
Unexpected Bipolar Flagellar Arrangements and Long-Range Flows Driven
by Bacteria near Solid Boundaries

Luis H. Cisneros and John O. Kessler

Department of Physics, University of Arizona, 1118 E 4th St, Tucson, Arizona 85721, USA*

Ricardo Ortiz and Ricardo Cortez

Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, USA+

Martin A. Bees

Department of Mathematics, University of Glasgow, Glasgow, G12 8QW, United Kingdom‡

(Received 16 May 2008; published 16 October 2008)

Experiments and mathematical modeling show that complex flows driven by unexpected flagellar

arrangements are induced when peritrichously flagellated bacteria are confined in a thin layer of fluid,

between asymmetric boundaries. The flagella apparently form a dynamic bipolar assembly rather than the

single bundle characteristic of free swimming bacteria, and the resulting flow is observed to circulate

around the cell body. It ranges over several cell diameters, in contrast to the small extent of the flows

surrounding free swimmers. Results also suggest that flagellar bundles on bacteria that lie flat on a solid

substrate have an effective rotation rate slower than ‘‘free’’ flagella. This discovery extends our knowledge

of the dynamic geometry of bacteria and their flagella, and reveals new mechanisms for motility-

associated molecular transport and intercellular communication.

DOI: 10.1103/PhysRevLett.101.168102 PACS numbers: 47.63.Gd, 47.63.mf, 87.18.Fx, 87.18.Gh

Introduction.—The geometry and dynamics of flow
around active bacteria [1] determine cell-cell interactions,
chemical communication, and transport. When cells are
adjacent to surfaces, these flows are especially significant
for the distribution of exuded polymers involved in the
synthesis of biofilms [2]. Bacillus subtilis are rod-shaped
bacteria, typically 4 �m long with a diameter of 1 �m,
propelled by 6 or more helical flagella [3] randomly (i.e.,
peritrichously) distributed about cell body. The flagella are
stiff helical polymeric structures (6–20 �m long; 20 nm
diameter; 3 �m pitch; rotating at �100Hz) attached by
flexible joints to motors embedded in the cell wall [1,4].
Flagella on swimming bacteria conventionally are thought
to adopt one of two arrangements. Mutual hydrodynamic
attraction between flagella produces a single, polar, and
corotating bundle posterior to a (requisitely) swimming
cell. Reverse rotation of one or more motors produces
unbundling, yielding incoherent flagellar deployment and
cell tumbling (random reorientation) [4–7].

We report novel flagella-driven flows that circulate
about cells of B. subtilis immobilized at a solid surface.
These flows imply that the surface induces an unexpected
geometry: a bipolar arrangement of flagellar bundles. The
flows, the associated spatial arrangement of flagella, and
supporting evidence from a mathematical model constitute
a sea change in the understanding of the physics of fluid
motion due to bacteria in the vicinity of solid boundaries.
When several bacteria are arranged in close proximity, as
in natural situations, we find that they drive cell-scale
unsteady circulation that facilitates long-range transport
and mixing [8–10]. Recent and consistent results [10]

describe mixing close to a boundary enhanced by the
attachment of a dense carpet of bacteria (flow due to
individuals, however, was not reported).
Materials and methods.—B. subtilis 1085B was cultured

in Ezmix Terrific Broth (TB; Sigma: 47.6 g broth mix and
8 mL glycerin /L distilled water). Samples were prepared
by adding 1 mL stock (�20 �C) to 50 mLTB (18 h shaker-
bath incubation; 37 �C; 100 rpm). Plates of 50 mL of TB
were inoculated with 1 mL of suspension, and 5 h incuba-
tion obtains long, motile cells. Then, 1:100 dilutions were
prepared with fresh TB and carboxylate-modified micro-
spheres (Molec. Probes: F8809 - FluoSpheres 0:21 �m), as
passive tracers.
A drop of this bacteria-bead suspension was placed on a

glass coverslip, then partially removed with a pipette,
yielding a thin layer of fluid. Cells were trapped between
glass and meniscus at depths of �1 �m at the drop edge.
Imaging used an inverted microscope (Nikon Diaphot

300; 100x objective) with a high-speed camera (Phantom
V5; 100 Hz at 256� 256 pixel resolution). Samples were
enclosed within a chamber containing water reservoirs to
control humidity and avoid evaporative flows. Particle-
image-velocimetry software (Dantec) was used to estimate
velocity fields from image sequences.
Experimental results.—By observing the motion of pas-

sive tracers, we can estimate the flagella-driven flow. We
analyze two cases: when cells are stuck between the upper
‘‘free’’ and lower ‘‘no-slip’’ boundaries, and when they are
a body length from the boundaries and so free to swim with
standard kinetics, but are still confined to the shallow fluid
layer.
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(i) Stuck cells.—Swimming bacteria may become
trapped near the edge of the drop where the fluid is shallow.
This is most likely due to wedging of the cell between solid
and free surfaces (interfacial forces) or electrostatic attrac-
tion. In Fig. 1, we present the flow field around one such
immobile bacterium. Although this organism appears
ready to divide, the result is typical of stuck cells.

Figure 1 shows two-dimensional streamlines (lines such
that dx=ux ¼ dy=uy, where ux and uy are flow velocity

components). The lengths of the arrows indicate that the
flow decays rapidly with distance from the cell body.

The most startling geometric feature of the flow is its
circulation. The geometry of this flow is unexpected, and it
does not fit the standard models of bacteria as bodies with
single polar flagellar bundles [5–7]. (Inactive cells, either
dead or deflagellated, do not generate flow.) We explore
this observation by sampling the velocity field along the
principal axes: set U and V equal to the velocity measured
along and perpendicular to the cell axis, respectively. The
magnitudes of these quantities provide a measure of how
the flow decays with distance (Fig. 2). Furthermore, it is
clear that the flow rotates around the cell body, but also that
there is flow ‘‘outwards’’ along the parallel axis and ‘‘in-
wards’’ along the perpendicular axis, suggesting stresslet-
like flow added to the circulation and hinting at the pres-
ence of flagellar bundles with similar orientation to the cell
body. Equivalent results were obtained for other stuck
bacteria (we observed 25 such flows out of 27 observations
of stuck cells of various lengths, i.e., in various stages of
growth). The magnitude of the flow is best fitted by an
exponential in the region close to the cell (within 2 body
lengths), before velocities become commensurate with

noise. As a function of D, distance from the center of the
cell, V / e�kD where k � 1

4 �m�1 [when average behav-

ior along all directions is measured, k ¼ ð0:26�
0:033Þ �m�1]. Any far-field polynomial dependence is
experimentally occluded by noise, but the exponential
near-field behavior can be interpreted as arising from the
sum of many distributed singular solutions and their (plane
boundary) images.
It is apparent that interaction with the plane boundaries

has led to flagellar arrangements different from that in
standard models. If we assume that the number, position,
and rate of rotation of flagella are directly linked to the
local strength of the rotating flows, then we may infer that
the flagella are slightly skewed with oppositely polar ar-
rangements. Moreover, as the flagella are*6 �m long and

FIG. 1 (color). Stationary flow field (mean over 20 s) sur-
rounding a stuck cell and corresponding streamlines (green)
computed from a regular grid of initial points. The arrow in
the lower right corner represents 10 �ms�1.

FIG. 2 (color). (a) perpendicular U? and parallel Uk compo-
nents of velocity U as a function of the distance along the cell
axis for a stuck cell (black & blue, respectively) and for a free
swimming cell (red & green). (b) Same as for (a) except that data
are for V and distance is transverse to the cell axis. (c) velocity
components.
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relatively stiff, it is then evident that the streamlines cross
through the helical flagella. We hypothesize that this dy-
namic geometry can be understood in the following fash-
ion: the clockwise (observed from the cell) rotating flagella
interact strongly with the lower no-slip boundary and only
weakly with the upper stress-free boundary. This leads to
traction such that each flagellum rotates clockwise (viewed
from above) about an axis at the body, countered by hydro-
dynamic interactions and mechanical properties of the
flagella [11,12]. Such rotation, arrested by the body, can
produce aggregation, or bundling, of flagella in two pre-
ferred oblique directions with respect to the bacterial body,
as depicted in Fig. 3 (inset; simply illustrated by two
flagella). We emphasize again that this geometry is quite
different from the generally assumed backwardly oriented,
propulsive arrangement of flagella. Here, there is no
‘‘backward,’’ since the cell is immobile. When flagella in
these skewed, oppositely polar arrangements rotate about
their axes, their helical shape ought to drive circulating
flow of some form; rather than just propelling fluid parallel
to the direction of each helical axis, the flow has a trans-
verse component. To better understand this inference, in
the next section, we investigate a computational model
constructed according to the hypothesized geometry de-
picted in Fig. 3.

(ii) Free swimming cells.—The magnitude of the flow
generated by free swimming bacteria is much smaller and
decays faster spatially than the flow due to stuck cells.
Figure 2 shows the components of U and V for a cell
swimming right to left, as a function of the distance from
the cell. The flow speeds along the cell axis are an order of
magnitude smaller than for a stuck bacterium. The error
bars, due to Brownian motion of the marker beads, almost
hide the flow (positive at the rear of the cell, negative at the
front). The lateral flow V? is a little larger and negative
everywhere due to the transverse thrust of the cell’s curved
trajectory.
(iii) Multicell PIV.—Figure 4 presents the flow field

around several stuck cells in a thin layer of fluid. As well
as the usual rotating flows about individuals, more com-
plicated flows arise due to interactions between cells and
their flagella. This leads to large scale rotating flows be-
tween cells and around the multicell complex, with imme-
diate implications for biofilms. These flows are time
dependent, presumably due in part to intermittences in
the rotation of the many flagella involved in generating
the flow. Such flows aid the transport of molecules for
metabolism and interorganism communication, as well as
of exuded polymers synthesis of biofilms [10].
Numerical simulations.—We shall show that asymmet-

ric boundaries drive rotating flow, but one boundary is
sufficient to reveal qualitative features, and is computa-
tionally less involved than two. Flow simulations were
performed using the method of regularized Stokeslets
[13–15], which provides expressions to compute fluid mo-
tion generated by forces that arise on the surface of a
moving organism [14]. The velocity field due to the appli-
cation of N surface forces is

FIG. 3 (color online). Simulation streamlines in a plane (ne-
glecting flows into the page) above an organism with two flagella
close to an infinite wall. Inset: depiction of reduced model.
Flagella are swept clockwise due to the asymmetry of the lower
no-slip and upper (nominally) stress-free boundaries, and the
resulting traction afforded the lower half of each flagellum.

FIG. 4. Dynamic flowfield due to several stuck bacteria (both
long and short) in a thin layer of fluid.
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u ðxÞ ¼
�

1

8��

�XN
k¼1

ðjx̂j2 þ 2�2Þfk þ ½fk � x̂�x̂
ðjx̂j2 þ �2Þ3=2 ;

where x̂ is the vector from the force location xk to the
evaluation point x. For a flow bounded by an infinite plane
wall, the method is augmented with a system of images to
automatically satisfy a no-slip condition [16].

Figure 3 shows the arrangement of the flagella and the
streamlines of the computed flow. Despite the simplified
model, there is a remarkable match with experimentally
observed (Fig. 1) topologies of the fluid velocity, including
the two off-axis eddies, supporting the hypothesized ar-
rangement of flagella as inferred from experiments. The
qualitative features of the Stokes flow solutions are inde-
pendent of the flagellar angular velocity, !2: to agree with
experiments, we find !2 ¼ 7 Hz. This rate of rotation of
the flagella inferred from the computation together with the
observed velocity of the marker beads strongly suggests
that the rotation of lateral flagella bundles on stuck cells is
hindered (effective rate ca. 10 times less than the ‘‘stan-
dard’’ 100 Hz). This result applies equally to [10], where
similar bead velocities were found. The infinite plane wall
is located at z ¼ 0 �m with streamlines computed on z ¼
2 �m. The cell body is placed 0:022 �m from the wall,
and has radius and length Rb ¼ 0:84 �m and Lb ¼ 8 �m,
respectively. The fluid velocity is set to zero on the body
surface. Both flagella have identical dimensions with
length Lh ¼ 15:57 �m, radius Rh ¼ 0:05 �m, and pitch
P ¼ 2:4 �m. The angles between the flagella axes and the
cell body axis are �=8, and both are left handed and rotate
clockwise. Setting the flagella bundles to rotate with differ-
ent rates induces a peanut shaped flow even more similar to
Fig. 1. It is remarkable that the exponent of the decay with
distance from the cell body on the numerical field is well
fitted k� 0:18–0:25 �m�1, in reasonable agreement with
the experiments.

Summary and significance.—Interactions between bac-
teria and plane boundaries are complex: flagella do not
align and bundle ‘‘behind’’ the cell body. Instead, they
form a distributed envelope that drives a flow circulating
around the body. That flow extends over dimensions
greater than the cell body’s; it decays exponentially in
the near field with exponent approximately equal to
1
4 �m�1. This result contrasts starkly with the more local-

ized flow in the vicinity of a translating bacterium. It is
quite remarkable that these experimental results are well
matched by computational modeling using the method of
regularized Stokeslets, based on a simple, logically con-
structed geometric arrangement of the flagella. The conso-
nance of experiment and computation yields substantial
cross validation. We believe that it is possible to use our
modeling technique to predict the geometry of flows sur-
rounding groups of constrained cells (Fig. 4). Designing
substrates that elicit appropriate arrangements of cell
groups could lead to controllable, locally driven complex
microflows.

What is the broader significance, for quorum sensing
(i.e., cell-cell communication) and the development of
biofilms? If cells signal each other, as in the quorum
sensing step of biofilm initiation [17], they will do it while
constrained, rather than freely swimming. Furthermore,
‘‘real life’’ situations of significance involve many inter-
acting bacteria. Our observations, and those on glued cells
[10], confirm that stuck bacterial groups with active fla-
gella drive intermittent, complex, and far-ranging flows
that appear to mix and provide advective transport.
The hydrodynamic interaction of microorganisms with

each other and with surfaces is crucial in understanding the
initiation of biofilms and the development of their
polymer-mediated stability [2,18]. The present results, on
extensive flows driven by immobile cells near a wall, are a
crucial step in reaching that understanding.
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