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We propose and analyze a model of evolution of species based upon a general description of
phenotypes in terms of a single quantifiable characteristic. In the model, species spontaneously arise
as solitary waves whose members almost never mate with those in other species, according to the
rules laid down. The solitary waves in the model bifurcate and we interpret such events as specia-
tion. Our aim in this work is to determine whether a generic mathematical mechanism may be
identified with this process of speciation. Indeed, there is such a process in our model: it is the
Andronov homoclinic bifurcation. It is robust and is at the heart of the formation of new solitary
waves, and thus �in our model� new species. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3009196�

Individual organisms are grouped into species with well-
defined distinguishing characteristics, whose members
generally do not mate successfully with those of other
species. Here, we formulate in a simple mathematical
model some of the tenets of evolution theory for mating
and survival rules expressed in a continuous space of or-
ganism characteristics (phenotypes). Our mathematical
description naturally produces solitary waves in charac-
teristic space. We interpret these waves as species and
their bifurcation as speciation, using numerical simula-
tions to reveal the wealth of behavior. We then perform
extensive asymptotic analyses of the model to seek an an-
swer to a question raised by Darwin: why are there dis-
crete species rather than individuals with a continuum of
characteristics? In the context of our model, the process
underlying speciation is a known mechanism called the
Andronov homoclinic bifurcation. We go on to suggest
that models of this kind may be used to explore other
issues, such as the role of species competition and geo-
graphical effects.

I. INTRODUCTION

Discussions of evolution make use of the imagery of a
branching tree. In the usual representation, this is done in the
Cartesian plane with the vertical direction—the direction of
branching—representing time t. The horizontal coordinate in
the branching picture gives the value of a defining character-
istic feature of typical individual organisms, such as length
of neck or size of beak �e.g., Gingerich, 1980, Figs. 2 and 3,
on the mean and standard error of the tooth size of early
Cenozoic mammals�. Of course, the restriction to a single

characteristic is made only for the ease of drawing the pic-
ture; in reality there should be a large number of axes repre-
senting all the N �say� macroscopic characters of the organ-
isms. A point in RN then prescribes what is called the
phenotype of an organism and we refer to this N-dimensional
space as phenospace. The branching tree of evolution that is
commonly drawn may then be thought of as showing the
trajectories �or worldlines� of species.

When the phenospace is one-dimensional, a richer imag-
ery is conventionally used in which the number of organisms
as a function of phenotype and time is included in the de-
scription. This leads to graphical representations of the evo-
lutionary process in which species are indicated in the man-
ner that nonlinear dynamicists represent propagating solitary
waves in physical space and time. This way of seeing things
makes it clear that organisms do not form an uninterrupted
continuum but rather that they separate into discrete group-
ings or species in what Darwin referred to as the “mystery of
mysteries.” The representation of species as solitary waves
makes for a convenient description of speciation and it has
been used in many qualitative discussions of that process,
though typically without a statement of the analogy between
the representations of waves and species. Indeed the way in
which new species evolve does resemble the formation and
splitting of solitary waves such as one sees in the solutions of
the complex Ginzburg–Landau equation and other nonlinear
partial differential equations �PDEs�.

In On the Origin of Species Darwin asked “… why, if
species have descended from other species by fine grada-
tions, do we not everywhere see innumerable transitional
forms? Why not a blur…of continuous variations?” And, of
course, we would answer that a nonlinear mechanism is a
natural choice to explain this observation: modern dynamical
studies show how discrete coherent structures such as soli-
tary waves are prevalent in nonlinear systems and that obser-
vation is the starting point of the present work. To us, a key
question to consider in formulating models of evolution is
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whether there is a robust bifurcation process that may be
basic to the formulation of such structures. Moreover, the
question is not limited to biology. The Darwinian imagery
has been invoked in other disciplines such as the social sci-
ences and, recently, even in cosmology �Smolin, 1997�. This
apparent universality of the Darwinian ideas leads us to ask
whether there is an underlying mathematical structure for
thinking about the notions of evolution

After some effort in the search for appropriate mecha-
nisms, we feel that there is a mechanism that can serve to
describe the bifurcation of species as it is generally depicted.
Here we illustrate the nature of such a speciation bifurcation
with an analysis of a simple nonlinear model of evolution
�Bees, 1994� that captures the qualitative feature of the spe-
ciation process that Darwin alluded to. Having first pre-
scribed the equations of the model, we provide some numeri-
cal solutions of the model equations that show the speciation.
In a sense, this gives the short answer to the question posed
by Darwin: a simple model that embodies the tenets of bio-
logical evolution does lead to distinct species and it involves
nonlinearity. We then go on to an analysis whose aim is to
uncover the mathematical mechanism underlying this nucle-
ation process. That analysis is essentially qualitative and
makes use of standard approximations. The results suggest
that the underlying mechanism is the �Andronov� homoclinic
bifurcation �Kuznetsov, 2006; Izhikevich, 2007�.

In proceeding in this way we recall the outlook of Tur-
ing, who, in another context, wrote that “This model will be
a simplification and an idealization and consequently a falsi-
fication. It is to be hoped that features retained for discussion
are those of greatest importance in the present state of
knowledge.” In that spirit we do not apologize for having
only one dimension in our phenospace since it is always best
to begin simply. But one might reasonably object that such a
discussion might better be formulated in what might be
called genospace. Indeed, one should certainly aim to make
models at that level. However, as in the physical sciences, it
is an instructive and often effective practice to simplify mat-
ters by coarse-graining and we have chosen that route for the
present study. One could go even further in that direction:
Gould �2002� has proposed thinking of species themselves as
organisms. In that spirit, our level of coarsening is only in-
termediate. We are aiming for a level of coarseness some-
what analogous to the Boltzmann description of kinetic
theory, though at a lower dimensionality than is usual in that
context. In any case, as we shall see, the model we study
here does lead to the formation of coherent objects that bi-
furcate by a known robust process. We suggest that these
coherent objects and their dynamics may be of use in testing
suggestions about how to modify evolutionary models by
including, for example, geographic effects and other such
external influences.

II. THE MODEL

A. General features

Before presenting our model �see also Bees 1994� we
describe some of its general properties. We consider an evo-
lutionary dynamics that is adaptive �sympatric� without any

reliance on geographic �allopatric� influences. Though this
reflects perhaps a minority view of things, it has been well
defended in Dieckmann and Doebeli �1999�, for instance,
where a useful, if brief, discussion of the issues is presented.
Unlike their model, however, our model does not rely on any
explicitly stochastic inputs such as are frequently included in
evolutionary models �see, for example, Newman et al.,
1985�. From that point of view, our approach may be con-
sidered deterministic. However, it is statistical in the sense
that Boltzmann’s kinetic theory �or wave mechanics� is. That
is, we formulate a model in terms of a probability density in
the state space that we call phenospace. �Also as in Boltz-
mann’s theory, the model is based on pair interactions: repro-
duction is assumed to be sexual.�

As mentioned above, we introduce a single phenotype
descriptor and regard it as a quantification of a more general
characteristic. To represent the effects of environmental pres-
sures we could also require a second independent variable
that characterizes the environmental resource. To reduce
complications, we choose this to be the same variable as that
used to specify phenotype. If the organisms are giraffes, for
instance, the species descriptor might be neck length and the
corresponding environmental parameter would be tree
height, which would here both be given by the same vari-
able. �See Roughgarden �1972� and, for discussion of such
distinctions, Weiner �1994�.�

We do not introduce any specific modeling of genetics
�Hall et al., 2002� or clines in allele space �see Veronka and
Keller, 1975; Ewens, 1969; O’Brien, 1985; Spencer and Bar-
akat, 1992�. That is, we represent the phenotype by an inde-
pendent variable and disregard genetic makeup. Moreover,
we do not include geographical variations in the interests of
simplicity. Nor do we model selective pressure by imposing
an environmental gradient in phenotype space �Doebeli and
Dieckmann, 2003; Tang and Waxman, 2003�. We do not dic-
tate nor limit the “fitness” of individuals with particular char-
acteristics �Geritz et al., 1997�, but let this arise from the
dynamics. What we do is to construct a self-consistent sys-
tem modeling species and environment in phenotype-space
and time and address its bifurcational structure.

With phenotype characterized by the variable � we write
the number of individuals in a range d� at time t as
f�� , t�d�. The use of this continuum description for a dis-
crete number of organisms is not a problem when we are
dealing with sufficiently large populations; a mechanism for
killing off very small populations is a desirable feature
�emergent or prescribed� of such descriptions, and we find
such a regulation in our model. In our dynamical description
a species is made up of a collection of selfish individuals as
discussed by Dawkins �1989� with an f that falls off rapidly
outside some narrow interval of �. The width of this interval
is not specified ab initio, but arises from the dynamics.

We introduce a density of environmental resource,
e�� , t�, which depends on the same variable � as the pheno-
type density, in the sense just explained. In general the envi-
ronmental resource should be characterized in some other
way—call it �. There has to be, then, an additional equation
�or equations� indicating which �-objects nourish which
�-organisms. A simple version of such an equation would be

043114-2 Bees, Coullet, and Spiegel Chaos 18, 043114 �2008�

Downloaded 18 Dec 2008 to 130.209.6.41. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



one giving � as a function of � �or vice versa�. In such a
formulation, phenospace is one-dimensional and visualiza-
tion of the solutions is readily achieved. The simplest version
with � as a function of � would be to set �=�, and that is
what we have done. This choice is rather in keeping with the
story of Darwin’s finches, but that is not our main reason for
this choice. It was to formulate the simplest model we could
that would reproduce the phenomenology we are trying to
understand. Once that is done, we may seek to bring in more
realistic features such as competing species, predators,
evolving environments, geographical differences, and so on.

B. Model equations

Our evolution equation for the density in phenospace of
organisms with characteristic � is

�t f��� = r
/

K���1,�2�f��1�f��2�d�1d�2 − vf���

+ ��M��1,��f��1�d�1, �1�

where �t is an abbreviation for partial derivative with respect
to time. The three terms on the right side of this equation for
the rate of change of f�� , t� are, respectively, �a� increase by
binary mating, �b� losses through either death or mutation,
and �c� gains by mutation.

In designing the kernel K� in the first term on the right,
we need to be aware of the various possible complications of
real mating rules. Recent data for Panama butterflies �Bull et
al., 2006� suggest that inter-species breeding is not as rare as
was once thought and can result in hybrids that are highly
fertile and viable; gene flow between species in similar habi-
tats is present. Moreover, Hendry et al. �2006� report that a
species of Galapagos finch with a bimodal distribution of
beak size that enabled them to specialize in eating two dif-
ferent types of seed, have merged back into just one group
with a single common beak size. Such a collapse is hypoth-
esized to be due to the increase in bird feeders on the island.
There is similar evidence for merging of almost-speciated
populations of stickleback in lakes in Canada fish in Lake
Victoria. Though it is possible to try to build such complica-
tions into the mating kernel, we settle here for a relatively
simple form and impose only two mating rules consistent
with most definitions of a species. First, the organisms of the
model mate by pairs whose members are close to each other
in phenotype: this is usually regarded as central to the exis-
tence of a distinct species. �Since our phenospace is R, there
is no problem in defining closeness.� In other words, an in-
dividual that has a “rare” phenotype relative to most other
members of the population does not produce many viable
offspring. Hence, we define a reproduction kernel
R���1−�2�� for the probability that an individual with char-
acteristic �1 will have viable offspring with an individual of
characteristic �2. R could of course also include such fea-
tures as selective breeding, but we leave this out in the inter-
ests of simplicity.

The second feature of our mating protocol has been dis-
cussed some time ago by Roughgarden �1972� and used by
Levin and Segel �1982�: when two organisms mate they pro-

duce an offspring that is not very far from their mean char-
acteristic. �See Slatkin and Lande �1976� for an interesting
variation on this.� Hence, we employ a birth kernel
B����1+�2� /2−��� for the probability that offspring will
have characteristic � given parents of characteristics �1 and
�2. To express these two effects, we write

K���1,�2� = R���1 − �2��B���1 + �2

2
− ��	 , �2�

where both R and B fall off steeply as their arguments depart
from zero �and, of course, are normalized�.

In the model, the overall reproduction rate is regulated
by the factor r. In modern studies of the evolution of the
finches in the Galapagos �see, for instance, Weiner, 1994�,
the reproductive success of the birds depends on the abun-
dance of food. Such a direct influence of the environment on
reproduction is translated directly into the model by letting r
be a function of the environmental density. Thus, we set
r=r�e�, the dependence to be specified below. We shall also
need to provide an equation for e on this account.

For the mutation kernel M, we assume that

M��1,�� = M���1 − ��� �3�

and take its overall rate � to be a constant. Like R and B, the
kernel M is without dimension. Further, we treat the loss
rate v as constant; a piece of this term of course comes from
mutations as in the expression �
M���−�1��d�1, though we
do not need to specify this explicitly.

To describe the environmental abundance density e, we
adopt an equation in which the abundance goes to a fixed
value in the absence of the organisms. Since the basic no-
tions of the mechanism are already incorporated into Eq. �1�,
we have chosen to add no further complications in modeling
the environmental capacity. �In more advanced discussions,
one may also wish to allow for evolution of the environ-
ment.� Here, we employ the simple description

�te = se�E − e� − aef , �4�

where s is a linear growth rate that could be related to f , for
example, though we simply assume that s, E, and a are con-
stants. We find that similar descriptions give similar behavior
�e.g., simple piecewise linear models rather than the above
logistic growth�. The depletion of resource is described by a
term linear in f . Furthermore, we may distribute the impact
of a species over a range of environment by replacing this
term by ae���
C���−�1��f��1�d�1 for some suitable peaked
resource consumption kernel C, but we find that this does not
lead to qualitative changes in solution behavior, so we retain
the simplified form. Finally, we posit r�e�=ro e, where ro is a
constant.

To reduce the number of parameters to be varied, we
introduce natural units. We measure e with the unit E and let
�= �Es�−1 be the unit of time. The unit of � is �0 and we
scale f with f0=sr0

−1. The nondimensional equations then be-
come
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�t f = e
/

B���1 + �2

2
− ��	R���1 − �2��f��1�f��2�d�1d�2

− Df + ��M���1 − ���f��1�d�1 �5�

and

�te = e�1 − e� − �ef , �6�

where �=a�Er0�−1 quantifies the environmental impact of a
species, while �=�� and D=v� reflect timescale ratios of
mutation and species “death” to environmental recovery, re-
spectively. Though D can vary in principle, this does not
affect things much, and certainly not in the asymptotic re-
gime that we shall discuss below. So, for the rest of this
discussion, we shall treat D as a constant; the key point is
that it is positive. Thus, we have only three control param-
eters, D, �, and �, besides those that are needed to specify
the shapes of the kernels that arise.

III. SOME NUMERICAL SOLUTIONS

We begin the exploration of the content of the model by
presenting some numerical solutions of Eqs. �5� and �6� sub-
ject to the boundary conditions �e , f�= �1,0� at each end-
point. We used the procedure sketched in the Appendix. It
gives robust results and is not sensitive to details like time
step. We represent the various kernels as truncated normal
distributions with compact support; they vanish when their
arguments exceed a certain value, which we take to be three
times their standard deviations. �This simplification disfavors
hybridization.� The size of the computational domain is
taken sufficiently large that it has no effect on the results.

The initial condition for the organism distribution was
taken to be a truncated exponential and it leads to results
such as are seen in Fig. 1, for the parameter values shown in
the caption. This is a case where a pulse persists indefinitely
and drifts slowly through phenospace. Thus, the properties of
the organisms evolve gradually toward ever larger values of

� as the environment becomes too depleted to support the
population at smaller �. This illustrates one way that short-
ages of environmental resources of the right kind may drive
evolution. We note that species tend to die out if both the
environment and species are sufficiently small, but these lev-
els are not necessarily close to zero �a piecewise linear lo-
gistic model for the environment, for example can lead to
larger “depleted” levels�. Other mechanisms, such as intrin-
sic time dependence of the environment, provide similar en-
vironmental pressures as in the classic example of Darwin’s
finches �Weiner, 1994�. The main result seen in Fig. 1 of
course is that the feedbacks between the two components
produce the expected solitary wave—the “species” of this
model. For a suitable other choice of initial condition,
the pulse could travel in the opposite direction, toward
smaller �.

On varying the parameters D and �, and the standard
deviations of the kernels, we find other kinds of behavior.
Increasing D sufficiently will cause the pulse to decay away
in time. Decreasing D can increase the pulse height, while
increasing the variance of M or B broadens the pulses and
makes them move more quickly. However, an increase in �
or the variances of R or B or even a decrease in D can lead
to the bifurcation of the pulse into two pulses. This behavior,
our metaphor for speciation, is seen in Fig. 2.

A more striking version of this process is shown in Fig.
3, where pulse pairs seem to appear spontaneously from suit-
ably chosen initial conditions and parameters. In this case,
some organisms out on the tail of a pulse have the right
properties to take advantage of a situation in which the en-
vironment is already recovering from the pulse that has just
passed. These marginal survivors will have a surge in repro-
ductive rate and can evolve in a new direction.

There are also parameter ranges with low levels of ac-
tivity in which two pulses can go off in the two directions but
leave a behind some survivors; this seems to be a preferred
mode at large � or var�R� �the width of R�. In Fig. 2 we
have the appearance of a local equilibrium punctuated by
speciation bifurcations. The new species then evolve away
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FIG. 1. �Color online� A traveling solitary wave. Top: contour plot of spe-
cies f with characteristic �, and time. Middle and bottom: environment e,
and species f , at time=300 units. dx=0.50, dt=0.20, m=1.0, p=0.42, D
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FIG. 2. �Color online� A splitting wave. Inset are the initial conditions and
the solution at the final time. dx=0.50, dt=0.20, m=1.0, p=0.43, D=0.10,
�m=2.0, �R=0.5, �B=0.5.
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gradually and may bifurcate again as they do so, as seen in
Fig. 2.

Our terminology perhaps recalls the issues raised by
Eldredge and Gould �1972� with respect to how evolution
proceeds between the bifurcations of species �Futuyama,
1995�. In fact, we started this work in an attempt to see more
clearly into the discussion that once surrounded this topic.
But, now that the controversy seems to have quieted down,
we would only remark that the various possibilities can be
mimicked by suitable choices of parameter values. What is
of interest here is that the gap in � between the newly
formed pulse and the original pulse that we see represents a
more abrupt process than just the driving by environmental
pressure �natural selection�. In terms of our specific model,
the speciation is actually caused when a dying component of
the population is left behind and isolated in phenospace from
the main body of the original species. The newly forming
species suddenly finds a recovering environment to take ad-
vantage of. Similar effects may be achieved by including
geographical factors, but here they are inherent to the process
and are reminiscent of what is called on/off intermittency in
dynamical systems theory.

Though there are clearly many aspects of this model and
its consequences that merit elaboration and variation, we pre-
fer to bypass such variations here and inquire into the quali-
tative causes of the dynamics that emerge from the model.
The basic mathematical mechanism of the process is what
we are after and, to find it, we next simplify the mathemati-
cal description. Although this simplification is achieved by
approximations, those are not essential since we can obtain
accurate solutions by numerical methods. In any case, the
simplified version of the model we shall obtain could per-
haps have been set down as a model in its own right, though
we introduce it to simplify the analysis and to permit us to
advance an interpretation of the behavior we have just seen
in the numerical results.

IV. THE REDUCED SYSTEM

We have seen how our model produces solutions that
behave in the manner that is often used to represent specia-
tion in qualitative discussions. Our aim here is to try to iden-
tify the basis of this behavior so as to provide guidance in
modeling the process. To do this, we simplify the model we
have presented while attempting to keep it sufficiently rich as
to retain the essential features of the basic bifurcation pro-
cess revealed in the full version. Our simplification consists
mainly in reducing the master equation of the model to a
partial differential equation on the assumption that the ker-
nels in the integrals in Eq. �5� are sharply peaked. In that
case, we can approximate the integrals by expanding f in
Taylor series about the peaks of the kernels. This application
of Laplace’s method to Eq. �5�, in leading order, turns the
integral operators into local, or diffusion, operators. The co-
efficients in these terms show the influence of environmental
and other effects. The notation we use is illustrated by this
bare bones statement:

� F�� − ���f����d�� = f��� + F1��f + ¯ , �7�

where

Fn = �
−�

� Fzn

n!
dz . �8�

By truncating the development, we then obtain the re-
duced equation

�t f = ef2 + �+ef��
2 f + �−e���f�2 − 	f + 
��

2 f , �9�

where

�� = 2B2 �
1
2R2, 	 = D − � � 0, and 
 = �M2. �10�

Thus, together with � from Eq. �6�, we have a total of five
parameters. The first term on the right side of Eq. �9� is a
simple breeding term and the terms with second derivatives
show how the organisms’ characteristics evolve under the
various pressures acting. The death term retains its elemental
character and Eq. �6� is unchanged. We provide a glimpse of
the solution richness from this system by presenting six
simulations of Eqs. �6� and �9� in Figs. 4�a�–4�f� obtained as
indicated briefly in the Appendix. One may see aspects both
gradualism �Fig. 4�b�� and punctuated equilibrium �Fig. 4�e��
in these images. Direct numerical solution of the original
integro-differential equations produce complex explosive
evolution patterns that look sufficiently like those in Figs.
4�a�–4�f� that it did not seem useful to reproduce them here.

Now we make some further notational changes for cos-
metic purposes. We let


�e, f� = �+ef + 
, � = �−, �11�

where we note that 
�0. The model equations become

�t f = ef2 + 
��
2 f + �e���f�2 − 	f , �12�

�te = e�1 − e� − �ef . �13�

The first and third terms on the right-hand side of Eq. �12�
represent the nonlinear effect of reproduction and its linear
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FIG. 3. �Color online� A “pulse tree.” Inset are the initial conditions and the
solution at the final time. dx=0.50, dt=0.20, m=1.0, p=0.35, D=0.47, �m
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dependence on environment, whereas the second term de-
scribes the spread of species characteristics due to mutation
and reproduction and the fourth term is due to mortality. A
special feature of this system is the requirement that both e
and f must be positive. Apart from this feature, the system
has some mathematical similarities to other equations that

result in the so-called Andronov homoclinic bifurcation
�such as those studied by Argentina and co-workers 1997,
1998�.

To bring out the contents of this system, we study three
special kinds of solution: �a� the case where e and f depend
on time but not on phenotype, �b� the time-independent so-

a) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

b) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

c) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

d) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

e) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

f) −200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180
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=1.2, 	=0.4,
�+=1.2, �−=0.2. �b� Same as �a� but with �=0.35, �+=1.0, �−=−0.85. �c� Same as �a� but with �+=1.0, �−=−0.4. �d� �=0.5, 
=0.0, 	=0.2, �+=2.2,
�−=0.0. �e� �=0.4, 
=0.0, 	=0.3, �+=1.5, �−=−0.2. �f� �=0.46, 
=0.01, 	=0.37, �+=1.5, �−=−0.1.
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lutions with variation in phenospace, and �c� waves traveling
through phenospace. However, perhaps the most revealing
aspect of the following discussions is the treatment of the
case of small 	, which leads to a simple yet instructive ver-
sion of the model.

V. PHENOSPATIALLY HOMOGENEOUS SOLUTIONS

When f and e do not depend on �, Eqs. �12� and �13�
reduce to the ordinary differential equations

ḟ = f�ef − 	� , �14a�

ė = e�1 − e − �f� . �14b�

These equations have just two parameters, 	 and �, and they
control the number and locations of the fixed points that
guide the phase flow.

When we set the right side of Eq. �14b� to zero, we get a
choice between a solution with e=0 and one with e=1−�f .
The combination of these two loci makes up the nullcline of
Eq. �14b�. Similarly, the nullcline of Eq. �14a� is made up of
the curves f =0 and ef =	. The two nullclines meet at the
fixed points of the system �14�. For e=0 �and 	�0�, the
nullcline of Eq. �14a� gives us f =0. That is, the vacuous state
�f ,e�= �0,0� is always an allowed state of the system. We
call this fixed point T �for trivial�.

More interestingly, when the second choice for e, condi-
tion e=1−�f , is introduced into Eq. �14a�, we obtain the
cubic

F ª f�− 	 + f − �f2� = 0. �15�

We see that, for 4	��1, the cubic has only one root with
�f ,e�= �0,1�. In that case, there is environmental abundance
but no organisms survive; we call this solution A. Finally, as
we enter the parameter regime 4	��1, another pair of so-
lutions emerges. These two fixed points exist when the line
e=1−�f intersects the hyperbola ef =	 in the phase plane
e− f . They appear as a new fixed point when the straight line
becomes tangent to the hyperbola when the condition 4	�
=1 is first met. The new fixed point then splits into a pair as
this critical condition is passed in what is known as a saddle-
node bifurcation �Strogatz, 1994�. We denote the two fixed
points that appear at that point in parameter space as B�. By
solving Eq. �15� we find the pair of fixed points

f� =
1

2�
�1 � �1 − 4	�� and e� =

1

2
�1 � �1 − 4	�� .

�16�

A more direct way to view this result is to draw the
nullclines ef =	 and e+�f =1, which are, respectively, a hy-
perbola and a straight line with negative slope. For large �
these curves do not intersect but, as � decreases, the curves
touch at point of tangency with e=1 /2 when 4	�=1.

When we linearize about the various equilibria, we find
that the solution T, the origin, is always unstable with the
growth rates �the eigenvalues of the linear problem� 1 and
−	. This shows that when the environment is empty and
there are a few organisms, they die off. On the other hand,
the equilibrium with e=1 and f =0 is a global attractor, so

that when e is only slightly positive it is drawn toward the
point A. In the absence of the fixed points B�, the environ-
ment fills up to full capacity but the organisms die out. How-
ever, things liven up when the other two fixed points �B��
make their appearance as 	 goes below the critical value
	cª1 / �4��.

Denoting either of the equilibria B� by �f0 ,e0�, we look
for solutions in the form f = f0�1+�� and e=e0�1+��. Since
e0f0=	, we then find the linearized equations for the pertur-
bations about B� equilibria to be

�̇ = 	� + 	�, �̇ = − �f0� − e0� , �17�

where a dot indicates time derivative. If the solutions vary
like exp��t� we find, on using Eq. �16�, that

�2 − �	 − e0�� � 	�1 − 4	� = 0, �18�

where 1−4	��0 in the parameter regime of interest. Each
pair of roots for each sign in this quadratic is associated to
one of the fixed points B�. When the pair B� first appears,
the system is excitable. That is, even though the fixed point A
is globally stable, following a sufficiently large displacement
from A, the system must follow a roundabout route �a loop
around B�� to return to A �see Fig. 5�. This sort of behavior
is familiar from many biological examples �Griffith, 1971�. It
is also worth mentioning that an excitable medium, when
subject to external noise, can produce limit cycles �Muratov
et al., 2005�.

If, for fixed � such that 1
2 ����M �where �M repre-

sents the point in parameter space where homoclinic and

FIG. 5. Bifurcation structure of phenospatially homogeneous equations �14�
with �=0.6. Thus, we can compute 	c�0.42, 	Hopf�0.40, and 	homoclinic

=0.34. �a� Extinction results when 1 /4�=	c�	; 	=0.45. �b� Excitability
occurs when 	Hopf�	�	c; 	=0.41. �c� Spatiotemporal intermittency is
possible when 	homoclinic�	�	Hopf; 	=0.38. �d� Extinction again results
when 	�	homoclinic; 	=0.30.
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Hopf bifurcations collide�, we continue to lower the value of
	 below the critical value for the creation of B�, we encoun-
ter a Hopf bifurcation at the value of 	 where B+ becomes an
unstable spiral. Equation �18� then takes the form �2+�2

=0, where � is a real number. The onset of this behavior
occurs when 	=e0, which condition can be seen to imply
that a growing oscillation about B+ occurs as we cross the
line segment 	=1−� in parameter space. �We may also
note that �=0 when we have 	=1 /2 and �=1 /2. In the
neighborhood of this point we have a Takens–Bogdanov bi-
furcation.� At the Hopf bifurcation we see the formation of a
limit cycle around B+ and, as we continue to decrease 	, the
limit cycle becomes an increasingly larger loop until it runs
into B−. At that point, a homoclinic orbit forms through what
is known as a homoclinic bifurcation. Figure 5 shows the
behavior sequence corresponding to these events, including
the destruction of the homoclinic orbit as 	 decreases further
and A once again becomes a global attractor. Such behavior
has been studied in detail �e.g., Argentina and Coullet, 1998�.
For ���M the order of the homoclinic and Hopf bifurca-
tions is reversed.

The possibility of forming homoclinic orbits is the first
hint of the kinds of structure we would hope to find in a
model describing the behavior of species. Loosely speaking,
a homoclinic trajectory is one that approaches the same fixed
point as t→ +� and t→−�. If we plot the value of e �say�
versus time along the orbit, we obtain a pulse in time. How-
ever, in this special case of homogeneous phenospace, the
pulses do not yet correspond to solitary waves or species.
This deficiency will be remedied when we restore � to the
problem and look at �pheno�spatially inhomogeneous solu-
tions when there are indeed emergent structures in the model
that may be identified with species. Our intention in this
section has been to give a look into the underlying structure
of the simplest aspects of the model equations to learn what
kind of temporal behavior the equations can produce. How-
ever, the spatially varying solutions, to which we turn next,
are more suggestive of the formation of species.

VI. STATIONARY SOLUTIONS

Our representation of a species is a solitary structure in
phenospace that goes to zero away from its peak value. The
simplest example of such an object occurs in the steady state.
The equations in that case become


f� + �e�f��2 = − F�f�; e = 1 − �f , �19�

where the prime indicates differentiation with respect to �
and F�f� is the cubic defined in Eq. �15�. For a qualitative
understanding of the content of this equation, we may think
of Eq. �19� as a dynamical system, though the independent
variable is not really time, so that we are dealing with a
reversible system with the special feature that only solutions
with positive f and e are realizable.

Homogeneous solutions f0 occur when F�f0�=0, and
these are the same ones that are given in Eq. �16�. We may
perturb these to f = f0+� and linearize in � to study the “sta-
bility” of these “equilibria.” We obtain the linear equation


0�� = �	 − 2f0�� . �20�

The eigenvalues of this problem aid in drawing the phase
portraits in the f�-f plane. Alternatively, we may compute the
trajectories numerically with the results shown in the accom-
panying figure �Fig. 6�. Beyond a certain value of 	, ho-
moclinic solutions going to zero away from the peak value of
� appear. These are the species of the model. However, we
naturally require that f =0 at �=0 and � so these solutions
are not realistic, though they provide some guidance, and we
return to Eq. �19�. The portions of the figure extending into
negative f are shown to give a fuller feeling for the phase
portraits.

To get a qualitative idea of where the species solutions
first appear, we may omit the � term in Eq. �19�, assume 

constant and examine the equation


f� = −
�V

�f
, �21�

where �V /�f =F. The neglected terms are actually small in
the asymptotic study of the next chapter. Numerically, we
find that they do not play a dominant role in this problem and
we leave them out for this qualitative discussion. In this sim-
plified case, we may integrate once to find the equation


�f��2 −
�

4
f4 +

1

3
f3 −

	

2
f2 = 0, �22�

where a possible integration constant has been set equal to
zero to give the reasonable condition that f� vanishes at the
extreme values of �. We may think of Eq. �22� as we would
a dynamical system with � playing the role of time. Then a
homoclinic orbit approaching the origin as �→� and in the
fictitious case �→−� represents a solitary structure of f as a
function of �.

The three extrema of V suggested by the phase portraits
occur at the zeros of F, namely, the points A, at f =0, and B�.
When the two maxima of V are at the same height, we have
a heteroclinic stationary solution. This happens when 	 has
the value 	S=2 /9�, for then we may write

V = −
1

4
�f2� f −

2

3�
	2

. �23�

The maxima at A and B+ are then at the same height. And,
when 	�	s, the one at B+ is the higher and so homoclinic
solutions emerging from A and returning to it again are pos-
sible. Those are the solutions representing species. Such
steady solutions recall the model suggested by Eldridge and
Gould �1972� with species that hardly evolve. However, the
relevance of such solutions may be lessened by their insta-
bility. We next look at traveling wave solutions whose be-
havior points to the possibility of such instability. This is an
aspect of the solutions that provides yet more guidance into
what is happening in the numerical solutions of the model
equations.

VII. TRAVELING WAVES

Here we examine the case in which e and f depend only
on �=�−ct:
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f��,t� = f���, e��,t� = e��� . �24�

This leads us to a system of three ordinary differential
equations:

f� = g , �25�


g� = − 	f − cg − �eg2 + ef2, �26�

ce� = e�1 − e� − �ef, �27�

where the subscript stands for differentiation with respect to
� and Eq. �25� is a definition of g.

The fixed points of this system all have g=0 so that in
the g=0 plane, we find the fixed points associated with the
stationary solutions studied earlier. For brevity, we shall not
spell out the stability characteristics of the fixed points but

they may be easily read off from the phase portrait for this
system shown in Fig. 7. We also show the homoclinic orbit
of the reduced system that goes from �e , f ,g�= �1,0 ,0� at
t=−� and returns to the same point again at t=�. This ho-
moclinic orbit corresponds to a pulse in �, and, thus, to a
species. Significant features of the portrait are the hyperbolic
fixed points lying off the axes; these correspond to the equi-
libria found in Eq. �16�.

A trajectory that hugs the homoclinic orbit describes a
clean-looking pulse. However, much as was seen in the pre-
vious section, this pulse is unstable to the formation of a
small secondary pulse. This causes the trajectory in the state
space of the traveling wave to be deflected so that it ap-
proaches the unstable manifold of the hyperbolic point. This
encounter of the trajectory with that unstable equilibrium
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FIG. 6. �Color online� Numerical phase portraits for Eqs. �19�. �=0.5, �=1.0, �=0.125. �a� 	=0.01, �b� 	=0.1, �c� 	=0.2, �d� 	=0.3, �e� 	=0.4,
�f� 	=0.5.
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results in the rapid formation of a new pulse with speed c
moving in the opposite direction �in phenospace� from the
parent. The computed orbit for this case is shown in Fig. 8.
Though more elaborate schemes to follow the propagation
and interaction of the pulses are available �e.g., Elphick
et al., 1990; Muratov, 2000�, the present discussion may suf-
fice to suggest the way in which the formation of a new
species can become rapid when the phase space has a suit-
able structure. In the next section, we shall take a more quan-
titative look at the nature of the instability in the relatively
simple case when 	 is very small.

VIII. SMALL �

It is revealing to probe the core of the problem with a
study of the asymptotic regime of small 	. In examining this
limit, we need to specify how � behaves as 	 becomes
small. Since the product 	� is central to many aspects of the
problem, we might let 	 go to zero while keeping that prod-
uct fixed. This gives the fullest version of the case of small 	
and it leads to an approximation of the species solutions in
terms of elliptic functions. However, for our purpose of look-
ing at the basic structure of the problem, it will suffice to
consider the simpler case where � remains of order unity as
	 goes to zero. To do this, we introduce new variables
through these statements:

f��,t� = 	��x,��, e��,t� = 1 − 	��x,�� �28�

with

x = �	� and � = 	t . �29�

When we introduce the indicated change of variables,
we get, for 	→0, the equation

�� = 
�xx +
�V

��
, �30�

where

V = − 1
2�2 + 1

3�3 �31�

and the subscripts x and � stand for differentiation with re-
spect to those variables. In this limiting case, the �-term is
negligible; it does not have an important qualitative effect on
the solutions in general, as we have already suggested. Equa-
tion �30� is a nonlinear diffusion equation. It differs from the
time-dependent Ginzburg–Landau equation most signifi-
cantly in that its solutions are real and thus we avoid the
drawback of having underlying modes that oscillate about
zero, which would be inappropriate in the present context.
Because the �-term is negligible in the asymptotics, the or-
bits in the f-f� plane are periodic, except for those going off
to infinity.

In this asymptotic case as well, we observe the formation
of a solitary wave that represents a species. These solitary
waves, appearing already in the steady solutions, are easily
calculated. To see this we write the steady version of Eq. �30�
as


�� = ��1 − �� , �32�

where the prime now denotes differentiation with respect to
x. We multiply by �� and integrate once to obtain


����2 = �2 − 2
3�3. �33�

A constant of integration has been set to zero to allow �� to
vanish when � does. This equation may be simplified by the
substitution

� =
6y2

�1 + y2�2 . �34�

The resulting equation for y is easily integrated to yield

y = e��x−x
*

�/2�
, �35�

where x* is a constant of integration. Together, Eqs. �34� and
�35� represent a stationary species in the asymptotic limit.
Both � and �� vanish when y is zero or infinity; that is,
when x is very different from x*. The two signs correspond
to the two kinds of asymmetric �in �� solitary waves seen in
the numerical solutions of the full equations. However, a
single solitary structure, or species, such as we have just
found is not the only possible solution. We may also obtain a
series of structures with either periodic or chaotic spacings.
These richer solutions can be found numerically or asymp-
totically in the limit where the species are widely spaced but
we shall not present that analysis here.

To study the stability of the steady solution, we set

f

f’

e

FIG. 7. �Color online� Sketch of the phase space for the traveling wave
system.

FIG. 8. Computed trajectory of a splitting pulse �thicker lines are in the
foreground�. Numerical simulations of the full system have been plotted in
e-f-f�-space.
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��x,�� = �0�x� + ��x,�� , �36�

where �0 is the steady solution and � is a perturbation. For
perturbations with small ���, we linearize Eq. �30� and obtain

�� = 
�xx − � + 2�0� . �37�

We then introduce a solution of the form

��x,�� = e����x� �38�

into Eq. �37�. This leads to

�� = 
�xx − � + 2�0� . �39�

For �=0, this equation has the solution

��x� = ��0�x. �40�

In the case where the steady solution is the basic single soli-
tary species �0, � will have a single node. The qualitative
significance of this is understandable by analogy with wave
mechanics.

The eigenvalue equation �39� is the time-independent
Schrödinger equation for the stationary states of a single par-
ticle whose energy is proportional to −�. The particle is mov-
ing in a potential 1–2�0. For the case where �0 describes a
single species, 1–2�0 represents a potential well in the wave
mechanical analogue. For this case, the solution �40� is a
zero energy state and, as it is the derivative of the single
solitary structure, it has one node. By the known rules for
ordering such solutions, we can expect only one mode with
no nodes and it will have negative energy; that is, it will have
��0 and be unstable in the present context. The other
modes, will have more than one node and be stable. The
unstable mode with no nodes is an incipient species that
bifurcates from the original one. The case where �0 repre-
sents an array of species in phenospace is more complicated
and, in the wave mechanical analog, it corresponds to a par-
ticle moving in a lattice.

IX. DISCUSSION

Our aim in this work has been to construct a simple yet
general model that embodies accepted macroscopic features
of evolution theory to see whether qualitative features that
emerge in discussions of the process of the evolution of spe-
cies could be reproduced. We have analyzed our model to
reveal how such processes may have mathematical counter-
parts, in the belief that there is some value in having a math-
ematical language for such things. A key feature of our dis-
cussion is the representation of a species by a solitary wave
in the space whose coordinates represent macroscopic prop-
erties of organisms �phenospace�. The phenomena that we
have included in the model seem to be generic; these include
mutation and inability to cross-breed easily, and we suggest
that the general character of the results are not very depen-
dent on the details of the description. The splitting and for-
mation of solitary waves are processes that should illuminate
discussions of speciation, with the possible occurrences of
behaviors like gradualism and punctuated equilibrium arising
quite naturally according to parameter choices.

For example, in some discussions, the notion of punctu-
ated equilibrium seems to mean mainly a rapid speciation,

such as we saw in some of our results. On the other hand,
qualitative drawings of the process seem to imply oscilla-
tions of the properties of a species consisting of periods of
rapid change separated by stasis. That sort of behavior is not
evident in our present results, but by enriching the model, we
can produce that as well.

To the extent that this kind of model offers a way to test
qualitative ideas about evolution, we believe that it would be
worth extending the model beyond its present simplified
form. Many of the simplifications we have introduced can be
dispensed with. The most apparent of our simplifications is
the use of a one-dimensional phenospace, and it is far too
great a simplification. The model should be extended to al-
low for many more characteristics and their interaction with
breeding potential. Such a generalization raises the possibil-
ity of richer behavior.

Our description of the environment and its depletion by
a species is also too schematic. We need especially to allow
for geographical variations in our discussions. These have a
certain similarity to the introduction of more phenotypical
parameters, as far as their complicating effects are con-
cerned, but they have a different meaning with respect to the
interpretation of results and the comparison with observa-
tions. These are already well-studied issues, but we need to
see how these effects couple to the propagation in phenos-
pace. Another direction that lies open is the inclusion of spe-
cies competition and the introduction of predator-prey dy-
namics. It is clear that such moves toward increased reality
will take us down the road to enhanced complexity, but that
is the nature of the problem.

ACKNOWLEDGMENTS

Over the years we have thought about the issues raised
here, there have been many who have made comments and
suggestions. They are too numerous to name, even if we
could remember them all. Among them are our fellow par-
ticipants in the 1994 GFD Summer Program at the Woods
Hole Oceanographic Institution as well as audience members
in many seminars on this work. Above all, we are grateful for
their kind reception of our efforts.

APPENDIX: NUMERICAL METHODS

In Sec. III we solved a set of integro-differential equa-
tions numerically. Solutions are obtained by discretizing in
�-space and evolving the system in time with a Runge–Kutta
scheme. f is set to zero in a region close to the boundaries. In
Sec. IV we solved a set of partial differential equations.
Newton’s method is used to do this efficiently, employing
band-diagonal LU decomposition and a semi-implicit
scheme. Time derivatives are replaced by their forward dif-
ferences and other terms are replaced by weighted averages
of the future unknown values of the variables and their
present values. Initial conditions are either generated with a
random superposition of sinusoidal modes �keeping e and f
�0� or an offset lump for f and dip for e as for previous
simulations. f is set to zero on the boundaries.
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