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1AbstractThe role of unsteady laminar ows for planktonic communities is investigated. Langmuircirculation is used, as a typical medium-scale structure, to illustrate mechanisms for thegeneration of plankton patches. Two behaviours are evident: chaotic regions that help tospread plankton and locally coherent regions that do not mix with the chaotic regions andwhich persist for long periods of time. The interaction of populations of phytoplankton withzooplankton is discussed, taking into account the variations in plankton buoyancy.1 IntroductionRecent studies of plankton dynamics (e.g. Solow & Steele, 1995; Pinelalloul, 1995; Gallager et al. 1996)identify plankton patchiness as a major cause of the discrepancies between predictions from bulk-averagedmodels and �eld measurements. In particular, local aggregations of planktonic species have been observedthat are entrained in larger scale oceanic and limnetic circulations (Gallager et al. 1996; Wiafe & Frid,1996; Owen, 1989; Haury & Wiebe, 1982). These \patches" of phytoplankton can persist for long periodsof time irrespective of the apparently strong mixing processes characteristic of turbulent ows.In this paper, a mechanism for the spread and aggregation of advected, buoyant plankton is presentedthat employs a deterministic near-integrable ow �eld. We do not include turbulence or any stochasticforcing in the description but its possible e�ects are discussed and will be included in later publica-tions. We choose Langmuir circulation in a stably strati�ed uid, a typical medium-scale structure, todemonstrate our approach in detail.Langmuir circulations (Langmuir, 1938) occur as a result of a balance between a destabilizing, windinduced, Stokes drift gradient and a stabilizing, temperature driven, vertical density strati�cation (Craik& Leibovich, 1976). They typically manifest themselves as long roll structures of width between 2 m and200 m commonly identi�ed from the debris at regions of surface convergence, which are called windrows(Barstow, 1983). Rather than studying plankton transport in Langmuir circulation in the �eld, we chooseto simulate a mathematical ow �eld, that can be directly controlled, and insert plankton into the owin order to investigate their passive behaviour. We insist that the plankton can do no more than swimup or down (e�ectively modelled as buoyancy). In this way we are able to study the e�ect of the ow onthe plankton without getting distracted by other physical or biological factors.A successful physical model of Langmuir circulation was derived by Craik & Leibovich (1976). Thiswas subsequently used by Moroz & Leibovich (1985) to generate a reduced-dimensional system thatadequately describes key features of the phenomenon. The reduced system was applied to investigatethe bifurcation structure of Langmuir circulation, employing methods from dynamical systems. Bothsteady and unsteady ow regimes were observed. We shall consider the same reduced model in ourdescription only with an additional time-dependent perturbation. The particular perturbation that wewill use, whilst being physically realizable, is somewhat arbitrary and similar results can be obtainedwith other perturbations. However, we wish to emphasize our qualitative arguments and interpretationswith quantitative results.Chaotic advection is a fashionable mechanism for the deterministic transport of scalars that is inde-pendent of molecular di�usion (Jones & Young, 1994; Hydon, 1994; Camassa &Wiggins, 1991). Unsteadyor quasi-steady ows can exhibit non-integrable dynamics that can induce transport of advected scalarsacross what would normally be impenetrable barriers (or equivalently streamsurfaces) for steady inte-



2grable ows (Arnold, 1989). Small time-dependent perturbations to steady ows can break up thesebarriers and produce an \e�ective di�usivity" for purely advected scalars. The resulting lobe dynamics(Wiggins, 1990) for heteroclinic connections may describe important mixing processes and di�usion inLangmuir circulation. This phenomenon is thought to play a signi�cant role in causing planktonic mixingand/or patchiness (e.g. Stommel retention zones; Stommel, 1949, 1951). This mechanism is likely to workin addition to other patch-forming mechanisms, such as reaction-swimming-di�usion (Davis et al. 1991;Bees, 1996; Bees & Hill, 1997) and reaction-advection-di�usion (Spiegel & Zaleski, 1984; Malchow, 1996),but tends to work on shorter time scales; hours instead of tens of days (see Malchow, 1993).This study aims to clarify the relationship between plankton interactions (such as growth, predation,swimming and di�usive processes) and the aggregation and transport of ecosystems due to physicalforcing. In particular, the low-dimensional system of Moroz & Leibovich (1985) is used to investigatethe role of chaotic advection in Langmuir circulation and how it couples with strategies and lifecycles ofindividual plankton. By simulating the trajectories of buoyant particles, we can investigate the dispersionof plankton in a typical unsteady ow �eld, paying particular attention to the qualitative e�ect on theoverall cross-sectional structure of planktonic communities. This enables us to discuss, in a relevantlanguage, the implications on the planktonic food-web, taking into account the diversity of foraging andevasion strategies. In particular, simulation aids in the discussion of the following questions:1. How does chaotic advection help to disperse phytoplankton and do patches emerge and persist asnoted in the �eld studies?2. How do zooplankton minimize their foraging time (or e�ort) and, hence, maximize their growth inan unsteady ow �eld? Should predators \do as the prey do", or is there a better strategy to �ndfood in unsteady ows?3. Does plankton patchiness persist? What are the e�ects of variations in light, temperature andforcing frequency on Langmuir circulations and what consequences do these have for planktonpatchiness and their dynamics?Section 2 describes the key mathematical features of the model, the results of the simulations arepresented in Section 3 and we interpret the results in Section 4.2 Model foundationsHere, we make use of the reduced dimensional system of Moroz & Leibovich (1985) to form a simplevelocity �eld which adequately describes basic Langmuir circulation. The uid velocity, u = (u; v; w)T ,is given by u = 1 + z � C(t) cos (�z)�B(t) cos (l�y);v = A(t)� cos (�z) sin (l�y)andw = �A(t)l� sin (�z) cos (l�y): (1)This naturally satis�es the incompressibility condition, r � u = 0. l is the aspect ratio of circulationdepth (i.e. depth of the thermocline), D, to circulation width. Figure 1 shows the coordinate system



3and portrays the ow described by the equations for which typical �eld measurements (Leibovich, 1983;Barstow, 1983) have been added. Both �eld observations (see Leibovich, 1983) and theory (Craik &Leibovich, 1976; Moroz & Leibovich, 1985) �nd that there is a critical windspeed, above which Langmuircirculation is evident. The critical windspeed is most often found to be approximately 3 m s�1 (e.g. Faller& Woodcock, 1964; Walther, 1967). For regions of parameter space for which steady states are stable,the steady states are given by B = 8A�2l(4 +A2)andC = ABl2 ; (2)where A is a parameter that represents the speed of the circulation and is a function of the eddy viscosity,�T , thermal di�usivity and the Stokes drift gradient (as detailed in Moroz & Leibovich 1985) all of whichare di�cult to estimate or measure. For our purposes, A may be regarded as a constant determineddirectly from observations. In order for us to do this, we require the dimensional variables (indicated byhats), which are given by (ŷ; ẑ) = (y; z)D (3)û = uu2�D�T ; (v̂; ŵ) = (v; w)�TD (4)and t̂ = tD2�T ; (5)where �u2� is the stress acting in the x direction applied to the surface of a mass of uid having density�. u� is the water friction velocity determined by the applied wind stress. A typical value of �T is 20cm2 s�1 (see Leibovich, 1977). Simple calculus reveals that u � 0 for �1 � z � 0 unless l is unphysicallyvery small.The above description of a velocity �eld is from what is commonly called a Eulerian point-of-view,where the whole system is observed with respect to a �xed location. In some instances it is bene�cial tofollow a single \blob" of uid, or a particle, through the ow and track its path. This is a Lagrangianperspective and is straightforward for velocity �elds, for which we study the dynamical systemdxdt = u(y; z); dydt = v(y; z) and dzdt = w(y; z) (6)and follow the trajectory of the particle.The velocity �eld is independent of x and the cross-sectional velocities can be written in terms of astreamfunction, �, as v = @�@z and w = �@�@y ; (7)where � = A sin (�z) sin (l�y): (8)In this sense the ow is Hamiltonian (and integrable), with Hamiltonian �, where all the streamlines areclosed and can be found explicitly (see Fig. 2). Clearly, in the absence of di�usion, an advected particlewill remain on the closed orbit that it started on. To follow an individual particle with (positive ornegative) buoyancy, Vs, we amend the above equations by puttingdzdt = w(y; z) + Vs(z): (9)



4We make sure that Vs goes rapidly to zero at the upper and lower boundaries by insistingVs = V �1� ez=d��1� e�(z+1)=d� ; (10)where the relaxation length, d, is very small and V is a constant buoyancy. By de�ning �b = ��V y we seeagain that the system is Hamiltonian and incompressible for the main body of the ow where the buoyancycut-o� terms are insigni�cant. Flows in the sea are unlikely to be as perfect as the above descriptionsuggests. To investigate the e�ects of a small time-dependent variation we consider small amplitudeuctuations of the ow perpendicular to the direction of the wind such that the ow is unchangedat z = �1. Figure 3 indicates the type of perturbation that is considered. This is obtained by thetransformation y �! y + �g(t)(z + 1); (11)where g(t) is the time-periodic forcing function given byg(t) = sin!t: (12)It is hoped that more �eld data will become available in order to validate this type of periodic perturbationor suggest another one. Theoretical studies, at least, indicate the potential for complex behaviour inLangmuir circulation including the possibility of secondary Hopf bifurcations (see discussion). To �rstorder in �, the streamfunction becomes � = A sin�z sin l�y + �Ag(t)l�(z + 1) sin�z cos l�y (13)which de�nes a very similar ow to the full streamfunction and, hence, we will use the above truncationthroughout the remainder of the paper. The above system is similar to the \even" oscillatory instabilityfor Rayleigh-B�enard convection as studied by Camassa &Wiggins (1991) and many of the techniques thatthey employ can be used here (e.g. Melnikov theory can be used to investigate the spread of plankton).However, important distinctions are made here in the application and interpretation of the results.3 ResultsFor the case of steady state circulation, the cross-sectional streamlines for neutrally buoyant particles areportrayed in Fig. 2. All streamlines are closed and in the absence of any di�usive processes, particlesstay on streamlines for all time.The cross-sectional streamlines for positively buoyant particles are displayed in Fig. 4 where it isclear that there are two qualitatively di�erent behaviours for particles; some particles are trapped inclosed orbits at some distance below the surface whereas others accumulate at the point (or line whenalso considering the longitudinal ow) of convergence of streamlines at the uid surface. There is aclear boundary between these two regions of varying behaviour. The set of closed orbits form what iscalled a Stommel retention zone (after Stommel 1949, 1951). In the absence of any other transport ordi�usive processes, buoyant particles that begin at the surface cannot submerge due to the upward verticalcomponent of the buoyant particle trajectories (Fig. 4) and, hence, will not enter the Stommel retentionzone no matter how fast the uid ow is in the Langmuir circulation (in contrast to the conclusions ofWoodcock, 1993).We now consider the streamfunction given by Eq. (13) for an unsteady ow �eld. To simplify theanalysis, we calculate the Poincar�e section; we record the position of an advected particle at times,



5t = 0; 2�=!; ::: ; 2n�=!, where n is an integer (i.e. at times t when g(t) = 0). A good measure of howmuch the time-dependent perturbation a�ects the trajectory of a particle is to calculate the particles\escape time", or the value of n for which a particle �rst leaves the Langmuir cell that it started in.Figures 5 to 9 display the escape time as a function of the particles initial condition within a Langmuircell. In contrast to the steady velocity �eld, particles are not constrained to a closed orbit and canwander through the whole space. There are no clear boundaries between regions of varying escape times.In fact, the boundaries are fractal in nature. The dark regions in Figs. 5 to 9 indicate that the particle\never" leaves the Langmuir cell and, in this paper, we call these regions \retention zones". By varying thefrequency of the unsteady perturbation the structure of the escape space changes dramatically. Increasingthe frequency from ! = 0:24 (Fig. 5) to ! = 0:6 (Fig. 6) reduces the size of the \central retention zone"but introduces extra \resonant retention zones". In particular, the 1:1 resonance retention zone is clearlyvisible orbiting the central retention zone. These resonant retention zones are advected with the owbut remain separate from the surrounding uid. In Fig. 10 we plot the cross-sectional positions of auniform grid of neutrally buoyant particles after 50 forcing oscillations (n = 50) allowing particles toescape from the Langmuir cell. No particles were allowed to enter the Langmuir cell from elsewhere, buta similar picture was obtained when particles were allowed to re-enter the Langmuir cell. There are clearregions which exhibit coherent behaviour and have been left behind after approximately half the initialnumber of particles have escaped. The coherent behaviour is even more evident when we also consider thelongitudinal displacement as a function of the particles' initial conditions, as shown in Fig. 11. Particlesin the retention zones, on average, all travel at the same longitudinal speed whereas particles in themixed, or chaotic, regions are widely dispersed in the longitudinal direction. All the �gures clearly showthe stretching and folding that occurs in the coherent regions. Increasing the forcing frequency further to! = 1:2 (Fig. 7) we see that the central retention zone decreases in size again but higher order resonantretention zones are produced; well de�ned 2:1 and 3:1 retention zones orbit the central retention zone.The resonant retention zones persist for as long as the physical forcing remains constant. The escapetimes for positively buoyant particles (i.e. Vs > 0) are displayed in Figs. 8 and 9 in which we keep thesame forcing frequency as in Fig. 6 (i.e. ! = 0:6). The �gures share characteristics from both Figs. 4and 6, but it is evident that the total area of the retention zones in Figs. 8 and 9 are less than the areaof the corresponding Stommel retention zones for the steady ow. Again, resonant retention zones areproduced that circulate the central retention zone.4 Interpretation and DiscussionAs pointed out previously, we could apply the Melnikov theory to this problem and extract a measureof the size of the coherent regions (Wiggins, 1990). It is also possible to calculate an estimate of theheteroclinic lobes and, hence, quantify the transport and e�ective di�usivity of plankton due to the forcing(Camassa & Wiggins, 1991). Because of the rather arbitrary nature of the time-dependent perturbation,we refrain from performing such analysis in this paper and concentrate on the qualitative interpretation.There are clear regions where phytoplankton tend to stay in the same patches, as can be seen in Figs. 5to 10, and regions where much mixing is evident, both in the cross-sectional space and longitudinally(Fig. 11). The transport of particles in the chaotic regions is potentially much quicker than for moleculardi�usion alone, as particles a small distance apart can move to adjacent Langmuir cells after only oneperiod. Regions where particle trajectories can deviate quickly are clearly seen, particularly close to



6the boundaries due to the structure of the heteroclinic connection. This is in contrast to particles thatstart in the coherent regions in which the structure is clear. The e�ect on a patch of plankton of asimilar scale to the Langmuir cell is to quickly remove plankton in the chaotic region from the systemand leave behind a skeleton of plankton in the coherent regions. The coherent regions are di�erent forparticles of varying buoyancy (see Figs. 8 and 9). In general, increasing the magnitude of the buoyancyof the particles decreases the size and changes the location of the coherent regions. Therefore, di�erentspecies of phytoplankton with dissimilar buoyancy will form patches in a variety of locations and, hence,zooplankton must be able to adapt to locate and follow di�erent prey e�ciently. It is also likely thatphytoplankton can adjust their buoyancy over a short time scale in response to the available light source(Moore & Villareal, 1996) and, hence, plankton could escape a coherent light-de�cient patch by changingtheir buoyancy. This could result in the organism's local environment e�ectively changing into a chaoticregion, thus allowing the plankton to harness the chaotic regions' transport and mixing dynamics.The result of resonance between two types of physical forcing is to provide additional retention zones,which are advected with the ow and do not diminish in size. The retention zones consist of coherentmotion and are isolated in regions of chaotic behaviour. Longitudinal transport of the retention zonesis also coherent and the phytoplankton are given the opportunity to be surrounded by organisms of thesame species. Given su�cient time, this may enable the phytoplankton to mate sexually and form highlocal concentrations. Clearly, the growth rate of phytoplankton will be limited depending on their timeaveraged depth dependent light source and, hence, some patches may be more populated than others.Field studies also report the presence of coherent patches, on a variety of scales, that are not destroyed byan otherwise turbulent velocity �eld (Ben�eld et al., 1996; Wiafe & Frid, 1996; Lenz et al. 1995; Wishneret al. 1995; Visman et al. 1994; Owen, 1989, 1981; Haury & Wiebe, 1982; Denman & Herman, 1978).The upshot of the di�erence in buoyancy between phytoplankton and purely advected particles is thattheir retention zones di�er (i.e. the trajectories of the positively buoyant phytoplankton that get trappedin the retention zones of Fig. 9 will intersect the trajectories of neutrally buoyant particles in the chaoticregions of Fig. 6). This enables the phytoplankton to have a fresh mixed supply of essential nutrients.Zooplankton are able to change their swimming characteristics in response to the availability of preyand their vulnerability to higher predators (e.g. Munk, 1995; Davis et al. 1991; Hunter & Thomas, 1974).Depending on the zooplankton's feeding characteristics, living in a chaotic region may either be bene�cialor detrimental (Saiz & Kiorboe, 1995). For a �lter feeder that doesn't swim and waits for prey to comeclose, the chaotic region has the e�ect of increasing the zooplankter's encounter rates with phytoplankton.However, for a zooplankter that actively pursues prey, the diverging ow trajectories could prove di�cultto traverse, thus decreasing it's capacity for successful capture. Also, there may be less prey in chaoticregions as local patches may di�use quicker. To leave the chaotic regions, the zooplankter must changeit's e�ective buoyancy (i.e. swimming up or down) until the prey are encountered in the coherent region(similar to Davies et al. 1991, but transport of zooplankton can occur at much greater speeds makinguse of the ow than for swimming alone). It would obviously be bene�cial for zooplankton to remainin this region until the foodsource has run out or if they get chased by larger predators and, therefore,they should match the buoyancy of the phytoplankton. Thus, zooplankton may make use of the chaoticregions to move swiftly and economically between phytoplankton coherent regions and to evade predators(Yen & Strickler, 1996). To do this they could make use of the light intensity and adjust their buoyancyaccordingly. Analyses of �eld data suggest that zooplankton move into phytoplankton patches as soonas they form, then move on before getting eaten themselves.



7In open oceans and lakes, it is likely that there will be signi�cant variations in windspeed, illuminationand forcing frequency. It is the timescales of these variations that are important for the constructionand maintenance of the resonant retention zones. One can imagine a smooth transition between Figs. 5to 7 for which certain retention zones would persist throughout the process but others would exist forrelatively short periods of time.Variations of light and wind lead to a path in the parameter space of Moroz & Leibovich (1985)and present the possibility of oscillatory solutions as well as steady solutions. Cox et al. (1992a; 1992b)demonstrate the existence of a whole range of solutions, which can co-exist, such as steady, oscillatory andmultiple oscillatory states. They �nd, however, \that the only robustly observable motions that shouldbe anticipated are travelling waves and steady states". Also, they report the existence of transversallydrifting Langmuir circulations in �eld studies and indicate that stable strati�cation \causes the mostunstable (linear) modes to to rotate from the wind direction", although this is only a minor a�ect. Whatwe conclude from these studies is that a whole host of instabilities arise from the model irrespective ofother arbitrary external forcing. It is expected that some of these oscillatory modes will exhibit similarbehaviour to the system described in this paper.If the Langmuir circulation slows down and stops it will leave behind patches that may di�use relativelyslowly due to turbulence but this could be balanced by the active aggregation of plankton (Davis et al.1991). Therefore, the patches may persist in the absence of Langmuir circulation and may even beentrained in the ow if the circulation restarts. Some patches will be positioned within the coherentregions and others not and so some patches will remain and others will quickly disappear. This mayindeed bene�t one species with a particular buoyancy and not another, but this would depend explicitlyon the physical conditions.The e�ect of other di�usive processes on the unsteady ow (such as turbulence) may do no more thanblur the edges of the retention zones enabling particles to di�use in and out. However, it has been shownby Davis et al. (1991) that by including the e�ects of the plankton's swimming behaviour (see also Pedley& Kessler, 1992; Hill & H�ader, 1997; Bees et al. 1997) as a biological di�usivity, the plankton trajectoriesare no longer incompressible and plankton can actively aggregate. This may help plankton to accumulatein areas bene�cial to them (such as, perhaps, the coherent regions), and is an obvious extension to theabove work.
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Figure 1: Coordinate system and representation of the steady ow. Typical �eld measurements, ascollated by Leibovich (1983) and Barstow (1983), are indicated. The windrows consist of oating debrisat regions of surface convergence.
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Figure 4: Steady cross-sectional streamlines for particles of positive buoyancy. Su�ciently near to theupper surface, all trajectories have a vertical component which points upwards. Therefore, no positivelybuoyant particles can move downwards from the upper surface no matter how strong the Langmuircirculation. The shaded region indicates a region of closed streamlines and is called a Stommel retentionzone.
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Figure 5: Escape times for neutrally buoyant advected particles whose initial cross-sectional positionsare plotted. The greyscale indicates the number of oscillations required before the particle leaves theLangmuir cell, where white represents one oscillation and black represents more than 100 oscillations.The circulation speed, A, and the perturbation amplitude, �, both equal 0:1, and the forcing frequency,!, equals 0:24.
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Figure 6: Escape times for neutrally buoyant advected particles whose initial cross-sectional positionsare plotted. The greyscale indicates the number of forcing cycles required before the particle leaves theLangmuir cell, where white represents one oscillation and black represents more than 100 oscillations.The circulation speed, A, and the perturbation amplitude, �, both equal 0:1, and the forcing frequency,!, equals 0:6.
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Figure 7: Escape times for neutrally buoyant advected particles whose initial cross-sectional positionsare plotted. The circulation speed, A, and the perturbation amplitude, �, both equal 0:1, and the forcingfrequency, !, equals 1:2.
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Figure 8: Escape times for positively buoyant (Vs = 0:032) advected particles whose initial cross-sectionalpositions are plotted. The remaining parameters are the same as Fig. 6.
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Figure 9: Escape times for positively buoyant (Vs = 0:1) advected particles whose initial cross-sectionalpositions are plotted. The remaining parameters are the same as Fig. 6.
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Figure 10: Distribution of neutrally buoyant particles after 50 oscillations from a regular grid with aforcing frequency of ! = 0:6. Here, plankton are allowed to escape from the region de�ned by y 2 [0; 1].Coherent regions of space can be observed as are regions where particles are quickly removed. A = � = 0:1with 2562 pixels.
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Figure 11: Longitudinal displacement of particles that start from x = 0 at the above cross-sectionallocation. Particles whose initial position is contained in the light coloured regions travel a greater lon-gitudinal distance. A = � = 0:1 and ! = 0:6 with 2562 pixels. The direction of the longitudinal ow isgenerally with the wind, unless the aspect ratio, l, is unrealistically small (see text).


