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Linear bioconvection in a suspension of randomly swimming, gyrotactic
micro-organisms

M. A. Beesa) and N. A. Hill
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

~Received 29 January 1998; accepted 30 April 1998!

We have analyzed the initiation of pattern formation in a layer of finite depth for Pedley and
Kessler’s new model@J. Fluid Mech.212, 155~1990!# of bioconvection. This is the first analysis of
bioconvection in a realistic geometry using a model that deals with random swimming in a rational
manner. We have considered the effects of a distribution of swimming speeds, which has not
previously received attention in theoretical papers and find that it is important in calculating the
diffusivity. Our predictions of initial pattern wavelengths are reasonably close to the observed ones
but better experimental measurements of key parameters are needed for a proper comparison.
© 1998 American Institute of Physics.@S1070-6631~98!02808-6#
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I. INTRODUCTION

Far from being a recently discovered phenomenon, p
terns in suspensions of swimming cells have been obse
for some time. Ever since common algae, such asChlamy-
domonas nivalis, Euglena viridis, Crypthecodinium cohnii
and the ciliated protozoanTetrahymena pyriformiswere iso-
lated, plumes of aggregating cells have been noticed in
culturing flasks. Platt1 coined the term ‘‘bioconvection’’ to
describe the phenomenon of pattern formation in shal
suspensions of motile micro-organisms at constant temp
ture, on a par with those found in convection experimen
However, this is by no means the first documented obse
tion, which goes back to at least 1848~e.g., Wager2!. Other
experimental investigators have included Loeffer a
Mefferd,3 Nultsch and Hoff,4 Plesset and Winet5 and, more
recently, Kessler,6,7 Bees8 and Bees and Hill.9 Bioconvection
is generally due to an overturning instability caused
micro-organisms swimming to the upper surface of a fl
which has a lower density than the micro-organisms.

The first models of bioconvection were developed
Plesset and Winet.5 They considered a Rayleigh-Taylor in
stability in a continuously stratified, two-layer model an
were able to investigate the preferred pattern wavelength
function of the upper layer depth and the cell concentrati
Levandowsky et al.10 investigated bioconvection pattern
and proposed a more realistic model~Childresset al.11! in
which the micro-organisms could swim but were constrain
to swim upwards only, due to their asymmetric density d
tribution. As density fluctuations in the suspension are g
erally small, they assumed that variations in viscosity due
the concentration of cells and the possible effects on
stress tensor due to the swimming motion of the mic
organisms are both negligible. Their application of t
Boussinesq approximation implies that the only way

a!Present address: Center for Chaos and Turbulence Studies, Physics
tute, Denmark’s Technical University, Bygning 309, DK-2800 Lyngb
Copenhagen, Denmark; Electronic mail: Martin.A.Bees@fysik.dtu.dk
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which the cell concentration can affect the fluid flow
through vertical variations in the fluid density. In expe
ments withC. nivalis ~a biflagellate alga!, Kessler6,7,12 first
realized the importance of hydrodynamic focusing with
flows. Kessler termed the biological component of this p
cess gyrotaxis, which occurs as a result of the balance
tween viscous and gravitational torques exerted on the c
Its effect is to tip a swimming cell away from the vertical s
that its preferred swimming direction is towards regions
down-welling fluid and away from regions of up-wellin
fluid. A deterministic approach was used in the models
Pedleyet al.,13 for a suspension of infinite depth, and Hi
et al.,14 for a suspension of finite depth. However, Pedl
and Kessler15 later reasoned that by considering the cell d
fusion tensor,D, as isotropic and, hence, ‘‘strongly random
and independent of the mechanisms involved in gyrota
Pedleyet al.13 were being inconsistent in that they were co
sidering the determination of the swimming velocity,Vs , as
‘‘weakly random.’’ That is to say that calculating the ce
swimming direction, in a deterministic manner, for all of th
cells, and then assuming that there was no bias in the di
tion of diffusion of these cells was inconsistent. Therefo
instead of assuming a constant orthotropic diffusion ten
~as in Childresset al.11! they modeled the cell swimming
direction in a probabilistic fashion. A model analogous
that of suspensions of colloidal particles subject to rot
Brownian motion ~Brenner and Weissmann an
Brenner;16–18 Hinch and Leal and Leal and Hinch19–22! was
applied. From this, they calculated the average swimm
direction and the cell diffusion tensor. We shall adopt t
approach of Pedley and Kessler15 and use an analysis simila
to that of Hill et al.14 to investigate bioconvection in a sus
pension of finite depth.

Our aim in this paper is to predict a particular mo
unstable mode~i.e., one that grows most rapidly! from an
initial equilibrium solution~in the spirit of Chandrasekar23!.
This can be compared, in principle, with the experiments
Bees and Hill9 and with the deterministic theoretical predi
tions of Hill et al.14 In experiments, however, it is sometime
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difficult to realize the very first unstable linear mode befo
nonlinear effects become significant~Bees and Hill9!.

An equilibrium solution, of the full equations for finite
depth and zero flow, is found and is then perturbed, allow
weak ambient flow. Brenner and Weissmann16 describe the
use of asymptotic expansions in their analysis of a Fokk
Planck equation to describe dipolar spheres subject to e
nal couples and rotational Brownian motion which was e
tended by Pedley and Kessler15 for their infinite-depth
model. For a suspension of infinite depth, the first order c
rection to the diffusion tensor did not appear in the full line
equations. However, in the finite depth case, the first or
diffusion tensor is of paramount importance and can con
the range of unstable wavenumbers.

The full linear equations are solved using asymptotic a
numerical techniques for a finite depth, in a similar man
to Hill et al.,14 with the added complications of the nonco
stant diffusion and mean cell swimming velocity which a
modeled using the Fokker-Planck equation. Hillesdonet al.24

and Hillesdon25 investigate patterns formed by chemotac
~or more specifically aerotactic! bacteria and some of the
analytic and numerical techniques stem from the sa
sources as those contained in this paper. In their mode
analysis is further complicated by discontinuities in the b
terial concentration gradient and ideas from the theory
penetrative convection~Veronis26! had to be employed to
understand the nonlinear behavior of the system. Howe
their model does not include coupling of fluid flow and c
orientation in a Fokker-Planck equation. Vincent and Hil27

study an additional instability due to a typical phototac
response, for which they predict a range of steady and o
latory behavior in a suspension of swimming micr
organisms.

Finally, we investigate the effect of modeling the swim
ming speed as a random variable and compare our pre
tions with the experiments of Bees and Hill.9

II. MODEL FORMULATION

Following the continuum model of Pedley and Kessler15

for a dilute suspension of swimming cells, the suspensio
incompressible so that

“•u50, ~1!

whereu„x… is the velocity of the suspension, and using t
Boussinesq approximation the momentum equation is

r
Du

Dt
52“pe1nvDrg1m¹2u. ~2!

Heren„x… is the local cell concentration,m is the fluid vis-
cosity,pe„x… is the excess pressure,v is the mean volume o
a cell, andDr is the difference between the cell and flu
density,r. The total number of cells is conserved so that

]n

]t
52“•@n~u1Vs^p&!2D•“n#, ~3!

where^p„x…& is the mean cell direction,Vs is the mean cell
swimming speed andD„x… is the cell diffusion tensor. The
g
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boundary conditions for a suspension trapped between
rigid horizontal boundaries are that of no-slip,

u50, at z50,2H, ~4!

and that of zero cell flux perpendicular to the boundaries

k•@n~u1Vs^p&!2D•“n#50, at z50,2H. ~5!

Herek is a unit vector directed vertically upwards. An equ
librium solution to the above equations is

u50, n5Nekz, ^p&5^p&0 and D5D0, ~6!

where

k5
Vs^p&3

0

D33
0 , ~7!

the subscript 3 indicating components in the vertical dir
tion. k21 represents a local scale height. From the norm
ization condition,

E
2H

0

ndz5Hn̄, ~8!

wheren̄ is the mean cell concentration andn5Nekz, it fol-
lows that

N5
Hn̄k

12e2kH
. ~9!

The cell swimming direction probability density functio
~p.d.f.! defined on the unit sphere isf (p), where

p5~sin u cosf,sin u sin f,cosu!T, ~10!

and u and f are spherical polar angles.u is the colatitude
measured relative tok. The mean cell swimming direction
^p&, is defined by

^p&5E
S
pf ~p!dS, ~11!

whereS is the surface of the unit sphere and

D~ t !5E
0

`

^Vr~ t !Vr~ t2t8!&dt8. ~12!

Here Vr is the velocity of a cell relative to its mean valu
~See Shuet al.28 for a further discussion of this formula.!
The expression forD is, of course, hard to calculate as
requires a knowledge of all previous cell velocities an
hence, we are forced to make an approximation for the s
of simplicity. If the cell swimming speed,Vs , is a constant
as assumed by Pedley and Kessler15 ~the effects of a noncon
stantVs on the linear analysis will be considered in Sec. V!
and if it is assumed that there exists a direction correlat
time-scale,t, such that the cell’s direction changes by le
than a specified angle, then we may write

D'Vs
2t^~p2^p&!~p2^p&!&. ~13!

Essentially,t can be determined from experiments~Pedley
and Kessler;15 Hill and Häder29! to be approximately equal to
1.3 s. Shuet al.28 discuss this approximation in greater d
tail. Equation~13! has been successfully employed before
Pedley and Kessler,15 Bees8 and Bees and Hill.30 The p.d.f.,
f (u,f), satisfies the Fokker-Planck conservation equatio
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] f

]t
1“•~ ṗf !5Dr¹

2f , ~14!

whereDr is a constant rotational diffusivity that incorporat
rotational Brownian effects and the intrinsically imperfe
locomotion of the cells~see Pedley and Kessler;15 Risken;31

Schienbein and Gruler32!. Dr is an unknown constant. It ca
be estimated from the data of Hill and Ha¨der29 to be 0.065
s21 ~see Pedley and Kessler;33 Bees8!.

From the dimensional torque balance equation for gy
tactic cells~Pedley and Kessler15!,

ṗ5
1

2B
@k2~k•p!p#1

1

2
V`p1a0p•E•~ I2pp!, ~15!

whereB is the gyrotactic reorientation time-scale of a c
affected by external~gravitational! torques subject to resist
ing viscous torques, given by

B5
ma'

2hrg
, ~16!

whereh is the center-of-mass offset relative to the geome
cal center of the cell anda' is the dimensionless resistanc
coefficient for rotation about an axis perpendicular top
~Table II; Pedley and Kessler,15 Appendix A!. V andE are
the local vorticity vector and rate-of-strain tensor, resp
tively.

Nondimensionalizing such that

V5
Vs

2t

H2
v and E5

Vs
2t

H2
e, ~17!

and substituting into the steady form of the Fokker-Plan
equation~14! gives ~see Bees8 for details!

k•“ f 22~k•p! f 1hv•~p`“ f !

12ha0@p•e•“ f 23p•e•pf #5l21¹2f , ~18!

where

l5
1

2DrB
~19!

and

h5
BVs

2t

H2
. ~20!

~Note: l differs by a factor of1
2 omitted in error in Pedley

and Kessler15 but corrected in the Pedley and Kess
review.33! Here,h is called the dimensionless gyrotaxis p
rameter anda0 is the cell eccentricity given by

a05
a22b2

a21b2
, ~21!

wherea andb are the major and minor dimensions of a c
respectively.
-

l

i-

-

k

l

Using our best estimates~see Table II later! l52.2 and
h51.8310243H22 whereH is the depth of the layer in cm
~or h533d22; see later!.

Lengths are scaled onH, the depth of the suspension
cell concentration onN and diffusivity onVs

2t, whereVs is
the cell swimming speed andt is the direction correlation
time, and the time-scale for the flow isH2/Vst so that the
nondimensionalized governing equations become

“•u50, ~22!

Sc
21 Du

Dt
52“pe2gnk1¹2u ~23!

and

]n

]t
52“•Fnu1d

K2

K1
n^p&2D•“nG , ~24!

where

d5Hk5
K1H

K2Vst
~25!

is the ratio of layer depth,H, to sublayer depth,k21. K1 and
K2 are functions ofl and are given in the appendix. Ford
@1 we have a ‘‘deep suspension,’’ and ford!1 we have a
‘‘shallow suspension.’’ The Schmidt and Rayleigh numbe
are defined as

Sc5
n

Vs
2t

~26!

and

R5gd5
NvgDrH4K1

nrVs
3t2K2

. ~27!

R is based on the total depth of the layer. The equilibriu
state, the stability of which we shall investigate, isu50,
^p&5^p&0, n5edz andD5D0 in nondimensional variables.

III. LINEAR ANALYSIS

The solution of the Fokker-Planck equation for we
flow is given in Pedley and Kessler15 in terms of associated
Legendre polynomials~see also Beeset al.30 for more gen-
eral solutions!. We will employ this solution for the linear
analysis in a suspension of finite depth later in this sect
and, hence, we summarize the results here and define
constants in Appendix A. In particular, we correct an error
the calculation ofK4 which appeared in Pedley and Kessl
~Appendix B!.15

Consider a perturbation from the equilibrium solutio
for a suspension of finite depth by setting

u5eu1, ^p&5^p&01e^p&1, n5edz1en1,
~28!

pe5pe
01epe

1 , D5D01eD1,

wheree!1. The mean cell swimming direction is given b
^p&5~0, 0, K1!
T1eFhJ1~v2

1, 2v1
1, 0!T22a0hSe13

1 J4 , e23
1 J4 ,

3

2
e33

1 K4D TG1O~e2!, ~29!

wherev5ev1 ande5ee1, and the diffusion tensor is calculated from Eq.~13! to be
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1

Vs
2t

D5S K1

l
0 0

0
K1

l
0

0 0 K2

D 1eF h~J22J1K1!S 0 0 v2
1

0 0 2v1
1

v2
1 2v1

1 0
D

22a0hS 2 3
4 e33

1 K51 1
4 ~e11

1 2e22
1 !J6

1
2 e12

1 J6 e13
1 ~J52K1J4!

1
2 e12

1 J6 2 3
4 e33

1 K52 1
4 ~e11

1 2e22
1 !J6 e23

1 ~J52K1J4!

e13
1 ~J52K1J4! e23

1 ~J52K1J4! 3
2 e33

1 ~K522K1K4!

D G1O~e2!. ~30!
th
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The constantsK1 to K5 andJ1 to J5 are defined in Appendix
A.

The governing system of equations is then reduced to
two equations~as described in Appendix A!,

Sc
21 ]

]t
~¹2u3

1!5¹4u3
12g¹2n11g]3

2n1 ~31!

and

]n1

]t
5dedz$211hP7¹21h@P52P7#]3

21hdP6]3%u3
1

1$PH¹21~PV2PH!]3
22dPv]3%n

1, ~32!

in terms of the independent variablesn1 andu3
1 only, where

PV5K2 , PH5
K1

l
, ~33!

P55J1S K11
K2

K1
D2J22FJ4S K11

K2

K1
D2J5Ga0

13FK4S 2K11
K2

K1
D2K5Ga0 ,

P653FK4S 2K11
K2

K1
D2K5Ga0

and

P75J1S K11
K2

K1
D2J21FJ4S K11

K2

K1
D2J5Ga0 . ~34!

We consider normal mode solutions of the form

u3
15W~z!ei ~ lx1my!1st and n15F~z!ei ~ lx1my!1st.

~35!

On substitution into~31! and ~32!, we get

S s

Sc
1k22

d2

dz2D S k22
d2

dz2D W52Rd21k2F ~36!

and
e
S PV

d2

dz2
2PVd

d

dz
2PHk22s D F

5dedzF12hP5

d2

dz2
2hP6d

d

dz
1hP7k2GW, ~37!

wherek5Al 21m2 and thePi are functions of the paramete
l5(2Dr B)21 and linear functions of the shape parame
a0 as defined in~34!. See the Appendix for more details.

The boundary conditions~4! and ~5! become

W50,
dW

dz
50, and Fd2

dF

dz
50, on z50,21. ~38!

The exponential appearing in Eq.~37! prevents an ex-
plicit solution from being found and we must resort to fin
ing asymptotic or numerical solutions.

IV. ASYMPTOTIC ANALYSIS

The work in this section uses similar techniques to tho
in Hill et al.14 for the earlier continuum model. If we assum
for example, thatC. nivalis is a self-propelled spheroid an
correspondinglyl52.2 anda050.31 then

PV'0.16, PH'0.26, ~39!

P5'0.21, P6'20.035 andP7'0.19. ~40!

P6 appears to be too small to be classed asO(1) but by
noting thatP5, P6 and P7 always appear in Eq.~37! multi-
plied by h ~and h'33d22; see below! then it simplifies
matters to considerPi5O(1) andh5O(dn) for somen and
i 55,6,7. This assumption is justified asymptotically pr
vided we either assume thatd is much smaller thanPi for all
i for shallow layers or much larger for deep layers. Using
definition of d and Eq.~20! we can write

h5
BK1

2

tK2
2

d22'33d22, ~41!

where we have usedB53.4 andt51.3.
There are two natural asymptotic expansions wh

could be considered here: one for smalld and one for large
values. Note that since Eq.~25! implies
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H5
K2Vstd

K1
, ~42!

then, from Tables I and II,H523d mm and so, ifd50.1,
then the depth of the fluid is equal to 2.3mm, which is very
small for a fluid layer. A typical experimental depth of 5 m
givesd5220 ~2 s.f.!, for which the larged expansion should
be valid. The smalld expansion, however, is used to valida
the numerical solutions in the next section. We comp
other values of thePi ’s in Table III for a range ofl anda0.

A. Shallow layer analysis „0<d !1…

This case is similar to the shallow layer analysis of H
et al.14 and, therefore, we quote the results in Appendix
and merely give a brief description below~see Bees8 for the
details!.

Suppose that the pattern wavelength is comparable
the sublayer depth and setk̃5k/d wherek̃;1. There are six
boundary conditions which imply that we need to keep
highest order derivatives. The leading order balance in
~36! must be

TABLE I. Values of theK andJ constants, for varying values ofl, from
Pedley and Kessler~Ref. 15! with corrections forK4.

l K1 K2 K3 K4 K5

0.3 0.099 0.0059 0.33 20.0039 20.013
1.0 0.31 0.061 0.28 20.037 20.048
2.2 0.57 0.22 0.16 20.10 20.11
3.0 0.67 0.33 0.10 20.12 20.14
l J1 J2 J4 J5 J6

0.3 0.015 7.431024 24.631023 20.02 20.040
1.0 0.14 0.024 20.064 20.064 20.12
2.2 0.45 0.16 20.26 20.13 20.20
3.0 0.60 0.27 20.41 20.18 20.22

TABLE II. Parameter estimates and measurements~Refs. 14,15,29,34!.

Name Description Typical value Units

Length scale Average cell diameter 10 mm
Length scale Cell spacing 100 mm
Length scale Convection patterns 0.2–2.0 cm
D Diffusivity 5 31025–531024 cm2/s
r Fluid density 1 gm/cm3

r1Dr Cell density 1.05 gm/cm3

v Cell volume 5310210 cm3

h Center of gravity offset 0 –0.5 mm
a0 Cell eccentricity 0.20–0.31
a0 Including flagella 0.40
a' Viscous torque parameter 6.8
Vs Cell swimming speed 63 mm/s
m Dynamic viscosity 1022 gm/cm s
g Acceleration due to gravity 103 cm/s2

l Small ⇒ random behavior 2.2
Large⇒ deterministic

t Direction correlation time 1.3 s
B Gyrotaxis parameter 3.4 s
B Including flagella 6.3 s
Dr Cells’ rotational diffusivity 0.067 s21

Sc Schmidt number 19
e

th

e
q.

S D22
s

Sc
DD2W52dk̃2RF. ~43!

Otherwise we obtain the trivial solution. Here and hencefo
D[d/dz. Without loss of generality, we shall always a
sumeF;1 and henceW;dR. Close to neutrally stable so
lutions we can neglects and there are then four nontrivia
leading order balances of Eq.~37! to be considered.

• CASE I

D2F50, ~44!

which impliesR!O(d22) andhR!O(d22).
• CASE II

PVD2F5dW, ~45!

which impliesR;d22 andhR!O(d22).
• CASE III

PVD2F5d@W2hP5D2W#, ~46!

which impliesR;d22 andhR;d22.
• CASE IV

PVD2F52dhP5D2W, ~47!

which impliesR!O(d22) andhR;d22.
This is summarized in Fig. 1. Case III leads to numeri

analysis with a measure of complexity similar to that of t
full problem and so this case has not been considered h

B. Deep layer analysis „d @1…

Consider the case wheres50 andk;1 whered21 is
small; then

~D22k2!2W52k2d21RF ~48!

and

~PVD22PVdD2PHk2!F

5dedz@12hP5D22hdP6D1hP7k2#W. ~49!

These equations are singular for large values ofd and there-
fore we require a solution within the boundary layer at t
top which can be matched to a solution for the outer regi
For the outer solution the cell concentration is exponentia
small, so that

~PVD22PVdD2PHk2!F50, ~50!

TABLE III. The values of the constantsP for typical values ofl anda0.

a0 l P5 P6 P7 PH PV

0.0 2.2 0.22 0.0 0.22 0.26 0.16

0.2 0.3 0.050 20.00017 0.050 0.33 0.33
0.2 1.0 0.14 20.0050 0.14 0.31 0.28
0.2 2.2 0.22 20.022 0.20 0.26 0.16
0.2 3.0 0.23 20.028 0.19 0.22 0.10

0.31 2.2 0.21 20.035 0.19 0.26 0.16

0.40 2.2 0.21 20.044 0.18 0.26 0.16

1.00 2.2 0.20 20.11 0.13 0.26 0.16
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which, when expandingF in powers ofd21 and applying
the boundary conditions atz521, implies thatF50. We
also have

~D22k2!2W50, ~51!

with W5DW50 on z521 which implies

W52kA~z11!coshk~z11!

1@A1B~z11!#sinh k~z11!, ~52!

whereA andB are constants and can be formally expand
in terms ofd21.

Now consider the inner region. We have

~DI
22d22k2!2W52d25Rk2F ~53!

and

~PVDI
22PVDI2PHk2d22!F

5ezId@d222hP5DI
22hP6DI1hP7k2d22#W, ~54!

wherezI5dz and DI is the operatord/dzI . The boundary
conditions become (DI21)F5W5DIW50 on zI50. The
first equation implies that for a nontrivial solutionR;d5W.
The second equation is complicated by the exponential t
ezI;1 and hence we examine the parameter ranges w
the right hand side does not appear at leading order. Ass
ing F;1, we requireW<O(1) andhW<O(d22) for the
exponential term not to appear at leading order. We are
vestigating the equations for the case whens50 ~the neutral
curve! so we expect there to be only a limited region
parameter space where the equations remain self-consis
This region is given in Fig. 2. We are restricted to this reg
due to the balance of terms in Eq.~54! at third order, for
which the term2PHk2F0 first appears. If there are no term

FIG. 1. Regions of the parameter space covered by the leading order
ances of the linear equations for bioconvection in a shallow layer (d!1).
There are four major balances.
d

m
re

m-

n-

nt.

on the right hand side, then we are led to the solvabi
conditionPHk250 which is unhelpful. If there are terms o
the right hand side before third order, then the solvabi
condition yieldsR50 or h50 at leading orders which is
again unhelpful. Thus, restricting attention to the L-shap
region shown in Fig. 2, we immediately see that, ash in-
creases~allowing R;d5W to vary!, R initially remains con-
stant but at some value ofh the gyrotactic terms becom
important andR(k50) starts decreasing. ConsideringW
;d2n wheren51,2,3, . . . , and writing

W5 (
m5n

`

W2md2m, F5 (
m50

`

F2md2m ~55!

and

R5d52nR52n1d52n21R52n211••• , ~56!

then, to first order,

DI
4W2n1R52nk2F050 and PVDI~DI21!F050, ~57!

with appropriate boundary conditions. This has solutions

W2n5a2nzI
31b2nzI

21R52nk2~zI112ezI ! and F05ezI,
~58!

where thea’s andb’s are constants. At second order,

DI
4W2n211R52nk2F2152R52n21k2F0

and PVDI~DI21!F2150, ~59!

and boundary conditions atz50, which has a solution,

W2n215a2n21zI
31b2n21zI

21R52n21k2~zI112ezI !

and F2150. ~60!

al-FIG. 2. Regions of parameter space corresponding to leading order bala
of the linear equations for bioconvection in a deep layer (d@1). The shad-
ing indicates the self-consistent region of parameter space where a ne
curve can exist.
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On matching the inner and outer solutions up to second o
in the usual manner~see Kevorkian and Cole35! we find that
a2n5a2n215b2n50,

~A01B0!sinh k2kA0 coshk50, ~61!

B0 sinh k1B0k coshk2k2A0 sinh k5k2R52n ~62!

and

2k3
coshk

2
A02k2

sinh k

2
A01k2

sinh k

2
B0

1k coshkB05b2n21 . ~63!

First considern51 such thath;d22. The solvability con-
ditions are obtained by integrating the cell conservat
equation from2` to 0. At third order this gives

R45
2PH

12~P52P6!h22
, ~64!

whereP6 is negative. Therefore,R4 can be negative for suf
ficiently large (P52P6)h22 and the asymptotics brea
down. This is similar to the analysis of Hillet al.14 in which,
for particular values of the gyrotaxis number, the lead
order in the Rayleigh number became singular or negati

Solving for the constants~corrected from Hillet al.14!
we get

A05
k2 sinh kR4

k22sinh2 k
, B05

~k coshk2sinh k!k2R4

k22sinh2 k
~65!

and

b225
~k2coshk sinh k!k3R4

k22sinh2 k
. ~66!

To find thek dependence, we consider the solvability con
tion at fourth order and obtain

R35
4b22

k2
, ~67!

so that

R5
2PHd4

12~P52P6!h22
F114d21k

~k2sinh k coshk!

k22sinh2 k

1O~d22!G . ~68!

This is a monotonically increasing function ofk and implies
that, for k<O(1), the most unstable wavenumber is zer
The expression does not say anything about the global m
unstable wavenumber for generalk.

It is easy to show that we can cover the whole region
parameter space by reducing the importance of certain te
Going left in parameter space whereh;d22 and W;d21

we get that the solvability condition at third order gives

R352
2PH

~P52P6!h21
, ~69!
er

n

g
.

-

st

n
s.

which implies that the asymptotics are not valid for sm
values ofk. We clearly need to balance the advection a
gyrotaxis terms, and not let the gyrotaxis terms dominate
keep the Rayleigh number finite for smallk. Going down in
the L-shaped region (h;d23 and W;d21) the solvability
conditions give

R52PHd4F11d21S h23~P52P6!

1
4k~k2sinh k coshk!

k22sinh2 k
D 1O~d22!G . ~70!

This function is a monotonically increasing function ofk and
gives a most unstable wavenumber of zero@for small k
<O(1)].

V. NUMERICAL ANALYSIS

In this section we pursue solutions to the full line
equations with a fourth order finite difference scheme, s
plied by Dr. D. R. Moore~see Cash and Moore36!, that iter-
ates using the Newton-Raphson-Kantorovich algorithm. T
program searches for the neutral curves of the equat
given initial guesses for the concentration and velocity fiel
F and W, and the Rayleigh number,R, and it was imple-
mented in a similar manner to that described in Hillet al.14

Up to eighty-one grid points were used to obtain converg
solutions, but this was not always necessary, and stretc
meshes were employed to resolve the boundary layer at
upper surface in deep layers. An accuracy of six signific
figures was always achieved for convergence. There a
number of parameters that can be varied.PV and PH are
functions of the parameterl alone butP5, P6 and P7 are
functions ofl anda0. d is the nondimensional layer depth
h(d) is the gyrotactic orientation parameter,k is the wave-
number andR(d,k,h,l,a0) is the Rayleigh number base
on the whole suspension depth and is the eigenvalue to
determined. We chose to fixl52.2 ~following Pedley and
Kessler15! thus leaving four parameters to vary. Figures 3
show comparisons between the numerical and asymptotic
lutions for selected values ofd. The values of the parameter
have been chosen so that comparisons with Hillet al.14 can
be made. Good agreement was always obtained betwee
asymptotic and numerical solutions fork<O(1), provided
that eitherd!1 ~for shallow layers! or d21!1, Pi ~for deep
layers!.

For shallow layers (d!1) wavenumbers.d are desta-
bilized with increasingh and wavenumbers,d are very
slightly stabilized~Fig. 3!. The most unstable wavenumber
nonzero for sufficiently larged2h. Figure 6 shows the flow
and concentration profiles for a mode one solution, wher
can be seen that the perturbations act over the whole sus
sion layer and are almost symmetrical. For deep layersd
@1) the perturbations are greatest towards the upper sur
~Fig. 7!. For deep layers, large wavenumbers are destabil
and small wavenumbers are stabilized with increasingh. In
particular, we find that forh50, the most unstable wave
number is zero but ash increases and exceeds some critic
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FIG. 3. Curves of neutral linear stability for a shallow
layer (d50.1 anda050.2) asd2h is varied. Dotted
lines are asymptotic results and solid lines are nume
cal results.

FIG. 4. Curves of neutral linear stability for a dee
layer (d540 and a050.2) asd2h is varied. Dotted
lines are asymptotic results and solid lines are nume
cal results.

FIG. 5. Curves of neutral linear stability for a dee
layer (d5200 anda050.2) asd2h is varied. Dotted
lines are asymptotic results and solid lines are nume
cal results.
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FIG. 6. Profiles of a neutrally stable numerical solutio
for a shallow layer (d50.1) with h50.1, a050.2 and
k510, for whichR'1155. This is a mode one solution
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value the most unstable wavenumber jumps to a nonz
value. The asymptotics presented here can not predict
critical value or the nonzero most unstable wavenum
since it is>O(1). Figure 8 shows a neutral curve where it
clear that minima occur at both a zero and a nonzero wa
number. Ash increases still furtherR(k50)→`. The value
of h for which R(k)→` first as k→0 can be calculated
from the asymptotic analysis@Eq. ~68!# to be

hc5
d22

P52P6
. ~71!

If l52.2 and a050.2 then d2hc'4.2. The asymptotic
analysis also suggests that in all cases whereh,hc the neu-
tral curve increases slightly withk for k<O(1) before in-
creasing or decreasing whenk.O(1). Figure 9 describes the
dependence of the neutral curve ona0. The value ofa0 does
not affect the neutral curve significantly for largek but in-
creasinga0 stabilizes modes with long length scales. This
due to the decrease inP5 and P6 whena0 increases. Elon-
gated cells~i.e., those with large values ofa0) tend to be
ro
he
r

e-

aligned in one direction in the presence of sufficiently lar
shear flow~Beeset al.30!. At the onset of a large wavelengt
instability, for which the streamlines are mainly horizont
they will swim in almost exactly the opposite direction to th
fluid flow ~without tumbling, as would occur whena050),
thus inhibiting the growth of the disturbance.

The Rayleigh number,R, based on the suspension dep
H, is related to the Rayleigh number,R̂, based on the sub
layer depth,k21, by the equation

R5d3R̂. ~72!

Childresset al.11 found that, in their model for two rigid
boundaries~for isotropic diffusion!, the critical value of their
Rayleigh number,R̂c , behaved like 720/d4 for small d and
R̂c decreased to 2 asd→`. For free-rigid boundary condi-
tions they found thatR̂c;320/d4 for smalld andR̂c;4/d for
large d. Hill et al.14 derive an equation in their asymptot
analysis similar to Eq.~68! which describes the behavior o
the neutral curve close tok50. For smallk,
n

.

FIG. 7. Profiles of a neutrally stable numerical solutio
for a deep layer (d510) with h50.1, a050.2 andk
510, for whichR'22024. This is a mode one solution
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FIG. 8. Numerical curve of neutral linear stability for
deep layer (d5200), with d2h53.3, a050. Here we
see a combination of both zero and nonzero domin
unstable wavenumbers. For everyd we find that there is
a critical h that determines the bifurcation betwee
there being a zero and a nonzero most unstable wa
number.
d
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R'
2PHd4

12~P52P6!ĥ
, ~73!

where the depth independent gyrotaxis number is define

ĥ5d2h. ~74!

Equation~73! is only valid for small enoughĥ, but we mea-
sure from Figs. 4 and 5 that ifd is large andĥ533 then the
minimum of the neutral curve is a factor of 2 larger than t
value whenĥ50. Hence, the critical Rayleigh number
given byRc;4PHd4. Therefore, we find~as the qualitative
results of Hill et al.14 also suggest! that R̂c /d is initially
large and decreases to a constant value asd→`. From Figs.
3–5 we find that if ĥ533 then R̂c /d5300 for d50.1,
R̂c /d51.17 ford540 andR̂c /d51.12 ford5200. The ap-
proximate limit of R̂c /d, from above, of 4PH is equal to
1.04.
as

The theoretically determined nondimensional patte
wavenumber is seen from Figs. 3–5 to decrease with incr
ing depth. After scaling withH'2.331023d cm, we find
that the dimensional pattern wavelength increases w
depth, but tends to a finite value for largeH ~keepingd2h
constant!. This agrees with the measurements of Bees
Hill. 9

VI. THE EFFECT OF SWIMMING SPEED AS A
RANDOM VARIABLE

It is clear from the discussion given in Pedley a
Kessler15 that randomness in the cell swimming direction
important for a number of reasons. Most importantly it alte
the mean cell response to the external torques and cha
the form of the diffusion tensor. It is necessary to inclu
these factors in the model for the sake of consistency. F
the previous section, it is also apparent that the linear beh
ior of the diffusion tensor, and hence the existence of a n
r

l

FIG. 9. Numerical curves of neutral linear stability fo
a deep layer (d5200), with d2h54, asa0 varies. In-
creasing a0 stabilizes modes with long horizonta
wavelengths.
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zero most unstable wavenumber, is dependent on the bal
between deterministic processes and randomness in the
swimming direction. But how else does the cell swim in
random manner? A feature that has been overlooked so f
that the individual cells swim at vastly different speeds.
the real world, with inhomogeneous cultures ofC. nivalis,
there will be large variations in cell swimming speed cor
sponding to different stages in the cells’ life. Hill an
Häder29 investigated both cell swimming speed and orien
tion. They found that experimental calculations of swimmi
speed were dependent on the choice of time step size
tween measurements of position. The cells swim in a smo
fashion and their mean swimming direction is affected by
various taxes. In two experiments Hill and Ha¨der29 tracked
swimming micro-organisms, first in a vertical plane and th
in a horizontal plane. Both planes were of small focal dep
Using new techniques of data analysis they were able
calculate mean cell swimming velocities and standard de
tions as functions of the time step size and orientation. T
data were extrapolated back to a time step size of zer
give the actual swimming velocities. For the vertical pla
^V&55265 mms21 with a standard deviation o
a

e
ea
ce
ell

is

-

-

e-
th
e

n
s.
to
a-
e
to

3065 mm s21 and for the horizontal planê V&565
65 mm s21 with a standard deviation of 3065 mm s21.

Theoretically we begin by considering again the calc
lation for the diffusion tensorD given in Eq. ~13! and as-
sume that it takes a cellt seconds to settle to a preferre
direction ~the direction correlation time!. Hence,

D5t~^VV &2^V&2!, ~75!

whereV is a random variable~see Beeset al.30!. Assuming
that the swimming speed,V, and swimming direction,p, are
independent, we can writeV5Vp. Given that^V&5Vs ,

D5Vs
2tS ^V2&

Vs
2 ^pp&2^p&2D . ~76!

By varying the ratio

N5
^V2&

Vs
2

, ~77!

we can change the nature of the diffusion tensor. The dat
Hill and Häder29 giveN as bounded by 1.15 and 1.45. Fro
Eq. ~30!, we calculate the modified diffusion tensor to be
1

Vs
2t

D5S K1

l
N 0 0

0
K1

l
N 0

0 0 S 12
2K1

l DN2K1
2

D 1eF h~J2N2J1K1!S 0 0 v2
1

0 0 2v1
1

v2
1 2v1

1 0
D

22a0hS @2 3
4 e33

1 K51 1
4 ~e11

1 2e22
1 !J6#N 1

2 e12
1 J6N e13

1 ~J5N2K1J4!

1
2 e12

1 J6N @2 3
4 e33

1 K52 1
4 ~e11

1 2e22
1 !J6#N e23

1 ~J5N2K1J4!

e13
1 ~J5N2K1J4! e23

1 ~J5N2K1J4! 3
2 e33

1 ~K5N22K1K4!

D G1O~e2!.

~78!
as a
r

r

the
ri-

nts
Substituting the diffusion tensor into the governing equ
tions, we find that only the definitions of thePi are altered. If
l52.2, these become

PH50.26N,

PV50.48N20.33,

P550.3820.21a02N~0.1620.20a0!, ~79!

P65a0~20.4310.33N!,

P750.3820.22a02N~0.1620.13a0!.

P6 is the only term which can change sign forN,2 and it
does so ifN51.3. This is the average of the bounds onN
determined above from the experiments of Hill and Ha¨der.29

If a050.4 andN.3.75 then two of the parameters will hav
changed sign and this will have a major effect on the lin
analysis. It is, however, unlikely thatN could be so
-

r

large. Figure 10 describes how the neutral curve varies
function ofN givenh anda0. The ratio of the leading orde
horizontal and vertical diffusions,

PH /PV'
0.26N

0.48N20.33
, ~80!

also has some significance. IfN51 then the ratio is greate
than one~as discussed in Pedleyet al.15!, but if N.1.5 then
the ratio is less than one~as proposed in Childresset al.11!.
Clearly, the true nature of the diffusion tensor and, hence,
value of N should be established by independent expe
ments. Thus, the evidence for the sign ofP6 is inconclusive.
Perhaps the best that we can do is to assume thatP6 is small,
even whend is large, and takeP650 in the analysis. This is
not altogether convincing and more accurate experime
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FIG. 10. Neutral curves for a deep layer (d5200)
whered2h54, a050.2 andN varies.
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may need to be performed to elucidate the problem. Alter
tively, a better approximation to the diffusion tensor mig
improve the situation.

As a further example of modeling swimming speed a
random variable, suppose thatV is given by a Gamma dis
tribution,

P~V5v !5
1

G~j!
zjvj21e2zv, ~81!

wherevP@0,̀ ) and j and z are parameters. Kessler37 has
been using this distribution to fit data obtained for the swi
ming speed of bacteria. We find that

D5Vs
2tS j11

j
^pp&2^p&2D , ~82!

and, henceP650 whenj'3.3.
To obtain results for our best estimates for the para

eters, we note that Joneset al.38,39 suggest that allowance
may be made for the swimming behavior ofC. nivalis and
the effects of its flagella by increasinga0 to 0.40 andB to
a-
t

a

-

-

6.3 s. Also, it has been suggested~Pedley and Kessler15! that
the value of 1.3 s used above of the direction correlat
time, t, is ‘‘significantly shorter than the observational es
mate of 5 s’’ and so, here, we taket55 s. We choose to take
N51.3 so thatP650. Neutral curves for the updated param
eter ranges are displayed in Fig. 11 where it can be seen
for the realistic parameter value ofh516d22, there is most
definitely a nonzero most unstable wavenumber and a re
tion in this value dramatically alters the neutral curve su
that zero becomes the most unstable wavenumber foh
'4d22. Given a large enough value ofd2h, a nonzero most
unstable wavenumber will always exist for alld. Figure 11
has the same general characteristics of the previous cu
but has a diminished response to an increase inh due to the
reduction in (P52P6).

VII. COMPARISON WITH EXPERIMENTS

Pedley and Kessler15 use the data of Hill and Ha¨der29 to
calculatel as lying between 1.85 and 2.63. They choose
-
FIG. 11. Neutral curves ford540 using parameter es
timates and measurements ofa050.4 andN51.34.
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take an average value, as we shall, of 2.2. As we knowB
from Table II, we can calculateDr to be 0.067 s21. The cell
eccentricity,a0, is in the range 0.2–0.31 but Jones34 has
calculated an effectivea0 of 0.40 to allow for the cells’
flagella and swimming characteristics. The direction corre
tion time,t, can be calculated from observations of the ho
zontal diffusion to be 1.3 s~Pedley and Kessler15!, but see
Sec. VI where we use a direct observational estimate of

Bees and Hill9 have measured the wavelengths of t
first instabilities to arise in a well-mixed suspension ofC.
nivalis as a function of cell concentration and suspens
depth. They recorded images of the bioconvection patte
~in low light conditions to avoid the effects of phototaxi!
every 10 seconds and applied a Fourier analysis to determ
the dominant pattern wavelength as a function of time. Th
then extracted the wavelength of the first instability to occ
Results were obtained over a wide range of cell concen
tions and suspension depths in order to quantify the bioc
vection patterns. Although we have no way of drawing
neutral curve from the experiments, because we have no
liable data for the nonexistence of the pattern~especially asd
changes with each experiment! the data points from Bees an
Hill 9 should lie above the neutral curve for a given measu
value ofd. Here, we are assuming that the initially observ
pattern consists of rolls~as we can reasonably assume fro
Bees and Hill9!.

We summarize the theoretical critical values of the R
leigh numbers and wavenumbers in Table VI, as determi
above.

Before direct comparisons are made between the th
retical predictions and the experimental data, it is neces
to investigate some important time-scales. Firstly, we m
establish whether the flows caused by the initial mixing ha
diminished and secondly, we must consider whether the c
have had sufficient time to form the exponential equilibriu

TABLE IV. Calculations of parameters from original and more recent m
surements and estimates ofB andt.

t B k d R h

1.3 3.4 435 435H 9170H5n̄ 33d22

5 6.3 113 113H 161H5n̄ 16d22

TABLE V. Experimental measurements of wavenumbers~from Bees and
Hill 9! and corresponding calculations ofd andR depending on the value o
t. Seven experiments have been chosen with similar depths so that the
be compared with the theoretical predictions.

Experiment
name

l0

~cm! l̃0 k̃0

d R(3106) d R,(3106)

t51.3 s t55 s

2 0.486 1.23 5.11 172 185 44.7 3.25
4 0.468 1.05 5.98 193 484 50.2 8.50
7 0.417 1.05 5.98 174 82.2 45.2 1.44
17 0.708 1.51 4.16 204 393 53.07 6.90
18 0.354 0.755 8.32 204 393 53.0 6.90
19 0.603 1.29 4.87 204 393 53.0 6.90
23 0.375 0.801 7.84 204 863 53.0 15.2
-
-
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solution as assumed in this linear analysis. A similar ar
ment was presented by Hillet al.14 We assume that the pet
dish and suspension are in solid body rotation with angu
velocity V until the container is instantaneously brought
rest. The time for spin-down of the suspension
O(E1/2uVu21) whereE is the Ekman number so that ifuVu
;1 s21 then the decay time is approximately 10 s. If we ta
the cell swimming speed to be 63mm s21 upwards~Table
II ! then the cells would require 100 s to swim a typical dep
of 6 mm from bottom to top. The cells typically form pa
terns 30 s after the initial mixing. Hence, we can assume
the majority of the fluid motion due to mixing has decay
away before the onset of instability but that the cells do
always have sufficient time to swim and form the expone
tial equilibrium profile assumed in the linear analysis of th
paper. In some situations in which the suspension is dee
may be more appropriate to use the linear analysis of Pe
and Kessler15 ~see Bees and Hill40!.

Seven experiments share a similar depth of appro
mately 0.4 cm, for whichd'200 if t51.3 s andd'40 if
t55 s. These results can be compared directly with exist
results from the linear analysis. In computing Table IV, t
following expressions ford, R andk were used in conjunc-
tion with Table II,

-

can

TABLE VI. Theoretical predictions of critical wavenumbers and critic
Rayleigh numbers~to 2 s.f.! for a selection of parameter values. The num
bers in brackets indicate the second critical value at the crossover w
there are two global minima.

d d2h a0 N kc Rc

0.1 0.0 0.2 1.0 0.0 190
0.1 0.001 0.2 1.0 0.0 190
0.1 0.01 0.2 1.0 4.0 70
0.1 0.1 0.2 1.0 4.3 8.3
0.1 1.0 0.2 1.0 4.4 0.81
40 0.0 0.2 1.0 0.0 1.63106

40 2.0 0.2 1.0 0.0 3.13106

40 4.0 0.2 1.0 14 7.13106

40 8.0 0.2 1.0 40 8.03106

40 16 0.2 1.0 51 5.03106

40 32 0.2 1.0 56 2.63106

200 0.0 0.2 1.0 0.0 0.873109

200 2.0 0.2 1.0 0.0 1.63109

200 3.3 0.2 1.0 50~0.0! 3.33109

200 4.0 0.2 1.0 74 3.33109

200 8.0 0.2 1.0 200 4.03109

200 16 0.2 1.0 240 3.13109

200 32 0.2 1.0 270 1.73109

200 4.0 0.0 1.0 65 4.03109

200 4.0 0.2 1.0 75 4.43109

200 4.0 0.4 1.0 82 5.13109

200 4.0 0.6 1.0 88 6.03109

200 4.0 0.2 1.0 75 4.43109

200 4.0 0.2 1.1 66 5.03109

200 4.0 0.2 1.2 52~0.0! 5.13109

200 4.0 0.2 1.4 0 3.43109

200 4.0 0.2 1.6 0 2.83109

40 0.0 0.4 1.34 0.0 2.13106

40 2.0 0.4 1.34 0.0 3.33106

40 4.0 0.4 1.34 7.7 8.73106

40 8.0 0.4 1.34 33 133106

40 16 0.4 1.34 51 9.03106
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d5kH, ~83!

R5
vgDrk2

nrVs
2t

S H5n̄

12e2kHD ~84!

and

k5
K1

K2Vst
. ~85!

As

h5
BVs

2t

H2
5

BVs
2tk2

d2
, ~86!

and if t51.3 s andB53.4 s ~the original estimates!, then
h'33d22. For the new estimates oft55 s andB56.3 s
~see Jones37!, h516d22.

Comparing the data from thet51.3 s andk̃0 columns of
Table V with Fig. 5 forh532d22, we find that the measure
Rayleigh numbers are all less than the minimum value
3109, of the neutral curve. Also, the wavenumbers are 20
40 times smaller than the predicted values. Comparing
data from thet55 s andk̃0 columns of Table V with Fig. 11
reveals that the measured Rayleigh numbers are now of c
parable order to the neutral curve but the measured w
numbers are 5 to 10 times smaller than those predicted.
ducingh to 4d22 would have the desirable effect of makin
the predicted most unstable wavenumber be similar to
measured value. In general, increasingt and decreasingB
improves the agreement between experiments and theore
predictions. It is also possible to adjust other parameter
the Rayleigh number such that the neutral curve coinci
more precisely with the measured data points but the ch
of values would be somewhat arbitrary and it should be
priority of experimental work to establish more precise ind
pendent measurements of these parameters. The stoch
and deterministic models of gyrotactic bioconvection dif
in their quantitative predictions of initial pattern wav
lengths. Typically Hillet al.14 predict a wavelength of 2 to 3
cm in a suspension of depth 1 cm and we predict a wa
length of approximately 1 mm. Experimental measureme
give a typical wavelength of between 4 and 7 mm, halfw
between the two predictions. Better agreement can be
tained by usingt andB as tuning parameters.

VIII. CONCLUSION

We have examined the linear stability of bioconvecti
patterns for a finitely deep suspension of swimming mic
organisms using the ‘‘new’’ continuum model of Pedley a
Kessler.15 The importance of treating the swimming speed
an independent random variable has been brought out. M
parameters have to be estimated and, from these estim
good agreement with the experiments of Bees and Hill9 is
obtained that is a general improvement on the earlier ana
of Hill et al.14 Perfect agreement can be obtained by fitti
the theory to the experimental data with choices of para
eters within realistic bounds. However, future experime
should concentrate on obtaining independent measurem
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of the parameters in order to validate the theory. Nonlin
aspects of bioconvection have been studied using Pedley
Kessler’s15 continuum model and the general-flow solutio
of the Fokker-Planck equation30 in a recent paper by Bee
and Hill.40
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APPENDIX A: EXPRESSIONS USED IN
LINEAR ANALYSIS

Consider the equilibrium state of no flow whereu5v
5e50 and f 5 f 0. Writing p5(sinu cosf, sinu sinf,
cosu)T andk5(0, 0, 1)T, gives

1

sin u

]

]uS sin u
] f 0

]u D1
1

sin2 u

]2f 0

]f2

52lS sin u
] f 0

]u
12 f 0 cosu D . ~A1!

Assuming axial symmetry and applying the normalizati
condition over the surfaceS of the sphere,*S f 051, gives

f 05mlel cosu, ~A2!

where

ml5
l

4p sinhl
. ~A3!

This is a special case of the Fisher distribution on a sph
~see Mardia41!. Substituting into~11! and ~13! gives

^p&05~0, 0, K1!
T, ~A4!

where

K15coth l2l21, ~A5!

and

D05Vs
2tF K1

l
0 0

0
K1

l
0

0 0 K2

G , ~A6!

where

K2512coth2 l1
1

l2
. ~A7!

Perturbing the equilibrium solution, such that

u5eu1, v5ev1, e5ee1 and f 5 f 01e f 1,
~A8!

where 0,e!1, in spherical polar coordinates (u, f) at
O(e), Eq. ~18! gives



m

in
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l21

sin u

]

]u S sin u
] f 1

]u D1
l21

sin2 u

]2f 1

]f2
2k•û

] f 1

]u
12 cosu f 1

5hS v1
•p`û

] f 0

]u
12a0p•e1

•û
] f 0

]u
26a0p•e1

•pf 0D ,

~A9!

where

] f 0

]u
52mll sin uel cosu,

û5~cosu sin f,cosu cosf,2sin u!T,

p`û5~2sin u,cosu,0!T,

p•e1
•û52 3

4 e33
1 sin 2u1@ 1

4 ~e11
1 2e22

1 !cos 2f

1 1
2 e12

1 sin 2f#sin 2u1@e13
1 cosf

1e23
1 sin 2f#cos 2u

and

p•e1
•p5 1

2 e33
1 ~3 cos2 u21!1@ 1

2 ~e11
1 2e22

1 !cos 2f

1e12
1 sin 2f#sin2 u1@e13

1 cosf

1e23
1 sin 2f#sin 2u. ~A10!

This equation is solved using associated Legendre polyno
als as in Pedley and Kessler15 and results in Eqs.~29! and
~30! with the following definitions for the constants there
~note, in particular, the amendment toK4):
i-

ml5
l

4p sinhl
,

K15coth l2
1

l
,

K2512coth2 l1
1

l2
,

~A11!

K3512
3K1

l
,

K4512coth2 l2
2K1

l
1

coth l

l
5K22

K1

l
,

K552
2

l F21
5

l2
2

4 cothl

l
2coth2 lG

52
2

l F11K22
4K1

l G ,

J15
4

3
plml(

l 50

`

l2l 11a2l 11,1,

J25
4

5
plml(

l 51

`

l2la2l ,2 ,

J45
4

3
plml(

l 50

`

l2l 11ã2l 11,1, ~A12!

J55
4

5
plml(

l 50

`

l2l ã2l ,2 ,

J65
16

5
plml(

l 50

`

l2l ā2l ,2,

wherea,ã and ā are defined by
anm52
m12

~m11!~2m13!
an21,m111

m21

~2m21!m
an21,m211

bnm

m~m11!
, ~A13!

where

bn11,m5H 0, ;~n1m! even,

~2m11!G„~n11!/2…G„~n12!/2…

4G~n11!G„~n2m13!/2…G„~n1m14/!2…
, ;~n1m! odd;

~A14!

ãnm52
m12

~m11!~2m13!
ãn21,m111

m21

~2m21!m
ãn21,m211

b̃nm

m~m11!
, ~A15!

where

b̃n11,m5H 0, ;~n1m! even,

2
~2m11!G„~n11!/2…G„~n12!/2…~n215n141m1m2!

16G~n11!G„~n2m15!/2…G„~n1m16!/2…
, ;~n1m! odd;

~A16!

ānm52
m13

~m11!~2m13!
ān21,m111

m22

~2m21!m
ān21,m211

b̄nm

m~m11!
, ~A17!

where
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b̄n11,m5H 0, ;~n1m! even,

2
~2m11!G„~n12!/2…G„~n13!/2…~n14!

8G~n12!G„~n2m15!/2…G„~n1m16!/2…
, ;~n1m! odd.

~A18!
w

,

re

ply
-

nd

een

e

To O(e), the governing equations become

“•u150, ~A19!

Sc
21 ]u1

]t
52“pe

12gn1k1¹2u ~A20!

and

]n1

]t
52“•Fedzu11d

K2

K1
edz^p&11d

K2

K1
n1^p&0

2D0
•“n12dedzD1

•kG . ~A21!

These five p.d.e.’s in five unknowns are reduced to t
p.d.e.’s in two unknowns as follows. Expanding Eq.~A21!
we obtain

]n1

]t
52dedzu3

12d
K2

K1
edz] i^p& i

12d2
K2

K1
edz^p&3

1

2d
K2

K1
^p& i

0] in
11Di j

0 ] i] jn
11D33

1 d2edz

1dedz] iDi3
1 , ~A22!

where] i[]/]xi and repeated indices are summed over 1
and 3. Since]3(] iui

1)50, we get

]1v2
12]2v1

152¹2u3
1 and

]1e13
1 1]2e23

1 5 1
2 ¹2u3

12]3]3u3
1 . ~A23!

Hence, Eq.~29! gives

] i^p& i
152h~J11a0J4!¹2u3

11ha0~2J423K4!]3]3u3
1

~A24!

and from Eq.~30! we obtain

] iDi3
1 52h@J22J1K11a0~J52K1J4!#¹2u3

1

1ha0@2~J52K1J4!23~K522K1K4!#]3]3u3
1 .

~A25!

Substituting Eqs.~A25! and~A24! into Eq. ~A22! yields Eq.
~32!. Taking the divergence of Eq.~A20!, and the Laplacian
of the third component of Eq.~A20! we get

052¹2pe
12g]3n1 and

Sc
21 ]

]t
~¹2u3

1!52]3¹2pe
11¹2¹2u3

12g¹2n1. ~A26!

Substituting the former into the latter gives Eq.~31!.
o

2

APPENDIX B: A SUMMARY OF THE ASYMPTOTIC
RESULTS

1. Shallow layer, d !1

• h<O(1) Mode one solutions belong to Case Ib whe
R;1 and

R~1!5720PHH 11
1

2
d1d2S 13

105
1 k̃ 2F 1

21
2

5PH

462PV
G D J

1O~d3!. ~B1!

Modes of order greater than two belong to Case II and im
thatR;d22. R for a mode two solution, with similar expres
sions for higher modes, is given by

R~n!5
wn

6PV

k̃ 2
d221O~d21! ~B2!

wheren52,3, . . . ,wn5np if n is even andwn'np if n is
odd.

• h;1 Modes of order one again come from Case Ib a
R is given by

R~1!5720PHH 11
1

2
d1d2S 13

105
1h~P52P6!

1 k̃ 2F 1

21
2

5PH

462PV
2hS P71

3P5PH

7PV
D G D J 1O~d3!.

~B3!

Modes of higher order belong to Case III and it can be s
that

R~n!;d22, ~B4!

wheren52,3, . . . .
• h;d21 Mode one is from Case Ib,

R~1!5720PHH 11dF1

2
1h21~P52P6!

2 k̃ 2h21S P71
3P5PH

7PV
D G J 1O~d2!. ~B5!

Modes of higher orders are from Case IV~wherem51),

R~n!5
wn

4PV

k̃ 2h21P5

d211O~1!, ~B6!

wheren52,3, . . . ,w255p/2 and 5p/2<w3< 9p/2.
• h;d22 All modes are determined in Case IV and giv

R~n!5
wn

4PV

k̃ 2h22P5

1O~d!, ~B7!
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wheren51,2,3, . . . . Even modes have a constantwn with
k̃, but odd modes havewn5wn@F( k̃ 2)#, where (2n
21)p/2<wn< (2n13)p/2. For h22,1/P5 where w→0
and k̃PR then

R~1!→
720PH

12~P52P6!h22
~B8!

as k̃→0.
• h>O(d2m) wherem>3. All modes are covered by

Case IV,

R~n!5
wn

4PV

k̃ 2h2mP5

dm221O~dm21!, ~B9!

where thewn are given as before.

2. Deep layer, d @1

• h<O(d24),

R~1!52PHd4F11d21S 4k

k22sinh2 k
~k

2sinh k coshk!D 1O~d22!G . ~B10!

• h;d23 @Eq. ~70!#,

R~1!52PHd4F11d21S 4k

k22sinh2 k
~k2sinh k coshk!

1h23~P52P6!D 1O~d22!G . ~B11!

• h;d22 @Eq. ~68!#,

R~1!5
2PHd4

12~P52P6!h22
F11d21

4k~k2sinh k coshk!

k22sinh2 k

1O~d22!G . ~B12!

• h>O(d21) @Eq. ~69!#,

R~1!52
2PHd3

P52P6h21
1O~d2!, ~B13!

and asymptotics break down for smallk.
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