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Linear bioconvection in a suspension of randomly swimming, gyrotactic
micro-organisms
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We have analyzed the initiation of pattern formation in a layer of finite depth for Pedley and
Kessler's new moddl). Fluid Mech.212, 155(1990] of bioconvection. This is the first analysis of
bioconvection in a realistic geometry using a model that deals with random swimming in a rational
manner. We have considered the effects of a distribution of swimming speeds, which has not
previously received attention in theoretical papers and find that it is important in calculating the
diffusivity. Our predictions of initial pattern wavelengths are reasonably close to the observed ones
but better experimental measurements of key parameters are needed for a proper comparison.
© 1998 American Institute of Physids$1070-663(98)02808-§

I. INTRODUCTION which the cell concentration can affect the fluid flow is
through vertical variations in the fluid density. In experi-
Far from being a recently discovered phenomenon, patments withC. nivalis (a biflagellate alga Kesslef"*? first
terns in suspensions of swimming cells have been observeealized the importance of hydrodynamic focusing within
for some time. Ever since common algae, suclCatamy-  flows. Kessler termed the biological component of this pro-
domonas nivalis Euglena viridis Crypthecodinium cohnii cess gyrotaxis, which occurs as a result of the balance be-
and the ciliated protozoafetrahymena pyriformisiere iso-  tween viscous and gravitational torques exerted on the cell.
lated, plumes of aggregating cells have been noticed in this effect is to tip a swimming cell away from the vertical so
culturing flasks. Plattcoined the term “bioconvection” to that its preferred swimming direction is towards regions of
describe the phenomenon of pattern formation in shallowdown-welling fluid and away from regions of up-welling
suspensions of motile micro-organisms at constant temperdtuid. A deterministic approach was used in the models of
ture, on a par with those found in convection experimentsPedleyet al,*® for a suspension of infinite depth, and Hill
However, this is by no means the first documented observaet al.* for a suspension of finite depth. However, Pedley
tion, which goes back to at least 1848g., Wage?. Other  and KessléP later reasoned that by considering the cell dif-
experimental investigators have included Loeffer andfusion tensorp, as isotropic and, hence, “strongly random”
Mefferd? Nultsch and Hoff: Plesset and Win&tand, more and independent of the mechanisms involved in gyrotaxis,
recently, Kesslef,” Bee§ and Bees and Hifl.Bioconvection  Pedleyet alX® were being inconsistent in that they were con-
is generally due to an overturning instability caused bysidering the determination of the swimming velocity,, as
micro-organisms swimming to the upper surface of a fluid“weakly random.” That is to say that calculating the cell
which has a lower density than the micro-organisms. swimming direction, in a deterministic manner, for all of the
The first models of bioconvection were developed bycells, and then assuming that there was no bias in the direc-
Plesset and WinetThey considered a Rayleigh-Taylor in- tion of diffusion of these cells was inconsistent. Therefore,
stability in a continuously stratified, two-layer model and instead of assuming a constant orthotropic diffusion tensor
were able to investigate the preferred pattern wavelength as(as in Childresset al!!) they modeled the cell swimming
function of the upper layer depth and the cell concentrationdirection in a probabilistic fashion. A model analogous to
Levandowsky et al!° investigated bioconvection patterns that of suspensions of colloidal particles subject to rotary
and proposed a more realistic modéhildresset all?) in Brownian motion (Brenner and Weissmann and
which the micro-organisms could swim but were constrainedrenner®=8 Hinch and Leal and Leal and Hinth?3 was
to swim upwards only, due to their asymmetric density dis-applied. From this, they calculated the average swimming
tribution. As density fluctuations in the suspension are gendirection and the cell diffusion tensor. We shall adopt the
erally small, they assumed that variations in viscosity due t@pproach of Pedley and Kessfeand use an analysis similar
the concentration of cells and the possible effects on théo that of Hill et al!* to investigate bioconvection in a sus-
stress tensor due to the swimming motion of the micro{ension of finite depth.
organisms are both negligible. Their application of the  Our aim in this paper is to predict a particular most
Boussinesq approximation implies that the only way inunstable modéi.e., one that grows most rapidlyrom an
initial equilibrium solution(in the spirit of Chandrasek&).
dpresent address: Center for Chaos and Turbulence Studies, Physics Ins ihIS can be_compargd, in p””c'p'e.' .Wl.th the expe”mem.s of
tute, Denmark’s Technical University, Bygning 309, DK-2800 Lyngby, B€€s and Hifl and with the deterministic theoretical predic-
Copenhagen, Denmark; Electronic mail: Martin.A.Bees@fysik.dtu.dk  tions of Hill et al1* In experiments, however, it is sometimes
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difficult to realize the very first unstable linear mode beforeboundary conditions for a suspension trapped between two
nonlinear effects become significaitees and Hifl). rigid horizontal boundaries are that of no-slip,
An equilibrium solution, of the full equations for finite _ _

. i . u=0, at z=0,—H, 4
depth and zero flow, is found and is then perturbed, allowing
weak ambient flow. Brenner and Weissm#hdescribe the and that of zero cell flux perpendicular to the boundaries
use of asymptotic expansions in their analysis of a Fokker- _ _

Planck equation to describe dipolar spheres subject to exter- k-[n(u+V(p))=D-Vn]=0, at z=0,~H. ®
nal couples and rotational Brownian motion which was ex-Herek is a unit vector directed vertically upwards. An equi-
tended by Pedley and Kessterfor their infinite-depth librium solution to the above equations is

model. For a suspension of infinite depth, the first order cor- _ N KZ _/\0 _ RO

rection to the diffusion tensor did not appear in the full linear =0, n=Ne®  (p)=(p)" and D=D", ©

equations. However, in the finite depth case, the first ordewhere

diffusion tensor is of paramount importance and can control V( p>g

the range of unstable wavenumbers. K= o (7)
The full linear equations are solved using asymptotic and D33

numerical techniques for a finite depth, in a similar mannekhe subscript 3 indicating components in the vertical direc-
to Hill et al,** with the added complications of the noncon- tion. x~* represents a local scale height. From the normal-

stant diffusion and mean cell swimming velocity which areization condition,

modeled using the Fokker-Planck equation. Hillesdbal 2* 0

and HillesdoR® investigate patterns formed by chemotactic f ndz=Hn, ®)
(or more specifically aerotacjibacteria and some of their —H

analytic and numerical techniques stem from the samgheren is the mean cell concentration ane=Ne?, it fol-
sources as those contained in this paper. In their model thgs that
analysis is further complicated by discontinuities in the bac- _
terial concentration gradient and ideas from the theory of N= Hnk
penetrative convectioiiVeroni€®) had to be employed to Qe <H
understand the nonlinear behavior of the system. However,
their model does not include coupling of fluid flow and cell
orientation in a Fokker-Planck equation. Vincent and #ill
study an additional instability due to a typical phototactic ~ P=(sin 6 cos ¢,sin 6 sin ¢,cos6)", (10

response, for which they predict a range of steady and oscilng g and ¢ are spherical polar angles.is the colatitude
latory behavior in a suspension of swimming miCro- measyred relative th. The mean cell swimming direction,

€)

The cell swimming direction probability density function
(p.d.f) defined on the unit sphere f§p), where

organisms. , _ ~ (p), is defined by

Finally, we investigate the effect of modeling the swim-
ming speed as a random variable and compare our predic- <p>:f pf(p)dsS (12)
tions with the experiments of Bees and Hill. s

whereS is the surface of the unit sphere and
Il. MODEL FORMULATION D(t)=f (V (H)V, (t—1t"))dt’. (12
0

Following the continuum model of Pedley and Keséf_ér, HereV, is the velocity of a cell relative to its mean value.
for a dilute suspension of swimming cells, the suspension i$see Shuet al2® for a further discussion of this formuja.
incompressible so that The expression foD is, of course, hard to calculate as it

V.-u=0, (1) requires a knowledge of all previous cell velocities and,
hence, we are forced to make an approximation for the sake
of simplicity. If the cell swimming speed/,, is a constant
as assumed by Pedley and KesSléhe effects of a noncon-

whereu(x) is the velocity of the suspension, and using the
Boussinesq approximation the momentum equation is

Du ) stantV on the linear analysis will be considered in Sec) VI
POr = —Vpet+thnvApg+ uVeu. 2 and if it is assumed that there exists a direction correlation
time-scale,r, such that the cell's direction changes by less
Heren(x) is the local cell concentratiory is the fluid vis-  than a specified angle, then we may write
cosity, pe(x) is the excess pressurne,s the mean volume of 5
a cell, andAp is the difference between the cell and fluid D=V={(p—(P))(P—(P)))- (13
density,p. The total number of cells is conserved so that Essentially,r can be determined from experimeriRedley
an and Kesslef? Hill and Hader®) to be approximately equal to
i =V [n(u+Vgp))—D-Vn], 3 1.3 s. Shuet al?8 discuss this approximation in greater de-
tail. Equation(13) has been successfully employed before by
where(p(x)) is the mean cell directiorV, is the mean cell Pedley and Kesslér,Bee§ and Bees and Hift’ The p.d.f.,
swimming speed an®(x) is the cell diffusion tensor. The f(6,¢), satisfies the Fokker-Planck conservation equation,
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of ) Using our best estimatdsee Table Il laterh =2.2 and
V()= D,V?f, (149 5=1.8x10"*xH 2 whereH is the depth of the layer in cm
or =33d"2; see later.

Lengths are scaled oH, the depth of the suspension,
cell concentration oM and diffusivity onVZr, whereV is
the cell swimming speed and is the direction correlation
time, and the time-scale for the flow i$%/V 7 so that the
nondimensionalized governing equations become

whereD, is a constant rotational diffusivity that incorporates (
rotational Brownian effects and the intrinsically imperfect
locomotion of the cell§see Pedley and KesslErRisken®!
Schienbein and Grul&. D, is an unknown constant. It can
be estimated from the data of Hill and ##° to be 0.065
s ! (see Pedley and Kessl&rBee$).

From the dimensional torque balance equation for gyro- V-u=0, (22)
tactic cells(Pedley and Kessl&h,

Du
1 1 S; ' op =~ VPe— yk+V2u (23)
p= 55 [k—(k-p)p]+ 5 QAp+aop-E-(1-pp), (15 t
2B 2 and
whereB is the gyrotactic reorientation time-scale of a cell K
aﬁec.ted by externaﬂgrgwtanona] torques subject to resist MN_ _y. nu+d—2n<p)—D-Vn , 24)
ing viscous torques, given by at K,
o
_ Kra , (16) where
2hpg KH
whereh is the center-of-mass offset relative to the geometri- d=H«x= KVor (25)

cal center of the cell and, is the dimensionless resistance ) .
coefficient for rotation about an axis perpendicular go IS the ratio of layer deptfi, to sublayer depthy~*. K, and
(Table II; Pedley and Kesslé?, Appendix A. @ andE are Kz are functions ofx and are given in the appendix. Fdr

the local vorticity vector and rate-of-strain tensor, respec>1 We have a “deep suspension,” and <1 we have a
“shallow suspension.” The Schmidt and Rayleigh humbers

tively. V
Nondimensionalizing such that are defined as
14
Vir Vir 8=z, (28
Q=—w and E=——¢, 17) Vst
H2 H2
and
and substituting into the steady form of the Fokker-Planck R= vd— NuvgApH?*K, 27
equation(14) gives (see Bedsfor detail9 Y V32K,
k-Vi-2(k-p)f+new-(p/AVF) R is based on the total depth of the layer. The equilibrium
+27nag[p-e- Vi—3p-e pf 1=\"1V2f, (18) state, the stability of which we shall investigate, us-0,
. (p)=(p)°, n=e% andD=D" in nondimensional variables.
where
1 lll. LINEAR ANALYSIS
A= DB (29 The solution of the Fokker-Planck equation for weak
r flow is given in Pedley and Kesslerin terms of associated
and Legendre polynomial$see also Beest al*° for more gen-
BV2r eral solutions We will employ this solution for the linear
n= >, (20 analysis in a suspension of finite depth later in this section
HZ . .
and, hence, we summarize the results here and define the

(Note: \ differs by a factor of; omitted in error in Pedley constants in Appendix A. In particular, we correct an error in
and Kesslé® but corrected in the Pedley and Kesslerthe calculation oK, which appeared in Pedley and Kessler
review3?) Here, 5 is called the dimensionless gyrotaxis pa- (Appendix B.™

rameter andy, is the cell eccentricity given by Consider a perturbation from the equilibrium solution
2_ 2 for a suspension of finite depth by setting
a —
ag=———, 21 u= eu?, =(p)o+e(p)t, n=e9%+ent,
07 24 p2 (21) eu’, (p)=(p)"+e&p) € 29

—n0 1 ) 1
wherea andb are the major and minor dimensions of a cell Pe=Petepe, D=D7+eD7,

respectively. wheree<1. The mean cell swimming direction is given by

.
+0(€?), (29

3
(p)=(0, 0, Kl)T+s[nJl<w%, —w1, 0207\ €15)s, €39)a, 5€3Ks

wherew= ew! ande= ee', and the diffusion tensor is calculated from Efj3) to be
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1
3 00 0 0
1
— U= Kl + € 77(\]2_\]1K1) O 0 —wi
Ve | 0 50 )
A w; —oj] 0
0 0 K,
— $e3Ks+ (e~ e3)Js et Jg e15(Js—KyJy)
—2ag7m et Js — JeiKs— d(eh—ep)ds  €3d(Js—Kydy) +0(€?). (30
e1s(Js—K1ds) e34(Js—K1ds) el (Ks—2K,Ky)
|
The constant&; to K5 andJ; to Js are defined in Appendix d2 d
A. PV_Z_Pvdd_Z_PHkZ_(T CD
The governing system of equations is then reduced to th dz
two equationgas described in Appendix)A 2 q
5 =de’q 1— npsp— 7Pl + 7Pk |W, (37)
_ z
S ' or (V2u3)=V*ug—yV2nl+ yagnt (31
wherek= 17+ m? and theP; are functions of the parameter
and A=(2D, B) ! and linear functions of the shape parameter
agp as defined in34). See the Appendix for more details.
ant The boundary condition&}) and(5) become

— = deH{ =1+ 9P;V2+ 9 Ps— P15+ ndPgda}us

+{PV2+(Py—Py)d5—dP,dzint, (32

in terms of the independent variables anduj only, where

Pyv=Kz, Pp=— (33

Kot 2
YUK,

Kz

P5:J1 Kl

Ki+ —Js

Qg

—Jz—[h

Kz

+3 K,

Kal 2K+ —=| —Ksg

Qap,

Kz

K, —Ks

ag

P6:3|:K4( 2K1+
and

_J2+ \]4 _J5 ap. (34)

K Kz
P7=J1 K1+K_1 K1+K_1

We consider normal mode solutions of the form

u%=W(Z)ei<'X+my)+‘” and nlzq)(z)ei(lx+my)+ot_

(39
On substitution intq31) and(32), we get
o d? d?
—+k?— — || k= — | W=—Rd 'k’ 36
Se d22> ( dzz) 36

and

dw dd
W=0, —=0, and <I>d—5=0, on z=0,—1.

iz~ (39

The exponential appearing in E(7) prevents an ex-
plicit solution from being found and we must resort to find-
ing asymptotic or numerical solutions.

IV. ASYMPTOTIC ANALYSIS

The work in this section uses similar techniques to those
in Hill et al*for the earlier continuum model. If we assume,
for example, that. nivalisis a self-propelled spheroid and
correspondingly\ =2.2 anday=0.31 then

P,~0.16, P,~0.26, (39)

Ps~0.21, Pg~—0.035 andP;~0.19. (40)

P¢ appears to be too small to be classedXq4) but by
noting thatPg, Pg and P, always appear in Eq37) multi-
plied by 7 (and »~33d~?; see below then it simplifies
matters to conside;=0O(1) andn=0(d") for somen and
i=5,6,7. This assumption is justified asymptotically pro-
vided we either assume thatis much smaller thaP; for all

i for shallow layers or much larger for deep layers. Using the
definition ofd and Eq.(20) we can write

BK?

n= —2d72~33d72,

K5 4

where we have useB=3.4 andr=1.3.

There are two natural asymptotic expansions which
could be considered here: one for sntland one for large
values. Note that since E5) implies
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TABLE |. Values of theK andJ constants, for varying values af, from TABLE lll. The values of the constan® for typical values ofx and «.
Pedley and KesslgiRef. 15 with corrections fork,.

ao N Ps Ps P, Py Py
A Ky K, Ks Kq Ks
0.0 22 0.22 0.0 022 026 0.6
03 0099  0.0059 0.33 ~0.0039  —0.013
10 031 0061 0.28 0037  —oo4s 02 03 0050 -000017 0050 033  0.33
5> 057 o022 0.16 o010 —ou1 0.2 10 014  —0.0050 014 031  0.28
30 067 033 0.10 012 o014 0.2 22 022  -0022 020 026  0.16
N ] ] ] ; ; 0.2 30 023  -0028 019 022 0.0
1 2 4 5 6
03 0015 7.410* -46x10°% -002  -0040 081 22 021 ~0.035 019 026 016
10 014 0024 ~0.064 -0.064  —0.12 040 22 021 —004a 018 026 046
22 045 016 ~0.26 -013  -0.20
30 060 027 ~0.41 -018  -022 100 22 020 ~0.11 013 026 0.6
KoVgrd 2. 9152 2
H=—2°— (42) D2— —|D?W=—dk?RO. (43)
Kl SC

then, from Tables | and IIH=23d um and so, ifd=0.1, Otherwise we obtain the trivial solution. Here and henceforth
then the depth of the fluid is equal to 23m, which is very D=d/dz. Without loss of generality, we shall always as-
small for a fluid layer. A typical experimental depth of 5 mm sume®~1 and hencéV~dR. Close to neutrally stable so-
givesd=220(2 s.f), for which the larged expansion should Ilutions we can neglear and there are then four nontrivial
be valid. The smaltl expansion, however, is used to validate leading order balances of E(B7) to be considered.

the numerical solutions in the next section. We compute * CASE |

other values of thé®;’s in Table Il for a range ok and«. D2p=0, (44)
A. Shallow layer analysis (0<d<1) which impliesR<0(d~?) and 7R<0O(d~?).

This case is similar to the shallow layer analysis of Hill * CASE 1l
et al}* and, therefore, we quote the results in Appendix B 2

! ! PyD“®=dW, 45

and merely give a brief description beldsee Bedsfor the v 49
detailg. which impliesR~d 2 and yR<O(d"?).

Suppose that the pattern wavelength is comparable with * CASE IlI
the sublayer depth and det-k/d wherek~1. There are six P D2® =d[W— 7PsD?W], (46)

boundary conditions which imply that we need to keep the
highest order derivatives. The leading order balance in Eq"
(36) must be

hich impliesR~d~2 and sR~d 2.
*« CASE IV

PyD2?®d = —dyPsD?W, (47)

which impliesR<O(d~?) and yR~d 2.

This is summarized in Fig. 1. Case lll leads to numerical
Name Description Typical value Units  analysis with a measure of complexity similar to that of the
full problem and so this case has not been considered here.

TABLE Il. Parameter estimates and measureméRefs. 14,15,29,34

Length scale Average cell diameter 10 um

Length scale Cell spacing 100 pum

Length scale Convection patterns 0.2-2.0 cm .

D Diffusivity 5X10°5-5x107%  cnPls B. Deep layer analysis (d>1)

P Fluid density 1 gm/crh Consider the case where=0 andk~1 whered ! is

p+Ap Cell density 1.05 gm/cfh I th

v Cell volume 5< 1010 cn® small; then

h Center of gravit.y.offset 0-0.5 pum (DZ— k2)2W= — K24 1R® (48)

g Cell eccentricity 0.20-0.31

@ Including flagella 0.40 and

@, Viscous torque parameter 6.8 2 2

Vs Cell swimming speed 63 um/s (PyD*— PvdD_ PHk )P

o Dynamic viscosity 10? gm/cm s g 5 5

g Acceleration due to gravity fo cm/g =de"{1- nPsD"— 7dPeD + Pk ]W. (49

A Small= random behavior 2:2 These equations are singular for large valued ahd there-
Large= deterministic . . L

, Direction correlation time 13 s fore we require a solution within the boundary layer at the

B Gyrotaxis parameter 34 s top which can be matched to a solution for the outer region.

B Including flagella 6.3 s For the outer solution the cell concentration is exponentially

D, Cells’ rotational diffusivity 0.067 st small, so that

S Schmidt number 19

(PyD?—PydD—P_k?®)®=0, (50)
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Gyrotaxis ferms Gyrotaxis terms “
// 5 nw
~ 1
Cannot satisfy R~dW d
boundary conditions
as lose highest 7
derivatives. ‘(/ Flow terms
/ —

————— P e e i 1

% exponential terms at /d—l_
AN - leading order
/s

Case i Case | Case
Ie

leading order
[b/ /i Ia Flow ferms - R=0 /’N
o - %
d* d %! a’ W e
./ R~ 5 / L--.L
d > g / T
S| i / / 5
s s Y

Ve -4
Case implies e d N :
s a* k=0 e ﬂ " | Realistic |
. \ ! parameter |
taxis s g 4 da’¢ b \Balues '
erm 7 Gyrotaxis // v 1
dominant // torm . u 2
, dominant // i on~d H
// Flow Va ! 4 E
/ 7 Eleorrl:llinant s 7 Flow ' R~d 1
s /7 term ! o
Y | I | /" dominant . Cowe~dt
inconsistent !
regions tommmmmomonmes

FIG. 1. Regiqns of the parameter space COYEFe_d by the leading order baII—'IG. 2. Regions of parameter space corresponding to leading order balances

ances of the Ilnear equations for bioconvection in a shallow lagter1(). of the linear equations for bioconvection in a deep layer (). The shad-

There are four major balances. ing indicates the self-consistent region of parameter space where a neutral
curve can exist.

which, when expandingd in powers ofd~ ! and applying
the boundary conditions at=—1, implies thatb=0. We  on the right hand side, then we are led to the solvability
also have conditionPk?=0 which is unhelpful. If there are terms on
(D2—k2)2W=0, (51) the r?g_ht hand side before third orde_r, then the so_lvab_ility
condition yieldsR=0 or »=0 at leading orders which is

with W=DW=0 onz=—1 which implies again unhelpful. Thus, restricting attention to the L-shaped

W= —KA(z+1)coshk(z+1) region shown in Fig. 2, we immediately see that,a-
_ creasegallowing R~d®W to vary), R initially remains con-
+[A+B(z+1)]sinhk(z+1), (52)  stant but at some value of the gyrotactic terms become

whereA andB are constants and can be formally expanded™pPortant andR(k=0) starts decreasing. Consideriy
in terms ofd L. ~d~ " wheren=1,2,3,... , and writing

Now consider the inner region. We have © *

— -m — -m

(D2—d~2k?)?W= —d~°RIZD (53 W_mE:n Wopd ™ @ mE:O ®-md (55)
and and
(PVD|2_PVD|_PHI(2d_2)(D R:d5_nR5,n+d5_n_1R5,n,1+"' y (56)

=e4d[d 2— yPsDZ— nPeD,+ 7P-k%d~2]W,  (54)  then, to first order,

wherez,=dz and D, is the operatod/dz . The boundary DW_,+Rs_,kK?®,=0 and P,D,(D,—1)®,=0, (57)
conditions becomel§;—1)®=W=D ,W=0 onz=0. The
first equation implies that for a nontrivial solutid®~ d°W.
The second equation is complicated by the exponential terdV_p=a_,z°+b_,z’+Rs_ k*(z;+1—€%) and ®y=¢?,
e“~1 and hence we examine the parameter ranges where (58
the right hand side does not appear at leading order. Assunjghere thea’s andb’s are constants. At second order,
ing ®~1, we requireW=0(1) and yW=<0(d ?) for the 4 ) )

exponential term not to appear at leading order. We are inDiW-n-1+Rs_nk®®_;=—Rs_,_1k"®,

vestigating the equations for the case wb@n_O (the neu.tral and PyD,(D,~1)®_,=0, (59)
curve so we expect there to be only a limited region of
parameter space where the equations remain self-consisteAfidd boundary conditions at=0, which has a solution,
This region is given in Fig. 2. We are restricted to this region
due to the balance of terms in E4) at third order, for
which the term— P k?®,, first appears. If there are no terms and & _,=0. (60)

with appropriate boundary conditions. This has solutions

3 2
W,n,l:a,n,lzl +b,n,12| + R57n71k2(2| + 1_ezl)
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On matching the inner and outer solutions up to second ordewvhich implies that the asymptotics are not valid for small

in the usual manneisee Kevorkian and Cold we find that  values ofk. We clearly need to balance the advection and
a,=a_,.1=b_,=0, gyrotaxis terms, and not let the gyrotaxis terms dominate, to
keep the Rayleigh number finite for sméll Going down in

(Aot Bo)sinhk—kAg coshk=0, 6D the L-shaped regionz~d 3 and W~d 1) the solvability
B, sinh k+Bok coshk—k2A, sinhk=k?Rs_, (62)  conditions give
and RZZPHd4 1+dl( 7]_3(P5_P6)

coshk sinh k sinhk
_k3 0 2 0 2 0

2 2 2 4k(k—sinhk coshk) .,
+ 2 o +0(d™9) . (70)
+k coshkBy=b_,_;. (63) k?—sink? k

First considem=1 such thaty~d 2. The solvability con-  This function is a monotonically increasing functionkoénd
ditions are obtained by integrating the cell conservatiorgives a most unstable wavenumber of z¢for small k

equation from—o to 0. At third order this gives <O(1)].
2Py
Ri=1= (Ps—Pg) 75’ 64\ NUMERICAL ANALYSIS
wherePg is negative. Thereford®, can be negative for suf- In this section we pursue solutions to the full linear

ficiently large Ps—Pg)7n_, and the asymptotics break equations with a fourth order finite difference scheme, sup-
down. This is similar to the analysis of Hiit al*in which, plied by Dr. D. R. Mooreg(see Cash and Moot®, that iter-
for particular values of the gyrotaxis number, the leadingates using the Newton-Raphson-Kantorovich algorithm. The
order in the Rayleigh number became singular or negative.program searches for the neutral curves of the equations
Solving for the constantécorrected from Hillet al}¥)  given initial guesses for the concentration and velocity fields,
we get ® andW, and the Rayleigh numbeR, and it was imple-
mented in a similar manner to that described in idtllall*
Up to eighty-one grid points were used to obtain convergent
solutions, but this was not always necessary, and stretched
meshes were employed to resolve the boundary layer at the
and upper surface in deep layers. An accuracy of six significant
(k—coshk sinh k)k®R, figures was always achieved for convergence. There are a
= ) (66) number of parameters that can be vari€. and Py are
k?—sini? k functions of the parametex alone butPs, P and P are
functions ofA and «q. d is the nondimensional layer depth,
n(d) is the gyrotactic orientation parametérjs the wave-
number andR(d,k, 7,\, ) is the Rayleigh number based
4b_, on the whole suspension depth and is the eigenvalue to be
Ry=—07, (67)  determined. We chose to fix=2.2 (following Pedley and
K Kesslet®) thus leaving four parameters to vary. Figures 3—5
so that show comparisons between the numerical and asymptotic so-
lutions for selected values of The values of the parameters
2Pyd* [ _,, (k=sinhk coshk) have been chosen so that comparisons with &tithl 1 can
- 1—(P5—Pg) 77—2[ 1+4d 7k K2— sint? k be made. Good agreement was always obtained between the
asymptotic and numerical solutions farO(1), provided
that eitherd<1 (for shallow layersor d~1<1, P; (for deep
+0(d"?)|. (68 Jlayers.
For shallow layers d<1) wavenumbers>d are desta-
This is a monotonically increasing function lofand implies  bilized with increasingy and wavenumbers<d are very
that, for k=<O(1), the most unstable wavenumber is zero. slightly stabilized(Fig. 3). The most unstable wavenumber is
The expression does not say anything about the global mosionzero for sufficiently largel?s. Figure 6 shows the flow
unstable wavenumber for genefal and concentration profiles for a mode one solution, where it
It is easy to show that we can cover the whole region incan be seen that the perturbations act over the whole suspen-
parameter space by reducing the importance of certain termsion layer and are almost symmetrical. For deep laydrs (
Going left in parameter space where-d 2 and W~d™*! >1) the perturbations are greatest towards the upper surface
we get that the solvability condition at third order gives (Fig. 7). For deep layers, large wavenumbers are destabilized
and small wavenumbers are stabilized with increasjndn
2Py (69) particular, we find that forp=0, the most unstable wave-
(Ps—Pg)n-1 ' number is zero but ag increases and exceeds some critical

k? sinhkR, B _ (k coshk—sinh k)k’R,
K—sintt k' ° K2—sint? k

(65

b_,

To find thek dependence, we consider the solvability condi-
tion at fourth order and obtain

R3:_
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FIG. 3. Curves of neutral linear stability for a shallow
layer d=0.1 anda,=0.2) asd?y is varied. Dotted
lines are asymptotic results and solid lines are numeri-
cal results.

FIG. 4. Curves of neutral linear stability for a deep
layer (d=40 and ap=0.2) asd? is varied. Dotted
lines are asymptotic results and solid lines are numeri-
cal results.

FIG. 5. Curves of neutral linear stability for a deep
layer (d=200 anday=0.2) asd?y is varied. Dotted
lines are asymptotic results and solid lines are numeri-
cal results.
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value the most unstable wavenumber jumps to a nonzeraligned in one direction in the presence of sufficiently large
value. The asymptotics presented here can not predict thehear flowm(Beeset al2%). At the onset of a large wavelength
critical value or the nonzero most unstable wavenumbeinstability, for which the streamlines are mainly horizontal,
since it is=0(1). Figure 8 shows a neutral curve where it is they will swim in almost exactly the opposite direction to the
clear that minima occur at both a zero and a nonzero wavefuid flow (without tumbling, as would occur wheda,=0),
number. Asy increases still furtheR(k=0)—o. The value thus inhibiting the growth of the disturbance.

of n for which R(k)— first ask—0 can be calculated The Rayleigh numbeR, based on the suspension depth,
from the asymptotic analys[€£q. (68)] to be H, is related to the Rayleigh numbeR, based on the sub-
d-2 layer depthx 1, by the equation
Ne= : (72) .
¢ Ps—Ps R=d%R. (72)

If x\=2.2 and ag=0.2 then d?s.,~4.2. The asymptotic . ” . . .
snalss s sugoests ht 1l cases bty he e VNSRS AL e il o mocet o v
tral curve increases slightly witk for k<O(1) before in- ) rop .

creasing or decreasing whip O(1). Figure 9 describes the Rayleigh numberR., behaved like 720" for smalld and
dependence of the neutral curve @ The value ofxy does  Rc decreased to 2 ad— . For free-rigid boundary condi-
not affect the neutral curve significantly for largebut in-  tions they found thalR,~ 3204* for smalld andR.~ 4/d for
creasinga, stabilizes modes with long length scales. This islarge d. Hill et all* derive an equation in their asymptotic
due to the decrease IP; and Pg when a increases. Elon- analysis similar to Eq(68) which describes the behavior of
gated cells(i.e., those with large values afy) tend to be the neutral curve close to=0. For smallk,

Q
=-2F -
_af ]
z
5|
_af ] sl ]
-10 L " " -10
00 o2 ot o O° os e w0z 0002 oo':, o6 08 1o FIG. 7. Profiles of a neutrally stable numerical solution
for a deep layer ¢=10) with »=0.1, aq=0.2 andk
0 i 0 =10, for whichR~22024. This is a mode one solution.
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z r4
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Neutral curves

1010

FIG. 8. Numerical curve of neutral linear stability for a
deep layer §=200), with d?>»=3.3, ¢g=0. Here we
see a combination of both zero and nonzero dominant
F R unstable wavenumbers. For everyve find that there is

a critical » that determines the bifurcation between
there being a zero and a nonzero most unstable wave-
L J number.

R = Rayleigh number

10 el MRS E | Gl

0.1 1.0 10.0 100.0 1000.0
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2P, d* The theoretically determined nondimensional pattern
R~ ——1, (73 wavenumber is seen from Figs. 3—5 to decrease with increas-
1-(Ps—Pg)n ing depth. After scaling wittH~2.3x 10 3d cm, we find
where the depth independent gyrotaxis number is defined 48at the dimensional pattern wavelength increases with
~ depth, but tends to a finite value for large (keepingd?»
n=d°n. (74 constant This agrees with the measurements of Bees and
-~ a9
Equation(73) is only valid for small enoughy, but we mea- Hill

sure from Figs. 4 and 5 that i is large and;;=33 then the VI. THE EEEECT OF SWIMMING SPEED AS A
minimum of the neutral curve is a factor of 2 larger than theRANDOM VARIABLE
value When;7=O. Hence, the critical Rayleigh number is is ol ¢ he di ) i i dl q
given byR.~4P.d*. Therefore, we findas the qualitative It '55 clear from the discussion given in Pe_ €y an

. 14 ~ C Kesslet® that randomness in the cell swimming direction is
results of Hill et al.™* also suggestthat R./d is initially . : :

X important for a number of reasons. Most importantly it alters
large and decreases to a constant valué-ase. From Figs.
) T - the mean cell response to the external torques and changes

3-5 we find that if =33 thenR./d=300 for d=0.1,  (he form of the diffusion tensor. It is necessary to include
Rc/d=1.17 ford=40 andR./d=1.12 ford=200. The ap-  these factors in the model for the sake of consistency. From
proximate limit of R./d, from above, of #, is equal to the previous section, it is also apparent that the linear behav-
1.04. ior of the diffusion tensor, and hence the existence of a non-

Neutral curves

1o e —— , SRR .
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g
C
oy
2 4010 0 =0 - FIG. 9. Numerical curves of neutral linear stability for
g C ] a deep layer d=200), withd?y=4, asa, varies. In-
| r 1 creasing «, stabilizes modes with long horizontal
a i i wavelengths.
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zero most unstable wavenumber, is dependent on the balangg+5 ,m s ! and for the horizontal plang V) =65
between deterministic processes and randomness in the cells ,;m 51 with a standard deviation of 305 xm s .

swimming direction. But how else does the cell swim ina  Theoretically we begin by considering again the calcu-
random manner? A feature that has been overlooked so far jgtjon for the diffusion tensob given in Eq.(13) and as-

that the individual cells swim at vastly different speeds. Ingme that it takes a celt seconds to settle to a preferred
the real world, with inhomogeneous cultures @f nivalis  gjrection (the direction correlation time Hence,

there will be large variations in cell swimming speed corre-

sponding to different stages in the cells’ life. Hill and ~ D=7(VV)—(V)?), (79)

Hader® investigated both cell swimming speed and orienta-whereV is a random variablésee Bee®t al3%). Assuming
tion. They found that experimental calculations of swimmingthat the swimming speed,, and swimming directiorp, are

speed were dependent on the choice of time step size beéydependent, we can writé=\Vp. Given that(V)=Vq,
tween measurements of position. The cells swim in a smooth

fashion and their mean swimming direction is affected by the 2 (V?) 2

various taxes. In two experiments Hill and da?® tracked D=Vsr 7<pp>—<p) ' (76)

swimming micro-organisms, first in a vertical plane and then i ° )

in a horizontal plane. Both planes were of small focal depthsBY Varying the ratio

Using new techniques of data analysis they were able to (V?)

calculate mean cell swimming velocities and standard devia- N= V2 (77)
S

tions as functions of the time step size and orientation. The
data were extrapolated back to a time step size of zero twe can change the nature of the diffusion tensor. The data of
give the actual swimming velocities. For the vertical planeHill and HaderP® give A" as bounded by 1.15 and 1.45. From
(V)=52+5 ums ! with a standard deviation of Eg.(30), we calculate the modified diffusion tensor to be

K1
N 0 0
0 0
1 K, L
—Db=| 0 =N 0 +te| n(IN-3K)| 0 0 —wp
Ver A 1 1
0o 0 (1—T)N—K§
[~ §e3Ks+ f(el—e3) 6NV se1deN e1(JsN—KJ,)
—2ayn 3e1deNV [— 3eiKs— 3(el,—e3)JlN  €3(JsN—Kyy) +0(€?).
e1s(JsN—K1dy) e34(JsN—K1Jy) Sel(KsN—2K,K,)
(78

Substituting the diffusion tensor into the governing equadarge. Figure 10 describes how the neutral curve varies as a
tions, we find that only the definitions of tiig are altered. If  function of A" given  anday. The ratio of the leading order
N=2.2, these become horizontal and vertical diffusions,

P, =0.26V,

P,=0.48V—0.33,
P5=0.38-0.21g— M(0.16— 0.20ay),
Pe= ao(—0.43+0.33V),

0.26V

Pu/Pv~ 5 28v—0233 (80)

(79

also has some significance.Af=1 then the ratio is greater
than one(as discussed in Pedley al®), but if V>1.5 then

P,=0.38-0.2204p— AN(0.16- 0.13y).

P is the only term which can change sign f&<2 and it
does so ifA//=1.3. This is the average of the bounds .th
determined above from the experiments of Hill anctiele®

the ratio is less than on@s proposed in Childresat all?).
Clearly, the true nature of the diffusion tensor and, hence, the
value of // should be established by independent experi-
ments. Thus, the evidence for the signRyfis inconclusive.

If ¢y=0.4 andN>3.75 then two of the parameters will have Perhaps the best that we can do is to assumePhia small,
changed sign and this will have a major effect on the lineaeven wherd is large, and tak®s=0 in the analysis. This is
analysis. It is, however, unlikely thatV" could be so not altogether convincing and more accurate experiments
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may need to be performed to elucidate the problem. Alternaé.3 s. Also, it has been suggest@edley and Kessl& that
tively, a better approximation to the diffusion tensor mightthe value of 1.3 s used above of the direction correlation
improve the situation. time, 7, is “significantly shorter than the observational esti-
As a further example of modeling swimming speed as amate of 5 s” and so, here, we take=5 s. We choose to take
random variable, suppose thdtis given by a Gamma dis- N=1.3 so thaPPg=0. Neutral curves for the updated param-

tribution, eter ranges are displayed in Fig. 11 where it can be seen that,
1 for the realistic parameter value gf=16d 2, there is most
P(V=0v)= F_gfv (-lg=lv, (81) definitely a nonzero most unstable wavenumber and a reduc-
(&) tion in this value dramatically alters the neutral curve such

wherev e[0) and ¢ and £ are parameters. Kesstéthas that zero becomes the most unstable wavenumbers;for
been using this distribution to fit data obtained for the swim-~4d 2. Given a large enough value df#, a nonzero most

ming speed of bacteria. We find that unstable wavenumber will always exist for dll Figure 11
has the same general characteristics of the previous curves
D=V§r( ¢+1 (pp)—(p)z), (82 but has a diminished response to an increase d@ue to the
& reduction in Ps—Pg).

and, hencé?z=0 whené~3.3.
To obtain results for ourslgggst estimates for the paramy,, ~oMPARISON WITH EXPERIMENTS
eters, we note that Jone$ al.>*°® suggest that allowances
may be made for the swimming behavior @f nivalis and Pedley and Kessl&tuse the data of Hill and Hr° to
the effects of its flagella by increasing, to 0.40 andB to  calculate\ as lying between 1.85 and 2.63. They choose to

Neutra! curves

10 Ty v T Ty

o4 11113

— FIG. 11. Neutral curves fod=40 using parameter es-
1 timates and measurements @f=0.4 and\'=1.34.
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TABLE IV. Calculations of parameters from original and more recent mea-TABLE VI. Theoretical predictions of critical wavenumbers and critical

surements and estimates Bfand 7. Rayleigh numbersto 2 s.f) for a selection of parameter values. The num-
bers in brackets indicate the second critical value at the crossover when
T B K d R n there are two global minima.
— -2
1.3 3.4 435 438 917H 5_n 33d7 d a2z g N ke R
5 6.3 113 118 161H°%n 16d 2
0.1 0.0 0.2 1.0 0.0 190
0.1 0.001 0.2 1.0 0.0 190
0.1 0.01 0.2 1.0 4.0 70
0.1 0.1 0.2 1.0 4.3 8.3
take an average value, as we shall, of 2.2. As we kiBow g4 1.0 0.2 1.0 4.4 0.81
from Table II, we can calculat®, to be 0.067 st. The cell 40 0.0 0.2 1.0 0.0 1%10°
eccentricity, ao, is in the range 0.2—0.31 but JoAéhas 40 2.0 0.2 1.0 0.0 3210°
calculated an effectiver, of 0.40 to allow for the cells’ 40 4.0 0z 10 14 7A10
o o~ oo 40 8.0 0.2 1.0 40 8010
flagella and swimming characteristics. The direction correla, 16 0.2 10 51 5010°
tion time, 7, can be calculated from observations of the hori-4q 32 02 1.0 56 28106
zontal diffusion to be 1.3 ¢Pedley and Kessl&h, but see 200 0.0 0.2 1.0 0.0 0.8710°
Sec. VI where we use a direct observational estimate of 5 £00 2.0 0.2 10 0.0 1>6102
Bees and Hifl have measured the wavelengths of the2%° 3.3 02 10 5.0 3.3¢10°
first instabilities to arise in a well-mixed suspension@f 4.0 02 10 4 3810
o : ; P . 200 8.0 0.2 1.0 200 4%10°
nivalis as a function of cell concentration and suspensiorngg 16 0.2 1.0 240 3%10°
depth. They recorded images of the bioconvection patternsoo 32 0.2 1.0 270 1710°
(in low light conditions to avoid the effects of phototaxis 200 4.0 0.0 1.0 65 4010°
every 10 li ; Ivsi irfQo0 4.0 0.2 1.0 75 4410°
y 10 seconds and applied a Fourier analysis to determi .
the dominant pattern wavelength as a function of time. The 4.0 04 10 82 5410
e - : %00 4.0 0.6 1.0 88 6:010°
then extracted the wavelength of the first instability to occurygg 4.0 0.2 1.0 75 43410°
Results were obtained over a wide range of cell concentraeoo 4.0 0.2 11 66 5010°
tions and suspension depths in order to quantify the bioconz00 4.0 0.2 12 520.0 5.1><102
vection patterns. Although we have no way of drawing a2%° 3-8 8'2 i-g 8 ggigg
r_1eutra| curve from the e_xperlments, because we have no rgg 0.0 04 134 0.0 2910°
liable data for the nonexistence of the patt@specially asl 40 20 04 1.34 0.0 3:310°
changes with each experimettie data points from Bees and 40 4.0 0.4 1.34 7.7 8710°
Hill® should lie above the neutral curve for a given measured0 8.0 0.4 134 33 1310:
value ofd. Here, we are assuming that the initially observed*° 16 04 1.34 51 9810

pattern consists of roll&s we can reasonably assume from
Bees and Hifl).
We summarize the theoretical critical values of the Ray-

leigh numbers and wavenumbers in Table VI, as determineaOIUtlon as assumed in thls Ilrlgar analysis. A similar argu-
above. ment was presented by Hglt al™" We assume that the petri

Before direct comparisons are made between the theod_lsh and suspension are in solid body rotation with angular

retical predictions and the experimental data, it is necessarieloc'ty € until the container is instantaneously brought to

to investigate some important time-scales. Firstly, we mus esé1/2|T(2F—ltlmEer2)|; 'ss%ne-dlgl\(,mano; ;?gersstgsiﬁ;?g? 1S
establish whether the flows caused by the initial mixing have ( ) W ! u

1 L .
diminished and secondly, we must consider whether the cellﬁl1 s I thep th? decay t|(;nte 'Sl; a[)6prOX|m?ter 10ds' I_];_W; take
have had sufficient time to form the exponential equilibrium € cell swimming speed 1o be Am s upwar S(. avle

II) then the cells would require 100 s to swim a typical depth

of 6 mm from bottom to top. The cells typically form pat-
TABLE V. Experimental measurements of wavenumbgrem Bees and terns 39 S_ after the 'n”f'al m|>§|ng. Hence, We can assume that
Hill ®) and corresponding calculations @fandR depending on the value of the majority of the fluid motion due to mixing has decayed
7. Seven experiments have been chosen with similar depths so that they caiway before the onset of instability but that the cells do not

be compared with the theoretical predictions. always have sufficient time to swim and form the exponen-
. d Rx1F) d R0 tial equilibrium prpflle_assqmed in the linear anegS|§ of thIS.
Experiment X, o — paper. In some situations in which the suspension is deep it
name  (cm) Ao ko 7=13s =5s may be more appropriate to use the linear analysis of Pedley
2 0486 123 511 172 185 447 325 and Kesslef (see Bees and Hif). o '
4 0.468 1.05 598 193 484 50.2 8.50 Seven experiments share a similar depth of approxi-
7 0.417 1.05 598 174 822 452 144  mately 0.4 cm, for whicld=~200 if 7=1.3 s andd~40 if
17 0708 151 416 204 393 5307 690 =5 g These results can be compared directly with existing
18 0.354 0755 832 204 393 53.0 6.90  rasults from the linear analysis. In computing Table IV, the
19 0603 129 487 204 393  53.0 6.90 ySIS. puting '

23 0.375 0.801 7.84 204 863 53.0 15.2 fOIIOWing eXpreSSionS fod, R and « were used in ConjUnC'
tion with Table I,
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d=«H, (83 of the parameters in order to validate the theory. Nonlinear
aspects of bioconvection have been studied using Pedley and
Kessler's® continuum model and the general-flow solutions

_ UgApKz/ H5n
- of the Fokker-Planck equatidhin a recent paper by Bees

vagT \ 1—e «H

(84

and Hill*°

and
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APPENDIX A: EXPRESSIONS USED IN

and if 7=1.3 s andB=3.4 s(the original estimatgsthen LINEAR ANALYSIS

7~33d~2. For the new estimates af=5 s andB=6.3 s

(see Jon€¥), n=16d"2. Consider the equilibrium state of no flow whete= w
Comparing the data from the=1.3 s andk, columns of =e=0 and f=f° Writing p=(sin#cos¢, sindsin g,

Table V with Fig. 5 forp=232d~2, we find that the measured cosé)" andk=(0, 0, 1), gives

Rayleigh numbers are all less than the minimum value, 2 0 2¢0

X 10°, of the neutral curve. Also, the wavenumbers are 20 to_i — sin gi) T r ot

40 times smaller than the predicted values. Comparing th&ln ¢ 96 0]  sir? 6 9>

data from ther=5 s andk, columns of Table V with Fig. 11

reveals that the measured Rayleigh numbers are now of com- f0

parable order to the neutral curve but the measured wave- = —A(sin 60— +2f° cos 9)_

numbers are 5 to 10 times smaller than those predicted. Re- 99

ducing » to 4d~2 would have the desirable effect of making Assuming axial symmetry and applying the normalization

the predicted most unstable wavenumber be similar to theondition over the surfacs of the spherefs f°=1, gives

measured value. In general, increasingnd decreasing 0 .\ cos8

improves the agreement between experiments and theoretical FP=me ' (A2)

predictions. It is also possible to adjust other parameters iwhere

the Rayleigh number such that the neutral curve coincides

more precisely with the measured data points but the choice = S—

of values would be somewhat arbitrary and it should be the 4 sinhn

priority of experimental work to establish more precise inde-This is a special case of the Fisher distribution on a sphere

pendent measurements of these parameters. The stochagtiee Mardi4'). Substituting into(11) and (13) gives
and deterministic models of gyrotactic bioconvection differ

17

(A1)

A
(A3)

in their quantitative predictions of initial pattern wave- <p>°=(0, 0, Ky', (A4)
lengths. Typically Hillet al1* predict a wavelength of 2 to 3 where
cm in a suspension of depth 1 cm and we predict a wave- _
length of approximately 1 mm. Experimental measurements Ki=cothA—A"% (AS)
give a typical wavelength of between 4 and 7 mm, halfwayand
between the two predictions. Better agreement can be ob- K
tained by usingr andB as tuning parameters. Tl 0 O
0_\/2
VIIl. CONCLUSION D™=Ver g % ol (A6)
We have examined the linear stability of bioconvection 0 0 K,
patterns for a finitely deep suspension of swimming micro-
organisms using the “new” continuum model of Pedley andWhere
Kessler!® The importance of treating the swimming speed as 1
an independent random variable has been brought out. Many K,=1—coth? A+ = (A7)
parameters have to be estimated and, from these estimates,
good agreement with the experiments of Bees and il Perturbing the equilibrium solution, such that
obtained that is a general improvement on the earlier analysis 1 . 0 1
of Hill et al!* Perfect agreement can be obtained by fitting U= €U, ®=€cw’, €= e’ and f=f0+eft, A8)

the theory to the experimental data with choices of param-
eters within realistic bounds. However, future experimentavhere 0<e<1, in spherical polar coordinate®,( ¢) at
should concentrate on obtaining independent measuremen@¢), Eq. (18) gives
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Nt 6(91‘1 DL & ) Loft 5 cospf! e A
Sind 30 sin 90 +sin2 ﬁ_ad)z -0—304‘ cos N 4 sinbs
1
.df° Lof° - _Z
:77< wl.p 0%+2a0pel 7 —6a0p-el-pf0 , K]_ coth A N ’
1
(A9) K,=1—cott? )\+F :
h (A11)
where - 3K,
f0  coss SN
p— 1 cos
g = Mk sin &7 T o1 ety 2K cothh Ky
e U T
"_ . _ . T
6= (cos 0 sin ¢,cos 6 cos¢,—sin ), 2 5  4cothh
Ks=——|2+—— —coth? \
. _ . MNTTA
p/\@=(—sin #,c0s6,0)",
. 2 4K,
p-€'- 0= — feg sin 20+[F(e1,—e3,)cos 2 =Ty e )
+ }el, sin 2¢]sin 20+ [e1, cos ¢ 4 -
L legﬂ)\ﬂxz N ag g,
+ €54 Sin 2¢]cos ¥ =0
4 o
and =g 2 Naag,
.el.p= iel —1)+Tiel. -l 4 ~ ~
p-e'-p= 3e343 cos 6—1)+[3(e},—e;,)cos 2 J4:§7T)\,LL)\2 N3, (A12)
+el, sin 2¢]sir? 6+[el; cos ¢ =0
: : 4 e
+ e} sin 2¢]sin 26. (A10) ‘]5:577)\’%;0 Ay, ,,
This equation is solved using associated Legendre polynomi- 16 * .
als as in Pedley and Kesst2and results in Eqs(29) and J6=€7T)\,u,7\2 Nay 5,
(30) with the following definitions for the constants therein N _'=°
(note, in particular, the amendmentKqg): wherea,a anda are defined by
m+2 m—1 brm A13
anm= man—l,m+l+ man—m—ﬁm, (A13)
where
0, V(n+m) even,
= 2m+1)I'(n+1)/2T'((n+2)/2
Pntim ( )T ((n+D)/2)T ((n+2)/2)  Y(n+m) odd: (A14)
AI'(n+21)I'((n—m+3)/2)I" ((n+ m+4/)2)
-~ m+2 . . m-1 - . Bom AL
&nm= " 1) (2m+3) 201+ 1T oMo yman 1T 1) (AL5)
where
0, V(n+m) even,
b = 2m+ )T ((n+1)/2)T ((n+2)/2)(n*+5n+ 4+ m+m?
briim=y )T ((n+1)/2)T ((n+2)/2)( )’ V(n+m) odd: (A16)
16I'(n+1)I'((n—m+5)/2)I" (n+ m+6)/2)
— m+3 — N m-2 — N Hnm AL7
8nm= = (1) (2m+ 3) 2L+t Gms pymen-tm- 1 e (A17)

where
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% V(n+m) even,
Bneam={ __(2m+ DI (n+2/2T(n+3)/2)(n+4) (A18)
- 8I(n+2)L(n—m+5/2T(n+m+6)/2)’ V(n+m) odd.

To O(e), the governing equations become APPENDIX B: A SUMMARY OF THE ASYMPTOTIC
L RESULTS

V.-u =0, Al19

! (AL9) 1. Shallow layer, d<1

_ <9U » »=0(1) Mode one solutions belong to Case Ib where
_vnl_ a1 2 n g
St i Vp.—yn'k+Veu (A20) R~1 and
and 1 13 ... |1 5Py
(1) — bl ] %) B

) R 720Py 1+2d+d (105+k 21 26P,
an =—-V. edz 1+d edz< >l+d 1< >O 3
g p p +0(d). (BY)

Modes of order greater than two belong to Case Il and imply
—D% Vnl-dei?D!. k}. (A21)  thatR~d 2. R for a mode two solution, with similar expres-
sions for higher modes, is given by

These five p.d.e.’s in five unknowns are reduced to two WP

p.d.e.’s _in two unknowns as follows. Expanding E421) RN = nPv d=2+0(d™ b (B2)
we obtain k2
ont K K wheren=2,3,...,w,=nm if n is even andv,~ns if n is
- detul-d e )i — e odd. ” "
! ! » n~1 Modes of order one again come from Case Ib and
—d—<p>,an1+D 3L+ D3,0%e02 Ris given by
13
whered,=d/ 9x; and repeated indices are summed over 1, 2 ~, 1 5Py 3PsP, L o(d?
and 3. Sincel;(4,u’)=0, we get 21 262, N7 7P, (d%).
d1w3— drwi=—V?u} and (B3)
Modes of higher order belong to Case Ill and it can be seen
91813+ 92635 = 3 V2U3— d3d3U3 . (A23) ot g g
Hence, Eq(29) gives RM~d-2, (B4)
a(p)i=—m(I1+ aods) V2U3+ nag(235—3K4)d3dsU3  wheren=2,3, ... .
(A24) « y~d~! Mode one is from Case Ib,
and from Eq.(30) we obtain
RY=720Py 1+d| = + 7_1(P5s—Pg)
1 2,1
9iDi3= = 7= I1K1+ ag(Is— K1) VU3

+ nao[2(3s—K1J4) = 3(Ks— 2K K 4) 1 d393U3. —k2%5_4| P+ 3:I5DPH) +0(d?). (B5)
(A25) Y
o ] . Modes of higher orders are from Case (Wherem=1),
Substituting Eqs(A25) and(A24) into Eq. (A22) yields Eq.
(32). Taking the divergence of E§A20), and the Laplacian WPy
of the third component of EqA20) we get R = pEN d~'+0(1), (B6)
1 5

— _v2xl_ 1
0=—V%pe—ydsn" and wheren=2,3,...,w,=57/2 and 57/2=<w;< 97/2.

« »~d~? All modes are determined in Case IV and give

J
Sc_lﬁ(Vzué)=—a3V2pé+ V2V2ui—yV2nl.  (A26) ‘p
w
RM=-—"—"—+0(d), (B7)
Substituting the former into the latter gives Eg1l). 7-2Ps
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