Dy
y02k X Dy
y11i X Dy
y11j X Dy
yl1k X Dy
y111 X Dy
y12b M Dg
y12¢ M Dy
yl2d M D
y12e Mt D
y12f Mt D
yI2m || X Dy
y12n M D

Table 2.4: Experimental initial and final patterns observed. Continued....
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Figure 2.10: Experiment number x208m. Concentration = 1.89 x 10%cm 3, depth=

7.23mm. Pictures taken one every 10 seconds.
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Figure 2.11: Experiment number x120h. Concentration = 2.47 x 10¢m =3, depth=

5.28mm. Pictures taken one every 10 seconds.
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Figure 2.12: Experiment number x120h. Fourier spectra of images. Horizontal axis

is wavenumber and vertical axis is Fourier density. Concentration = 2.47 x 10%e¢m =3,

depth = 5.28mm. Pictures taken one every 10 seconds.
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Figure 2.13: Experiment number x208l. Concentration = 1.89 x 10¢m =3, depth =

4.69mm. Pictures taken one every 10 seconds.
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Figure 2.14: Experiment number x108d. Concentration = 3.06 x 10¢m ™3, depth

= 4.44mm. Pictures taken one every 10 seconds.
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Figure 2.15: Experiment number x209e. Concentration = 2.09 x 10%cm 3, depth =

3.55mm. Pictures taken one every 10 seconds.
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Figure 2.16: Experiment number x208c. Concentration = 1.89 x 10%cm 3, depth =

3.18mm. Pictures taken one every 20 seconds.
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Figure 2.17: Experiment number y02k. Concentration = 12.2 x 108¢m ™3, depth =

3.00mm. Pictures taken one every 30 seconds.
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Figure 2.18: Experiment

wavenumber and vertical axis is Fourier density.

depth = 3.00mm. Pictures taken one every 10 seconds.
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number y02k. Fourier spectra of images. Horizontal axis is

Concentration = 12.2 x 10%em ™3,
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Figure 2.19: Experiment number x215g. Concentration = 4.19 x 10%cm 3, depth =

2.91mm. Pictures taken one every 10 seconds.
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Figure 2.20: Experiment number y02i. Concentration = 4.6 x 10%cm ™3, depth =

2.28mm. Pictures taken one every 10 seconds.
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Figure 2.21: Experiment number y12d. Concentration = 15.0 x 105¢m ™3, depth =

1.95mm. Pictures taken one every 10 seconds.
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Figure 2.22: Experiment number x215h. Concentration = 4.19 x 10¢m ™3, depth

= 1.86mm. Pictures taken one every 10 seconds.
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Figure 2.23: Experiment number yl12e. Concentration = 11.8 x 10%cm ™3, depth =

1.18mm. Pictures taken one every 10 seconds.
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from the exponential distribution of Chapter 3. Alternatively, the observed initial
instability may be a gyrotactic instability (or perhaps a combination of both). Thus,
it is difficult to isolate the mechanisms involved in the initial disturbance.

The wavenumber, k, is related to a physical wavelength by

Ly

A= — 2.1
k? ( 0)

where I, is the image width and equals 5.2cm. Figure (2.24) describes how the first
observation of a most unstable wavelength varies with concentration and suspension.
The diameter of the circle is proportional to the wavelength and the centre of the circle

indicates its position in parameter space. In general the wavelength increases with

0.8 \ \

L Q =0.6cm i
Q%@ ()  =0.4cm
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Figure 2.24: Dominant wavelengths of the initial disturbance from a fully mixed sus-
pension of Chlamydomonas nivalis against concentration and suspension depth. The
diameter of the circles represent the most unstable wavelength measured on a contin-

uous scale in ¢m.

depth and decreases very slowly with concentration. The patterns have been grouped
into four groups and Figure (2.25) shows how the pattern varies with concentration

and depth. There are a number of regions in the concentration/depth parameter space
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that require further explanation. The region M described in Figure (2.25) displays
acute sensitivity to the initial conditions. However carefully the suspension is mixed
there will always be some coherent fluid motion. Depending on the nature of this
motion the initial pattern will either develop as dots or lines. In terms of the Fourier
spectrum, there is a range of equally unstable wavelengths and, depending on the initial
conditions, any can dominate the pattern. However, the well developed pattern appears

to be free of any such degeneracy.

2.7.2 The well developed pattern

It is difficult to decide when in fact the well developed pattern occurs. In many cases
the pattern tends towards a regular array of dots but in other cases either no regular
pattern exists or no long term pattern is visible at alll Indeed, after 24 hours either an
exceedingly regular pattern emerges or the cells are stuck together at the bottom. It is
not always necessary to wait 24 hours and the impatient investigator need only wait 5
to 10 minutes before the pattern reaches a stage where there is very little or no further
variation. As mentioned previously 8 images were recorded at 10 second intervals and
a long term image recorded after about 5 minutes. The dominant wavenumber anal-
ysis was performed and the results are displayed in Figure (2.26) where the dominant
wavenumber is plotted against depth and concentration. The results vary significantly
from the initial disturbance in that the wavelength decreases with concentration and
there is no significant change with depth. Certainly the well developed pattern is inde-
pendent of the initial conditions and Figure (2.26) is much smoother than Figure (2.24).
A clear difference occurs in the shape of the Fourier spectra of the initial and well devel-
oped patterns. The initial patterns’ Fourier spectra contain harmonics and competing
unstable wavenumbers whereas the final patterns Fourier spectra contain just one un-
stable wavenumber as the patterns are generally characterised by a regular array of
dots. This can clearly be seen in Figure (2.11), where it is also obvious that the pat-
tern wavenumber has increased with time. In some situations of very low concentration
and small depth it was observed (but not recorded) that although an initial instability
occured, long time patterns were not visible. At the time these patterns were not suf-
ficiently repeatable to warrant recording and the cells appeared to stick to the walls of

the dish soon after. There are a number of possible explanations. One is that the cells
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Figure 2.25: Pattern type of the initial disturbance from a fully mixed suspension
of Chlamydomonas nivalis against concentration and suspension depth. The regions
correspond to the dominant pattern present where D = dots, L = lines, X = dots
joined by lines in X or Y shapes and M = mixed. The subscript T' means that the
pattern evolves through a torus stage and the subscripts H and S mean clear evidence

of hexagonal or square arrays respectively.
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Figure 2.26: Dominant wavelengths of the final observed pattern in a suspension of
Chlamydomonas nivalis against concentration and suspension depth. The diameter of
the circles represent the most unstable wavelength measured on a continuous scale in

cm. The dots represent experiments performed where a final pattern was not recorded.

were separated during mixing, swam to the top and promptly stuck together and sank.
Alternatively the cells could have been fully independently motile but of insufficient
concentration to set up long term bioconvection patterns but may instead have set up
a stable vertical concentration gradient. Irregular long time patterns are also hard to
interpret but, by considering the Fourier spectra, appear to be time dependent mode

interactions of two or more modes.

2.7.3 Transitionary mode interaction

Although we have seen that the wavenumber, k, increases from the initial instability
to the final steady state, it does not always do so monotonically. Figure (2.27) shows
three identical experiments performed within ten minutes of each other in a region

of parameter space where the patterns are sensitive to the initial conditions. Exper-
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Figure 2.27: How the dominant pattern wavenumber varies with time. Three identical

experiments where the initial instability is highly dependent on the initial conditions.

iment x208j was performed between the other two. It was observed that the initial
instability was dependent on the type of mixing that was used beforehand even though
care was taken not to set up any bulk fluid motion and whatever motion was present
died away in under a couple of seconds. Whatever the initial instability the patterns
evolved towards the same long term state. Figure (2.28) is a typical example of how
a pattern’s Fourier spectrum evolves with time. One of the first observations to be
made concerns the oscillatory nature of the amplitude of the Fourier spectrum. The
initial instability quickly increases in size until it hits the bottom of the dish and the
cells then have to swim back up to the surface. During this period the amplitude of
the unstable mode decreases. Any new instability that occurs must exist on top of
the recently set up fluid motion and, in this respect, the patterns that occur have a
discrete set of wavelengths. The overall amplitude of the Fourier spectrum is seen to
increase when this new instability occurs. It can clearly be seen that the initial instabil-
ity is composed of distinct competing wavenumbers and as time progresses shorter and
shorter wavelengths become unstable. It is also apparent when viewing the bargraphs
in Figure (2.12) that each new shorter wavelength that becomes unstable does so at
the expense of the the previous most unstable wavelength. Figure (2.29a) shows how

the wavenumber increases as opposed to a continuous increase in Figure (2.29b). These
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Figure 2.28: A contour plot of the Fourier spectrum of experiment y02k varying with

time. Different modes generally become unstable to modes of larger wavenumber.

Fourier spectra become clearer when they are contrasted with the images. In general,
the first instability to occur tends to be sheets or lines when viewed from above. (Al-
though dots are also quite common.) The sheet instability generally becomes unstable
to a dot type instability or sometimes to something resembling a lattice of nodes joined
by lines. These patterns further break down into smaller dots or other connected pat-
terns. So, in general, two dimensional patterns become unstable to three dimensional
patterns. But what occurs between the initial instability and the long time pattern
is a complicated set of mode interactions. For example, tori can be formed as seen in
Figure (2.30). Initially the suspension is well mixed and the cells are able to swim to
the top (before any instability forms) thus initiating a Rayleigh-Bénard type instabil-
ity. The initial disturbance is generally two dimensional and in the form of descending
sheets of concentrated suspension (bioconvection rolls). This quickly breaks down to a

three dimensional instability of descending plumes. As a plume hits the bottom of the

30
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Figure 2.29: Unstable wavenumbers varying with time. a) a discretely varying dominant

wavenumber. b) a continuously varying dominant wavenumber.

dish it spreads out entraining clear fluid in its wake at the upper surface. It is when the
clear fluid reaches the bottom of the dish that the ring vortex can be clearly seen as an
annulus when view from above. The annulus increases its diameter and forms a closed
bioconvection roll. Eventually this two dimensional rotationally invariant roll becomes
unstable to three dimensional plumes. Figure (2.31) illustrates this possible process as
a cartoon viewed from above. This is only one possibility and the final pattern could be
produced by different mechanisms. Nonetheless, this possibility has been seen to occur
and annuli can be observed in Figure (2.20) eventually breaking up into dots. Another
mechanism that has been noticed is where a dot becomes elongated and breaks up into
two smaller dots. By comparing the three pictures for each independent experiment
given in Section (2.6) it is possible to track the unstable wavelengths and see how they

vary with time in relation to the type of pattern present.

2.8 A measure of pattern

Here a measure of pattern will be proposed that distinguishes between a dot pattern
and a line pattern. First, we associate the image intensity, z(x,y), with the smooth
surface

r(z,y) = (z,y,2(z,y)) (2.11)

embedded in Euclidean three-space. The key to the following argument is that by using
bending alone one can recreate the line (or ridge in our new geometry) pattern from a

plane. This is not so with the dot (or hill) pattern which requires some stretching of
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Figure 2.30: A sketch to illustrate how clear fluid can be entrained in a plume and an
annulus pattern can be formed when viewed from above. a) cells swim up to the top
and overturn due to a Rayleigh-Taylor instability. b) gyrotaxis produces thin plumes.
¢) the plumes hit the bottom of the dish and spread out forming a ring vortex. d) clear

fluid is entrained in the wake of the plume and an annulus is set up.

the plane as well as bending (see Figure 2.32). It is this combination of bending and
stretching that we shall measure. Consider the tangent space at a point on the surface
that is spanned by the vectors

r, = (1,0, 2;) (2.12)

and

r, = (0,1,2y). (2.13)

The “first fundamental form” describes length and area (do Carmo 1976 [29]) and is
defined as

ds? = Edz? + 2Fdxdy + Gdy* (2.14)
where
E=r, r,, (2.15)
F=r; r, (2.16)
and

G=ry 1y (2.17)



An Experimental Investigation of Bioconvection 63

Figure 2.31: Possible mode interactions. Patterns can become unstable to other new
modes. In particular, two dimensional patterns can become unstable to three dimen-
sional patterns. These dot patterns can form annuli. When large enough, the annuli
are essentially two dimensional patterns and can again become unstable to three di-
mensional patterns. Eventually the pattern settles down to a regular array of dots. In

general the pattern wavelength decreases with time.

Let the unit normal to the surface be defined as

_ rgAry 1

n= = (=2, —2y, 1).
rg Ay 1+ 22+ 22

Now consider the “second fundamental form”, which represents the way in which the

(2.18)

tangent plane diverges from the surface, and is defined as
Ldz? + Mdzdy + Ndy? (2.19)

where

L=r,  n, (2.20)
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Figure 2.32: Bending and stretching a plane to produce a line pattern or a dot pattern.

M=ry n (2.21)

and

N =ry, n. (2.22)

For the surface r(z,y) = (z,y,2(z,y)) the coefficients are E = 1 + 22, F = z2,,

Gzl—i—z;,L:Zg,M:Zgy andN:nyywhereH:,/l—i—z%%—zZ.

The two principal surface curvatures are determined from the eigenvalue problem

L M E F
det —K = 0. (2.23)
M N F @G
It can be shown that the Gaussian curvature (or the product of the two principal

curvatures) on a surface embedded in Euclidean three-space, can be written as (see do

Carmo 1976 [29])

LN — M?
= 2.24
Kg EG _ F2 Y ( )
and the mean curvature (i.e. the mean of the two principal curvatures) is
1LG-2MF+ NE
== . 2.25
m YT EG - F? (2.25)
Once evaluated with the surface r(z,y), these expressions can be written as
ZpgpZyy — 22
Kg = i A (2.26)

H4



An Experimental Investigation of Bioconvection 65

and

B 1 zm(l + Z;) + Zyy(l + z%) - 2z:pyz:1:zy

3 s (2.27)

Km

kg(z,y) is a measure of the local bending and stretching required to produce the surface
from a plane. If no stretching is required then x, = 0 and the surface is said to
be isomorphic to the plane. The only such surfaces are “ruled surfaces” which are
defined as the surface swept out by a straight line. A subset of these surfaces are
“developable surfaces” such as cylinders and corrugated roofs. A version of the Gauss-
Bonnet theorem states that for a smooth closed bounded surface, S, with n sides and

internal angles «;
Zai =(n—2)7 —I—/ Knds + / KgdS (2.28)
1 ds s

where Kk, is the “normal curvature” of the bounding curve. This formula is related to
the Euler formula 2 - holes = faces - edges + wertices for partitions of a closed
bounded surface in Euclidean three-space. For a surface such as ours, Y a; = 27 and
if we preprocess our images such that the boundary curves are geodesics (i.e. normal
curvature is zero) then fs kgdS = 0. Geodesic boundaries are easy to enforce by
requiring that the surface is “flat” at the edges.

In this study we are interested in the local behaviour of the surface and in particular
the signs of the Gaussian and mean curvatures and the image area these regions occupy.
This information will provide us with a characterization of the image and how this

changes with time.

2.8.1 Preprocessing

Contained within the pictures is a small amount of noise and also some small scale
structures. For example, debris, dust, scratches on the petri dish or lenses and, of
course, sampling inaccuracies. For the purposes of curvature calculations, these struc-
tures can prove troublesome and must be eliminated beforehand. There are a number
of methods for filtering out noise. Initially, we chose to use a band-pass filter of the fifth
order Butterworth type to remove high and low wavenumbers. Unfortunately, this filter
had the effect of introducing a low level, oscillatory signal to the image which, unless
its wavelength matched that of the image, was sufficient to corrupt the curvature cal-

culation. We opted instead for a more sophisticated method of moving averages (Tukey
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1977 [110]; Cressie 1993 [26]). We found that by using a combination of a median mov-
ing average (Justusson 1981 [57]; Tyan 1981 [112]), which preserves edges and ignores
outliers, and a mean moving average, which smooths sharp edges but is sensitive to
outliers, we were able to construct a smooth surface that had all of the bioconvection
structures intact. The median moving average is defined as the median of a points
neighbours within a suitable distance. If this neighbourhood is too large, the filter has
the undesirable effect of rounding corners. The mean moving average is defined as the
mean of a point’s neighbours and smooths the image. We found that a neighbourhood
width of five was best for both filters, with the mean following the median, in that the
image appeared uncorrupted. A couple of applications of this combined filter removed
the undesirable noise and created a smooth surface with similar characteristics to the

original image.

2.8.2 Numerical gradients

To calculate the surface curvatures for a surface z(z;,y;) = z;; it is first neccessary
to approximate the surface gradients z;, 2y, z;z, 2yy and z;y. Fourth order accurate

expressions for these gradients are

—Zit2,) T 8%iy1,; — 8zi—1,j + Zi-2,;
12h,

+ O(hY), (2.29)

Zy =

T Zij42 + 16zi,j+1 — 3021"]‘ + 1621'11',1 — Zj—2
= 1272

and similarly for zy, z;; and 2z, where h, and h, are the horizontal and vertical lengths

+ O(hy) (2.30)

between pixels. A choice of 0.1 for h, is sufficient for an accuracy of 102 for the gradient
calculation. Equations (2.26) and (2.27) are used to calculate the Gaussian and mean
curvatures. These expressions are not valid at the edges of the image however, but the

curvatures there are not relevant and are left unevaluated.

2.8.3 Interpretation

As mentioned before, if x4 is zero at a point then it is locally isomorphic to a plane and
is in a class of surfaces called “ruled” surfaces. We can gain even more information on
the shape of the surface, and hence the type of image pattern, by considering what the
combinations of signs of ,, and k, refer to. Figure (2.33) explains how combinations

of ky, and Kk, determine the local form of the surface. To allow for small errors, k, is
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Figure 2.33: Different combinations of ,, and x4 imply different local surface struc-

tures. In particular, if x, < 0 then the principal curvatures have different signs and we

have a saddle point. If £, < 0 then the principal curvatures have the same sign and we

have a local minimum or maximum. The sum of the principal curvatures, k,,, provides

the extra information required to determine the form of the local surface structure.
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max (abs(kg))

considered as equal to zero if and only if —k4; < kg < K¢, Where Kk, = o

and likewise for k,,. Figure (2.34) shows a typical example where the different colours
represent regions of qualitatively different local surface structures. We can sum the
areas of the image for different shapes in a window within the image to get measures of
how the pattern changes with time. If Ayq, Ay, Aya, Ay and Ay are image areas which
are black (b), white (w), dots (d), lines (1) or flat (f) then the normalised coefficients
Cpa, Cpi, Cwa and Cyy; can be defined as
Cha = T—Af (2.31)
etc., where A,, is the area of the sample window, and represent the proportion of the
whole pattern taken up by a particular type of pattern. These pattern coefficients
are shown in Figure (2.35) for experiment x120h (Figure 2.11) and it is clear that the
proportion of black dots increases with time and black lines initially increase but then
decrease. We do not consider the cases where the surface is locally isomorphic to a
plane as it is hard to distinguish these structures from local fluctuations caused by
“noise” and the choice of filter. Hence, we can conclude that this method is effective
at isolating particular image strucures and differentiating between them.
Figure (2.37) is another example of the coefficients for experiment x208] where the
curvatures are displayed in Figure (2.36). There are general characteristics for both

example images.
e The percentage of white dots decreases with time.
e The percentage of white lines increases with time.
e The percentage of black dots decreases and then increases with time.
e The percentage of black lines increases and then decreases with time.

e Striped linear patterns are observed, indicating that line patterns almost imme-

diately become unstable along their length.

e Well developed patterns are well defined with an overall increase in black dots
and white lines and a decrease in white dots and black lines, indicating a change

from line patterns to dot patterns.
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Figure 2.34: An example (experiment x120h) of image characteristic curvatures varying

with time. Key: Blue = cell concentration maximums or black dots; Red = cell con-

centration minimums or white dots; White = high cell concentration saddles or black
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Figure 2.35: x120h. Image pattern coefficients varying with time. Dash-dotted line:
Chpa, black dot coefficient; Dashed line: Cy;, black line coefficient; Solid line: C,,4, white

dot coefficient; Dotted line: C,,;, white line coefficient.

In particular Figure (2.36) displays background large scale structures that could
either be generic or a result of the pre-mixing.

Further investigations could focus on the possible connections between these coef-
ficients and the dimension of the pattern that they represent. For example, a pattern
of a regular array of dots is essentially a three dimensional pattern whereas an array of
bioconvection rolls is a two dimensional pattern. In the same manner a pattern consist-
ing of large tori could be classed as being closer to a two dimensional pattern and many
other patterns would be somewhere between two and three dimensional. The analysis
of the curvature coefficients could provide some means of determining this average di-
mension. In particular, the coefficients C%; and Cy, indicate the levels of two and three

dimensional structures of concentrated cells. Defining the pattern demension, Dy, as
(2.32)

provides a basic measure of the pattern dimension.
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Figure 2.36: An example (experiment x2081) of image characteristic curvatures varying

with time. Key: Blue = cell concentration maximums or black dots; Red = cell con-

centration minimums or white dots; White = high cell concentration saddles or black
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Figure 2.37: x208l. Image pattern coefficients varying with time. Dash-dotted line:
Chpa, black dot coefficient; Dashed line: Cy;, black line coefficient; Solid line: C,,4, white

dot coefficient; Dotted line: C,,;, white line coefficient.

2.9 Varying the density of the suspending fluid

An experimental attempt was made to alter the strength of the cells’ negative bouyancy
and gyrotaxis and, hence, to measure the strength of the alternative sedimentary mech-
anism proposed by Alun M. Roberts (1995, personal communication) that has been
neglected in our model to date (see Section 1.3). Theoretically, Hill, Jones and Pedley
(1995, personal communication) have independently estimated the orienting forces due
to sedimentation (which we shall call the taxis due to sedimentation) to be an order of
magnitude less than for gyrotaxis. Experimentally our results were inconclusive. The
unreactive chemical Percoll', which has a higher density than water, was added to sus-
pensions of swimming micro organisms in different proportions and observations were

made of the behaviour of the organisms. Percoll (registered trademark of Pharmicia,

'Recently Lebert & Hider (1996) [72] have reported their findings on experiments with a similar

chemical called Ficoll to vary geotaxis in Euglena gracilis.
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Inc.) is a colloidal Polyvinylpyrrolidone (PVP) coated silica and is normally used to
set up gradients in suspension density for cell separation. It has a higher density than
water (density of Percoll equals 1.13 4 0.005gecm™2) which is desirable but also a higher
viscosity (0.1 + 0.05gcm s~ ! at 20°C, equal to ten times that of water) and higher
pH (8.9 £ 0.3 at 20°C') which are not.

2.9.1 Theoretical predictions

Case I:-

In their standard medium (of density 1.0gcm3) Chlamydomonas nivalis are bottom
heavy and will, on average, swim upwards. They are, however, denser than the sur-
rounding fluid (cells are of density 1.05gcm™3) and will cause a Rayleigh-Taylor in-
stability when they accumulate at the upper boundary. Gyrotaxis acts such that the
cells swim towards downflowing fluid. The taxis due to sedimentation results from the
high relative drag of the cell’s flagella to the cell body, when the cell experiences the
otherwise negligible sedimentation force (relative to the cell swimming speed), and acts
in the same manner as gyrotaxis.

Case II:-
If enough Percoll is added (approximately 38.5 % from previous measurements of den-

sity) such that the cells are neutrally bouyant then
1. There are no torques due to sedimentation.
2. The cells are bottom heavy and swim upwards.

3. The cells accumulate at the upper boundary but cannot cause a Rayleigh-Taylor

instability.

4. Cells swim towards regions of downflowing fluid (gyrotaxis) but a gyrotactic in-

stability cannot occur.

Case III:-

If the cells are slightly positively bouyant then

1. The taxes due to sedimentation acts to point the cell downwards but is smaller

than
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2. the torque due to the bottom heaviness of the cell acting to point the cell upwards.

The cells swim upwards on average.

3. The cells accumulate at the upper boundary but cannot cause a Rayleigh-Taylor

instability.

4. Cells swim towards regions of downflowing fluid (gyrotaxis) but a gyrotactic in-

stability cannot occur.

Case I'V:-
If the cells are positively bouyant such that the torques due to sedimentation and the

bottom heaviness of the cell cancel each other out then

1. The cells have no preferred swimming direction and accumulate neither at the

top nor bottom boundaries in the short term.

2. In the long term, the cells accumulate at the upper boundary due to sedimenta-

tion.

3. The cells are neither attracted to upflowing nor downflowing fluid.

Case V:-
If we increase the suspension density with Percoll such that the torques due to sedi-

mentation are greater than bottom heaviness but in the opposite sense then
1. The cells preferred swimming direction is downwards.
2. The cells accumulate at the lower boundary.

3. A Rayleigh-Taylor instability is possible with heavier, cell free suspension above

lighter concentrated suspension.
4. Cells swim towards regions of upflowing fluid - negative gyrotazis.

This last case would result in upwards tending plumes and is the opposite of the normal

situation.
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2.9.2 Experimental observations

Five experiments were performed with Percoll using suspension ratios of 0:1 (0% Per-
coll), 1:4 (20%), 1:2 (33%), 2:1 (67%) and 3:1 (75%). This provided overall suspension
densities of 1.000cm ™2, 1.026 cm™3, 1.043cm ™3, 1.087 cm ™ and 1.098 em ™3, respec-
tively. The suspensions were well mixed in small test tubes, left to settle over a couple
of days and then observed through a microscope set up to view from the side. Ta-

ble 2.5 illustrates the results which were largely inconclusive. The major problem with

Percoll | bouyancy mean R-T gyrotactic | % | notes
culture swimming | instability | instability | cells
ratio direction 7 ? alive
0:1 negative upwards yes yes 90 | normal
1:4 neg-neut | upwards little little 40 | less focused
1:2 neutral none no no 1 many stuck to sides
swimmers in middle
2:1 positive - no no 0 floating at top
3:1 positive - no no 0 floating at top

Table 2.5: Observations of suspensions of Chlamydomonas nivalis and Percoll in differ-

ent ratios.

the experiments being the unwanted increase in viscosity with higher ratios of Percoll.
This interferes with the cells locomotion and aglutinability and many cells seem to be
clumped together. Also there is not just one cell density but a whole range of densities
and some cells can be positively bouyant at the same time as others being negatively
bouyant.

There are two balances that could be measured in theory, represented by Cases II
and IV. Case II, neutral buoyancy, can be measured as approximately corresponding to
a Percoll-culture ratio of 1:2 and leads to a cell density calculation of 1.04 +0.02gcm 3
(this has been independently estimated as 1.05gem™3). Case IV represents a suspension

where micro-organisms have no preferred swimming direction and this situation may

have been seen in the Percoll-culture ratio of 1:2, but it is difficult to say due to the
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very small levels of operational (alive?) cells. Case V was never observed. The only
thing that we can conclude from these results is that our value for the cell density
is approximately correct. Perhaps we can conjecture, however, that the torque due to
sedimentation is small compared with that due to bottom heaviness and we are justified
in neglecting the sedimentation altogether. More experiments with Percoll (or other
agents) may produce clearer results, especially if it is possible to observe individual
micro-organisms as the Percoll concentration is increased (or Ficoll concentration, as

in Lebert & Héader 1996 [72]).

2.10 Discussion

In this chapter we have developed techniques for recording bioconvection patterns in a
shallow dish as functions of suspension concentration, depth and time. In doing so it
was necessary to construct a methodology for measuring the cell concentration (which
was achieved using computer processing techniques) and depth, and for culturing the
cells such that they were always healthy and fully motile. All the experiments were
performed on a limited budget but this did not adversely affect the results. We have
refined techniques to process the images and extract the dominant pattern wavenumber
using Fourier analysis. The initial pattern wavenumber and the well developed pattern
wavenumber were analysed in detail and it was found that the initial wavenumber
decreased with increasing depth but hardly varied at all with concentration. Conversely,
the well developed wavenumber increased with concentration and slightly increased
with depth. Each of the patterns were categorized and the interaction of unstable
modes as the pattern evolved with time was explored. In particular, mechanisms for
the existence of annular patterns were proposed. Also, a new method of analysing the
pattern structure has been investigated that adopts the methods of surface geometry.
Each image is associated with a surface in Euclidean three-space where the images
intensity relates to the surface elevation. The corresponding local surface curvatures
are used to identify the local surface structure and, hence, the local image structure. A
critical feature of this work’s success was the construction of a median/mean moving
average filter to remove unwanted noise and create a smooth surface. The filter is

not ideal but was found to be better than using Fourier analysis. Perhaps we require
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higher level statistical modelling of the surface. For example, approximating a local
quadratic surface using least squares fit and applying diagnostics in a similar manner
to regression analysis (see for example Cressie, 1993 [26]). Regardless of the benefits of
such extra complications the four telltale pattern statistics defined, plus the graphical
images of surface curvature themselves provide a basis for future investigation and
allow the exploration of local pattern structures, and how they fit in globally, that are
not immediately obvious to the naked eye. In particular the existence of larger scale
patterns on the scale of the dish and the fact that line patterns immediately become
unstable to dotted patterns. The reorganisation neccessary for the qualitative pattern
change is also more clearly observed.

The neutral substance Percoll was used to increase the density of suspensions of
micro-organisms in an attempt to isolate a hypothetical mechanism for cell orientation
due to sedimentation. However, the presence of Percoll interfered with the cells and
rendered them immobile (or perhaps dead). Experiments with Percoll on individual
micro-organisms may produce clearer results or perhaps we could repeat the experi-
ments using Ficoll instead of Percoll (see Lebert & Hader 1996 [72]).

Figure (2.22) shows a sequence of images where the suspension is very shallow
(1.86mm) and the concentration is reasonably high. Bioconvection is initiated but
the plumes that develop do not fully fill the dish. As time progresses, the plumes
emigrate towards the edge of the dish and, in particular, towards one side leaving an
off-centre, clear patch with no patterns. Close inspection of these plumes reveals a
significant elevation of the upper fluid surface directly above them and this may affect
their stability. Concentrated plumes exist for long periods of time on the edge of the
clear patch but tend to wander and appear to be repelled by any close neighbours. It
is possible that the upper surface tension may affect the stability of these dense plumes
in very shallow layers and this needs to be investigated further.

Future research should also try to discover the effect of horizontal boundaries on
the pattern. This could be investigated by observing patterns in large annular dishes
of varying aspect to establish the effect of two side walls.

Recently, some cursory experiments have been performed on a long horizontal tube
of diameter 1.5¢m, filled with a suspension of Chamydomonas nivalis of concentration

1 million cells per cm? and rotating about a horizontal axis. Initial results indicate that
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for no rotation “disorderly” bioconvection occurs with plumes descending throughout
the tube’s cross-section. If the rotation rate is slowly increased from zero the patterns
become more orderly and for a range of rotation rates (1 rev / min to 2 rev / min) form
dense rings perpendicular to the cylinder axis. As the rotation rate increases, these
rings move closer together and inevitably some collide. Ultimately, the whole system
collapses and for a rotation rate of 5 rev / min there is no discernable pattern. If the
rotation rate is decreased from this value no patterns are observed well into the region
of rotation rates for which patterns were previously observed. Patterns spontaneously
occur if the rotation rate is decreased sufficiently. It is hypothesised that by slowly
rotating the cylinder we are driving the fluid in a linear bioconvection roll and that
as it becomes stronger it becomes unstable to patterns along the cylinder axis. The
possibility of multiple patterns for a given rotation rate raises some important questions
about mode interaction, such as splitting and annihilation, and it will be a goal of future

research to repeat the experiments quantitatively and to understand the mechanisms

behind them.



Chapter 3

Finite Depth Stochastic
Gyrotactic Bioconvection -

Linear Analysis

3.1 Introduction

The aim of this chapter is to predict a particular most unstable mode (i.e. one that
grows most rapidly) from the initial equilibrium solution. This can be compared, in
principle, with the experiments of Chapter 2. In practice, however, it may be difficult
to realise the very first unstable mode before the non-linear effects become significant
and form finite amplitude convection cells.

Here, an equilibrium solution, of the full equations for finite depth and zero flow,
is found and a small perturbation allowing weak ambient flow is made. Initially the
Fokker-Planck equation described in the previous chapter has to be solved. Brenner
& Weissmann (1972) [12] describe the use of asymptotic expansions in their analysis
of dipolar spheres subject to external couples and rotational Brownian motion and
this has been extended by Pedley & Kessler (1990) [85] for their infinite depth model.
This work initially follows that of [85] but with minor corrections. In the [85] infinite
depth model, the first order correction to the diffusion tensor did not appear in the full
linear equations. However, in the finite depth case, the first order diffusion tensor is of

paramount importance and can determine the range of unstable wavenumbers.

79
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When the full linear equations are solved using asymptotic and numerical tech-
niques with finite depth, the analysis is similar to that of Hill et al. (1989) [42], with
the added complications of the non-constant diffusion and mean cell swimming velocity
being modelled using the Fokker-Planck equation. The [42] model is itself an extension
of the older Childress et al. (1975) [19] model with the inclusion of a deterministic
gyrotactic mechanism.

Hillesdon et al. (1995) [45] and [44] investigate patterns formed by chemotactic
(or more specifically aerotactic) bacteria and some of their analytic and numerical tech-
niques stem from the same sources as those contained in this chapter. In their models
the analysis is further complicated by discontinuities in the bacterial concentration gra-
dient and ideas from the theory of penetrative convection (Veronis 1963 [115]) need to
be employed to understand the non-linear behaviour of the system. However, their
model does not include coupling of fluid flow and cell orientation in a Fokker-Planck
equation.

Finally, we investigate the effect of modelling the swimming speed as a random

variable and compare our predictions with the experiments of Chapter 2.

3.2 Linear Solution of the Fokker-Planck Equation

3.2.1 The Fokker-Planck equation on a sphere
Equations (1.18) and (1.23) give the steady gyrotactic Fokker-Planck equation as

V- (pf) =D, V’f (3.1)
where

) 1
p=@[k—(k-p)pHEQ/\praop-E-(I—pp), (3.2)

which gives

S5V [~ (k- pB)f]+ SV (@A D))+ a0V [(p- B (1 pp)) /] = D, V2. (33

Here k, Q and E are constants, and ¢tr(E) = V-u = 0. p is a unit vector perpendicular

to the unit sphere and so, for any function g = g(p), it follows that Vg is perpendicular
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to p. Thus (p-V)g = 0. We also know that V - p = 2, by direct calculation, Vp =
I -pp, and (VAD)i = €jipjr = %eijk(pj,k + pk,j) = 0 since Vp = (Vp)”. Consider
Equation (3.3) term by term:

e V.fk=k VS

o V- [k-ppfl=(k-p)fV-p+p V[k-p)f]=2(k p)f

o V:((QADP)f] = (QAP)-VI+[V-(QAP) =Q-(PAVS)—fQ-VAP=Q-(pAVS)
eV (fp-E)=p-E-Vf+E:(I-pp)=p-E-Vf—-fp-E-p

e V-[f(p-E-p)pl=f(p-E-p)V-p+p-V(f(p-E-p))=2f(p-E-p)
Substituting back into Equation (3.3) gives

o= (k- Vf — 2%k pf) 4 30 (0 AVf)+ao[p-B-Vf — 3/ (p-B-p)] = D.Vf. (3.4)

Now if we non-dimensionalize (the explanation for this particular scaling will be given
in Section 3.3) by putting
Q= w (3.5)

and

E= ];2 e (3.6)

where V27 can be thought of as a typical diffusion scale (see Equation 1.22) and H is
the depth of the suspension, then

k-Vf-2(k p)f+nw-(PAVF)+2nap[p-e-Vf—3p-e-pfl=1"'Vif (3.7)

where!

A= 21)er (3.9)
and ,

n = B}‘;;T. (3.9)

7 is the dimensionless gyrotaxis parameter. Using our best estimates (from Table 3.2,
later) A = 2.2 and ) = 1.8 x 10~* x H~2 where H is depth of layer in em (or n = 33d 2,

see later).

"Note: A differs by a factor of 3 omited in error in [85] but corrected in [86] review.
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3.2.2 Solution for zero flow

Consider the equilibrium state of no flow where u = w = e = 0 and f = f°. Writing

p = (sinf cos ¢, sinfsin ¢, cos #) and k = (0, 0, 1), gives
0 . 0 1 . 1 0 1 2 10
<%0+% )-k—2f0c059:>\_1 0 (sin96—>+)\_1 o7

00 d¢ sinf sinf 90 o0 sinZ § 02
(3.10)
which implies that
1 o0 (. of° 1 0%f0 B . Of° 0
SinH% (51n9%> —+ Sin2 9 8¢2 = —>\ Slngm + 2f COSH . (3].].)

For zero flow, we can assume axial symmetry and thus f° is independent of ¢ and

%= £%) only. Substituting z = cos 6 into Equation (3.11) yields
U=zt —2—22fY — (1 —2)AFY + 222 /0 =0, (3.12)
where the prime indicates differentiation with respect to x. Integrating gives
(1—a?) (/" =Af0) = 4 (3.13)

where A is a constant, which is found to be zero by noting that f° and f° are both
finite at z = 1. Hence

fU — u)\e/\COSGI (314)

Applying the normalization condition that the integral of f° over the unit sphere is 1,

gives
1
ﬂ)\ |:_>\71€)\(3059i|;r — % (315)
which implies that
A
= 3.16
FA = 4 sinh A (3.16)

This is a special case of the Fisher distribution on a sphere (see Mardia, 1972; [79]).

Since the mean of p is

v} = [ pr(o)dp. (3.17)
we can write
) sin 6 cos ¢
(p)° :/ / sinfsing | pre % sin 6 do de. (3.18)
0 0

cos 0
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Integrating first with respect to ¢ gives zero components in the i and j directions. Then,

integrating by parts with respect to 0 yields

0
=1 o0
K,
where
Ky =cothA — A7\,
Similarly,
) sinf cos ¢ sinf cos ¢
(pp)’ = / / sin 0 sin ¢ sinfsing | pxe <’ sin 6 do de.
o Jo
cosf cosf

(3.19)

(3.20)

(3.21)

On integrating the matrix pp with respect to ¢, only the diagonal terms survive because

their ¢ components are cos? ¢, sin? ¢ and 1 respectively. Hence

sin’ 0 0
Vs
(pp)° = prm / sin? 6 e 5% gin Ade.
0
0 2cos26
Integrating by parts twice gives
K,
<PP)[1]1 = (PP)%Q = BY
and
2K,
<Pp>g3 =1- N

Hence, from the definition of D in Chapter 1,

D" = V27 [(pp)’ — (p)*(p)’]

so that
D}, = D3, = VLET%
and
DY, = V77 <1 — 2? — K12> = V27K,
on defining

1
K2:1—c0th2>\+§.

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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3.2.3 First order perturbation

From the equilibrium state of no flow ( u = w = e = 0), we perturb to

1

u = eu,
w = ew,
e = eel,
;o= e (3.29)

where 0 < e € 1. At O(e), Equation (3.7) gives

k-Vf1 —2k-pf1—i-77w1 . (p/\VfO) + 2nay [p-el-Vf0—3p-e1-pf0] :)\_IVQfl,

(3.30)
which in spherical polar coordinates (6,¢) becomes
>\—1 o 8f1 )\—1 a2f1 Aafl 1
I sineZl )+ 22T k. 0% 4 9cosh
sin6 90 <Sm 0 ) T SinZ 6 042 oo T 2eostf
Aaf(] Aaf(]
1 1 1 0
- . - el 92 _ Lel. 31
n(w p/\089 +20pp - € 089 6aop-€e -pf |, (3.31)
where
o 0
8—f€ = —pupAsin@etcs?
6 = ( cosfsing, cosfcos¢p, —sinf )T,
p/\é = —sinf, cosf, 0 )T7
1 A 3 . ]. ]. . .
p-e-0 = — 7633 sin 260 + Z(eu — e99) cos 2¢ + 5612 sin2¢ | sin 20
+ [e13 cos ¢ + e93 sin 2¢)] cos 26
and
1 1 2 1 . )
p-e p = 5633(3 cos“0 — 1)+ 5(611 — e99) cos 2¢ + €19 8in 2¢ | sin” @
+ [613 cOS ¢ + e93 sin 2¢] sin 26. (332)

3.2.4 First order perturbation for spherical cells: oy =0

Firstly we consider purely spherical cells, i.e. ag = 0, and then extend this result for

arbitrary values of ag. For spherical cells, Equation (3.31) simplifies to

>\—1 o ) 8f1 )\—1 a2f1 Aafl 1
(smHW) +m 8¢2 —k 0%+2C059f

sin 6 00
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= -7 (w% cos ¢ — wi sin ¢) prAsin et oSt (3.33)
Suppose that
f1 = Auan(w; cos g — wi sin¢)g(6), (3.34)

for some function ¢g(#). On substituting z = cos @, it follows that

(1- mZ)g')' - (1_!#2) —A((1- mZ)g)l =-A(1- mZ)% e, (3.35)

Expanding the exponential term as

o AL
M=) :
e nzl(”_l)” (3.36)
and writing g(z) as a power series in A
o
g(z) =Y N"Gn(2), (3.37)
n=1

(assuming convergence at this stage), we find by comparing the coefficients of A" in

(3.35) that

, (1 _ 172)% $n—1

S A (-G = - o)

(1-2%)G) - )

(3.38)

The first two terms suggest using an expansion in terms of associated Legendre poly-

nomials of order one (see Appendix A.1). Suppose that
n
Gn(z) = Z am"Prl (z) (3.39)
r=1

where a,, = 0 for n < r or n,7 < 1, and apply Legendre’s associated equation (A.1).

This gives
- L= d 2\ pl o1 2"t
_ ;anrr(r + 1P, — ;“””5 ((1 - )PT) =—(1—2z%)2 (= D) (3.40)
If m =1 in Equation (A.7), then
(2n+ 1)zP} = (n+1)Pr_; + nPy ;. (3.41)
Also, substituting (A.6) and (A.9) into (A.10) gives
, 1
(1= 2P = gp! - "D (P, - PL)). (3.42)

"o (2n+1)



Finite Depth — Linear Analysis 86

Using (3.42) in (3.40) gives

- r(r+1)
Z anyr(r + l)Pr1 + —Qp—1,r |:£EP,"1 ~ 3 (P,}_H - P,}_l)]
p—t r+1
n—1
= (1-2%)31— 3.43
(-t (3.43)
and applying (3.41) implies
n _
1 r+1 T r(r+1) 1
Zaan(T-l-l)P,. — ;an_l’r |:2’]”——|—1P7._ +2 +1PT+1+W(PT+1 P )
n—1
= (1-2%)3 2 3.44
e (3.44)
Multiplying by P} and integrating from z = —1 to 1, using (A.4), gives
m + 2 m—1 bum
= — _ — Ap—1m— _ 3.45
i = = DEm 1 3) Y G m et ey G8)
where
2m +1 ! 21 n-1pl
brm = 1-— P dx. 3.46
" 2 — Dlm(m + 1) /1( )t P (@) (3.46)
Then from Gradshteyn & Ryzhik (1980) [38]
0 V (n+m) even, (3.47)
bpt1im = (2m+1)T (2 ) (22 3.47
(=g (amgeny ¥ (nm) - odd,

where n + 1 > m (see Appendix A.2). This implies that a1, = 0 for n + m even.

We require the a;; for 1 > 7 > 1. Substituting the values of b;; into the expression for

=

: : _ _ 5 _ 1 _ 13 _ 1
the coefficients a;; above, gives a1 = 5, a2 = 35, a31 = 155, 933 = 555> 042 = 1995

and a5 = ﬁ
We can now calculate what effect the weak ambient flow (with ag = 0) has on p

and D. The mean value of the perturbation to the orientation is

o) = /S pf!(p)dp

, sin 6 cos ¢
= N>\>\77/ / (wpcosp —wysing) [ sinfsin ¢

cos 0

[Z A" Z any P, (cos 6) ] sin 6dfd . (3.48)
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Integrating with respect to ¢

(°%)]
Pl=| —w |[nh (3.49)
0
where
& 00 n
i = jaAn / SONS e P (cos(0)) sin?(0)d0 (3.50)
0 n=1 r=1

Integrating term-by-term, assuming the series to be uniformly convergent, we can use
Equation (A.4) with & set to 1 to get

4

hi=g

7T>\,U,/\ Z)\2l+1a2l+171. (351)
=0

In a similar way, we can calculate the second moments

(pp)’ Z/Sppfl(p)dp (3.52)

from which we find that the diagonal terms are zero and that (pp) is symmetric. Also,

(PP)1;5 = (PP)i1 = wanJs,

(PP)33 = (PP)3s = —winJo (3.53)

where

4 (o)
Jo = g l; Ay 5. (3.54)

In both cases, for J; and Js, it can be seen that the a;;’s decrease rapidly with increasing
values of 4 and j, and the series converge rather quickly even though A = 2.2. Only three
or four terms in the sum are required in each case for an accuracy of two significant

figures.

3.2.5 First order perturbation for aspherical cells: oy # 0
By considering the form of p - e! - 6 and p-e! . p in Equations (3.32) we can clearly
write the additional contribution from terms in g in Equation (3.34) as

. 3 1 _
2 () = —200Muxn {Zegggg(x) + |:§(€11 — e99) cos 2¢ + e12 8in 2¢| g4(x)

+[e13 cos ¢ + eaz sin @] g3(z) } (3.55)
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for some functions gs(z), g3(z) and g4(z) where z = cos6. If L is the operator

. 5 O 0 .
Le = o ((1 x )83:.) Aax (1 —2z%)e), (3.56)
then
Lgs = 2eM [-Az(1 —2?) + 322 — 1], (3.57)
Lgs — B — (1 —a2)3 [22°A — A+ 6], (3.58)
— X
494 by
Logp—1— 5 = ¢ (1 —2?) Az +3]. (3.59)

Equation (3.58) can be treated as in Section 3.2.4 but for a different right hand side.
Equation (3.59) is similar to the above but requires expansions in terms of P2(z) instead
of Pl(z). For more details the reader is referred to [85, Appendix A]. Equation (3.57)
requires particular mention so as to correct an error in the [85] analysis.

Substituting g» = G(z)e** into Equation (3.57) gives
G'(1 — 2%)e* = —2z(1 — 22)e + const. (3.60)
To avoid a singularity at z = 1, put const = 0. Integrating Equation (3.60) gives
g2 = (B — 7). (3.61)

The normalization condition f_ll g2dz = 0 (from the normalization condition on f)

implies

K
go = e <1 - 271 - $2> (3.62)

We shall now calculate the contributions to (p)! which will be indicated by the index

(2). First note that

3
' (p) = —EOZUAN,\HS:BQQ(HJ)- (3.63)
The ¢ and j components of (p (2) are zero, as they have sin ¢ and cos ¢ terms, and so
1(2) o /\cosﬂ 2K,y 2 .
(p)"*¥ = ——oz0>\,u,\77633k —— —eos 6 | cosfsinfdpdf. (3.64)

On substituting = cos # and integrating by parts, we get

cosh A = i sinh A

A A2 23
(3.65)

Kj\ sinhA 3
A A

K
(p)l(Z) = —12agnuymessk [——1 cosh A + <1 + —
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where py = A/4msinh A and K = coth A — 1/A. Hence

(p)'® = —3agness Kk (3.66)
where?
2K th A
K4:1—coth2>\—T1+co>\ . (3.67)

3.2.6 Summary

There are nine constants defined (to allow comparison with [85]) by

A

47 sinh A

1
K, = thA — —
1 CO \

1
K2 = l—COth2>\+p
2K th A
Ky = 1—coth2)\—Tl+co>\

B =

= KQ_T
2

4 coth
K, — __[2+5_ coth A

A2 A
2 4K,

= - [1 + K, — T} (3.68)

;) — coth? )\]

>

4 00
J1 = 571')\“)\2)\%—1—1&214_1,1
=0

4 0
Jy = gWAMA;AZZam,Q

4

o0
_ 4 2041~
Jy = 37T>\u,\ ; AT ag 4

4 0
Js = gW\MAZA%&m,Q
1=0

16 =
Js = E“‘“;A%M’ (3.69)

where a,a and @ are defined by:-

2This is not in agreement with [85]. The definition of K4 here is the corrected version of that

appearing in [85].
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m+ 2 m — 1 bum

= - - ———Op—1m-1+ —F—~ (3.70
tnm (m+1)(2m + 3)an Lmt1 ¥ (2m — 1)man Lm-1+ m(m +1) (3.70)
where
) 0 V (n+m) even 571)
ntlm = (2m+1)0 (2510 (7£2) 3.71
4F(n+1)r("*”;2+3)r("%r”;+4) V (n+m) odd.
[ J
N m + 2 N m—1 Enm
_ _ — Gplme1 + ———— (3.72
Gnm = = D Em 13 G o m e e G
where
; 0 V (n+m) even (373)
n+1,m = (2m+1) () (282) (n?45n+4+m+m?) 3.73
- ( j_ )F(n2m+5)r(n+72n+6) V (n+m) Odd
[ J
_ m+3 m-—2 brm
nm — an—1,m n—1,m— 74
a mt DEm+3) bt G Sy ttet e Ty B

where

A4
bnt1,m = @m0 (2£2)1 (22 (n44) (3.75)
8T (nt2)r(2=mis )F( o) V (n+m) odd.

Hence J; o Auyn V 4. The mean cell swimming direction is given by

0 wo e13Js
(p) = 0 +enhi| —w | — 207 ea3Jy +O(%) (3.76)
K1 0 %633K4

and the expected value of pp is

L 0 0 0  w
(pP)=| 0 & 0 +elna| 0 0 —w (3.77)
0 0 1-2& wy —w; 0
—3e33K5 + 1(e11 — e2)Js Te1aJs e13J5
— 27 12 Js —3eg3Ks — H(er1 —e20)Js  eass
e13J5 e23J5 333K



Finite Depth — Linear Analysis 91

A K Ko K, Ks
0.3 || 0.099 0.33 -0.0039 | -0.013
1.0 || 0.31 0.28 -0.037 -0.048
2.2 || 0.57 0.16 -0.10 -0.11
3.0 || 0.67 0.10 -0.12 -0.14
A Ji Jo J4 Js Jo

0.3 |/ 0.015 | 7.4 x 107* | —4.6 x 1073 | -0.02 | -0.040

1.0 | 0.14 0.024 -0.064 -0.064 | -0.12
22 || 045 0.16 -0.26 -0.13 | -0.20
3.0 | 0.60 0.27 -0.41 -0.18 | -0.22

Table 3.1: Values of the K and J constants, for varying values of A\, from Pedley &
Kessler (1990) with corrections for Kjy.

The diffusion is then approximated by Equation (1.22) given in the previous chapter.
Up to O(e), this is

D = V27 [(pp)’ — (p)°(p)°] + V27 [(PP)' — ((P)%(P)' + (P)' (P)*)].  (3.78)

On substitution this yields

20 0 0 0  w
1
_ K _
VSQTD = 0 5 0 +e|n(J2— 1 K1) 0 0 —w
0 0 Ky Wy —Wwi 0
—3e33Ks + T —e22)Js Te12Js e13(Js — K1.Jy)
— 2aq7 zei2Js —2eg3Ks — t(e11 —e2)Js  exs(Js — KiJy)
e13(Js — K1Jy) ea3(J5 — K1Jy) 3es3(K5 — 2K 1 Ky)

+ O(e?). (3.79)
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3.3 Linearizing the main model equations

We start this section by reviewing the main equations of the model which are

the incompressibility condition

V.u=0, (3.80)
momentum balance
Du
P = —Vpe + nvlApg + V-2, (3.81)
and the cell conservation equation
on
5 = V- [n(utVi(p)) =D - Vnl. (3.82)

The boundary conditions are of no flow

u=0 at 2z=0,—H, (3.83)

and no cell flux perpendicular to the boundaries

k-(n(u+Vyp))—D-Vn)=0 at z=0,—H. (3.84)

Here u(x) is the fluid velocity, (p(x)) is the mean cell direction, V; is the mean cell
swimming speed, ¥(x) and D(x) are the fluid stress and cell diffusion tensors respec-
tively, n(x) is the local cell concentration, p.(x) is the excess pressure, v is the mean
volume of a cell, and Ap is the the difference between the cell and fluid density. It has
been assumed that the upper and lower surfaces are rigid, which is reasonable because
the cells appear to quickly form a ‘solid’ boundary on the fluid surface. A possible
improvement could be to have a more general combination of both a rigid and a stress
free condition at the upper surface. However, there is some experimental evidence to
suggest that the exact form of this boundary condition does not significantly change

the general pattern formation. We shall also assume Newtonian stress as the volume



Finite Depth — Linear Analysis

93

fraction of the cells is much less than one (but see Section 3.4 where the effect of

non-Newtonian stress terms is investigated). Hence, for now,

Y =2uE. (3.85)
Name Description Typical Value Units
length scale average cell diameter 10 um
length scale cell spacing 100 um
length scale convection patterns 0.2-20 cm
D diffusivity 5x107° -5 x107* | em?/s
P fluid density 1 gm/cem?
p+Ap cell density 1.05 gm/cem?
v cell volume 5x 10710 em?
h centre of gravity offset 0-0.5 i
g cell eccentricity 0.20 - 0.31
g including flagella 0.40
a_ viscous torque parameter 6.8
Vs cell swimming speed 63 pm/s
1 dynamic viscosity 1072 gm/cm s
g acceleration due to gravity 103 em/s?
A small = random behaviour 2.2
large = deterministic
T direction correlation time 1.3 S
B gyrotaxis parameter 3.4 s
B including flagella 6.3 s
D, cells’ rotational diffusivity 0.067 51
S, Schmidt number 19

Table 3.2: Parameter estimates and measurements (from [42, 85, 53, 41]).

An equilibrium solution to the above equations is

u=0, n=Ne"”, (p)=(p)’ and D=D"

(3.86)
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where £ and N are unknown constants. ' represents a local scale height and is

determined by substituting this equilibrium solution into the cell conservation equation,

V- [Ne"*Vy(p)’ — D’ - kNre™| =0, (3.87)
which implies that
Vs(p)§
= , 3.88

From Equations (3.76) and (3.79),

K

= . 3.89
" KV (389
On applying the normalisation condition
0
/ ndz = Hn, (3.90)
-H
where 71 is the mean cell concentration and n = Ne®? it follows that
Hnk

Lengths are scaled on H, the depth of the suspension, cell concentration on N,
and diffusivity on V27, where Vj is the cell swimming speed and 7 is the direction
correlation time, or the time taken for a cell to orientate itself. Hence, the remaining

scalings follow:

S < ..
X = H , N = N,
- D - tV2ir
D= VSQT ;b= H?2 '
~ uH i 2H2
u= =
Vir VeTp
and
. peH?
Pe = M;QT. (3.92)
S

Dropping tildes, the governing equations become

V-u=0, (3.93)
D
Sgl_u =—Vp.—ymk+V X (3.94)
Dt
and
0 K
= V. |nu+d=2n(p)—D-Vn|, (3.95)

ot K,
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where

(3.96)

is the ratio of layer depth, H, to sublayer depth, x~'.

For d > 1 we say we have a
“deep suspension”, and for d < 1 we have a “shallow suspension”. The Schmidt and

Rayleigh numbers are defined as

v
S, = VI (3.97)
and
NugApH*K,
=d —_— .
R=v DoV, (3.98)

R is based not on the sub-layer depth as in [19] but on the depth of the whole layer,
following [42]. The equilibrium state is u = 0, (p) = (p)>, n =e¥*, D =D, £ =0

and w = 0. Consider a perturbation from this equilibrium solution by setting

u = eu,
(p) = (p)°+elp)',
n = e¥ +en',
Pe = P+ epe,
= X!
D = D°4D. (3.99)

To O(e), the governing equations become

V-ul =0, (3.100)
ou!

Se! ot

= -Vpl —yn'k+V-X! (3.101)

and

L K K
‘98% = -V |e¥u! + deedZ<p)1 + den1<p)U — D Vn! —de®D' - k|. (3.102)
1 1

These five p.d.e.’s in five unknowns are reduced to two p.d.e.’s in two unknowns as

follows. Expanding the third equation we obtain

on' K, Ko
il —dedzué — dEedzai(p>i1 - d2E€dZ<P>§

—d—=(p){0in' + D};0;0;n' + Dizd*e™ + de®9;D/y,  (3.103)
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where 9; = 0/0x;. Consider the components in the terms of d;(p); and 9;D}; (Equa-

)

tions 3.76 and 3.79). We know

Owy = O301uf — 0101ud
Owy = 828211% — 8382@.
Since 03 (azu}) =0, we get
Oywy — owy = —;0us (3.104)
and similarly
Ohers + Dyers = % (9301u] + 0101uz + D30hul + Dadaus)
= % (—0505u} + 0101uy + 0205u3)
= %v%; — 0303us. (3.105)
Hence from Equation (3.76) we obtain
d(p)) = —nJ1V2ul — 2097 [J4 (%Vgué — 838311%) + gK48383u§] (3.106)
or
9i(p)} = —n (Ji + aJa) VZuj + nag (2J3 — 3K4) 9305ul. (3.107)

Similarly, from equation (3.79) we obtain

1
a,‘Dl-l3 = —nV2u§ (JQ - J1K1) — 20(07] |:(J5 — K1J4) <§V2u§ - 83831%)
3
+5 (K5 — 2K1K4)] D303u, (3.108)

which gives
OiDys = —n(Jy— K+ o (J5 — K1Jy)) Vul
+nag (2 (Js — K1Js) — 3 (Ks — 2K K}4)) 0303us. (3.109)
On defining the following functions,

H, = - (Jl —|—0£[]J4),
Hy = nao(2Jy —3Ky),
Hy = —n(Jo—JK| +ag(Js — K1Jy)),

H4 = nNQy (2 (J5 —K1J4) —3(K5 —2K1K4)) (3110)
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we have
ai(p)} = H1V2u§+H28383u§
and
D5 = H3VZul + Hyu0303us. (3.111)

Substituting Equations (3.111) into Equation (3.103) yields

on'

Ky
— = de®*{ -1+ |H;— —H,| V?
R RN R

K K
+ |:H4 — FZHQ] 03035 + 3agn [d%K4 - d(K5 - 2K1K4):| 83} ué
1 1

K
+ {71 (0101 + 020;) + dK20505 — K233} n'. (3.112)

Now consider Equation (3.101) and rewrite V-X" as V2u'. If we take the divergence of
Equation (3.101), and take the Laplacian of the third component of Equation (3.101)

we get the system of equations
0=—V?pl —yon! (3.113)

and

0
s;la (V?u3) = —3V?p) + V2V2uy — 4Vl (3.114)

Substituting the former into the latter gives

9

-1
S ot

(V2u3) = Viul — vVt 4+ y0303nt. (3.115)

We now have two equations, (3.112) and (3.115), in terms of the independent variables
n' and ué only.
The next step involves introducing a horizontal planform and an exponential com-

ponent in ¢. The particular choices of normal modes are
ul = W(z)ellztmy)tat (3.116)

and

n' = ®(z)elztmy)tat, (3.117)
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On substituting (3.117) into Equations (3.115) and (3.112), we get

2 2
T TN (- D w = —ra-i2 (3.118)
P dz?

and

d? d K K\ d?
Ko—s —Kod— — — k> —0 | ®=de® |1 - |H3+ H; — (Hy+ H)— | —
< 2qpr — Kadn = 7k 0) ‘ [ ( 3+ Hi— (Mo + 1)K1> 22

K d K
—3dogn (ﬁ[ﬁ — (K5 — 2K1K4)> s <H3 — ij) k2] 14 (3.119)

where k = V12 + m2.

Using the definitions, (3.110), for the H;, we define

K,
P = J1|K — | = J
1 1< 1+K1> 2,
K,
Py = —Jy+ KiJs+2(Js = KiJa) = 3(Ks — 2K1 Ky) = 22 (Ji = 3K4),
1
K
Py = 3(K4 <2K1+—2>—K5>,
K,
K
Py = J, <K1—|——2>—J5 (3120)
K,

from which we see that P, = P; — Py. We can thus rewrite Equation (3.119) as

d? d K
Ky— — Kod— — —k* — P
( 2z~ Kad = 7k ”)
d d2 d 2
=de’z |1 —77(P1 +P2a0)@ —naodpga +77(P1 +P4Cl(0)k‘ w. (3.121)

Finally, if we define

Py = Ky,
K,
Py = =
H b\ ;
Ps = P — Py + Pzag,
Ps = Psay,
P7 = P1 —+ P40{0, (3122)

then we can write the last equation as

P, d—Z—P di—P K —0o)|®
Vidz? V&az " 7

2

d
= de [1 —nPs

d
—5 —Ped -+ an?] W, (3.123)

dz
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where the P; are functions of the parameter A = (2D, B)~! and the shape parameter ag
only. Pedley & Kessler (1990) [85] use the data of Hill & Hader (1996) [41] to calculate
A as lying between 1.85 and 2.63. They choose to take an average value, as we shall,
of 2.2. As we know B from Table (3.2), we can calculate D, to be 0.067s~!. The cell
eccentricity, ag, is in the range 0.2 — 0.31 but Jones (1995) has calculated an effective
ap of 0.40 to allow for the cells’ flagella and swimming characteristics. The direction
correlation time, 7, can be calculated from observations of the horizontal diffusion to

be 1.3 s ([85]), but see Section 3.8 where we use a direct observational estimate of 5 s.

(o)) A Ps Ps P Py Py

0.0 |22 | 0.22 0.0 0.22 | 0.26 | 0.16
0.2 ] 0.3 || 0.050 | -0.00017 | 0.050 | 0.33 | 0.33
0.2 [ 1.0 0.14 | -0.0050 | 0.14 | 0.31 | 0.28
0.2 | 22| 0.22 -0.022 0.20 | 0.26 | 0.16
0.2 [ 3.0 0.23 -0.028 0.19 | 0.22 | 0.10
0.31]22] 0.21 -0.035 0.19 | 0.26 | 0.16

0.40 | 2.2 | 0.21 -0.044 0.18 | 0.26 | 0.16
1.00 | 2.2 || 0.20 -0.11 0.13 | 0.26 | 0.16

Table 3.3: The values of the constants P for typical values of A and «y.

The boundary conditions (3.83) become

W=0 on z=0,—-1 (3.124)
and

aw

v =0 on z=0,-1. (3.125)

By taking the z component of the flux and applying the above conditions, Equation

(3.84) becomes

dd
@d—azo on z=0,-1. (3.126)

The exponential appearing in Equation (3.123) prevents an explicit solution from

being found and we must resort to finding numerical or asymptotic solutions.
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3.4 The effect of leading order non-Newtonian stress terms

Pedley & Kessler (1990) [85] have considered a number of additional effects that the
micro-organisms can have on the fluid through the variation in fluid stresses.
Three specific effects were investigated each of which are discussed in more detail

in [85].

e ¥’ Rigid cells do not let fluid deform as it would in the absence of cells (Batchelor,
1970 [3]). The resulting stresses are termed Batchelor stresses. The stress system

for a suspension of spheroids was analysed by Batchelor (1970) [3].

e =% Stresses associated with the effective particle rotation caused by rotary dif-
fusion of the cells axis of symmetry. This is explained by Brenner (1972) [10] and
also by Hinch & Leal (1972) [46].

e ¥°. The stresslets (see [3]) caused by the swimming actions of the individual

micro-organisms.
Pedley & Kessler (1990) [85] report that,

“It fortunately turns out that, for the parameter values appropriate to
Chlamydomonas mnivalis, the quantities ¥” and B¢ are negligibly small so

errors in computing them are unimportant.”

In fact, they show that these terms have no qualitative effect and no significant quan-
titative effect (B¢ < 1% of £°) and are dropped. We choose to drop the Batchelor
stresses from the outset. This just leaves terms for the intrinsic swimming stresslets

and rotational diffusion which can be combined and are calculated to be (from [85])

1
vl = ng' <<pp> - §I> (3.127)
where
S"' =S+ 2uvD,as (3.128)
S = 6mbuVsarlcos (vy), (3.129)
hfl
yp= 0 T (3.130)
f L
r(r2—1)2
and

= e (3.131)
1—0[0

SIS
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a is half of the cell length, b is half of the cell breadth and [ is the length of the thrust
points from the cell’s centre of gravity, which are on average inclined at an angle -y
from p (see [85]). a5 = 3.15 ([85]) and ar ~ 1.08 as calculated by Happel & Brenner
(1965) [39]. In the definition of S’, S is the term due to the intrinsic stresslets and
the other term is due to rotational diffusion. Hence, we can use Equation (3.77) to
calculate 2% to leading order. (Or we can use the constants A to G given in Pedley
& Kessler, 1990 [85], correcting the first term for C' by changing the misprinted Jy to
a Jg.) The non-zero stress at zero flow does no more than alter the first order excess

pressure term. Non-dimensionalising £°¢, we obtain the equation for fluid flow at O(e),

as
13U1 1 1 2 1 d
where
1
nsd — 45, <<pp> - §I> (3.133)
and
pVirSN
V - 2°¢ can be rewritten as
0 —81n1
sd XSd 0 XSd 1
V-X = K3? 0 | d3n +€K3? —Ohn
2 205n!
d1(pp)111° + 92(pp)21n® + d3 ((pP)311°)
+ ex® | 91(pp)2in® + 8 (pp)aan® + 95 ((pp)aan?)
d1(pp)31n° + 92(pp)32n” + 95 ((PP)33n?)
+ O(é?). (3.135)

Utilizing Equations (3.77), (3.104) and (3.105) we find that the Laplacian of the third

component of V- £°¢ at O(e) is
2K
VQ (V . 25d1)3 = XSdVQ |:T383n1 - (CYOJ5 + JQ) TZOVQ’ué
+ g (2J5 — 3K5) n’93ns — 309 K503n°03u3) (3.136)

and the divergence of V - B*¢ at O(e) becomes

v. (V . Esdl) _ %Xsd [38§n1 _ Van]
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3
+ nx*0s [<§aoK5 - %Jﬁ —2a9J5 — 2J2> VZul

9 1
+aq <—§K5 + §J6 + 4J5> a§u§:|
+ 93nOx* [(—2a0J5 — 2J2) VZul + ag (45 — 3K5) Oauj]

+ 93 x*? [-3agK505u3) . (3.137)

Both of these expressions are in terms of the dependent variables n! and u} and
their derivatives. Hence we can use the same method as before to reduce the system of
five equations in five unknowns to two equations in two unknowns.

Taking the divergence of Equation (3.132), and the Laplacian of the third compo-
nent of Equation (3.132) we obtain the following system of equations at O(e):

0= -V —4dsn' + V- (v : zsdl) (3.138)
and

)
S: 5 (V2u3) = —05V%pt + V2V2u) — y%n! + V2 (v - 25‘”)3 . (3.139)

Substituting the first equation into the second gives

551% (V2u3) = Viui—yV2n' +40;05n' —9;V- (V : Es“) +V? (V : 25‘”)3 . (3.140)

This equation was derived to highlight the additional leading order terms due to a
non-Newtonian stress. In particular, odd ordered derivatives are introduced that affect
the qualitative form of the equations. In general, if V;, the cell size and the cell concen-
tration are sufficiently large then the additional terms could be significant. However,
for Chlamydomonas nivalis the terms are negligibly small. S can be estimated from
the values in Table 3.2 to be S ~ 4 x 107'° and the other term in the definition of S’
is estimated as 2uvD, a5 = 2 x 107! and, hence, using Equation (3.91) and (3.129),

sd _ MV;QTSIN
=T

n

= (3.141)

Ky n _
~ (6mbu’apl —Vio~101
(6mbp” aupl cos (vyy)) %0 X

where 7 is concentration in cells per em? and H is suspension depth in ¢m. Hence,
x*?, is negligibly small compared with the Newtonian term which is O(1). Also, Equa-
tion (3.140) is far more complicated than Equation (3.115). In the following sections,

we shall ignore the additional stress terms and concentrate on the effects of including
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non-deterministic swimming cells. Future work could consider the above equations, as
the non-Newtonian stress terms may become significant in the non-linear regime where

local variations in concentration are large.

3.5 Asymptotic analysis

The work in this section uses similar techniques to those in [42]. (See Van Dyke, 1964
[114], for a description of the ideas involved.) We shall consider Equations (3.118) and
(3.123) plus the boundary conditions (3.124), (3.125) and (3.126) above. If we assume
that Chlamydomonas nivalis is a self propelled spheroid and use the corresponding

values A = 2.2 and ay = 0.31 (but see Sections 3.6, 3.7, 3.8 and 3.9 for recent estimates)

then
Py =~ 0.16
Py =~ 0.26
P =~ 0.21
Py ~ —0.035
P; =~ 0.19.

Ps appears to be too small to be classed as order one but by noting that Ps, Ps and Py
always appear in Equation (3.123) multiplied by n (and 7 ~ 33d~2) then it simplifies
matters to consider F; order one and 7 order d” for some n and 2 = 5,6, 7. Henceforth,
we shall assume that all of the P’s are of the same order and all approximately of order
one. This assumption is justified asymptotically provided we either assume that d is
much smaller than (for shallow layers) or much larger than (for deep layers) P; for all

i. Using the definition of d and Equation (3.9) we can write

BK12 -2 -2
= ——d =~ 33d 3.142
K TK22 ( )

where we have used B = 3.4 and 7 = 1.3.
There are two natural asymptotic expansions which could be considered here; one

for small d and one for large d. Firstly it is important to understand what we mean by

small d. By Equation (3.96)
_ KQVSTd

H
K

(3.143)
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then, from Tables 3.1 and 3.2, H = 23dum. If d = 0.1, then the depth of the fluid
is equal to 2.3 um, which is very small for a fluid layer! A typical experimental depth
of 5mm gives d = 220 (2 s.f.), which is well within the validity for the large d expan-
sion. The small d expansion, however, is important for comparison with the numerical

solutions in the next section.

3.5.1 Shallow layer analysis (0 < d < 1)

For the shallow layer, suppose that the pattern wavelength is comparable with the
sublayer depth and set k = k/d where k ~ 1. There are six boundary conditions which
imply that we need to keep the highest order derivatives. The leading order balance in

Equation (3.118) must be

(D2 - g) D*W = —di*R®. (3.144)
c

Otherwise we obtain the trivial solution. Here and henceforth D = d/dz. Without loss
of generality, we shall always assume ® ~ 1 and hence W ~ dR. Close to neutrally
stable solutions we can neglect o and there are then four non-trivial leading order

balances of Equation (3.123) to be considered.

e CASEI
D?® =0 (3.145)

which implies R < O(d~?) and nR < O(d™?).

e CASE II
PyD?® = dW (3.146)

which implies R ~ d 2 and nR < O(d?2).

e CASE III
PyD*® =d[W — nPsD*W] (3.147)

which implies R ~ d=2 and nR ~ d=2.

e CASE IV
PyD*® = —dnPsD*W (3.148)

which implies R < O(d~?) and nR ~ d 2.
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This is summed up in Figure (3.1). Case III leads to lengthy numerical analysis and so

this case has not been considered further.

Gyrotaxis terms

/
/
/

/
Cannot satisfy
boundary conditions
as lose highest
derivatives.

! Case | Case '

: v
Ie g Ib/ 7 Ia Flow terms
- L L : - * —
da’ d| L [ia’ RW
/i ‘ “d
// d e
/7 :
Casel]| :
/ io
/ d” e
/ :
Gyrotaxis //
term
dominant /
v *
/
// Flow ;
/ term : H :
// dominant i :
Y y 0

Figure 3.1: Regions of the parameter space covered by the leading order balances of
the linear equations for bioconvection in a shallow layer (d < 1). There are four major

balances.

e CASE I No terms appear on the right hand side at leading order. We divide
case I into three regions (see Figure 3.1) with similar behaviour, which covers

every possibility within the region in just three calculations.
CASE Ia:

Firstly consider the scaling

n~1, R~d1, W ~1, (3.149)
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and try a solution of the form
R= Y d"Ry, W=> d'W,, =) d"®,. (3.150)
n=-—1 n=0 n=0

At this stage we shall also assume that o is of the form
o
o= d'oy (3.151)
n=0

so that it appears at leading order. Later it will be shown that ¢ ~ d and that,
for the whole of case Ia, o is positive and hence the solution is always unstable.

The leading order gives

—%DQWO+D4WO+R,1%2@U = 0
C

—00®y + PyD*®; = 0 (3.152)

with boundary conditions D®y = Wy = DWy = 0 on z = 0,—1. This implies
;70 ;%0
that & = Ae' ™ “ + Be 'Pv°. The boundary conditions imply that either o = 0

or ® % 1. Hence o0 < O(d) and the leading order solution is

— _ R—llé2 4 3 2
Py =1, Wo=-—; (z* +22° +27%) . (3.153)
The second order gives
D4W1 + R71];2'1)1 = —;:2R0(I)0 + %DQWO
Cc
PyD?®, = PyD®)—nPsD*Wy+ Wy + 018y (3.154)

with boundary conditions D®y —®y = DW; = Wy =0 at z = 0, —1. A solvability
condition for this set of equations is that the integral of the second equation over
z = 0,—1 must equal zero. This gives

R_1k?
720

(3.155)

g1 =

Hence o is always positive. n plays no part here and we can reduce it arbitrarily

and hence cover the whole of case Ia.
CASE Ic:

Now consider the scaling

n~d?2, R ~d, W ~ d, (3.156)
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at the top of the region for case Ic and hence consider a solution of the form
o oo oo
R=> d'Ry, W= d"W, o= d"®,, n=d *n_y. (3.157)
n=1 n=2 n=0
At this stage assume o to be of the form
o
o= d'oy (3.158)
n=1
as we know og = 0 from above. The leading order gives

l)4W@ +:Rlé2¢0 = 0

PyD*®, = 0 (3.159)

with boundary conditions D®y; = Wy = DWy = 0 on z = 0, —1. This has solution

_ _ le2 4 3 2
gy =1, Wy =—— (2 +22° + 2%) . (3.160)
The second order gives
D'Ws + RiE2®, = —E2R.®; + %DQWQ
c
PyD*®, = PyD®;—1n_sPsD*Ws + 019 (3.161)

with boundary conditions D®; — &y = DW3 = W3 = 0 at z = 0,—1. The
solvability condition, on the second equation as before, now implies o1 = 0. Con-
sidering the second equation at third order and integrating we get the solvability

condition o9 = —PHI;:2. Hence all modes are stable for this choice of scaling for

R.
CASE Ib:

So now consider the scaling
n~dt, R~ 1, W~d (3.162)
for case Ib, and expand the variables as
o< o o
R=> d'Ry, W= d'W, o= d"®,, n=d 'n1. (3.163)
n=0 n=1 n=0
As before, assume o to be of the form

o
o= d'oy (3.164)
n=1
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as o9 = 0 from above. The leading order gives

D4W1+R0];72(I)0 = 0

PyD*®;, = 0 (3.165)

with boundary conditions D®y = Wy = DW; = 0 on 2z = 0, —1. This has the

solution N
Rok?
Oy = 1, Wi=-— - (' +22" + ). (3.166)
The second order gives
DAWy + Rok2®, = —k2R;®; + %DQWh
c
PyD?®, = PyD®y—n_P;D*W; + 019 (3.167)

with boundary conditions D®; — &y = DWy, = Wy = 0 at z = 0,—1. The
solvability condition again implies o; = 0. The third order gives
D Wy + Rok2®y = 2k2D?W, — k2Ry®p — K2R, &, + %DQWl,
Cc
PyD?®y = PyD®, + Pyk*®y+ Wi — n_ PsD*W,

—n_1PsDW, — 2n_1 PsD*W; + 029 (3.168)

and the second equation at fourth order is
PyD?®; = PyD®y+ Pyk’®, + Wa + 2W1 — 1 1 PsD?>Ws —n_12Ps D*W,
—772;1P5Z2D2W1 — 77_1P6DW1 — ’17_12P6DW1 — 77_1P7];72W1

+03Py + 099P;. (3169)

The solution at second order is

Ps
D = —n 1 —W
1 U] IPV 1+ 2
~ PsRok? (28 27 28 2° R
_ 12 5410 “ “ ~ ~ _1 4
Wa = =k F (77‘1 720Py (56 Tt 12) To) Tt
+A52° + By2? (3.170)

where

A o %2R0 . ]:JQRl . ];4R%P57’],1
ST, 12 12 x 720Py

2Ry k?Ry 3k*RZPsn_
By = 0 _ I _ 2% 0501 (3.171)
60 24 56 x T20Py
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Applying solvability at third order implies
=~ [ R
oy = k2 <—° - PH> . (3.172)

It is not necessary to obtain a solution for ®5 before applying solvability at fourth

order, which gives

k’R, K2Ry [1
g3 = 1— 0|:——|—7’]1(P5—P6):|+

. (3.173)

k*Ron_1 p 3Ry Ps
720 720 |2

720 T T20Py

Therefore, when o = 0 we have

1 - 3PP,
R =T20Py {1 +d [5 + 1 1(Ps — Pg) — k*n_4 <P7 + 222 H)] } + O(d?).
\%

Now for the purpose of calculating the next order in the absence of gyrotaxis
consider fourth order with n = 0. The solvability condition, after solving the

third order equation and looking for neutral curves, gives

R—720PH{1+2d+d <105+k [21 462PVD}+O(d). (3.175)

Linearity shows that when n ~ 1,

1 13 ,[1 5Py
R = T20Pgil+—-d+d®|— Ps— Pg) + k| = —
H{ et (105“7(5 5) + [21 462Py
3P P
1 <P7+ ° H) >}+O(d3). (3.176)
7Py

The curve of R(k) changes behaviour at a critical value of  given by
1 5Py
21  462Py
Ne = o 3PPy
TRy

and leads us to the conclusion that, to first order for values of n smaller than

(3.177)

this critical value, the most unstable mode has zero wavenumber but above it the

most unstable wavenumber is non-zero.

e CASEII

Consider the scaling

n~d, R~d2, W ~dt, (3.178)
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which is consistent with case II, and propose a solution of the form
oo o0 o0
R= ) d"Ry, W= d"W,, o= "d"®,, n=dn. (3.179)
n=-—2 n=-—1 n=0
We are interested in neutral curves so we will consider ¢ = 0 ab initio. The

leading order equations are

D*W {+ R 5k*®; = 0

PyD?®y—W_; = 0 (3.180)

with boundary conditions D®y = W_; = DW_; = 0 at z = 0, —1. Eliminating
®q gives
PyDSW_| + R_sk*W_, =0 (3.181)

and W_; = DW_; = DSW_; =0 at z = 0, —1. The auxiliary equation has roots

iTn

we 3 wheren=1,2,3,4,5,6 and w® = R_QIEZ/PV. Hence

. wz2+/3 .
W_1 = Ajcoswz+ Assinwz +e 2 : [Ag coS % + Ay s1n%
wz/3
+ e 27 |Ajcos % + Ag sin %} . (3.182)

Applying the boundary conditions gives the set of linear equations
MA =0 (3.183)

to solve where A is a column vector of constants A; to Ag and M is a matrix of

coefficients. For a non-zero solution we require

det M = 0. (3.184)

This implies that either
sin— =0 (3.185)

or
3“)

Ccos % cosh? wT\/§ — 2cosh wT\/§ + 2cos % —cos” 5 = 0. (3.186)

Different solutions for w correspond to different branches of the neutral curve and
different modes of instability in W. The order of the solution mode is defined
as the number of regions of different sign. So a mode two solution changes sign

once. Equation (3.185) implies w = 2mn where m = 1,2,3,.... For large w
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Equation (3.186) becomes cos % cosh? “’T‘/g ~ 0 which implies cos ¥ ~ 0 and

hence w = wop11 = (2n + 1)w for n = 0,1,2,3,.... By plotting the curve

Yy = cos % cosh? wT\/§ — 2cosh wT\/§ + 2 cos % — cos® % (3.187)

it is easily seen that the root at n = 0 does not exist but the root at approximately

n = 1 does (Figure 3.2).

Figure 3.2: Graph of Equation (3.187) against w indicating its roots.

Hence, we have the infinite set of roots wo = 27, w3 ~ 37, wy = 47, w5 ~ 547, .......

It seems reasonable to consider the smallest value of w first. We find that

2m)8 P P
R® = (7272%1—2 +0(d™") = 6.15 x 104];—‘2/d_2 +0(d™) (3.188)

Calculating W_; for this case we get 3

W_1 « sinmz [sinh V3 cos 2

—2sinh <7r [z + %] \/§> cosh ”T‘/g] . (3.189)

®Note: missing 2 in [42].
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As W_1(—5) = 0 we find that for this case the first unstable mode (for lowest R)

1
2
has order two. That is to say that there are two convection cells stacked one on

the other. 1 does not appear in this analysis and we may decrease the magnitude

of n (and complete case IT) without changing the leading orders.
e CASE IV
The scalings here are of the form
n~d™, R~ d™ 2, W ~dm 1, (3.190)
where m = 1,2,3,4,.... Beginning with m = 2, we look for a solution of the form
o o o
R=) d"Ry, W =Y d"W,, o= "d"®,, n=dn. (3.191)
n=0 n=1 n=0
where 0 = 0 ab initio. The leading order implies
D4W1 + ];72R0¢'0 = 0
D? (Py®g + Psn_oW,) = 0 (3.192)
with boundary conditions D®y = W; = DW; =0 at z = 0, —1. Hence
Ps
Py = no—(K-W
0 1 2PV( 1);
Wy = Acoswz+ Bsinwz — (A + K) coshwz — Bsinhwz + K (3.193)

where A, B and K are constants and

79
wt = M_ (3.194)
Py
They are related by the equations
cosw — coshw sinhw — sinw A coshw —1
=K . (3.195)
sinhw + sinw cosw — coshw B —sinhw

Proceeding to the second and third orders, the cell conservation equation gives
PyD?®, +n_9PsD?*Wy = PyD®g — n_oPs2D*W, — n_yPsDW, (3.196)
with boundary conditions D®; — &y = Wy = DWy, = 0 at z = 0,—1. The
solvability condition is satisfied identically. The third order yields
PyD*®y 4+ 1_9PsD*W3 = PyD®, + Pyk*®y + W,
—1_9PszD?*Wy — 7721352—221)21/1/1 —1_9PsDWy — 11_9PszDW,

+P7];72W1’I7_2 (3.197)
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Applying the solvability condition gives

0
/ Widz = —FK, (3.198)
1
where PP
; 5U—2k2
F= v . (3.199)

~ Py ~
1+ 77,2P7k‘2 — 77,2P5 <P—5k‘2 + 1) + 7772P6

Evaluating Equation (3.198), we obtain

wh
W5
5 51
w W
4 4118 4
I T R
| W3 37110
;NZ//E' 2T[’ W2
_______________________________ LS NS
i Tle Wl
* E ° —
-1 0 1 F
-0.75

Figure 3.3: Graph of F' against w from Equation (3.202).

Asinw — Asinhw + Bcosw + B coshw — 2B = K (sinhw —w — Fw). (3.200)

Combining this with Equations (3.195) gives

cos w — cosh w sinhw — sinw 1 — coshw A
sinhw + sin w cosw — coshw sinh w B =0.
sinw —sinhw cosw +coshw —2 w — sinhw + Fw K
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Hence if M is the above matrix then we require det M = 0 for there to be a

solution. This implies
w(l + F)(1 — cosw coshw) = 2 [sinhw(1 — cosw) + sinw(1 — coshw)]. (3.202)

Consider the left hand side vanishing. This implies the roots are independent of
F. Hence, 1 — coswcoshw = 0 or w = 0. As w increases coshw is exponentially
steep. Therefore we require cosw ~ 0 for w quite large. Hence w =~ (2m + 1)7
for m = 0,1,2,3,.... By considering the graph of y = 1 — cosw coshw, we can
see that m = 0 is not a solution (as w is insufficiently large for the argument to

hold). Consider the right hand side
sinhw(1 — cosw) + sinw(1 — coshw) = 0. (3.203)

For large w we get €“(1 — cosw — sinw) = 0. The roots common with above are

w = (4n +1)F for n = 1,2,3,.... Then from Equation (3.201) we get K =0 and

cos w — cosh w

Wy=A4A {cos wz — coshwz + < ) (sinwz — sinh wz)} . (3.204)

sinw — sinh w
Wi is antisymmetric and this implies even modes.

Now consider other solutions, dependent on F. By considering large F' we can
establish the asymptotes for the curves but it is easier just to plot F' as a function

of w (see Figure 3.3). Expanding around w = 0 as k — 0 and F — 0 implies

PH 79
720——Psn_2k
Py 571—2

4
wi — . 3.205
Pl (B = Po)ns (3:205)
Hence from Equation (3.194)
720Py
R - 3.206
P 1= (B - Po)ns (3:200)

as k — 0.

3.5.2 Deep layer analysis (d > 1)

Consider the case where o = 0 and k ~ 1 where d—! is small.

(D? — k?)*W = —k*d" 'R® (3.207)
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and
(PyD? — PydD — Pyk®)® = de™ [1 — nP;D* — ndPs D + nP:k*| W. (3.208)

If we expand for large d then the leading order equations do not contain the highest
order derivatives and hence the solutions cannot satisfy all of the boundary conditions.
Therefore we require a solution within the boundary layer at the top which can be
matched to a solution for the outer region. Consider the outer solution where the cell

concentration is exponentially small. Then
(PyD? — PydD — Pyk*)® =0 (3.209)

which, when expanding ® in powers of d~!' and applying the boundary conditions at

z = —1, implies ® = 0. We also have
(D? — E*)*W =0 (3.210)
with W = DW =0 on z = —1 which implies
W = —kA(z+1)coshk(z+ 1) + (A+ B(z + 1)) sinhk(z + 1) (3.211)

where A and B are constants and can be formally expanded in terms of d—'.

Now consider the inner region. We have
(D? — d2k*)*W = —d "Rk*® (3.212)
and
(PyD} — PyD; — Pyk*d™?)® = e*d [d~? — nPsD} — nPsD; + nP;k*d"?| W (3.213)

where the scalings for the inner region are z; = dz and D; = d~'D. The boundary
conditions become (D; —1)® =W = D;W = 0 on z; = 0. The first equation implies
that for a non-trivial solution R ~ d®W. The second equation is complicated by the
exponential term e*’ ~ 1 and hence we examine the parameter ranges where the right
hand side does not appear at leading order. Assuming ® ~ 1, we require W < O(1)
and nW < O(d~?) for the exponential term not to appear at leading order. We are
investigating the equations for the case when o = 0 (on the neutral curve) so we expect

there to be only a limited region of parameter space where the equations remain self
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consistent. This region is given in Figure (3.4). We are restricted to this region because

of the balance of terms in Equation (3.213) at third order, where the term —Pyk?®

first appears. If there are no terms on the right hand side, then we are led to the

solvability condition Pgk? = 0 which is unhelpful. If there are terms on the right

hand side before third order, then the solvability condition yields R = 0 or = 0 at

leading orders which is again unhelpful. Thus we are restricted to the L-shaped region

shown. We immediately see from Figure (3.4) that, as n increases (allowing W and R to

vary), R initially remains constant but at some value of ) the gyrotactic terms become

important and R(k = 0) starts decreasing. So, consider W ~ d™" where n = 1,2,3, ...

Gyrotaxis ferms ‘

inconsistent

: nw
R~dWwW a'e
/
/ Flow terms
d=—4 d=—3 d=—2 =_1 1 —
d w
exponential terms at /d—l-‘
leading order
leading order
" R=0 TN
/
7’ = \/
e
i i i d
7 essen gl oL
o AN
implies -ys de |0 N .
~ k=0 / s ' i
% / + Realistic .
Y i O° ' parameter !
Gyrotaxis 7 AT  values !
term // \ 5, !
dominant // ? ? E n Od :
/s ' |
/ s : 4
Fl . ROd |
/e VA - Rod
7 dominant : W Od !

regions

Figure 3.4: Regions of parameter space corresponding to leading order balances of the

linear equations for bioconvection in a deep layer (d > 1). The shading indicates the

self consistent region of parameter space where a neutral curve can exist.
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and we write

o
W=> W dm, (3.214)
m=n
o= O pd ™" (3.215)
m=0
and
R=d""Rs_, +d> " 'Ry_p_1 + ... (3.216)
To first order
DIW_,, + Rs_,k*®5 =0 (3.217)
and
PyD;(D; —1)®y =0 (3.218)

with appropriate boundary conditions. This has solutions
W_pn = a_nz +b_nz? + Rs_nk (21 + 1 — 1) (3.219)

and

Dy = e (3.220)
where the a’s and b’s are constants. At second order
DIW_p_1 4 Rs_nk*®_1 = —R5_,_1k*®y (3.221)

and

PyD;(D;—1)®_1 =0 (3.222)
and boundary conditions at z = 0 which has a solution
W_pn1= G—n—lz? + b—n—lz% + R5—n—1k2(zf +1- eZI) (3'223)

and

d_y =0. (3.224)

To match the inner and outer solutions up to second order, consider the intermediate

region such that z; ~ 1 as d~! = 0 where

(3.225)
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and ((d"!) — 0 as d ! — 0 and satisfies 0 < d ! < ( € 1 < d. Expanding the inner
solution by writing z; = zl% gives (where terms on the right hand side are in order

of size)
W = d """ [(Pda_nzi + (Pbonzf + Cacn12t +d 7 2 (R Rsn + d (Pbono1 2]
+O (d ™, ¢M ™). (3.226)
Expanding the outer solution by writing z = (2 gives (in order of size)

W = d*[(~kcoshkA_ ¢ +sinhkA ¢+ sinhkB_¢)

+(—k?sinhkA_¢ + sinhkB_¢ + k coshkB_¢)(z

N (—k3 cosh kA,g g2 SmhkA,g L2 sinh

2 2 2
+h.o.t. (3.227)

B_¢ + k cosh kBg) C2z2]

The process now involves matching terms in z.. If we attempt to match any of the first
three terms in Equation (3.226) than we get that at least the first two terms (linearly
independent in A; and B¢) in Equation (3.227) must be zero. This leads to the trivial
solution. Hence a_, = a_p—1 = b_, = 0 and we must match the fourth term in

Equation (3.226). This implies { =n — 1,

(Apy1+ B_p41)sinhk —kA_ 41 coshk =0, (3.228)
B_py1sinhk + B_, kcoshk — k?A_, i sinhk = k*Rs_, (3.229)

and
Ok SR S e bcoshEB et = b . (3.230)

2
First consider the most general solution in the upper right corner of the L-shaped
region in parameter space such that two terms appear at third order on the right hand
side of Equation (3.213). Here we have n ~ d=2 and n = 1. Third order gives (cell

conservation equation only)
PyDy(D; —1)®_y — Pyk*®g = €% [W_y — n_o(PsD} + PsD;)W_4] . (3.231)

Then, the solvability condition is obtained by integrating from —oo to 0. At third order
this gives
2Py

Ry = ,
4 1-— (P5 — P6)']7_2

(3.232)
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where Pj is negative. Therefore, as P; > Ps, R4 can be negative for sufficiently large
(Ps — Ps)n—92 and the asymptotics break down. This is similar to the analysis of Hill
et al. (1989) [42] in which, for particular values of the gyrotaxis number, the leading
order in the Rayleigh number became singular or negative.

Solving for the constants® we get

k? sinh k Ry
Ay= ——m— 3.233
° 7 k2 —sinh? %’ (3.233)
k cosh k — sinh k)k*R
B, — (hcos - = )K" Ry (3.234)
k? — sinh” k
and
k — cosh ksinh k)k3R
by = COZS?‘HQ )K" Ry, (3.235)
k? — sinh” k
To find the k& dependence, we consider the solvability condition at fourth order and
obtain
4b_o
Hence
2Py d* _1, (k — sinh k cosh k) 9
R = 14+4d K +0(d . 3.237
1—(P5 — Ps)n-o k2 — sinh? k (@) (3.27)

This is a monotonically increasing function of k£ (as in [42]) and implies that, for
E < O(1), the most unstable wavenumber is zero. (See Figure 3.5 where 4k(k —
sinh k cosh k) /(k? — sinh? k) is plotted with k). The expression does not say anything
about the global most unstable wavenumber for general k.

It is easy to show that we can cover the whole region in parameter space by
reducing the importance of certain terms. Going left in parameter space where n ~ d =2
and W ~ d~! we get that the solvability condition at third order gives

2Pg
Ry = ————— 3.238
’ (Ps — Ps)n-1 ( )

which implies that the asymptotics are not valid for small values of k. We clearly need
to balance the advection and gyrotaxis terms, and not let the gyrotaxis terms dominate,
to keep the Rayleigh number finite for small k. Going down in the L-shaped region
(n ~d=3 and W ~ d~1) the solvability conditions give

4k(k — sinh k cosh k)
k2 — sinh? k

R = 2Pyd* [1 +d! (n_g(P5 —Ps) + ) + O(d‘Q)] . (3.239)

“corrected from [42]
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Figure 3.5: A monotonically increasing function, 4k(k — sinhk cosh k)/(k* — sinh? k),
of k.

This function is a monotonically increasing function of £ and gives a most unstable

wavenumber of zero (for small k¥ < O(1)).

3.5.3 A summary of the asymptotic results

Shallow layer, d < 1

e 7 < O(1) Mode one solutions belong to Case Ib, Equation (3.175), where R ~ 1

and

1 13 -,[1 5P
M =720Py {1+ —d+ d2 [ — + &> |— — 1L
B 720 H{ Fod+d 105 T a1 462Py

> } +0(d?).  (3.240)

Modes of order greater than two belong to Case II and imply that R ~ d=2.
Equation (3.188) gives R for a mode two solution with similar expressions for

other modes,

6
R™ = w’]zj" d24+0@d™) (3.241)

where n = 2,3, ..., w, = nx if n is even and w, =~ n= if n is odd.
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e 7 ~ 1 Modes of order one again come from Case Ib and R is given by (Equa-

tion 3.176)
X 13 [1 5P
n — Sd+d* | - * |31~ 1ry
R 720PH{1+2d+d <105+’7(P5 PR 51 ~ deam
3PP
Py

modes of higher order belong to Case III and it can be seen that
R™ ~ d2 (3.243)
where n = 2,3, ....

e 7~ d~! Mode one is from Case Ib, Equation (3.174),

1 ~ PP
RW =720Py {1 4+d|= +1_1(Ps — Ps) —k*n_1 [ P; + 305 P + O(d?).
2 7Py
(3.244)
Modes of higher orders are from Case IV (where m = 1), Equation (3.194),

4
pn) — _WnlV

= P dt+0(1) (3.245)
—145

51

where n = 2,3,..., wy = 3

and 57” <wsz < 97” (see Figure 3.3 for the values of w

as functions of F).

e )~ d~2 All modes are determined in Case IV, Equation (3.194), and give

4
P
() = ItV O(d) (3.246)
k2n_oPs
where n = 1,2, 3, .... Even modes have a constant w,, with &, but odd modes have

wy, = wp(F(k?)), where w < wy < @ This is outlined in Figure 3.3.

For n_9 < %5 where w — 0 and & € IR then

720Py
rO 3.247
1 — (P5 — PG)T],Q ( )
as k — 0.
e > O(d™™) where m > 3 All modes are covered by Case IV,
4

P

() = 2V gm=2 | o(gm-1) (3.248)
k2n—mP5

where the w,, are given in Figure 3.3.
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Deep layer, d > 1

e n<O(d
(1) 4 —1 4k : —9
— Sin
e )~ d=3 (Equation 3.239)
4k
R(l) = 2PHd4 |:]_ + d71 <m(l€ — sinh k£ cosh k) + 7]73(P5 — PG)) + O(d2):| .
(3.250)
e 1 ~ d 2 (Equation 3.237)
2Py d* _14k(k — sinh k cosh k) _
R = [1+d1 +0(d?)|. (3.251
1 — (Ps — Ps)n—s k2 — sinh? k S ( )
e 1> O(d™") (Equation 3.238)
2Py d?
RW = 1 0(d?), 3.252
P~ Por (d%) (3.252)

and asymptotics break down for small .

3.6 Numerical analysis

In this section we pursue solutions to the full linear equations in a similar manner
to that of [42]. A numerical scheme implemented by Cash & Moore (1980) [14] and
supplied by Dr. D. R. Moore, called “NRK”, was used. The scheme is a fourth-order
finite difference scheme that iterates using the Newton-Raphson-Kantorovich algorithm.
The program was supplied in FORTRAN and routines were written to search for the
neutral curves of the equations given initial guesses for the concentration and velocity
fields, ® and W, and the Rayleigh number, R. An initial value of the wavenumber,
k, was provided and trial solutions were guessed until a solution was found. This
solution formed the basis of the next solution estimate for a higher value of k. In this
way, provided the steps in k£ were sufficiently small the neutral curve could be traced
with an efficient number of iterations. Guessing a good initial value of R was highly
important and this was where the asymptotic solutions in the previous section proved
useful. The form of the mesh used in the z direction was also highly important. This

was especially true for the deep layer and large k solutions where most of the activity
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Neutral curves — Shallow layer — d = 0.1
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Figure 3.6: Curves of neutral linear stability for a shallow layer (d = 0.1 and oy = 0.2)
and varying d?n. Dotted lines are curves from the asymptotic results and solid lines

are from the numerical results.

in ® occurs in a small fraction of the layer depth at the top. Hence, a variety of
continuously varying meshes were used to both gain a solution and check its validity.
A grid point doubling algorithm was also used so that a rough solution could be found
(such as with six grid points) and then a number of refinements could be made to
improve the solution accuracy by doubling the number of grid points and interpolating
the previous solution. Up to eighty-one grid points were used to obtain convergent
solutions but this was not always neccessary. An accuracy of six significant figures
was always achieved for convergence. The convergence of some numerical solutions was
slow if a) extreme parameter values were used, b) the trial solution curve was dissimilar
to the actual solution, c) the trial Rayleigh number was not a good estimate or d) the
numerical grid did not contain enough nodes in significant areas. There are a number
of parameters that can be varied. Py and Py are functions of the parameter A\ alone
but Ps, P; and P; are functions of A and «q. d is the non-dimensional layer depth,

n(d) is the gyrotactic orientation parameter, k is the wavenumber and R(d, k,n, A, aq)
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Neutral curves
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Figure 3.7: Curves of neutral linear stability for a deep layer (d = 40 and a9 = 0.2)
and varying d?n. Dotted lines are curves from the asymptotic results and solid lines

are from the numerical results.

is the Rayleigh number based on the whole suspension depth and is the eigenvalue to
be determined. We choose to fix A = 2.2 (following Pedley & Kessler 1990 [85]) thus
leaving four parameters to vary. Figures (3.6) to (3.8) show comparisons between the
numerical and asymptotic solutions. The values of the parameters have been chosen so
that comparisons with [42] and [19] can be made. Good agreement was always obtained
between asymptotic and numerical solutions, for £ < O(1), provided either d < 1, for
shallow layers, or d~! <« 1 and P;, for deep layers. In fact, many of the asymptotic
results hold true for orders of k£ larger than one, especially for very deep layers. Clearly,
the new terms due to gyrotaxis also affect the diffusion tensor and, hence, we no longer
have a simple balance of identifiable terms.

For shallow layers (d < 1) non-zero wavenumbers are destabilized with increasing
n and zero wavenumbers are very slightly stabilized (Figure 3.6). The most unstable
wavenumber is non-zero for sufficiently large d?n. Figure (3.11) shows the flow and

concentration profiles for a mode one solution, where it can be seen that the perturba-
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Figure 3.8: Curves of neutral linear stability for a deep layer (d = 200 and o = 0.2)
and varying d?n. Dotted lines are curves from the asymptotic results and solid lines

are from the numerical results.

tions act over the whole suspension layer and are almost symmetrical. For deep layers
(d > 1) the perturbations are greatest towards the upper surface (see Figures 3.12 and
3.13). For deep layers, large wavenumbers are destabilized and small wavenumbers are
stabilized with increasing 1. In particular, we find that for n = 0, the most unstable
wavenumber is zero but as 7 increases and exceeds some critical value the most unsta-
ble wavenumber jumps to a non-zero value. The asymptotics presented here can not
predict the critical value or the non-zero most unstable wavenumber as the dynamics
occur for k£ > O(1). Figure (3.10) shows a curve where it is clear that minimums of the
neutral curve occur at a zero and a non-zero wavenumber. As 7 increases still further
R(k = 0) — oo. The value of n for which R(k) — oo first as &k — 0 can be calculated
from the asymptotics (Equation 3.237) to be

d72

= 3.253
P B (3.253)

e

If A\ = 2.2 and oy = 0.2 then d?7, ~ 4.2. The asymptotics also suggest that in all cases
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Figure 3.9: Numerical curves of neutral linear stability for a deep layer (d = 200),
with d?p = 4 and varying «g. Increasing aq stabilizes modes with long horizontal

wavelengths.

where 7 < 7, the neutral curve increases slightly with k& for £ < O(1) before increasing
or decreasing when k > O(1). Figure (3.9) describes the dependence of the neutral
curve on . The value of g does not affect the neutral curve significantly for large k
but increasing g stabilizes modes with long length scales. This is due to the decrease
in P; and Ps; when « increases. If the cells become less rod-like (ag — 0), then the
cells will be less constrained to swim along streamlines and diffusive processes could
lead to long wavelength instabilities.

The Rayleigh number, R, based on the suspension depth, H (following [42]), is
related to the Rayleigh number of [19], R, based on the sublayer depth, k!, by the
equation

R=dR. (3.254)

Childress et al. (1975) [19] found that, in their model for two rigid boundaries (for
isotropic diffusion), the critical value of their Rayleigh number, R,, behaved like 720 /d*
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Figure 3.10: Numerical curve of neutral linear stability for a deep layer (d = 200), with
d*n = 3.3, ag = 0. Here we see a combination of both zero and non-zero dominant
unstable wavenumbers. For every d we find that there is a critical n that determines

the bifurcation between there being a zero and a non-zero most unstable wavenumber.

for small d and R, decreased to 2 as d — co. For free-rigid boundary conditions they
found that R, ~ 320/d* for small d and R, ~ 4/d for large d. Hill et al. (1989)
[42] derive an equation in their asymptotic analysis similar to Equation (3.237) which
describes the behaviour of the neutral curve close to £ = 0. Hence, for small &,

2P d*
R%#
1—(Ps— Ps)n

(3.255)
where the depth independent gyrotaxis number is defined as (following Hill et al. 1989
[42])

i = d*n. (3.256)

Equation (3.255) is only valid for small enough 7, but we find from Figures (3.7) and
(3.8) that if d is large and 77 = 32 then the minimum of the neutral curve is a factor of
2 larger than this value when 7 = 0. Hence, the critical Rayleigh number is given by

R, ~ 4Pyd*. Therefore, we find (as the qualitative results of Hill et al. 1989 [42] also
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Figure 3.11: Profiles of neutrally stable numerical solutions for a shallow layer (d = 0.1)
with n = 0.1, ap = 0.2 and k& = 10, for which it is found that R =~ 1155. This is a mode

one solution.

suggest) that R, /d is initially large and decreases to a constant value as d — oo. From
Figures (3.6) to (3.8) we find that if 7 = 33 then R./d = 300 for d = 0.1, R./d = 1.17
for d = 40 and Iéc/d = 1.12 for d = 200. The approximate limit of I%C/d, from above,
of 4 Py is equal to 1.04.

The experimental results of Chapter 2 indicate that the wavenumber of the initial
pattern depends only on the suspension depth, whereby the wavenumber decreases
with increasing depth. The theoretically determined dimensional pattern wavelength,
after scaling with H ~ 2.3 x 10734, is seen from Figures (3.6) to (3.8) to increase with
increasing depth, thus agreeing with the measurements of Chapter 2.

Thus, the present model appears to agree, at least qualitatively, with experimental
observations. In contrast, a most unstable wavenumber of zero, as in the model of
Childress et al. (1975) [19], appears to contradict that seen in experiments. However,
[19] show that, in their model, the growth rate is zero at zero wavenumber but increases

with the wavenumber until a maximum is reached. They argue that, immediately
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mode one solution.
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above the neutral curve, the wavelength with the greatest linear growth rate is the
one observed in experiments. However, Childress & Spiegel (1978) [21] show that the
bifurcation to instability is subcritical and, hence, linear analysis cannot predict the
observed initial pattern wavelength. Hill et al. (1989) [42] find that, in their model
of deterministic gyrotactic bioconvection, a non-zero most unstable wavenumber exists
for a sufficiently large gyrotactic orientation parameter. They also prove, for the the
case of free-free boundary conditions, that the bifurcation to instability is stationary,
using the method of the exchange of stability ([42], Appendix A). However, they find
that the method does not work with rigid-rigid or rigid-free boundary conditions. We
can use the same method with our model and obtain exactly the same conclusions. Hill
et al. (1989) [42] were then able to demonstrate the existence of oscillatory solutions
numerically for a range of extreme parameter values. We were unable to find oscillatory
solutions for our model.

Recently Jones et al. (1994) [55, 54] show that it is sufficient to assume that
Chlamydomonas nivalis is a self-propelled spheroid, provided certain parameters are
adjusted, without involving explicit details of the cells’ locomotory machinery. Thus
supporting the model used in the present analysis. They show that ag, @ and B should
be adjusted to 0.40, 12.6 and 6.3, respectively, to allow for the effects of the flagella
of Chlamydomonas nivalis and its swimming characteristics (see Section 3.8 for more
numerical analysis on the adjusted parameter ranges and Section 3.9 for a comparison

with experiments).

3.7 The effect of swimming speed as a random variable

It is clear from the discussion given in Pedley & Kessler (1990) [85] that randomness
in the cell swimming direction is important for a number of reasons. Most importantly
it alters the mean cell response to the external torques and changes the form of the
diffusion tensor. It is neccessary to include these factors in the model for the sake of
consistency. From the previous section, it is also apparent that the linear behaviour of
the diffusion tensor, and hence the existence of a non-zero most unstable wavenumber,
is dependent on the balance between deterministic processes and randomness in the cell

swimming direction. But how else does the cell swim in a random manner? A feature
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that has been overlooked so far is that the individual cells swim at vastly different
speeds. In this section we shall investigate the effect of modelling the cell swimming
speed as an independent random variable and discuss how it affects the diffusion tensor
and linear analysis. In the real world, with inhomogeneous cultures of Chlamydomonas
nivalis, it should be expected that there will be a large variance in cell swimming speed
corresponding to different stages in the cells’ life. Unfortunately it is rather difficult
to get data on such things. Hill & Héder (1996) [41] investigated cell swimming speed
with cell orientation. They found that experimental calculations of swimming speed
were dependent on the choice of time step size between measurements of position. The
cells swim in a smooth fashion and their mean swimming direction is affected by the
various taxes. In two experiments Hill & Héader (1996) [41] tracked swimming micro-
organisms, firstly in a vertical plane and then in a horizontal plane. Both planes were
of small focal depths. Using new techniques of data analysis they were able to calculate
mean cell swimming velocities and standard deviations as functions of the time step
size and orientation. The data were extrapolated back to a time step size of zero to
give the actual swimming velocities. For the vertical plane (V) = 52 + 5ums~! with a
standard deviation of 30+5ums ! and for the horizontal plane (V) = 65+5ums ! with

a standard deviation of 30 + 5ums™!.

The first experiment means that the standard
deviation is 0.58 of the mean and the second 0.46 of the mean.

Theoretically we begin by considering again the calculation for the diffusion tensor
D given in Chapter 1 (Equation 1.21) and assume that it takes a cell 7 seconds to settle

to a preferred direction (the direction correlation time). Hence,
D=1 ((VV)—(V)?), (3.257)

where V is a random variable. Assuming that the swimming speed, V, and swimming
direction, p, are independent, we can write V.= Vp. We know that (V) = V; and,

hence, we have

D =V}r << ) (pp) — <p>2> : (3.258)

By varying the ratio

(3.259)

we can change the nature of the diffusion tensor. The data of Hill & Hader (1996)
[41] gives N as bounded by 1.15 and 1.45. From Equation (3.79) we can calculate the
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modified diffusion tensor to be

BN 0 0 0 0 w
V:QTD = 0 BN 0 +e|n(LN—-TKi)|l 0 0 -w
0 0 (1-ZYYN-K? wy —w; 0
{3e33Ks + T(enn — ex)Js) N TernJoN e13(JsN — K1Jy)
— 207 TernJeN (—3es3 K5 — 2(e11 — e22)Js) N eas(JsN — K1 Jy)
e13(JsN — Ki.Jy) exs(JsN — K1Js)  Sess(KsN — 2K Ky)
+ O(€). (3.260)

Substituting the diffusion tensor into the governing equations we find that it only alters

the definitions of the P;. If we assume that A = 2.2 then they become

Py = 026N

Py = 048N —0.33

Ps = 0.38—0.2lag — N(0.16 — 0.20a)
Ps = ap(—0.43 +0.33N\)

P = 0.38—0.22a0 — N(0.16 — 0.13). (3.261)

P is the only term which can change sign for N' < 2 and it does so if N > 1.3. This
is the average of the bounds determined above from the experiments of Hill & Hader
(1996) [41]. If g = 0.4 and N > 3.75 then all of the parameters will have changed sign
and this will have a major effect on the linear analysis. It is, however, unlikely that N
could be so large. Figure (3.14) describes how the neutral curve varies as a function of

N given n and . The ratio of the leading order horizontal and vertical diffusions,

0.26 N

Py /Py~ ——2
i/ Py 0.48N — 0.33’

(3.262)

also has some significance. Clearly, if ' = 1 then the ratio is greater than one (as
discussed in Pedley et al. 1990 [83]), but if ' > 1.5 then the ratio is less than one (as
proposed in Childress et al. 1975 [19]). The true nature of the diffusion tensor and,
hence, the value of A/ should be established by independent experiments. Thus, the
evidence is inconclusive for a negative or a positive value of Fs. Perhaps the best that
we can do is to assume that P is small, even when d is large, and therefore we may

assume P = 0. This is not altogether convincing and more accurate experiments may
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. Neutral curves
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Figure 3.14: Neutral curves for a deep layer (d = 200) where d?n =4, ag = 0.2 and N/

varies.

need to be performed to elucidate the problem. Alternatively, a better approximation
to the diffusion tensor might improve the situation.

As a further example of modelling swimming speed as a random variable, consider
the Gamma distribution which has a realistic behaviour (see Figure 3.15) where P(V =
0) =0 and P(V =z) — 0 quickly as z — oc.

PV =z)= %)\gmgle“ (3.263)

where z € [0,00) and & and X are variables. Kessler (1995, personal communication)
has been using this distribution to fit data obtained on the swimming speed of bacteria.

We find that

D = Vs (5%1<pp> - <p>2) (3.264)

and, hence, we require ¢ < 3.3 for Py to change sign.
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Figure 3.15: The Gamma distribution P(V = z) where Vj is its mean.

3.8 Numerical analysis for our best parameter measure-

ments

As mentioned in Section 3.6, Jones et al. (1995) [54] suggest that allowances may
be made for the swimming behaviour of Chlamydomonas nivalis and its flagella by
increasing ap to 0.40 and B to 6.3s. Also, it has been suggested ([85]) that the value
of 1.3 used above of the direction correlation time, 7, is “significantly shorter than the
observational estimate of 5s”. In this section, we will take 7 = 5s. We also choose to
take N/ = 1.3, for the reasons given in Section 3.7, such that P; = 0. Neutral curves
for the updated parameter ranges are displayed in Figure (3.16) where it can be seen
that, for the realistic parameter value of = 16d~2, there is most definitely a non-zero
most unstable wavenumber and a reduction in this value dramatically alters the neutral
curve such that zero becomes the most unstable wavenumber for n ~ 4d~2. Given a
large enough value of d?7, a non-zero most unstable wavenumber will always exist for
all d. Figure (3.16) has the same general characteristics of the previous curves but has

a diminished response to an increase in n due to the reduction in (Ps — F).

3.9 Comparison with experiments

Although we have no way of drawing a neutral curve from the experiments, because
we have no reliable data for the non-existence of pattern, (especially as d changes with

each experiment) the data points from Chapter 2 should lie above the neutral curve
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Figure 3.16: Neutral curves for d = 40 using parameter estimates and measurements

of ag = 0.4 and N = 1.34.
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for a given measured value of d. Here, we are assuming that the initially observed
pattern consists of rolls (as we can reasonably assume from Chapter 2). Before direct
comparisons are made between the theoretical predictions and the experimental data,
it is necessary to investigate some important timescales. Firstly, we must establish
whether the flows caused by the initial mixing have diminished and secondly, we must
consider whether the cells have had sufficient time to form the exponential equilibrium
solution as assumed in this linear analysis. Similar arguments were presented in the
papers by Hill et al. (1989) [42] and Pedley et al. (1988) [83]. We assume that the
petri dish and suspension are in solid body rotation with angular velocity € until the
container is instantaneously brought to rest (as in Hill et al. (1989) [42]). Hence, the
time for spin-down of the suspension is O(E%Q_l) where E is the Ekman number.
Hill et al. (1989) [42] show that if © ~ 1s~! then the decay time is approximately
10 s, which is larger than the estimate of Pedley et al. (1988) [83]. If we take the cell
swimming speed to be 63 ym s~ upwards (Table 3.2) then the cells would require 100
seconds to swim a typical depth of 6 mm from bottom to top. The cells typically form
patterns 30 seconds after the initial mixing. Hence, we can assume that the majority
of the fluid motion due to mixing has decayed away before the onset of instability but
that the cells do not always have sufficient time to swim and form the exponential
equilibrium profile assumed in the linear analysis of this chapter. In some situations in
which the suspension is deep it may be more appropriate to use the linear analysis of
Pedley & Kessler (1990) [85] (see Chapter 5).

Seven experiments share a similar depth of approximately 0.4 ¢cm, and these will
be considered as this depth implies that d =~ 200 for 7 = 1.3 and d =~ 40 for 7 = 5,
as can be seen from Table 3.4. These results can be compared directly with existing
results from the linear analysis. In computing Table 3.4, the following expressions for

d, R and k were used in conjunction with Table 3.2.

d=rkH, (3.265)
vgApk? H’n
= 2
R vpV2T <1 — e KkH (3.266)
and
K
K ! (3.267)

T KVt
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As
BVir  BVZ2Tk?
H2 42

n= (3.268)

and if 7 = 1.3s and B = 3.4s (the original estimates), then n =~ 33d=2. For the new
estimates of 7 =5 and B = 6.3 (see Jones 1995 [54]), n = 16d 2.

T | B K d R i

1.3 | 3.4 || 435 | 435H | 9170H®n | 33d2

5 | 6.3 | 113 | 113H | 161H’n | 16d 2

Table 3.4: Calculations of parameters from original and more recent measurements and

estimates of B and 7.

Experiment | Ag X | ko || d | R(x10% | d | R (x10°)
Name (cm) =13 T=5
x108b 0.486 | 1.23 | 5.11 || 172 185 44.7 3.25
x108d 0.468 | 1.05 | 5.98 || 193 484 50.2 8.50
x114c¢ 0.417 | 1.05 | 5.98 || 174 | 82.2 45.2 1.44
x208] 0.708 | 1.51 | 4.16 || 204 393 53.07 | 6.90
x208k 0.354 | 0.755 | 8.32 || 204 393 53.0 6.90
x2081 0.603 | 1.29 | 4.87 || 204 393 53.0 6.90
x215f 0.375 | 0.801 | 7.84 || 204 863 53.0 15.2

Table 3.5: Experimental measurements of wavenumbers and corresponding calculations
of d and R depending on the value of 7. Seven experiments have been chosen with

similar depths so that they can be compared with the theoretical predictions.

Comparing the data from the 7 = 1.3 and ko columns of Table 3.5 with Figure (3.8)
(for n = 32d~2 we find that the measured Rayleigh numbers are all less than the
minimum value, 2 x 10%, of the neutral curve. Also, the wavenumbers are 20 to 40 times
smaller than the predicted values. Comparing the data from the 7 = 5 and ko columns
of Table 3.5 with Figure (3.16) reveals that the measured Rayleigh numbers are now of

comparable order to the neutral curve but the measured wavenumbers are 5 to 10 times
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smaller than those predicted. Reducing 7 to 4d—2 would have the desirable effect of
making the predicted most unstable wavenumber to be similar to the measured value.
In general, increasing 7 and decreasing B improves the agreement between experiments
and theoretical predictions. It is also possible to adjust other parameters in the Rayleigh
number such that the neutral curve coincides more precisely with the measured data
points but the choice of values would be somewhat arbitrary and it should be the
priority of experimental work to establish more precise independent measurements of
these parameters. The stochastic and deterministic models of gyrotactic bioconvection
([42]) differ in their quantitative predictions of initial pattern wavelengths. Typically
Hill et al. (1989) [42] predict a wavelength of 2 to 3¢m in a suspension of depth 1cm
and we predict a wavelength of approximately 1 mm. Experimental measurements give

a typical wavelength of between 4 and 7mm, halfway between the two predictions.

3.10 Discussion

The asymptotic analysis described in the previous sections is a useful tool as it gives us
an initial estimate for the value of the Rayleigh number and provides us with an under-
standing of the underlying instabilities through the balancing of different terms. In this
chapter we have sucessfully solved the linear equations asymptotically and have demon-
strated the accuracy that can be obtained by making quite loose statements about the
order of various parameters. Good agreement between numerical and asymptotic solu-
tions was always obtained provided the expansion parameter, d (or d~!), was sufficiently
small so as to be able to consider parameters such as k, Ps and S.! to be of order one.
No evidence of oscillatory solutions was discovered as in [42].

We have shown that modelling the organisms’ swimming in a non-deterministic
fashion has important consequences for the shape of the neutral curves. We have
also shown that a non-zero most unstable wavenumber will always exist (as in the
deterministic model for finite depth by [42] but not in the non-gyrotactic model of [19])
provided the gyrotactic orientation parameter is sufficiently large.

Perhaps we may speculate that through evolution the cells have optimized their
swimming strategies so as not to waste energy on random events and such that, for a

given depth, colonies will self-organise into patterns with non-zero wavenumber once a
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critical concentration of cells is surpassed. This enables the cells to collide more often
and hence to mate more efficiently. For suspensions of low cell concentration where
bioconvection is not possible, the cells will swim to the two-dimensional fluid surface
where there is also a strong likelihood that they will come into contact with another
cell and can mate. Improvements to the diffusion approximation may be needed to
clarify the situation.

Weakly non-linear analyses have been sucessfully performed by a number of au-
thors for cellular instabilities in Rayleigh-Bénard convection, where there is a non-zero
most unstable wavenumber, such as Fauve (1985) [32], Lennie et al. (1988) [73], Malkus
& Veronis (1958) [78], Newell & Whitehead (1969) [81] and Schliiter et al. (1965) [101]
to name but a few. Childress & Spiegel (1978) [21] investigated the weakly non-linear
analysis of the Childress et al. (1975) [19] model where there is a zero most unstable
wavenumber. Using a multiple scale expansion they found that the stationary bifur-
cation was subcritical. Similar analyses have been performed by Chapman & Proctor
(1980) [16] and Proctor (1981) [90] for thermal convection between poorly conducting
slabs. For stochastic gyrotactic bioconvection we find from the linear analysis that it is
possible to obtain either a zero most unstable wavenumber or a non-zero most unstable
wavenumber depending on the values of the gyrotactic orientation parameter, oy and
variance of the cell swimming speed. It is also possible to obtain a balance between
these two instabilities (see Figure 3.10) and future research could investigate the weakly
non-linear analysis of this system. Depassier & Spiegel (1981) [28] have completed a
similar analysis of a far simpler system where multiple scales were used to balance long
wavelength instabilities with the smaller scale instabilities. However, in our system a

process of simplification would be required before such analysis could be pursued.



Chapter 4

Spherical Harmonic Expansion of

the Fokker-Planck Equation

4.1 Introduction

The steady form of the Fokker-Planck equation for gyrotaxis (see Section 1.6.3) is

V- (pf) = DV, (4.1)

where

1

= = k(- p)p] + 3@ Ap +agp - B+ (- pp). (4.2

p

Brenner & Weissman (1972) [12] also studied this form of equation when agy = 0.

For convenience, they used a coordinate system where the vorticity is perpendicular
to the plane of # = 7 and then expanded the solution f(6,¢) as a doubly infinite
sum of spherical harmonics. Using identities for the associated Legendre polynomials,
the Fokker-Planck equation is reduced to an infinite set of linear difference equations
with an infinite number of unknowns. Truncating the spherical harmonic expansion
to order R, they then obtain “...R(R + 3) + 2 linear algebraic equations in an equal
number of unknowns”. Resorting to a numerical method seems to be the only option
for R > 3 and [12] report that “...the required computer time increases roughly as R?,
and rapidly becomes excessive as R exceeds 15”. For the case in which the external field

is perpendicular to the vorticity vector, the number of equations and unknowns can be

reduced by a factor of two due to the symmetries of the system (i.e. by expanding only

141
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in terms of A" cosm¢P)"(cos 0) where the A’s are constants and the P’s are associated
Legendre polynomials).

Spherical harmonics are the natural choice of eigenfunctions to use in such an
expansion. Strand & Kim (1992) [106] have used spherical harmonic expansions for
dipolar non-spherical particles in an external field. Previous to that Kim & Lawrence
(1987) [68] constructed similarity solutions, valid for small times, for orientation dis-
tributions of axisymmetric particles with external couples. Both papers used their
solutions to investigate the rheological properties of suspensions of particles.

In this chapter, we shall initially consider a micro-organism in a vertical two-
dimensional flow field, independent of y. Later, this will be extended to a three dimen-
sional flow field in the absence of vertical vorticity. For a two-dimensional flow field, it
is still essential to model the cell swimming direction on a full sphere rather than on a
circle. A coordinate system in which the vorticity is perpendicular to the plane ¢ = 0,
is used together with an expansion in terms of cosm¢ P (cos ). By applying a set
of identities for spherical harmonics recursively, using the computer algebra package
Maple (reducing the potential for human error), a set of R(R + 3)/2 equations in as
many unknowns was generated, together with a normalisation condition. Maple was
then employed to solve this set of equations using exact arithmetic. See Appendix C
for the Maple code.

For the case in which «q is zero, spherical harmonics of order two are found to
capture the essential behaviour of the system and the expansion to order three is almost
indistinguishable from higher orders. The second order approximation can therefore
be used in any further non-linear analysis of bioconvection (in which ay = 0) where
relatively simple expressions are beneficial.

The case of non-zero oy is not so well behaved. Low order expansions represent
the solution adequately only in certain ranges of the rate of strain and vorticity com-
ponents. To calculate (p) and D only the coefficients of the spherical harmonics up to
order 2 are required. The implementation of the methods used here is designed to be
adaptable (such that other taxes or combinations of taxes, may be investigated) and

could potentially be used in other similar problems.
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4.2 The coordinate system

The spherical polar coordinate system is chosen such that the vorticity, given by w = wj,

is perpendicular to the plane where ¢ = 0 (see Figure 4.1). The swimming direction,

kA

o

1>

o
[t

Figure 4.1: The choice of coordinate system on a sphere.

p, and unit vectors qAS and  are given by

sin 6 cos ¢ cos 6 cos ¢ —sin¢
pP=| sinfsing |, = cosfsing |, ¢= cos ¢ (4.3)
cos 6 —sinf 0

and also

w-p/\é = wcos¢

w-p/\qg = —wcosfsin . (4.4)

The rate-of-strain tensor e is

ern 0 er3

er3 0 —en
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and then
' ‘
p-e-p = en Z(cos2¢+3)(1—cos29)—1] + e13 sin 26 cos ¢
. '
p-e- 8 = e Z(COS 2¢ + 3) sin 29] + e13 cos 26 cos ¢
X : 1 . . .
p-e-¢ = e —gsin 2¢ sin 0] — e13 cos 0 sin ¢. (4.6)

Hence the Fokker-Planck equation (4.1) becomes

:\;lag(SHl@agf) A 03 f + sinf0pf + 2eosOf = <u} o8 §0pf — w0 sm¢a¢f>
+2a07 [(e11(cos” ¢ + 1) sin 6 cos 6 + e13(cos® O — sin® §) cos $)y f

- <€11 cos ¢ sin ¢ + €13 sin ¢—> s f

—3 (e11(sin” O cos® ¢ — cos? 0) + 2e13 sinf cos O cos ¢) f] (4.7)

where A = (2D, B)"', n = BQ and w, e;; and e3 are scaled with respect to vorticity.
For a two dimensional flow, the cell swimming direction distribution will be symmetric
about the flow plane and so only even spherical harmonics in ¢ are needed. Hence

consider the series

=S Ep (4.8)

n=0m=0

where we define for ease of writing
E(0,0) = Ry ()P (cos ) = A cosm Py (x) = A Q' (0, 4). (4.9)

Here z = cos 6, the A]" are constants and P are associated Legendre polynomials.
Substituting this series into the above equation, making use of the associated

Legendre equation (see Appendix A), gives
Z {NTF™ [—n(n+1)] — RPP™ sin 0 + 2 cos OF "}

= Z {-n (wcos¢psinOR; P, + wcot §sin pR;" P")

m,n

—2a07 [(e11(cos® ¢ + 1) sin® @ cos 0 + e13(cos” 6 — sin” 0) cos psin ) Ry P
+ (eq1 cos ¢ sin ¢ + ey3 sin ¢ cot ) R P

+3 (e11(sin? O cos® ¢ — cos® ) + 2ey3 sin 6 cos  cos ¢) RI'P'] } (4.10)

where / denotes differentiation with respect to the dependent variable.
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The normalisation condition that f integrates to 1 over the surface of the sphere
implies that
A) = —. (4.11)

4.3 Calculating the mean quantities

In this section it is shown that only the spherical harmonics up to order two are required
to calculate (p) and D and therefore we shall concentrate purely on the convergence of
these coefficients.

Firstly, consider (p) with f given by spherical harmonics (Equation 4.9). If S
represents the surface of a unit sphere then

: 1
sin f cos ¢ 1

Q
<p>=/5 in0sin & f(9,¢)dSE/S 0 |re.0as (@12
Q

0
1

cos 6
and hence we require the integrals of fs Qi fdS and fs QY fdS. Using the identities

' 2r (n+m)!
/SQ" n 20+ 1 (n—m)! (4.13)

for n,n' > m,m' =1,2,... and

' 47
0 ym 0 sn
’ = / ! 414
[ @anias = s (4.14)
we find that
Al
4
=" 0 | (1.15)
Aj
Similarly, using the identities
sin” 0 cos® ¢ = 5 sin O(1 + cos 2¢) = ng - §Q2 + EQ2’ (4.16)
. I
sinf cosf cos ¢ = §Q2’ (4.17)
2 2 0,10
cos” 0 = §Q2 + gQO (4.18)

and

1 1 1 1
sin? fsin? ¢ = 3 sin?0(1 + cos 2¢) = §Q8 - §Qg - EQ% (4.19)
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gives
34D — 1545 + 543 0 543
(pp) = 0 449 — L A9 842 0 . (4.20)
545 0 1543 + 343

Hence, defining the diffusivity (as in Section 1.6.3) as D = V27 [(pp) — (p)?], we obtain

5 1A)— 2AJ4 8A3 - Lmal?2 o 24} — L6m AL A9
__— = 4 A0 4 40 8 A2
24} — 1w ALAY 0 T A+ 3A0 — 18 (A49)?

(4.21)
Thus, only the expressions for the five coefficients AY, A1, AS Al and A2 in the spherical

harmonic expansion are required.

4.4 Recursion relations

Below is a summary of the operations or recursion relations that will be used in the
following analysis. These relations allow expressions on the LHS to be written in a
simpler functional form (RHS). A reference for each relation and the name of the

corresponding functional is also given.

e X, (Equation A.7) :

n 4+ m n—m-+1
PM" = P _— 4.22
Sl e e I e W (4.22)
n+m n—m-+1
o X
Xes(T)) : T ¥— T — X (X (TO)). (4.24)

e X, (substitute Equations A.8 and A.9 in A.10) :

1
2n+1

(1—z?)P™ = (n+m)(n+1)P" —n(n—m+1)PN,) (4.25)

XosplT1) T v 5y

(n+m)(n+ )T —n(n—m+ 1T ,). (4.26)



Spherical Harmonic Expansion of the Fokker-Planck Equation

e X, (Equation A.8) :
2n+1)V1—22pP = prit — prt

Xou () : T — T — T

Xsq (Equation A.9) :

2n+1)V1 - 22P" = (n+m)(n+m—1)P ' —(n—m+1)(n—m+2) P!

Xoa(T}") : T — (n4m)(n+m—1)T7" = (n—m+1)(n—m+2)T;7".

Xspu (substitute Equation A.6 in A.10) :

—Epm = pmtl __™MT_pm
V1—22P™ = P! mpn
maz
Xopu(T) : T —s T — N .
e X4 (substitute Equation A.6 in A.10) :
_ max
MPTT’E—(n—m+1)(n+m)PTT 1+ﬁp7?1
mz
X Tm :Tm|—>—n—m-|-1 n+me_1+7Tm.
wal ) T o+ m) T T
o Xy :
1 1
Slgm = _gm-1 _ —_om+l
2 2
1 1
stn(SISm) : SISm — §Cm*1 _ 50m+1.
o Xeos :

1 1
lym — = ~m—1 —m—+1
cc _20 +2C .

1 1
X, s(Cte™) . cle™ —s 5Cm—l + 5om+1.

Here we have made use of the shorthand S™ = sinm¢ and C™ = cos mdg.

4.5 Simplification

147

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Consider Equation (4.10) a term at a time, trying at each stage to express the whole

term as an expression in spherical harmonics with simple non-trigonometric coefficients.

Henceforth x = cos # without mention. The special cases of low and high values of m

and n are dealt with later.
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4.5.1 Left hand side

The first term on the left hand side is in the right form. If we apply X, to the second

term we will get terms in ()7, ;. Similarly applying X, to the third term gives us terms

in Q-

4.5.2 Right hand side - vorticity terms

The first term on the right hand side contains a C' so we will make use of the identity

m
(23

Xeos and turn the R into AT(Cm_1 +C™*1). Now we should try and convert the P/

into terms like P;;"il. This proves possible with the identities X, and X,,. However,

there appears to be an undesirable term, :l:\/%f-’,f”. If this term were to remain in

the equation, then it would lead to the problematic integral

/ L pr(a) P (2)da (4.39)

1—g2 "
which, on explicit evaluation, gives not one delta function in terms of n and p, but an
infinite series of delta functions in n and p (the integral has a curious behaviour as only

min (n, p) is relevant and not max (n, p); see Appendix B), as

+ even
—m)! b . (4.40)

otherwise

(min (p,q§+m)!

1
1 'm (min (p,
/—1 Pl @) = ¢ s

This would ultimately give an infinite set of infinite-length recursion relations for the
A, Fortunately, these terms completely cancel out with similar terms produced by
the second term on the right hand side, after application of the identity Xg;,. Thus,
the vorticity terms become

ﬂ (—QnmJrl + (n—m—i—l)(n—i—m)Qnm*l) ) (4.41)

4.5.3 Right hand side - rate of strain terms

These terms naturally fall into two groups: the third, fifth and seventh terms multiplied
by ei1, and the fourth, sixth and eighth terms multiplied by e;3. Using the operators
Xeos and Xy, the terms in the first group can be written in terms of C™*2 and C™,
with the “undesirable” terms always cancelling. Except for a factor of —2aqgne;;, these
terms are

3—m

1
Amcm—? (_Z cosfsinf(n —m + 1)(m +n) P 1 + sin’ 0P£”>
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1 3
+ATC™T2 <Z cos fsin P 1 % sin? HPT’L">
+ AT O™ <§Pm sin? @ — 3cos>OP™
n 2 n n

+§C089
2 2n +1

(n+m)(n+ )P —n(n—m+1) n—|—1)> (4.42)

and they become

A [_i(” —m+1)(m +n)C" 2 X (X q(P™) + som mCm_QXsd(Xsd(Pgn))
4O X (K (BH) 2O (X ()
FSCMX () = 3O X (X(PY))
+Z2n+lcmx ((n+m)(n+1)P™, —n(n—m+1)P7,,) (4.43)
Hence, we can write
AT =3 m ) m ) X (Ko@) + 2 XX @)
X (K@) + T X (X Q) + 5 X (@) — 3X (X (Q3)
3 1
g Xe () DQEy =l =+ D@L)| (4.44)

The second group of terms multiplied by —2agne;3 can be expressed in terms of C™+!

using X o5 and Xg;p,. In a similar manner to the above they become

AR [Xe(Xe(—(n —m+ 1) (n +m)Qp~" + Q1))

e m DM@+ Q) — X (Xa(Q) — XaalQ)

+ Xe((n+m)(n+m—-1)QI ! — (n—m+1)(n—m+2)Qry]

2n+1
+QH = Q)] (4.45)

On summing over m and n, but forgetting for the moment about the extreme

cases, the whole equation (4.1) becomes

0 = A 'n(n+ DATQR + AT Xop(QN) — 247 X(Q1)

LA (@ - (0= m - D+ m)QE )

—2aqner Ay —%(” —m+ 1) (m +n) Xe(Xsa(Q 1)) + ?)_Tmed(Xsd(Qnm))
XX @) + X (X Q) + 5 Ko @) — BX(X(Q)
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431
22n+1
—20pne3 AT [Xo(Xe(—(n —m + 1) (n+m)Qm ' + Q)

X, ((n+m)(n+1)QM  —n(n—m+1)QM,)

_% (—(n —m+1)(n+m)Qy~" + Qnm+1) = mXe(Xsa(Qp') — Xsu(Qr)))
+2n31Xc((n+m)(n+m—l) m=t—(n—m+1)(n—m+2) ner_ll
+QH Q] (4.46)

This equation will be referred to as G,
There are a number of parameters involved here. The search of parameter space
has been limited by assuming that X is given. For the micro-organism Chlamydomonas
22

nivalis A ~ 2.2 and, for the purposes of computer algebra, can be written as 75. This

value will be used throughout the following analysis.

4.6 Special cases - extremal terms

There are two cases connected with the finite order of the expansion. One concerns the
upper extreme of the expansion and the other concerns special cases around the lower
extremity. The first is easily dealt with by just setting all coefficients of order greater
than the truncation order to zero. In the second case, note that A)' =0 if m,n <0 or
n > m, and such terms should not appear in Equation (4.46). Consider first the case
where m = 0:

1 1
5180 = 50—1 — 501 =0 (4.47)

and

1 1
ctc = 50*1 + 501 =", (4.48)

in which C™ = cos m¢ and S™ = sinm¢. This indicates how the definitions (4.37) and
(4.35) for X o5 and Xy, need to be modified. In general, if m = 0 then terms in QY
where p is positive are doubled and where p is negative are set to zero. Terms where
p = 0 are unchanged. This gives us the following relations (Vn), which will be summed

over n later:

Foo= A n(n+1)ANQ) + A) Xosp(Q) — 247 Xe(Q)) — wnApQy, +
3 3

_2a077€11Anm %XC(XSM(Q’II'L)) + EXsu(Xsu(Q%)) + §X35(Q97,) - 3XC(XC(Q’9L))
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3 1
+3 g Ke (M + D@y —n(n+ 1)Q2+1)]

_2a077€13A(r)z 2XC(XC(Q£)) - Q;z + 2n6+ IXC (Q}H—l - Q}’L—l):| . (4-49)

The next case to consider is m = 1. The only terms which may cause concern here
are those that involve expressions in Q™ 2. These type of terms are restricted to those

with the coefficient agne;;. By considering

1 1ol s 3 0 1 0, 13 3
2(C +3)C —40 +4C’ +20 —40 +4C +2C’ (4.50)
we get the equations
Fp o= A'n(n+ 1)ALQ) + Ay X (Qn) — 24, X(Q))
w
+7"A,2 (—Q2 + n(n+1)Q°)
1
_2a077€11A111 —Zn(l—{—n) X (X SU(Qn))+ XSS(Qn)
1 3
+ZXC(XSU(Q72;))+XSU( su(Qn))"’ Xss(Qn)_?’X( C(Qvlz))
3 1
+55m 7 e (M +1)%Qn 1 —n’Qy)

—204077613An [XC(XC(—n(n + I)Q?L + Q%))
5 (el + Q) + Qi) - Xe(Xua(Q1) ~ Xu(Q))

+Q%+1 - Q%fl)] . (4.51)

_l’_

4.7 Implementation

The complete expansion of Equation (4.1) in spherical harmonics is

o_Zf°+Zf1+ZZg (4.52)

n=2m=2
where R is the order of the approximation and the spherical harmonic coefficients, A}
(see Equation 4.9), are zero if p > ¢, p <0, ¢ > R or ¢ < 0.
As the surface spherical harmonics form an orthonormal basis, we can find the inner
product of Equation (4.52) with any other surface spherical harmonic and hence extract

a set of R(R + 3)/2 simultaneous equations for the R(R + 3)/2 unknown coefficients.
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The implementation in Maple is straightforward. See Appendix C for the Maple
code. Equation (4.52) is calculated and simplified using the recursion functions of
Section (4.4). The inner product of this equation with @} is then evaluated using
Equations (4.13) and (4.14). This is repeated for all allowed values of m and n, and
eventually this set of equations is solved explicitly using Maple’s inbuilt algebraic solver.
The most significant cost in computer time and memory is due to solving the equations.

The shorthand

¢ =, (4.53)
f = gneql (454)

and
X = agners (4.55)

is used throughout the following analysis.

4.8 Results for oy =0

0.14+ . orders3and4

10

Figure 4.2: Graph of the coefficient AY with ¢ for orders of approximation of 2, 3 and
4.

If we set cvg = 0, so that the cell is spherical and the effects of rate-of-strain vanish,
we look at the case where there is a balance between the gravitational and vorticity
driven torques. This case is easy to visualise and one can imagine the deterministic

situation in which vorticity increases and the cells’ swimming angle to the vertical
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Figure 4.3: Graph of the coefficient Al with ¢ for orders of approximation of 2, 3 and
4.

increases with it. If the vorticity increases too much, then the terms no longer balance
and the cell tumbles. We expect to see a similar situation with the stochastic model,
with the cells’ average swimming angle with the vertical increasing with vorticity. For
very high values of vorticity, the cell orientation distribution function is no longer
sharply peaked but almost uniform.

The five simultaneous equations for the second order approximation are

20 6 2.4 4 4 1
:’,3’41+3C‘41+15A2 3r 0
2 20 2
—§§A?+ﬁA}+gA§ =0
4 12 6
—gA[erﬁAnggCA% =0
6 6 36 12
—— Al - —CAS+ AL+ A =
515§2+112+52 0
12 144
—EQA;JFFA; = 0. (4.56)

This set of equations is remarkably simple. It could be easily extended to the time
dependent problem and the resulting linear dynamical system could be easily studied.

Solving the above equations results in the expressions

0 825 5589 + 2420(?

T 4m 1098075¢4 + 2363735(2 + 2772144
A 1815¢ 1887 + 1210¢>

b=

4 1098075(* 4 2363735(2 + 2772144
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0 _ 605 11178 — 4235¢>
> 8w 1098075(* + 23637352 + 2772144
4l 2495625 ¢
2 A 1098075¢* + 2363735¢2 + 2772144
2
A - 1830125 ¢

167 1098075¢* + 2363735¢2 + 2772144
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(4.57)

These expressions, together with Equations (4.15) and (4.21), will be used in the non-

linear analysis of Chapter 5. The order three approximation is also sufficiently simple

to express here. The nine equations are

20 1
CA1+ AU———
3

—~{A°+——A1+—A1

——A°+ A + §A1+ A0

5 35
6 36 48
——Al——-AU A1 A2 Al
51 5C 2% 7 5235778
12 144 48
_ZZcAL ———A? A2
5 Az + + 7
24 120
——ﬁ A0 __m
77 443 + ¢
96 720 60
——A AL+ Al — A2
2 35 T
96 7200 360
60 ,17200 A? A}
7 7T C
360 43200
gA? -—ﬁ——A3 (4.58)
This has solutions for the first two coefficients of
o _ 33 12152908460¢6 + 454816501139¢% + 2112839412992¢2 + 3718545506304
Y odn D(¢)
o 363¢ [ 6076454230¢5 + 222850909897¢* + 8932636820802 + 1354356023296
LT 20n D(¢)
(4.59)
where
D(¢) = 220575288549¢8 4 8220314088833¢¢ + 37561155901808¢!
+80481969512384¢2 + 71589467955200. (4.60)

Figures (4.2) and (4.3) show the graphs of AY and Al after truncating at orders 2,3

and 4. Tt can be seen that orders 3 and 4 are almost indistinguishable (and all higher

orders) and that even the second order approximation captures the essential behaviour
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of the system. This is also true for the coefficients A, A} and A2 (Figures 4.4 to 4.6).
However, the size of the algebraic expressions for the coefficients vary markedly. The

expressions quickly become cumbersome and unmanageable after the fourth order.

Figure 4.4: Graph of the coefficient A3 with ¢ for orders of approximation of 2, 3 and
4.

10

Figure 4.5: Graph of the coefficient Al with ¢ for orders of approximation of 2, 3 and
4.

Section 4.3 above shows that A} represents the x component of the average swim-
ming direction and A9 the z component. Figures (4.7) to (4.10) show how the prob-
ability distribution, f, varies for increasing vorticity. It is straightforward to see that

the results are as expected. Note that the line # = 0 stands for a single point on the
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0. 008

order 2

0. 006 +

0. 004

0. 002+

Figure 4.6: Graph of the coefficient A2 with ¢ for orders of approximation of 2, 3 and
4.
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Figure 4.7: A third order approximation to the probability density function, f (6, ¢) for
ag =0 when ( =0, & =0 and x =0.



157

Spherical Harmonic Expansion of the Fokker-Planck Equation

8
=
<
o
-
.S
g
a
o Fm o
.Wu
Z
=
® >
w&‘ XXX .mw
i \
AL 2 _
AREESNN 2 KSSEAN
QR R K XXX AN o WQACKXX A \ o
AN RN 4 ~ OARSORSSSAA)
NN 558% = | N e
QRN OO0 e o QRN o
QR RN /° S ~ SRSk
QRN NN NN OC 000009
SO g NN
RN/ S QRN 1
AN s o GO A4
QOGO /= g GORUROROG /'~
GOOMOMRROOON R QUMY
QUM L 9] QUMY £
UOGUO00KY 50X QOO0
WY/ e 2 Y
L & 2 Gy~ e
WY g WY
W 5 O
(%) S
.3 §s o
@]
c o o o 1m —_ c o o o
= [l
AN
< g
ZE
mh.v o
mo Il
=8

0 when ( =2, =0and x =0.

Figure 4.9: A third order approximation to the probability density function, f (6, ¢) for

o]



Spherical Harmonic Expansion of the Fokker-Planck Equation

<>
<>
0.3 <SS
"“--‘.’..
“"““‘
0.2 S S S e e e e e
. <SSR oo o—o oo oSS
&.-oov'z’.z“:““‘
0.1 S e S TS N SIS OISO
S e D O PP TGOS VS Ve Ve
e e e S S U O S N S e
S S S o P o 0“ <[> ““ IS ““
s S 50594500 9 % e S S e
LSS SIS ITSISOIS SIS
e e R N
oSS ST “““0
‘0“0"“'0"“ PSS
SIS ST
0“.““ :“‘““0‘
5 222 z’,"". 1.5

{
f

158

Figure 4.10: A third order approximation to the probability density function, f(6, ¢)

for ap = 0 when ( =5, £ =0 and x = 0.

sphere as does 6 = 7.

Convergence is rapid in this case. There are no physical mechanisms that result

in sharply peaked distributions which may cause resolution problems for A = 2.2. This

is not typically the case for ay # 0 as described in the next section. Here, we have

chosen a typical value of the parameter )\, and in general as X increases (i.e. either D,

or B decreases) the distribution becomes more sharply peaked.

4.9 Results for ay # 0

We consider, first, the individual terms in & (= agnei;) and x (= agneis) before

combining them in Section 4.9.3.

4.9.1 ¢ varies while ( =0 and xy =0

We find that the approximation to the cell orientation distribution function, in which

x and ¢ = 0, converges rapidly close to £ = 0. Otherwise, for low orders of the

approximation, we find spurious singularities in the values of the coefficients AY(&),

AL(€), AY(), AL(€) and A3(¢), all of which share the same denominator. As the

order of approximation, R, increases, the singularities get further from the origin (see

Figures 4.11, 4.12 and 4.13). When R = 10 the approximation is well behaved in

the region |¢] < 10 but singularities still exist in the region |¢| > 10. None of the
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coefficients are symmetric functions of £ about the origin and this is because of the very
different flow fields, with respect to gravity, for positive or negative ey (see Figure 4.14).
Negative values of ej; reinforce the upswimming of the cell whereas positive values

destabilize it. The existence of spurious singularities leads us to the conclusion that

Figure 4.11: Graph of the coefficient A} versus ¢ for a third order approximation.

¢=x=0.

Figure 4.12: Graph of the coefficient A? versus ¢ for a seventh order approximation.

¢=x=0.

there is a physical problem in trying to represent the solutions as spherical harmonics. If
e11 increases (implying ess decreases, see Figure 4.14) then the cell swimming direction

becomes more and more likely to be along the z axis and less random.  This implies
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Figure 4.13: Graph of the coefficient AY versus ¢ for a tenth order approximation.

(=x=0.
Figure 4.14: Streamlines at the stagnation point of a pure straining flow, acting on a

swimming cell (where w = e;3 = 0). Here, eq; is positive and, hence, es3 is negative.
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Figure 4.17: A seventh order approximation to the probability density function, f(6, ¢)
for ap = 0 when ( =0, £ =4 and x = 0.

that the distribution becomes more peaked and the number of spherical harmonics may
be insufficient to represent it. As the order of approximation increases, the problem
is alleviated. Figures (4.15) to (4.17) are plots of the probability distribution, f, with
increasing e;; when w = ej3 =0 and R = 7. It is clear that the distribution becomes
more peaked with the increase in ej;. In fact in Figure (4.17) the approximation
becomes negative as the spherical harmonics attempt to resolve f. This is where the
approximation breaks down and is a manifestation of the Gibbs phenomenon in which
the approximation overshoots the probability density function when it sharply varies.
For R > 10 the computer time and space required becomes excessive, and the solutions

become unmanageable.

4.9.2 ¢3 varies where w =0 and ¢;; =0

In the same way, we can deal with the case where ey3 is the parameter. If w =e;7 =0
then the streamlines are similar to Figure (4.14) but rotated through 45°. A similar
argument as before applies, and consequently the cell swimming direction distribution
becomes more and more peaked with ej3. A limited range of e;3 space has convergent
solutions and this region increases with the approximation order. However, A%(y) is
seen to be symmetric about the origin, indicating that the vertical component of the

swimming direction is unaffected by the sign of y.
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4.9.3 Combining vorticity and rate-of-strain

Consider, for simplicity, the case where ej3 is zero but w and ey; are allowed to vary.
One can imagine the situation in which we fix w to be sufficiently large that the cell

tumbles, and allow ej; or g to increase from zero (see Figure 4.18). For reasonably

Figure 4.18: Graphical representation of a combined straining flow with vorticity.

small values of ej; the cell will continue to tumble but will favour pointing in the
direction of the fluid efflux, i.e. along the x axis. As ey increases, the cell will spend

more time in the regions marked A and C' and less in the regions marked B and D. This

P A T Y U I T VI VR M N N N N
B A T T N T Y VI N N
A T A T T T Y R VD N N N N
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Figure 4.19: Streamlines for a combination of a straining flow with vorticity. Here

e11 = w. Doubling w would give a pure shear flow.
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process will continue to occur until e;; becomes large enough to prevent the cell from

pointing along the z axis and, hence, from tumbling. The gravitational torque acts such

& =2and ¢ =9
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Figure 4.20: A seventh order approximation to the probability density function, f(6, ¢)
for ap = 0 when ( =9, £ =2 and x = 0.

that it is easier for the cell to escape region A than C. As e;; increases still further, the
cell will be constrained in region C' or less so in region A. This will lead to a sharply
peaked distribution and, thus, for low orders of the approximation, the method will fail
and produce unreliable results. As the order of approximation increases, the spherical
harmonics have more of a chance to resolve the true distribution for higher values of
e11. Figure (4.19) shows the two dimensional streamlines for a typical shear flow (or
a balance between viscosity and rate-of-strain), and Figures (4.20) to (4.22) show an
example of the distribution becoming peaked, using a seventh order approximation (in
this case for negative £). Figure (4.22) shows that the probability distribution becomes
negative for some values of # and ¢, in an attempt to resolve the true distribution f.
In the absence of vorticity, the solutions behave as in Section 4.9.1, but a small
amount of vorticity broadens the distribution and increases the critical value of €, above
which problems of resolution occur. Figures (4.23) and (4.24) show an approximation
of order five with xy and ( as parameters. One can clearly see that the solution breaks

down in different regions, with the coefficient Ay going to plus or minus infinity. A

similar picture is produced with £ and ( as parameters.
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Figure 4.21: A seventh order approximation to the probability density function, f (6, ¢)
for g = 0 when ( =9, £ =4 and x = 0. In this case, the cell is almost always pointing

downwards, due to the “barrier” formed by the large values of &.
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Figure 4.22: A seventh order approximation to the probability density function, f (6, ¢)

for g = 0 when ( = 9, £ = 5 and x = 0. There are regions where f has become

negative and the method has broken down.
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Figure 4.23: A fifth order approximation of AY(¢,¢) with xy = 0 (o< e13).
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Figure 4.24: A close up, at the origin, of Figure (4.23). A fifth order approximation of

AY(¢,€) with x = 0 (ox e13) showing the smooth solution surface close to the origin.
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resolving problems are identified and a region where reliable results are obtained is
proposed. Although Figures (4.23) and (4.25) seem to imply that the function is highly
discontinuous for most realistic values of N, it does not imply that the method is a
faliure. The coefficient AY((,&,x) converges to the real distribution for reasonably
large regions of parameter space. But what are realistic/experimental values for the
parameters? Using the definition of n as BQ (Equation 3.9), where Q is a typical
scale for vorticity and rate-of-strain and B is the gyrotaxis orientation parameter (see
Table 3.2), we get

£ = ayBEn;, (4.61)

where F1; is a dimensional component of the rate-of-strain tensor. From observations,
a typical fluid velocity will not exceed 1 mm/s and will change over a distance of 1 mm.
This indicates that in experiments Ej; < O(1). Hence, ¢ < O(1). Hence, in normal

situations, the fourth order approximation should be valid.
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4.9.5 Including swimming speed as a random variable

If we also include the effects of a random swimming speed, we can calculate the diffusion
tensor using Equation (4.21) but in a similar manner to Section 3.7. Figure (4.26)
displays a second order approximation for D,, versus (, in which £ = xy = 0, with
different values of N' (N is defined in Section 3.7). Figures (4.27) and (4.28) display

D,, and D, respectively. From Figures (4.26) to (4.29) we see that the diffusion varies

Dy 0.8

A= 2.0

0.6 A= 1.8

A= 1.6

\ / A= 1.4

0.2 A= 1.2

_q’ F 10
0.2

10 -5 g 5 10

Figure 4.26: A graph of D,, with varying ¢ and N for a second order approximation
to f(6,¢) with ap = 0. N increases with D, (0) from 1.0 to 2.0.

only a small amount and perhaps an isotropic diffusion is justified, however, notice the
differences in behaviour between Dg;, Dy, and D,, around ¢ = 0. The value of N of
1.3, for which Py vanishes in the linear analysis, also has a significant effect on the type
of stationary point of D,, and the sign of the gradient of D, at ¢ = 0. In fact Dy,
looks very flat, at this value of NV, for all (. Otherwise, increasing N increases the size
of the diagonal terms in the diffusion tensor. The linear analysis of the Fokker-Planck
equation (Chapter 3) gave values for the diffusion tensor of Dy = 0.26 and Dy = 0.16
for zero flow. The spherical harmonic approximation at second order provides values
of Dg = Dyz(( = 0) = Dyy(¢ =0) = 0.2520 (4 d.p.) and Dy = D,,(¢ = 0) = 0.1886
(4 d.p.). Better agreement is obtained for higher orders of approximation.  The
expressions for the diffusion coefficients, for oy = 0, will be used in the non-linear

analysis of the next chapter.
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Figure 4.27: A graph of D,, with varying ¢ and A for a second order approximation
to f(0,¢) with ap = 0. N increases with D,,(0) from 1.0 to 2.0.
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Figure 4.28: A graph of D,, with varying ¢ and N for a second order approximation
to f(6,¢) with ap = 0. N increases with D,,(0) from 1.0 to 2.0.
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Figure 4.29: A graph of D,, with varying ¢ and N for a second order approximation
to f(0,¢) with ag = 0. N increases from 1.0 to 2.0.

4.10 Extension to a three dimensional flow field

In this section we assume that oy = 0 and, hence, the rate-of-strain in the fluid does
not affect the cell orientation. It is reasonable to assume also, owing to the symmetries
of the patterns observed in experiments, that there is no component of vorticity in the
z direction. In doing so we can construct an approximation to the diffusion tensor, in
a similar manner to the previous sections, with the aim of using the results in a non-
linear analysis in order to explore the three-dimensional structure of bioconvection.
In particular, the flow field can be written in terms of a poloidal velocity field (see
Section 5.8.2).

We rotate the “plane of solution” about a vertical axis, such that w will be per-
pendicular to the plane ¢ = 0. The Fokker-Planck equation can be expanded in terms
of surface spherical harmonics, as before, and can then be rotated back to its original
coordinate system within the integral definitions of (p) and D.

We define the angle of rotation, 1, to be

1 = arctan <ﬂ>, (4.62)

w3
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where
w1
w=| w (4.63)
0
and put w? = w} + w3. Then
v = [ 160.6=w)pis. (4.64)
Putting ¢ = ¢ — ¢ then
sin @ cos (¢ + 1)
(p) = /S f(0,9) | sin@sin(p+y) |dS, (4.65)
cos 0

where we can expand cos (¢ + 1)) = cos ¢ cos ¢h—sin ¢ sin ) and sin (¢ + 1) = sin ¢ cos P+

cos ¢ sintp. Hence,

Q1 cos1p
(p) = /Sf(H, $) | Qlsiny |[dS (4.66)
QY
which, when f is written as a sum of spherical harmonics as in Section 4.3, implies
Al cosp
(p) = %w Alging |- (4.67)
A}
In a similar way
(pp) = /S f(6, ¢)MdS (4.68)

where M is equal to

sin? @ cos? (¢ + v) sin? 6 cos (¢ + 1) sin (¢ + ) cos O sinb cos (¢ + 1)

sin 6 cos (¢ + 1) sin (¢ + 1) sin? 0 sin? (¢ + 1)) cos 0 sin 0 sin (p + 1))

cos sin @ cos (¢ + 1) cos 6 sin fsin (¢ + 1)) cos? 0
(4.69)

Substituting the surface spherical harmonics for f, expanding and evaluating, gives

FAY — 1 AY + 2 A3 cos 24 8 A3 sin 24 2 AL cosyp
(pp) =7 %A% sin 21) %Ag — 14—5Ag - %A% cos 2v) %A% sin
2 A} cosyp 2 Al sinyp B A+ LA

(4.70)
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The A’s are all functions of w = y/w? + w? and by using tan = (ﬂ) we can write

w2
w
cosy = —1,
w
) w
siny = —2,
w
2 2
ws —w
cos2yp = 2721,
w
. 2wiw
sin2p = ——2. (4.71)
w

4.11 Discussion

In this Chapter we have demonstrated that exact expressions can be obtained, in terms
of the first five coefficients of the spherical harmonics, for the mean cell swimming
direction and the approximation to the diffusion tensor.

For the case of spherical cells, where g = 0, the coefficients converge very rapidly.
The second order approximation captures all of the behaviour (see Figure 4.2), and yet
is sufficiently simple to be used in the non-linear analysis of Chapter 5. We also show
that these results can easily be extended to a three-dimensional flow field in which there
is no vertical vorticity. This will aid future analysis on non-linear planform selection
(see Section 5.8).

For the case of non-spherical cells where oy # 0 the method may not be the most
efficient means of obtaining a solution, as we require the expressions to be large in order
to obtain reliable results. This is due to the appearance of spurious singularities for
low orders of approximation, related to the physical interaction of vorticity and rate-of-
strain. Methods such as finite differences may produce more reliable results. However,
there are regions in parameter space where convergence is rapid and it may be possi-
ble to patch or smooth over irregularities. This may be particularly straightforward if
we assume that there are no additional, unexpected features of the coefficients associ-
ated with the interactions of the external couples. Simple, smooth functions could be
constructed from the convergent regions of the coefficients and known asymptotes for
dominant flow conditions (see Brenner & Weissmann 1972 [12] and Pedley & Kessler
1992 [86]).

Finally, the methods described in this Chapter are sufficiently flexible such that

solutions could be obtained for combinations of taxes. In particular, the interaction of
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geotaxis, gyrotaxis and phototaxis (see Kessler et al. 1992 [67]) could be investigated.



Chapter 5

Non-Linear Analysis

5.1 Introduction

There are many papers on constructing weakly nonlinear theories in terms of ampli-
tude modulations for solutions close to the neutral curve (see Fauve 1985 [31]). The
bioconvection equations do not exhibit Boussinesq symmetry, the reflective symmetry
about a horizontal plane due to the application of the Boussinesq approximation, as
in the standard Rayleigh-Bénard problem so the analysis is more difficult. Childress
& Spiegel (1978) [21] have obtained an amplitude equation for the weakly non-linear
non-gyrotactic bioconvection model of Childress et al. (1975) [19], with a zero most
unstable wavenumber, and their methods have been used in other contexts (e.g. Chap-
man & Proctor (1980) [16], Proctor (1981) [90]). They show that, in their case, the
bifurcation to instability is subcritical and, hence, the linear analysis cannot always
be used to predict the wavelength of the initial disturbance. Poyet (1981) [88] and
Depassier & Spiegel (1981) [28] have extended these methods for situations in which
there is a double minimum of the neutral stability curve. With finite depth gyrotactic
bioconvection, however, this process would be very time consuming and may not be an
efficient method of analysis. The difficulties arise from the complexity of the equations
and the uncertainty of the existence of a unique most unstable wavenumber, i.e. there
could exist a balance between a zero and a non-zero most unstable wavenumber, see
Chapter 3. We have instead opted to investigate the non-linear mechanisms for gy-
rotaxis in “deep” gyrotactic bioconvection. Purely upswimming models ([19]) are not

unstable for suspensions of infinite depth, unlike models incorporating gyrotaxis. Fig-

174
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ure (5.1) contains pictures of suspensions of Chlamydomonas nivalis being cultured in
flasks under a bright white light source and shows evidence of long plume structures
in deep suspensions. The figure also displays evidence of vertically travelling pulses
that move down the plumes. Observations indicate that larger pulses travel faster than
smaller pulses. The larger pulses can catch the smaller pulses, whereupon they merge
(also see Kessler 1985 [62] where pulses are observed in the focusing experiment in
Figure 1.5).

In this chapter, we consider the fully non-linear equations for infinite depth and use
the expressions obtained from the spherical harmonic expansion of the Fokker-Planck
equation in Chapter 4. Initially, in Section 5.2, we explore the linear analysis considered
by Pedley et al. (1988) [83], which highlights the scalings required for the weakly non-
linear analysis of Section 5.4. Then, in Section 5.3, we consider the experimentally
realisable case of long vertical wavelengths in deep suspensions in order to simplify the
equations. This provides us with a set of non-linear partial differential equations, the
first of which involves z in a passive manner. Section 5.4 considers the weakly non-linear
analysis of deep bioconvection for long vertical wavelengths and aims to characterize the
bifurcation to instability, thus determining whether the linear analysis can be used to
predict the initial pattern wavelengths. In Section 5.5 we consider the horizontal steady
state solutions for long vertical wavelengths by numerically integrating the equations
and in Section 5.6 time dependence is included in the form of horizontally travelling
vertical plumes subject to a small forcing flow field. Section 5.7 derives an equation for
variations in the z direction and calculates the wavespeed of small amplitude vertically
travelling pulses. Eventually, improvements of the present system are discussed, such
as the inclusion of vertical dependence in the weakly non-linear analysis and possible
extensions to three-dimensional space.

We begin by stating the main equations governing the flow and concentration fields

in an infinite domain (see Chapter 1):

V-u=0, (5.1)
Ju 9
awn +u-Vu| =—-Vp, +nvApg+ puV-u (5.2)
and
on
=-V.[n(u+Vip)) —D-Vn]. (5.3)

i
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Figure 5.1: Chlamydomonas nivalis being cultured in flasks. Plumes with long vertical

scales can be clearly seen. Pulses are generally observed travelling down the plumes.



Non-Linear Analysis 177

Non-dimensionalising time with 7, velocity with V;, length with V7 and concentration
with ng (following Pedley et al. 1988 [83], but see Equations 3.92 where we used the

suspension depth to scale distance) then

V-u=0, (5.4)
1
ou+u-Vu=—Vp, — Rank + gv% (5.5)
and
on=-V-[n(u+(p)) —D-Vnj (5.6)
where
novApgt
Ra = ——— 5.7
V. (5.7)
is a Rayleigh number and
V2
Re = TUS (5.8)

is a type of micro-organism Reynolds number. The non-dimensional gyrotaxis param-

eter is now given by

=" (5.9)
(which is a form of Péclet number), X is still given by
- (5.10)
~ 2BD, ‘

and the diffusion tensor is O(1). For the subsequent analysis the problem will be simpli-
fied by assuming ag = 0. Analytic solutions to the gyrotactic Fokker-Planck equation,
as determined in Chapter 4, will be used throughout this chapter. In particular, we
introduce the shorthand for the expressions for (p)* and D** of Chapter 4, which are
non-linear in 7 and w.

B a% + b}ngw2

FE = —(p)¥ = 5.11
(nw) (p) R(nw) (5.11)
and
(lRQ — (ag — (B9 + b%)anQ) R — (a% + b%n2w2)2 772u)2>
A(qw) = D = 2 (5.12)
W= R2(1w) '

where

R(nw) =1+ ron’w? + ran'w! (5.13)

and the a’s, b’s and r’s are constants which were determined in Chapter 4 (see Table 5.2).
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parameter name

expression

typical value

CASE 1: 7 =1.3s and B = 3.4s

Re Ve 5.2 x 1077
Ra 7"01;@597 5.2 x 10~6ng
_ B

CASE 2: 7 =5sand B = 6.3s

Re Ve 2 x 104

Ra Wf# 2 x 10~ 5ng
_ B

n n=-7= 1.3

Table 5.1: Parameter expressions and estimates.

Name Value
al 0.41182
ad || 0.081317
b 0.26407
b3 || 0.030809
b2 | 0.066018
Ty 0.85267
Ty 0.39611

178

Table 5.2: Table of constants for the mean cell swimming direction vector and diffusion

tensor (to 5 s.f.).
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5.2 Linear analysis

On perturbing the uniform solution in a suspension of infinite depth and making the
substitutions u = du' and n = 1+ dn' in Equations (5.4) to (5.6), where § < 1, we can
establish the linear stability of the uniform solution. We use the analysis of Chapter 3,
where we make allowances for the different scalings in Equation (3.115), to obtain an

equation for the z component of u';
Oy (Vgué) = éV‘lu% —RaV?n!' + Radsdsn’. (5.14)
Equation (5.6) becomes
o' + (p)”?0,n' — D"292p! — D%292n! = 5(p)'%(0)V3ul, (5.15)

where D%% and D%? are vertical and horizontal diffusivities for the zero flow solution

and
(p)* = (p)" + dnw(p)'*. (5.16)

Consider solutions of the form
uy = CyeotHilketms) (5.17)

and

n! = Cneat-l—i(k:v—l—mz)’ (5.18)
where (), and C,, are constants to be eliminated. Then

k2 2
0_2+ <im<p)0z +D0mmk2+D0zzm2+ I:m >U
€
k2+m2 . 0z 0xz .2 0zz,..2 2 lx
+T (im(p)?”* + D***k* + D”**m?) — Rank”(p)'* = 0. (5.19)

This is a rewritten form of the equations found by Pedley et al. (1988) [83] and
the subsequent analysis in this section can be compared with their results. Writing

0 = or + 107 and solving for or and o gives

k% +m?
~————m(p)” + m(p)*or

Re
k2 2
DO:L‘:L‘kZ + D022m2 + ;em + 2UR

or=— (5.20)
and

o2 _ F2 (F2+UR)2 F, (Fy +oR)
R 4(F1—|—F2—|—2(IR)2 (F1+F2+2UR)

+(F1 +F2)0R+F1F2—F3 =0 (5.21)
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where F| = D72 1 D222 R, = k2ﬁ£”2, F3 = Rank?(p)'* and F; = m(p)"?. The

neutral curve for modes with zero linear growth is given by or = 0. This implies
(Fy + Fy)*(F\Fy — F3) + FIF Fy, = 0. (5.22)

For no vertical variation m = 0, and then

K(p)'”
2 _
kc - DOCECE 9 (523)
where
K =RaRen (5.24)

(see Figure 5.2). But if m # 0 then the neutral curve is given by the relationship

K =

(k2 +m2)(D0mmk2 + DOzsz) 14 m2<p>0z

. (5.25)
k2<p>11 (kQPJEMQ +D0xmk2+D0zzm2>
€

and on this curve o has an imaginary part given by Equation (5.20) and thus the per-
turbation is oscillatory. Hence, the curve in Figure (5.2) represents a Hopf bifurcation

and it is apparent that the modes become more unstable as m decreases to zero. The

K=ReRan A
UNSTABLE
' m#0 /,’/
/ \\ STABLE
Hopf -—m=0
bifurcation
0 K

Figure 5.2: Curves of marginal stability for a homogeneous suspension of large depth.
Two cases are indicated. If m = 0 then the bifurcation is stationary and the growth
rate is zero along the solid diagonal line and the line £ = 0. If m # 0 then we have
a Hopf bifurcation in which the real part of the linear growth rate is zero along the

dotted line.

most unstable mode occurs when m = 0 and here the neutral curve represents a sta-

tionary bifurcation. In this case, the linear growth rate of a slightly supercritical mode
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may be rewritten, using Equations (5.11) and (5.12), as

—%2 (A(O)RRS i 1) + 21’;6 \/k2 (A(0)Re — 1) — 4ReK E'(0). (5.26)

g =

and is plotted in Figure (5.3). This expression will be expanded in Section 5.4 to

Figure 5.3: A plot of the linear growth rate for a mode with m = 0 and horizontal

wavenumber k, for a value of the parameter K slightly above the critical value of 0.

Here, Re = 1073 and K = 0.1.

motivate the scalings for a weakly non-linear analysis.

5.3 Long vertical wavelength approximation (m ~ ¢) for

2-d non-linear solutions

We can make use of the long length scale in the z direction by scaling z with a small
parameter, €. First, consider a two dimensional solution in the zz-plane and put u =
curl(—1j), where ¢ is the stream function. Then u = 9,1, w = —0,%) and w = V?1).

Equations (5.4) to (5.6) give

V%) — év‘lzp + J(V?),1p) = Radyn (5.27)

and
on+ J(n,) +V-(n(p)) —V-(D-Vn)=0 (5.28)

where J is the Jacobian defined by

J(n,p) = 9,ndyup — O,n0p. (5.29)
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Putting Z = ez we obtain

O (02 +€20%) Y — é(82+623%)21/)+632¢(a§+623%)a$¢—681¢(a§—{—62(9%)(921/) = Rad,n

(5.30)
and
Oy Oy Oy
Oyn—+€0z1p0yn—edypOzn+ (n(p))— <D - n| =0 (5.31)
€dy €0z €0y
where (p) and D are both functions of nw = (92 + €29%)1). We write
n(z, Z,t) =n’(z, Z,t) + en' (z, Z,t) + ...... (5.32)
and
O(z, Z,t) = P2z, Z,t) + ep' (z, Z,t) + ...... (5.33)

where n’ and ¢’ (i = 0,1, ...) are in general determined by non-linear partial differential

equations in terms of the dependent variables. To zero order in €

010240 — éa;*z/)“ = Rad,n° (5.34)
and
on® + 0, ((p)**n°) — 9, (D**9,n") =0 (5.35)
where we have used
(p)” = (p)* + ()" + O() (5.36)

and similarly for D*®. Here, the superscript 0 means zeroth order in € and z means
the = component. These equations are the same as if we had just assumed no vertical
variation, but all the functions of integration in the solution will depend on Z and
can be determined from the solvability conditions at higher orders. Rewriting these

equations with

p= nagzpﬂ =nw + O(e) (5.37)

gives

Redyp = 9, (0xp + Kn”) (5.38)

and

on® = 0, (A(p)9;n® + E(p)n°) (5.39)
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where

K = RaRen. (5.40)

The linear analysis of the previous section could be repeated here by further expanding

in the z direction.

5.4 Amplitude equations for the non-linear saturation of

initial disturbances from the homogeneous solution

As unstable linear disturbances grow in an exponential fashion, non-linear terms become
more and more significant. Translational invariance in space, * — x + &, implies that
the evolution equation of any instability of the amplitude, A, of a solution must be
invariant under the transformation A — Ae“}‘%, and hence the first translationally
invariant term to appear up to third order is |A|>A. Eventually, the third order terms
are of a comparable order to the first order terms and may affect the growth of the
solution. If third order terms counteract the linear growth then the bifurcation to
instability is said to be supercritical. If, however, the third order terms aid the growth
of the linear disturbance then the bifurcation is said to be subcritical and one must look
to higher orders in order to saturate the growth of the leading order terms. Subcritical
bifurcations imply the existence of stable bioconvecting solutions below the critical
parameter value and, hence, below the neutral curve. (See Coullet & Fauve 1985 [24]
and Fauve 1985 [31] for discussions on amplitude equations, and Buzano & Golubitsky
(1983) [13] and Golubitsky et al. (1984) [36] for the general form of amplitude equations
on a hexagonal lattice). Tt is possible, in most systems, to generate a long wavelength
theory of the evolution of initial disturbances close to the critical point (see Childress
& Spiegel 1978 [21], Chapman & Proctor 1980 [16] and Knobloch 1990 [69]). However,
for this model we are unable to find such an amplitude equation and, at best, the
linear theory is recovered at each attempt. We choose instead to derive a Landau
equation (Schliiter et al. 1965 [101]) which describes the weakly non-linear behaviour
of the system close to a general point on the neutral curve, for which & # 0, and
to investigate the nature of the bifurcation to instability close to the critical point at
k=K=0.

First we will motivate our scaling by expanding the growth rate of Equation (5.26)
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in terms of (K — K,) and (k — k),

o= (88—;)0 (K — K.) + <%>C (k — k¢) + h.o.t. (5.41)

where the subscript ¢ implies that the function is evaluated at a point on the neutral

curve. We find that

E'(0) 2A(0)k.
=|-————"— (K- K, ————— | (k — k) + h.o.t. 5.42
? ( A(O)Re+1>( H( AORe+1) ¢ )+ heo (542)
where k. is found from the linear analysis to be k. = 71{;(7%’)(0). Supposing that the

amplitude of a solution on the neutral curve is modulated by f(X,T), for long length
and time scales X and T', then multiplying Equation (5.42) by f and taking the inverse
Fourier transform gives the leading order form of the amplitude equation for small but

finite amplitude disturbances (see Fauve 1985 [32]). Hence,

B E'(0) 2A(0)k, LOf
fr = <_m> (K—-K.)f+ (W) i—— + h.o.t. (5.43)

0X
This indicates that we should scale time, 1/(K — K.) and = by the same small scale.
We also need to scale p such that the higher order terms appear in the equations at
the same order as the terms in Equation (5.43) above. Defining our small parameter o
(where 1> 0 > €) by
Ky = (K — K,) + 0(6%) (5.44)

where Ky measures the distance from criticality, then this leads us to the scalings and
expansions
T = &
X = &
0p — Oy +0%°0x
nY(z,X,T) = 1+0n(z,X,T)+ 6*na(z,X,T) + ...

p(z, X, T) = 6pi(z, X,T)+ 6*pa(z, X, T) + ... (5.45)
and, for now, consider
K =K.+ 0K, + 0Ky + K3 + ... (5.46)
where we shall show that K7 = 0. As F is odd and A is even, we can write

E(p) = ((5])1 + (52])2 + ) EI(O) + !

30 (8°pF +...) E"(0) + ... (5.47)
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and

1
Alp) = A(0) + 5 (8%p% + 26%p1pa + 0'p3 + ...) A”(0) + ... (5.48)

Hence, substituting these expansions and scalings into Equations (5.38) and (5.39) gives

Red®Or (p1 + 0pa + ...) = 6 (02 + 20°0,0x + 6'0%) (p1 + 6p2 + ...)

+0 (Ko + 0Ky + 62Ky +...) (0, + 6%0x) (n1 + dna + 6%n3) (5.49)
and

8207 (n1 + dng +...) = § (9, + 6°0x) [E'(0) (p1 + dp2 + ...) (1 + dny + 6°na + ...)

+ <A(0) + %A”(O) (6%p7 + )) (05 + 6%0x) (n1 + ng + 6*ng +...) | . (5.50)

The lowest orders of Equations (5.49) and (5.50) are

2p1 + K.0:m1 =0 (5.51)
and
E'(0)0yp1 + A(0)0?n; =0 (5.52)
which imply that
” _ A(0)ki
= f(X,T) EQO) | etk 4 e (5.53)
n1 1
where £ = 0 or Ji‘c(ilg;(o). This defines the piecewise continuous neutral curve seen

in Figure (5.2). We choose to take the non-trivial root and, hence, consider a solution
near that part of the neutral curve that gives spatial pattern. If K. is small then this
solution is close to the trivial critical solution at £ = 0. The next order gives the two
equations

8§p2 + Kcalng = —Klamnl (554)

and

E'(0)0yp2 + A(0)02ny = —E'(0)0, (p111) . (5.55)

Clearly 0,n; is a secular term and 9, (pyn1) is not. Solvability implies that the secular
term is orthogonal to the solution of the homogeneous equation and, in this case, this

implies that the secular term should vanish and, hence, that K; = 0. This is consistent
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with our predicted scalings (Equation 5.44). The general solution for these equations

a ) d .
P2 - fo(X,T) ek e+ g(X,T) 2k 4 ¢ e (5.56)
ng b e
We choose a = b = 0 as this part of the solution can be combined with the leading

order solution. Substituting Equation (5.56) back in to Equations (5.54) and (5.55),

we get that
g($aT) = fZ(XaT)a (557)
ik A(0) 1
d= d = - .
6E(0) an e=3 (5.58)
The next orders give
0%ps + K.0yn3 = Redppy — KoOyng — K.0xn, — 20,0xp1 (5.59)

and

El(0)81p3 + A(0)3§”3 = Orny — E’(O)a’r (P2n1) - E’(O)a’r (P1n2)

—E'(0)0xp1 — 2A(0)0,0xn; — %A”(O)@I [p10ym1] . (5.60)

The solvability condition (see Ince 1956 [51]) requires that

27

/ * uNdz =0 (5.61)
0

where H means the Hermitian, u is the solution to the adjoint problem and N indicates

the secular terms in the inhomogeneous problem. Hence, as

ull x ( E’](Co)i, 1 )eiik“" + c.c. (5.62)

then the solvability condition becomes

27
. & E’(O) . —ikx - ikx A(O)kZ ikx P A(O)kZ —ikx
0 —/0 [T (ze —ie ) —Refr B(0) e + Refr 70 ¢

. _ ) _ . A
_ KZ,L-kfelk:L‘ +K2ik‘f€72kl o KCerzk:r _ KCerfzk:L‘ _ 2fX ol

—2fx ]55()) qu;) n (efikz_i_eik:r) (fTeik:r_i_f_Tefikz
2 ikx QkZA() —2kx ikx ¢ —ikz
[(6 f22k+6E’()f2 2k>(fek+fek>
)

N < 6E,((()) 625‘:(())”2 szg,-> (Z-k_feikz _Z-k_fefik:r>

f2 21k:1:
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3E'(0) 3E'(0) E'(0) E'(0)
1 ik 1o - tkx A(U)k2 ikx A(U)k2 r —ikx
e (e grem) (G + )

—A0)ikfx €™ + A0)ik fre ™™ 4 2A(0)ik fx €T — 24(0)ik fx 77|

— A"(0) <2?4’((%))>2 [(_Z-kfeikz n ikf_efikz> (kaeik:r i kaefikm) (ikfeika: _ ikf_efikz)

4 % (—ikfeikx i ikfe‘””)Z (_kaez'kx _ k2f—e—z‘kx)]>] de. (5.63)

This implies that

B , . ’ 2 AN _ /
fy < K>E'(0) )f— < K.E'(0)+9K:-A (0)) |f\2f+ (2 K.E (U)A(U)) ifx

A(0)Re +1 6(A(0)Re + 1) A(0)Re+1

(5.64)

(and a conjugate equation for the complex conjugate of f) and represents the non-linear
saturation of linear modes.

The ifx term is invariant to all of the relevant symmetries and is a consequence

of prescribing a periodic domain of size L = 2n/k.. The term represents corrections

to the amplitude equation for small variations of the wavenumber from k. and can be

removed by the transformations

X' =X +ixkT (5.65)
and
T =T, (5.66)
where
2\/—K.E'(0)A(0)
- 5.67
" ( AORe+1 )’ (5.67)
such that
fr — fr +isfx. (5.68)

For the special case at the critical point, where k = 0, the ifx term vanishes. As K,
decreases to zero, the third order term tends to zero but, crucially, does so from below.

The multiplier of the |f|?f term is negative provided K. > 0 and
—E'(0) > —9K.A"(0). (5.69)

E'(0) is always negative and A”(0) is positive provided A(p) has a minimum at p = 0.
This occurs if and only if ' > 1.0206 (see Chapter 4 and Figure 4.26). Hence, if either
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N > 1.0206 (very likely) or K, is small but positive, then the multiplier of the | f|% f term
is negative. We conclude that the bifurcation to instability is supercritical (for example
see Coullet & Fauve 1985 [24]; Schliiter et al. 1965 [101]) and is our main result in this
section. This implies that the linear analysis is useful for predicting the wavenumber
of the initial disturbance from equilibrium. We could go on to explore solutions and
stabilities of the amplitude equation as in Fauve (1985) [32, 31], where the Eckhaus
and zig-zag instabilities are investigated, but solutions of an obvious extension to the
theory, where the vertical wavelength is non-zero, may be more illuminating (see the
discussion in Section 5.8). In particular, we would obtain a Ginzburg-Landau equation
to describe temporal and spatial evolution of the solution amplitude (see Newell &

Whitehead 1969 [81]; Chaté 1994 [17]).

5.5 Steady state solution

We look for a steady solution to Equations (5.38) and (5.39). The time-independent

equations can be integrated directly to obtain the equations
pr+K (" —A)=0 (5.70)

and

A(p)nd + E(p)n® = ¢y (5.71)
where Co and A are in general unknown functions of Z. Applying boundary conditions
such that p = 0 when n® = 0 (i.e. that vorticity is zero in the centre of the plume)
then Cy = 0. These are the only boundary conditions imposed. Integrating the first
equation over x we find that

{n°}* = A(Z) (5.72)

where {-}” is a space average over x. As n¥ is a normalized quantity then

{{n°}"} = {a2))7 = 1. (5.73)
To reduce the number of parameters, we could consider the equations space averaged
over the vertical direction and this would result in A being replaced by a 1 and the
solutions would be vertically averaged. However, we choose instead to consider the

change of variables

(5.74)
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Figure 5.4: Orbits for K* = 0.1 going clockwise with increasing z.

and

K*(Z) = AN2)K. (5.75)

This implies that the time-dependent equations become
Rep; = (pz + K* (N - 1)), (5.76)

and

Ny = (A(p)N; + E(p)N),,, (5.77)
where there is now only one parameter, K*(Z). Changing variables again by putting
g=1In(N) (5.78)

we find that the time dependent equations become

Rep; = (pz + K* (7 — 1)) (5.79)

X

and

elq = (e"A(p)qu + €"E(p)), - (5.80)
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Figure 5.5: Profiles of the orbits given in Figure 5.4. Examples of ¢ (= In (n?)) varying

in the z direction for K* = 0.1.

The new steady system is Hamiltonian and can be written as

O2p= — OgH (5.81)
and
0rq = O, (5.82)
where H is given by
H = K* (e — q) — ! ig;dp'. (5.83)

This system of equations can be integrated explicitly using methods such as fourth
order Runge-Kutta schemes, and the easiest way to do this is to consider the equations
as a dynamical system in the dependent variable x and to use one of the dynamical sys-
tems packages available, such as DsTool2 by Guckenheimer, Myers, Wicklin & Worfolk
(Cornell University, 1995). All of the orbits are closed and thus all of the solutions are
periodic. Some of the closed orbits of this system are represented in Figures (5.4) and
(5.6) and clearly there are an infinity of possible solutions. Their wavenumbers, how-

ever, are restricted to a small range from zero to some maximum value obtained from
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Figure 5.6: Orbits for K* = 1 going clockwise with increasing x.

the numerical solutions. Thus, in a periodic domain of a specified size, there are finitely
many steady state solutions. Figures (5.4) and (5.5) display the periodic curves of p(z)
and ¢(x) for K* = 0.1, and shows how they increase their wavelength with increasing
amplitude. Figures (5.6) and (5.7) describe the system when K* is raised to 1. For
all values of K* the pattern wavelength increases with its amplitude. Therefore, small
amplitude solutions give the maximum wavenumber. The small amplitude solutions
are precisely those given by the linear analysis of Section 5.2. Hence, the maximum

wavenumber is given by
—K.E'(0)

e =\ "a0)

(5.84)

from Equation (5.23). This is consistent with the form of the amplitude equation
given in Section 5.4. However, the system is structurally unstable in that if a small
perturbation displaces a solution from one trajectory to another then it will stay on the
new trajectory (see an example of a similar system, by Lotka and Volterra, in Murray,
1990 [80]). We do not know the final pattern unless we know every perturbation from

the homogeneous state. It is thus necessary to consider higher orders in order to
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Figure 5.7: Profiles of the orbits given in Figure 5.6. Examples of ¢ (= In (n")) varying

in the z direction for K* = 1.
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establish the stability of the greater system.

We have shown, here, that it is possible to construct steady state solutions from the
first order equations, non-linear in z, describing a horizontal balance between diffusion
and gyrotaxis. These solutions are only dependent on Z through the functions of
integration, and will be used in later sections when investigating the system at higher

orders.

5.6 Travelling wave solution

In certain special situations it is possible to obtain time dependent solutions. In Sec-
tion 5.8 we shall discuss the construction of similarity solutions for the time dependent
problem and in this section we shall describe a class of solutions that provide horizon-
tally travelling waves. In particular we shall investigate a travelling wave solution that
leaves in its path a regular array of travelling plumes. It is first necessary to break
the symmetry of the system and impose a “background vorticity”, in which we simply
enforce that p = py at £ = oo where pq is a positive constant. For example, a constant
fluid velocity gradient in the horizontal direction would be sufficient.

Consider = = ¢ — ct, where without loss of generality we assume ¢ > 0, then
—cRep' = (p' + K*N)’ (5.85)

and

—cN' = (A(p)N' + E(p)N)' (5.86)

where / means differentiation with respect to Z. This implies that
/ *
pP=K*(1—-N)—cRep+C; (5.87)

and
E(p)N + CN + CQ

A(p)
For a rightward travelling wave, we require that N =1, p = pg and N' = p' = 0 at

N' = -

(5.88)

= = oo where pg is our background vorticity. As N represents the concentration of
cells, then we need to enforce N > 0 V = € IR. That is to say that no trajectory that

asymptotes to (p, N) = (po, 1) should cross the line in phase space given by N = 0.
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Figure 5.8: Nullclines for a typical travelling wave system where ¢ + E(py) < 0. The
saddle point, B, allows the possibility of a homoclinic orbit around the focus, A, and
as the focus, A, changes stability a limit cycle can develop. This ensures the existence
of a Hopf bifurcation. The equilibrium point C is not within the region of realistic cell

concentrations.
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Applying the boundary conditions to Equation (5.85) implies that Cy = ¢Repg. The
boundary conditions applied to Equation (5.86) imply that

c+ Cy = —E(py). (5.89)
This enables us to rewrite the equations as
p' = cRe(py —p) + K*(1 — N) (5.90)
and

[c(1 = N)+ (E(po) — E(p)n)]
A(p) '

Hence, there is a point of equilibrium at (pg,1). Linearizing about this point and

N' =

(5.91)

calculating the eigenvalues, A, corresponding to the principal linear growth rates, we

find

_ 1 ‘Re ¢+ E(po) 1 . e_c+E(pg) 2 LE'(po)
A= 2<R+ A%)>i2¢<R mW)>*4KA@w (5:92)

and this implies that we have either a stable (with respect to =) focus or node or a
saddle point. We are particularly interested in the stable focus as is represents growing
oscillations travelling to the right. The other two possibilities allow unbounded cell
concentrations and will not be considered further. For the stable focus to exist we

require R(A) < 0, which implies

—E(po)

ALV 5.93
> ApoRe+1 " (593)
and I(A) # 0, which implies
c-<c<ey (5.94)
where
E 2A —K*F'
A(po)Re =1 A(pg)Re — 1 A(po)
Hence, we require
E'(pg) <0 (5.96)
for real, non-zero values of c+. The nullclines for this system are given by
cRe
n (po—p)+1 (5.97)

:K*
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Figure 5.9: Travelling wave solutions exist for a small range of wavespeeds, c, given the
parameters Re, K* and p°. Here K* = 0.1, Re = 0.4 and p° is plotted along the z axis.
The hatched region indicates where travelling wave solutions exist. Here, the value of
Re is artificially large in order to indicate the hatched region. Normally Re ~ 10~* and

the region is much smaller.
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p
Figure 5.10: Trajectories for the travelling wave system (clockwise with Z) where an
unstable limit cycle is clearly observed. The + indicates the location of the saddle

point. K* =0.1, pg = 0.4, Re = 0.4 and ¢ = 0.15.
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Figure 5.11: Cell concentration varying with « — ¢t for waves travelling to the right.

K*=0.1, py =04, Re=0.4 and ¢ = 0.15.

and
_ ¢+ E(po)
c+ E(p)

and are plotted in Figure (5.8). This figure enables us to see the location of two other

(5.98)

equilibrium points and to establish their stability from geometrical considerations. The
saddle point is the second most important feature and it clearly allows the possibil-
ity for the usual homoclinic orbit bifurcation to a limit cycle around the focus (see
Balmforth 1995 [2]). A Hopf bifurcation potentially exists and it is the objective of the
subsequent analysis to establish conditions for the existence of the Hopf bifurcation. If
the trajectory starts in the neighbourhood of (p, N) = (pg, 1), then we also require that
N'"<0on N =0 for N to be bounded below by at least N = 0. If N = 0 then

I Cy
A(p)

and hence we require that Cs be positive. This implies that

(5.99)

0<c<—Epy). (5.100)
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The maximum wavespeed is given by ¢ = —FE(pg) and this occurs when Cy = 0. Clearly
no travelling wave solutions exist if there is no background vorticity as ¢ = 0 if pg = 0.

Collecting all of these necessary conditions together for a limit cycle to exist gives

—E(po)
0 ———mM— < —-F 5.101
= Apo)Re 1 <c< (po) ( )
and
c. <c<ey, (5.102)
where
E(po) 2A(po) —K*FE'(po)
Ccy = + 5.103
= Alpo)Re 1+ Alpo)Re 1\ Alpo) (5:103)
and

E'(pg) <0 (5.104)

(see Figure 5.9). If K* increases then the region described by Equation (5.102) grows
in size. Decreasing K* has the opposite effect but the region only vanishes if K* < 0.
Similarly, if Re increases the region described by Equation (5.101) increases in size and
if Re decreases the region also decreases but only vanishes if Re < 0. The two regions
always coincide near to p® = 0 and ¢ = 0. A limit cycle is seen to exist for certain
limited choices of ¢ by direct integration of the governing equations (see Figures 5.10
and 5.11) which corresponds exactly with the region given in Figure 5.9. This implies
that if the pattern nucleates at a point then plumes will spread out, where the wave
speed is confined to a small range, and increase in amplitude until a regular pattern is
reached. This theoretical prediction for a small range of values of ¢ could be compared

with experiments once a suitable experimental arrangement has been formulated.

5.7 Vertical variation of the steady state solutions

In this section we develop a theory to help explain the pulses that travel down the
long plume structures, as seen in Figure (5.1). Consider the steady state solutions
of Section 5.5 and allow these solutions to vary slowly with time and in the vertical
direction. If we rescale time with the small parameter €, such that T' = et, then we
can use the equations of Section 5.3 to obtain the leading order equations for a small

variation in the z direction. Hence, the first order equations are

pe+ K (0" = A(Z,T)) =0 (5.105)
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and
nd + %nﬂ =0, (5.106)
and at second order we get
é(a;;wl) +Radyn' = or(95y°) + 929°059° — 0,4°0;07¢° (5.107)

and
Oz (n'(P)* (n0Z°) + ndzp n® (p)* (nd24°) — D™ (nd2y)°)dpn' — ndzep' 0,0 D™ (nd2y?))
= —0rn® + 8, (D™ (n92¢°)0zn°) + 87 (D (n924°)0n° — (p)* (nd2¢°)n°)

+8I1,0082n0 — 82’(/)08177,0

(5.108)
where
D (o) = £ AYnO") — om A o) ARmd2),  (5.109)
4
(B)* (nd%4°) = < AP (nd7y") (5.110)

and the A; are given in Equation (4.57). The solvability condition can be found by
integrating the second of these equations over a horizontal wavelength. If {-}* represents
a space average in the x direction, as before, then
277
or (n)" = 07 { D7) — (o) (' + 2| (5.111)
where p = n92¢". We can simplify this equation to be in terms of p and A, using the

first order equations. Hence,
T
orA(Z,T) = 9y, {B(p)A(Z,T) + p—} . (5.112)

where
E(p)
Ap)’

Clearly this equation possesses travelling wave solutions and is similar to the equations

B(p) = (p)*(p) - D”(p) (5.113)

discussed by Whitehead (1988) [121] where soliton like pulses were discovered travelling
up magma ducts in a viscous matrix. It is the purpose of the following analysis to
investigate small amplitude solutions where we will be able to derive the wave speed

but not its form.
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First, we write

AZ.T) =1+ M(2,T), (5.114)
where |[M(Z,T)| < 1, and expand p and n® in terms of M(Z, T) such that
p(z,Z,T) = po(z) + M(Z,T)p,(z) + O(M?) (5.115)

and

n®(z, Z,T) = no(z) + M(Z, T)ny(z) + O(M?). (5.116)

At first order we regain the non-linear equations for solutions in the horizontal direction

with zero vertical variation, i.e.

Poz + K (ng—1)=0 (5.117)
and
E(Po)
nog + ng = 0. 5.118
" Ap) " (5-118)

The next order in M (Z,T) provides a set of linear equations for the perturbations to

the steady state solutions which are both independent of M (Z,T), Z or T. Namely,

Pz + K (ni—1)=0 (5.119)
and
E(po) Epo)\' — _
Nig + A(pg)nl + (W) nop1 = 0. (5.120)

This last system describes a forced oscillator (see Thompson & McRobie 1993 [107] for
a discussion of the complexities of driven oscillators) and potentially has solutions with
wavelengths that are quotient multiples of the unperturbed system. We can explicitly
find solutions with a multiple of the wavenumber of the unperturbed system such that
they abide by the same boundary conditions. Hence, more than one closed orbit is
possible for p; and n; given pg and nyg.

Hence, using Equations (5.114) and (5.115) in Equation (5.112) gives

2pop1
Kn

orM(Z,T) = {B/(pg)pl + } Oz M(Z,T) + O(M?). (5.121)
If we look for a travelling wave solution (see Figure 5.1) and put & = Z — ¢t then

O=M(E)(B+c)=0 (5.122)
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Figure 5.12: Perturbation, pi, to pg varying with x for a vertically travelling pulse.

Here K* = 0.01 with the initial conditions ng = 5, pg = 0, n; = 13.8 and p; = 0.

where
B={ B+ 201 (5.123)
Kn
and, thus, we can determine the wave speed, ¢ = —B, but not the wave form. The full

problem in Equation (5.112) is sufficient to determine the waveform. As an example,
we find a particular solution for n;, p; and ¢ given the parameter K = 0.01 and the
conditions ny = 5 when py = 0 (i.e. just one of an infinite number of possible orbits).
We find a closed orbit with the initial conditions p; = 0 and n; = 13.8, as illustrated in
Figures (5.12) and (5.13), which has the same wavelength as the unperturbed solution.
Hence, we can use the functions pg and p; to calculate c.

To compare the theory with the experiments we should measure in the experiments
the minimum and maximum concentration profiles. Linear theory (Equation 5.116)
gives ng as the average of the two and n; as half of their difference. Substituting ng
and n; into Equations (5.118) and (5.120), solving for py and p; and substituting in
Equation (5.123) gives the wavespeed, ¢. This should be compared with the observed

wavespeed.
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Figure 5.13: Perturbation, ni, to the cell concentration, ng, varying with z for a
vertically travelling pulse. Here K* = 0.01 with the initial conditions ng = 5, pg = 0,

ny = 13.8 and p; = 0.
5.8 Discussion and future improvements

In this section we shall discuss the work from the whole chapter paying particular
attention to areas of possible future research. Some detail of the theories for two likely
advances will be given explicitly.

We have shown that it is possible to expand the full non-linear equations for
stochastic, gyrotactic bioconvection in the vertical direction, guided by experimental
observations of plumes and the linear analysis. At first order, we obtain a set of partial
differential equations in z and ¢ for which we derive a Landau equation for the non-
linear saturation of linear modes close to the curve of neutral stability. We show that
the bifurcation to instability is supercritical and, hence, that the linear theory is useful
for predicting the wavenumber of the initial instability from equilibrium in a deep
chamber. This analysis should be repeated on the full non-linear equations allowing for
the Hopf bifurcation resulting from non-zero vertical variation. The finite depth of a

realistic suspension may indicate that we should investigate the system for a small, but
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non-zero, fixed value of the vertical wavenumber, m, and we would therefore obtain a
non-zero critical wavenumber and a non-zero critical parameter, K (see Figure 5.2).

From the long vertical wavelength expansion we have obtained, at first order, a
Hamiltonian system which describes steady state solutions. These solutions are depen-
dent on a function of integration, K™, which is itself dependent on z.

We go on to consider a horizontally travelling vertical plume solution of the first
order non-linear partial differential equations. We obtain a set of waveforms and a very
small range of possible wavespeeds. These results could be directly compared with
experiments once a suitable experimental arrangement has been formulated.

Finally, we investigate the second order equations for the long vertical wavelength
approximation and obtain an amplitude equation from a solvability condition that
describes vertically travelling pulse solutions on top of the steady state solutions already
derived. We then assume that the vertical variation is itself small and obtain a set of
four ordinary differential equations independent of z. We use the solutions of these
to calculate the wavespeed. However, for this approximation, we cannot calculate the
waveform. A future improvement would be to investigate the weakly non-linear theory
of this amplitude equation and, hence, solve for the waveform. Again, these results
could be compared with experiments once careful measurements have been obtained
for both wavespeeds of small amplitude pulses and profiles of the plume concentrations.
This is necessary as the wavespeed is dependent on the cell concentration profile of the

plume.

5.8.1 Similarity solutions

Similarity solutions for Equations (5.38) and (5.39) describing zero vertical variation
cannot be obtained for the general forms of the diffusion, A(p) (Equation 5.12), and
the gyrotaxis, E(p) (Equation 5.11), terms. Following a suggestion of Dr. Peter Hydon
(personal communication, 1996) a simplification of A(p) and E(p) could lead to sim-
ilarity solutions with a similar behaviour to the original system. The diffusion term,
A(p), is plotted in Figure (4.26) and it can be seen that it is rather flat. Therefore, we
assume that

A(p) = ao, (5.124)
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where ag is a constant. Equation (5.11) implies that for small p
E(p) ~ eop. (5.125)

for constant eg, and if p is large then E(p) ~ e;/p (see Figure 4.3). Thus, we consider
the diffusion to be constant and E(p) to be made up of a piecewise continuous function

of a linear part and a decay. For small p we have the set of equations

Rep: = (pz + Kn)y (5.126)
and
ny = (agng + eopn)z (5.127)
with particular solutions
1
n= ;N(E) (5.128)
and
1
= —P(E), 5.129
P=z (E) (5.129)
where
5= (5.130)

This leads to the two ordinary differential equations

P"+ KN' = —%(P+EP’) (5.131)
and
aoN" +ey(N'P + Np') = — <N + %N’) : (5.132)
We can integrate the first to give
P = —K(N-1)+ %EP. (5.133)

Hence we have a three-dimensional non-autonomous dynamical system or, by introduc-
ing a new parameter, @, such that Q' = 1, a four-dimensional autonomous dynamical
system.

Similarly, for large p we have the system

Rep; = (py + Kn), (5.134)
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and

ne = (a1ng + elg)z (5.135)

where we may assume the diffusion to be a different constant to the one above. This

has particular solutions

n = N(2) (5.136)
and
p=VtP(2), (5.137)
where
2=2, (5.138)

This leads to the two ordinary differential equations

P"+ KN' = %(P—

[1]

P (5.139)

and

NY' =
N" — ] =—-=N". 5.140
aq + e < P) 5 ( )
Both of these systems could display complex behaviour and should be studied in

detail. Time and space do not permit that here.

5.8.2 Extension to a three-dimensional flow field

Another possibility for future work would be to investigate the three-dimensional struc-
ture of deep bioconvection. It may be assumed, from observations, that the vorticity in
the vertical direction is zero. Hence, we can use the spherical harmonic approximations
developed in Section 4.10 for a three-dimensional flow field in the absence of vorticity

in the vertical direction. Therefore, we propose the purely poloidal velocity field, F',

such that
u=VAVA(Fk) (5.141)
which gives
Oy F
VAFk)=]| —9,F |. (5.142)

0
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0,0, F
u=| 9,0,F (5.143)
V4 F
and
—-9,V?F
w=VAu= 0, V2*F , (5.144)
0

where V7 is the horizontal Laplacian. We again make use of the method used to derive
Equation (3.115) and apply Equations (5.142) to (5.144) which gives

1

— 0, V2V4LF = — A (F) — Ao(F) + RaVyn + e

ViVLF (5.145)
and
Oy = —0;n0,0, F — 0yndy0,F + 9,nV%4F —V - (n(p) — D - Vn), (5.146)

where the non-linear operators, A;(F') and As(F), are given in Appendix D. We can
proceed as in Section 5.3 by introducing a long vertical wavelength, Z = ez where

€ < 1, to obtain

1
OV FY = Ravyn® + Ev?,j,FU (5.147)

and
om® = -V - (n°(p)(V3 F’) — D(VLF) - vyn?), (5.148)

where

n(z, Z,t) =n’(z, Z,t) + en'(z, Z,t) + ...... (5.149)

and
F(x,Z,t) = F'(2,Z,t) + eF' (2, Z,1) + ...... (5.150)

As before, these equations are not explicitly dependent on Z but the functions of
integration will be.

We can now use the expressions given in Section 4.10 for the terms (p) and D. To
proceed further we will have to consider particular forms for n” and V%{FU, for example
we may introduce hexagonal or square planforms (see Buzano & Golubitsky 1983 and
Golubitsky et al. 1984). These equations may be used in future analysis to predict the

three-dimensional patterns in gyrotactic bioconvection and to analyse their stability.



Chapter 6

Conclusions

Bioconvection occurs as a result of the passive or active orientation mechanisms of many
microscopic swimming individuals and is realised as the bulk motion of suspensions on
much larger scales than the individuals involved. Therefore, it requires modelling at
every scale to fully understand the system.

In this thesis we have shown that it is possible to perform controlled experiments
on bioconvection and to develop theoretical techniques to analyse mathematical models
of stochastic, gyrotactic bioconvection. We have also compared the experiments with
theoretical predictions. In this way, we hope to have highlighted the strengths and
weaknesses of the models.

In Chapter 2 we described robust and reliable experiments, measuring the domi-
nant pattern wavenumber with cell concentration, suspension depth and time. It was
found that, for some regions of parameter space, the initially observed patterns were
highly dependent on the initial conditions. The method of mixing the suspension had
a strong influence on the initial pattern wavenumber. In general, roll patterns were
the first to appear but quickly became unstable to three-dimensional modes. The well
developed patterns were not sensitive to the initial conditions and eventually evolved
into steady patterns of dots in either square or hexagonal arrays. Fourier analysis was
used to extract the dominant unstable wavelengths. It was found that the initial most
unstable wavelength increased with depth but hardly varied at all with concentration.
In contrast, the final most unstable wavelength decreased with increasing concentra-
tion and slightly decreased with increasing depth. In general, the pattern wavelength

decreased with time from the initial to the final states. The transient patterns were

208
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also investigated and annular patterns were seen in some cases of shallow, concentrated
suspensions. Observations of the pattern evolution showed a mechanism whereby de-
scending plumes reach the lower boundary and spread out. Clear fluid is entrained in
the plume and an annulus pattern is formed when this fluid reaches the lower boundary.
The structures of the transient patterns were then studied using techniques from surface
geometry. The images were associated with surfaces in Euclidean three-space where the
intensity at a point on the image signified the height of the surface. Thus, the surface
curvatures could be analysed such that the local surface topography could be identi-
fied. It was found that two-dimensional patterns were unstable to three-dimensional
patterns, as expected. Other features of the images that were not immediately obvi-
ous were highlighted by the method. Linear structures were seen to persist for long
periods of time during the evolution of the pattern and may not altogether disappear.
Hence, the method provides a good measure of the quantitative pattern evolution and
could be used to study the patterns in greater detail. Some experiments using an un-
reactive agent, which was denser than the cell culture medium, to vary the effects of
geotaxis and gyrotaxis were unsuccessful. Further studies should be conducted using
a selection of agents. Finally, other experiments were discussed that could lead to a
greater understanding of the pattern forming capabilities of suspensions of swimming
micro-organisms.

In Chapter 3 we completed a linear analysis for the stochastic, gyrotactic biocon-
vection model (Pedley & Kessler 1990 [85]) in a suspension layer of finite depth. We
found the general results below which can be compared with the deterministic, gyro-
tactic finite depth model (Hill et al. 1989 [42]) and the purely upswimming finite depth
model (Childress et al. 1975 [19]) in the following ways.

e For very shallow layers the model predicts a non-zero most unstable wavenumber,
in a similar manner to Hill et al. (1989) [42], given sufficiently large values of the

gyrotactic orientation parameter.

e Otherwise a zero most unstable wavenumber is predicted, as in Childress et al.

(1975) [19].

e The Rayleigh number, based on suspension depth, was shown to behave like a

constant for small wavenumbers in shallow layers and like d* for deep layers where
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d is the ratio between layer and sub-layer depth.

¢ Double minimums of the neutral curve were shown to exist, where the minimums

occured at long and finite wavelengths.

e Inreasing the suspension depth increased the predicted most unstable wavelength,

as found in the experiments of Chapter 2.

We proposed that the model should contain the effects of the random nature
of the cells swimming speed as well as its direction. This was shown to affect the
nature of the first order perturbation to the diffusion tensor and, thus, affect the shape
of the neutral curve. We found that increasing the variance of the cell swimming
speed, destabilized modes with small wavenumbers until the most unstable wavenumber
became zero. Experiments by Hill & Héader (1996) [41] provide a range of values
for the variance of the cell swimming speed. Using updated parameter values from
Jones (1995) [54] and above, we obtained the same general conclusions as before but
different quantitative predictions. Comparisons with the experiments of Chapter 2
suggested that the updated parameter values were an improvement. Good agreement
for the predicted Rayleigh numbers was obtained but the predicted wavenumbers were
an order larger. It was found that better agreement could be obtained by adjusting
some of the parameters. Therefore, it was suggested that more accurate, independent
measurements of sensitive parameters should be a priority.

However, in most of the experiments the cells did not always have sufficient time to
swim upwards and form the exponential equilibrium distribution, assumed in the linear
analysis, before the onset of an instability. In some cases (such as for deep chambers)
the stability analysis of a uniform distribution may be more appropriate.

In Chapter 4 we performed a surface spherical harmonic expansion of the steady
gyrotactic Fokker-Planck equation, which describes the probability density function
for the orientation of the micro-organisms, in order to obtain solutions for the whole
range of vorticities and strain-rates expected in the fluid. Analytic expressions were
found for the mean cell swimming direction and diffusion tensors in terms of the first
five coefficients of the spherical harmonics for a two-dimensional flow field. Exact
computer algebra was employed to minimize errors and deal with the large quantity

of standard operations. The expansion was truncated at a particular order, providing
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analytic expressions for the desired quantities. Later, these solutions were extended to
a three-dimensional flow field when there is no vertical component of vorticity. The
expansion converged rapidly for spherical cells but spurious singularities occured in
the solutions for spheroidal cells at high rates of strain. However, a relatively low
order of approximation was required, for all cells, to obtain convergent expressions for
the range of flow parameters expected in standard bioconvection experiments. For
parameters outside this range it may be necessary to use other numerical methods to
obtain solutions.

The analytic expressions from Chapter 4 were used in Chapter 5 in the first non-
linear analyses of the gyrotactic instability in a suspension of infinite depth. A weakly
non-linear analysis with zero variation in the vertical direction demonstrated that this
instability is supercritical. A plan for future research is to conduct a similar weakly non-
linear analysis with a non-zero vertical wavenumber which may be physically realisable
in a suspension of large but finite depth. A long vertical wavelength approximation was
used to obtain partial differential equations describing long vertical plume structures.
Analysis showed that a horizontally travelling wave of plumes of finite concentration
could exist in the presence of a small background vorticity. Consideration of realistic
concentration profiles confined the possible wavespeeds to a very small range of values.
The theoretical predictions should be compared with future experiments once a suitable
apparatus has been designed. A solvability condition was obtained at a higher order of
the small vertical variation approximation that described the z dependence of the hori-
zontally space averaged cell concentration. Pulses travelling down steady state plumes
were shown to exist. Consideration of this equation for small amplitude variations gave
a set of ordinary differential equations which could be solved to give the wavespeed,
the predictions of which could in principle be compared with suitable experiments.
These last theories help to explain some of the more complex bioconvection structures
observed in deep suspensions. Finally, we discussed the possibility of constructing sim-
ilarity solutions describing the time and space evolution of two-dimensional structures
for slightly modified equations. We derived two, four-dimensional dynamical systems
for the asymptotic behaviours, that need to be matched together to describe the full
system. We also derived some of the governing equations for a three-dimensional flow

field that could be used in future analysis to study pattern selection.
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Special functions

A.1 Identities for associated Legendre polynomials

Legendre’s associated equation is defined as

2
2\ n/ 1% _
(1—2%)y) + ”(“‘*‘U‘m y =0, (A.1)
where x € [—1,1], y(z) is finite at the end points and 0 < n,u € Z. Making the
substitution y(z) = (1 — 22)2u(z) and dividing by (1 — %)%, gives Legendre’s equation

differentiated p times. Hence

y(o) = Pi(w) = (1-2%)%

n

——Py(a). (A.2)

where P,(z) are Legendre polynomials and P} are called associated Legendre polyno-
mials. Rodrigues’ formula for associated Legendre polynomials is

(1—z2) drtn

2 n
i g (@ = D)™ (A.3)

Pl (z) =

n

Associated Legendre polynomials are orthogonal in the lower index;

! 2 (n+k)
PEPY dy = om A4
/_1 nPmde =0 2n +1(n —k)! (A.4)
where 0 < k < n,m. They are also orthogonal in the upper index;
1 n pm
P!'P] 1 (k+m)!
S dr =0 — A5
/11—3:2 v " m (k—m)! (A-5)

where 1 <n <m < k. Arfken (1985) [1] gives a list of recurrence relations (page 660):

2mx

pm+l_ P™ 4 [n(n+1) —m(m —1)] P~ =0, (A.6)

(1-a2) "
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2n+1)zP = (n+m)P" | + (n—m+1)P" |, (A.7)
(2n +1)(1 —2?)2 P = P — Pt (A.8)
2n+1)(1—22) 7P = (n4m)(n+m— 1P — (n—m+1)(n—m+2)P"7', (A.9)

and

!

1 1
(1—z2)2pm™ = —_pmt! nFm)n—m+1)Pr. (A.10)

n _2 n

A.2 The gamma function

The incomplete gamma function is defined as

?7(z) = /OOO e 't*"Ydt,  Re(z) <0. (A.11)
In particular,
Tm)=Mm-1)!, n=123,.., (A.12)
?(%) = 73 (A.13)
e 3. (20 + 1)
?(n+§) = T n=0,1,2,3,4,.. (A.14)

where the n!! = n(n — 2)(n —4)...1 (the last number being 2 if n is even). Also

T(o+1)=0?(0). (A.15)
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An integral identity

Consider the evaluation of

L
-1

Gradshteyn & Ryzhik (1980) [38] give

L | 1 m)! .
[ amr@rpee = I =g (32

but what if p # ¢7

Theorem B.1 Ifp,q>m >0 and p,q,m € Z then

1 ) .
! m (min (p,q)—m)! + even
—Pm(x)Pm(ZE)dx — m (min (p,q) —m)! pPTq (B3)

1—g2" P q .
o ’ 0 otherwise.

The proof below is similar to the standard orthogonality proof in Arfken (1985) [1]

using Rodrigues’ formula

m
2

D™ (2 —1)", (B.4)

Pa) = g (1-7)

where D = %. However, in the orthogonality proof, when integrating by parts, the

integrated parts vanish. In this case, this is not true.

Proof B.1 Define X = z? — 1 and put A = % where m > 0, then

1 Pum 1
/ p—qux = A / Xm-lprtmxp petmxaqy, (B.5)
-1 - -1
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Integrating by parts q + m times and denoting the integrated parts by T (I will be

considered later) implies

1 pmpm 1
/ ”—qum:IJrA(—l)me/ Xapatm (XM=t prtmy XPdg, (B.6)
-1 —1

Ezpanding the integrand on the right hand side using the Leibnitz formula gives

q+m
Xaputm (xm-iprimxr) = x4 _@xm!posmeigmet pptmtixe, (B.7)
P il(g+m —1)!

(m—1)

Since X™~ ! contains no power of x greater than x> we must have

g+m—1i<2(m-—1) (B.8)
or the derivative will vanish. Similarly
p+m—+i<2p (B.9)
Thus, 1 > q—m+ 2 and i < p—m. Hence,
p>q+2 (B.10)

By exchanging the indices p and q we also have the requirement for a non-zero integrand
that
q=p+2. (B.11)

Hence, the integral must vanish ¥ p,q. Now consider the integrated parts, T, and

assume without loss of generality that p < q.

1

g+m—1
T=|A > (-1)/DI(xm tprtmxr) portmi-ixa| (B.12)
j=0 1
We have that D = % = d—f% and clearly DPTIXP will always produce some terms in-

dependent of X and, hence, will not affect the lowest order of X in DJ (Xm_le"'mXp).
Hence, D7 (Xm*ID”J“mX”) will contain a term independent of X if 7 > m — 1. Simi-
larly g + m — j — 1 > q which implies j < m — 1. If a term is dependent on X then it
will vanish at £1. This implies that

1

T — [A(—l)m_le_l (Xm—le-I-mXp) q|(2m)‘1] -

(B.13)
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By the Leibnitz formula

m—1 !
Dmfl (melDzH»ijD) — Z —(m — ) Dijle(m71)7j+(p+m)Xp. (B14)
2 jlm =1 j)!
The necessary condition for DIX™1 to be independent of X is that j > m — 1 which

implies 3 = m — 1. Hence,

DM (XmIIpPtmXP) = (m — 1)1(22)™ ' DPTTXP
dm
= (m— 1)!(2z)m*12pp!d—mp,,(x). (B.15)
X
Thus,
_ (_1)2(m—1) 194.,-.9 1om—1,m—19p, dm !
m 1
= [(m— 1)!zq+m—12m—1j$—mp,,(z) : (B.16)
-1

This implies that for p < q

P (z)P"(z) ——dz = .
7 I 1— g2 0 p+q is odd
(B.17)

/1 1 (m —1)12™ [gn—mmPp(x)‘le p+q is even

For a non-trivial solution p + q must be even, for which the right hand side is
independent of q. In this case, the right hand side must be equal to the result when
p = q (i.e. Equation B.2). Hence, the theorem is proved.

This is quite an unusual result as it is independent of the associated Legendre
polynomial of the higher order. As far as we are aware, this result has not been proved

previously.
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Maple program for the spherical
harmonic expansion of the

Fokker-Planck equation

The following Maple program is used in the spherical harmonic analysis of Chapter 4.

See Chapter 4 for an explanation.

‘Function definitions‘;

B := (mmm,nnn) -> if (mmm <= nnn and mmm >= 0 and nnn <= order)
then C(mmm,nnn) else 0 fi:
N := (w,x,y,z) -> if (w > x or x < 0 or w < 0) then O else

(delta(w,0)+1) * delta(w,y)

* delta(x,z) * (x+w)! / ((2*x+1) * (x-w)!) fi:

delta := (z,y) -> if evalf(z) = evalf(y) then 1 else 0 fi:

xc := proc(e,m,n) local c,d:integer:

sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * Q[m+c,n+d-1]
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/ (2%(n+d)+1) + (n+d-m-c+1) * Q[m+c,n+d+1]
/ (2x(n+d)+1) , d=-5..5), c=-3..3)}:
subs (sbsq,e)

end:

xss := proc(e,m,n)
e - xc(xc(e,m,n),m,n)

end:

xssp := proc(e,m,n) local c,d:integer:
sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * (n+d+1) * Q[m+c,n+d-1]
/ (2x(n+d)+1) - (n+d) * (n+d-m-c+1) * Q[m+c,n+d+1]
/ (2%(n+d)+1), d=-5..5), ¢=-3..3)}:
subs(sbsq,e)

end:

xsu := proc(e,m,n) local c,d:integer:
sbsq := {seq(seq(Q[m+c,n+d] = Q[m+c+1,n+d+1] / (2*(n+d)+1)
- Q[m+c+1,n+d-1] / (2*%(n+d)+1), d=-5..5), c=-3..3)}:

subs (sbsq,e)
end:
xsd := proc(e,m,n) local c,d:integer:
sbsq := {seq(seq(Q[m+c,n+d] = (m+c+n+d) * (m+c+n+d-1)
* Q[m+c-1,n+d-1] / (2*(n+d)+1) -(n+d-m-c+1) * (n+d-m-c+2)
* Q[m+c-1,n+d+1] / (2*x(n+d)+1) , d=-5..5), c=-3..3)}:
subs (sbsq,e)

end:

‘Spherical Harmonics‘;

h := proc(m,n,t,p) local xx;
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p.m.n.order * cos(m*p) * qq(m,n,xx);
xx := cos(t);

end;

‘Associated Legendre polynomials‘;
qq := proc(m,n,x) if m = 0 then P(n,x) else
(1-x"2) " (m/2) *diff (P(n,x) ,x$m) fi

end;

‘Approximation to f°;
g := proc(t,p) local j,k;
s := 0;
for k from O to order do
for j from 0 to k do
s :=s + h(j,k,t,p)
od:
od:

end;

# User defined flow parameters

# zeta := 0;

# xi := 1;
chi := 0;
1 :=10/22; #1 = 1 / lambda

‘Main Program‘;
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for order from 3 to 5 do

print (‘) ;

print(‘order = ‘+order);

print (‘Fokker-Planck Equation for m = 0 (special case) ‘);

eqla := A(0,n)*( 1l*n*(n+1)*Q[0,n] + xssp(Q[0,n],0,n) -
2xxc(Q[0,n],0,n) + zeta * (-Q[1,n] )

-2*xi*( xc(xsu(Q[1,n],0,n),0,n)/2 +
3*xsu(xsu(Q[0,n],0,n),0,n)/2 + 3*xss(Q[0,n],0,n)/2 -
3*xc(xc(Q[0,n],0,n),0,n) +

3/(2x(2*n+1)) *xc(nx(n+1)*Q[0,n-1] - nx(n+1)*Q[0,n+1]1,0,n))
-2%chi*(xc(xc(2* Q[1,n],0,n),0,n) -

Q[1,n] + 6*xc(Q[1,n+1] - Q[1,n-1] ,0,n) / (2*n+1) ) )

print (‘Fokker-Planck Equation for m = 1 (special case)‘);

eqlb := A(1,n)*( 1*n*(n+1)*Q[1,n] + xssp(Q[1,n],1,n) -
2xxc(Q[1,n],1,n) + zeta/2 * (-Q[2,n] + n*x(n+1)*Q[0,n])
-2%xi*(-(n)*(1+n)*xc(xsu(Q[0,n],1,n),1,n)/4 +
(3-1)*xss(Q[1,n],1,n)/4 + xc(xsu(Q[2,n],1,n),1,n)/4 +
(3+1)*xsu(xsu(Qi,n],1,n),1,n)/4 + 3*xss(Q[1,n],1,n)/2 -
3*xc(xc(Q[1,n],1,n),1,n) +

3/ (2% (2*n+1)) *xc((n+1)*(n+1)*Q[1,n-1] - n*(n)*Q[1,n+1],1,n))
-2*xchix(xc(xc(-(n)*(n+1)*Q[0,n] + Q[2,n],1,n),1,n) -
(-(n)*(n+1)*Q[0,n] + Q[2,n])/2 -
xc(xsd(Q[1,n],1,n)-xsu(Q[1,n],1,n) ,1,n) +
3*xxc((n+1)*(n)*Q[0,n-1]-(n) *(n+1)*Q[0,n+1] +

Q[2,n+1] - Q[2,n-1] ,1,n) / (2*n+1) ) ):
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print (‘Fokker-Planck Equation m > 1¢);

eql := A(m,n)*( 1*n*(n+1)*Q[m,n] + xssp(Q[m,n],m,n) -
2xxc(Q[m,n] ,m,n) + zeta/2 * (-Q[m+1,n] + (n-m+1)*(n+m)*Q[m-1,n])
-2xxi* (- (n-m+1) * (m+n) *xc (xsd(Q[m-1,n] ,m,n) ,m,n) /4 +

(3-m) *xsd(xsd(Q[m,n] ,m,n) ,m,n)/4 + xc(xsu(Q[m+1,n],m,n),m,n)/4 +
(3+m) *xsu(xsu(Q[m,n] ,m,n) ,m,n)/4 + 3*xss(Q[m,n],m,n)/2 -
3*xc(xc(Q[m,n] ,m,n) ,m,n) +

3/(2%(2#n+1)) *xc((n+m)*(n+1)*Q[m,n-1] - n*(n-m+1)*Q[m,n+1] ,m,n))
-2xchi*(xc(xc(-(n-m+1) *(n+m) *Q[m-1,n] + Q[m+1,n],m,n),m,n) -
(-(n-m+1)* (n+m) *Q[m-1,n] + Q[m+1,n])/2 -

mxxc (xsd(Q[m,n] ,m,n)-xsu(Q[m,n] ,m,n) ,m,n) +

3*xc ((n+m) * (n+m-1) *Q [m-1,n-1] - (n-m+1) * (n-m+2) *Q [m-1,n+1] +

Q[m+1,n+1] - Q[m+1,n-1] ,m,n) / (2xn+1) ) ):

print (‘Summing equations®);

SS := sum(sum(eql,m=2..n),n=2..order+3)+ sum(eqlb,n=1..order+3) +

sum(eqla,n=0..order+3):

sgqs := seq(seq(A(mm,nn)=B(mm,nn) ,mm=-3..order+6) ,nn=-3..order+6):

for r from 0 to order do
for q from 0 to r do
QES := {seq(seq(Q[i,jl=N(i,j,q,r),
i=-2..order+6),j=-2..order+6)};

tot := subs(QES, SS);

tot := subs(sgs,tot);

eq.q.r := simplify(tot, factorial):
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od:

od:

od:

print(‘Solving equations‘);

parlist := seq(seq(C(mm,nn),mm=0..nn),nn=1..order) ;

eqlist seq(seq(eq.mm.nn = 0,mm=0..nn) ,nn=0..order) ;

sols := (solve({eqlist},{parlist}));

C(0,0) := 1/(4*Pi);
p00.order := C(0,0);

for r from 1 to order do
for q from 0 to r do
p.-q.r.order := subs(sols,C(q,r)):
od:

od:

save p013,p014,p015, p113,p114,p115, p023,p024,p025,

p123,p124,p125 ,p223,p224,p225,

‘output.m;

‘END*;
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Some operator expressions

Below are the definitions for the operators A;(F') and Ay (F) used in Section 5.8.

Ai(F) =V?((u-V)V%F)

= (024 02 + 0?) (0,0, F0, V% F + 8,0,F0,V4F —V4F0,V4F) (D.1)
Y Y Y

and
Ay(F) =0,V - ((u-V)u)
= 0,0, (0,0,F020,F + 0,0,F0,0,0,F — V3 F020,F)
+0,0y (0,0, F0,0,0,F + 0,0,F0,0,F — V' FO.0,F)
—02 (0,0, F0, V3 F + 0,0,FO,V3 F — V3 FO,V4F), (D.2)
where
u=VAVA(Fk). (D.3)
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