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Suspensions of microswimmers are a rich source of fascinating new fluid mechanics.
Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose
orientation is biased by gravity and flow shear. Analytical theory predicts that these
active swimmers disperse in a markedly distinct manner from passive tracers (Taylor
dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is
non-monotonic with Péclet number. Such predictions agree with numerical simulations,
but hitherto have not been tested experimentally. Here, to facilitate comparison, we ob-
tain new solutions of the axial dispersion theory accounting both for swimmer negative
buoyancy and a local nonlinear response of swimmers to shear, provided by two alterna-
tive microscopic stochastic descriptions. We obtain new predictions for suspensions of the
model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise
using tracking video microscopy. We then present a new experimental method to mea-
sure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary
comparison with predictions of a nonzero drift above the mean flow for each microscopic
stochastic description. Finally, we propose further experiments for a full experimental
characterisation of gyrotactic dispersion measures and discuss implications of our results
for algal dispersion in industrial photobioreactors.
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be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
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1. Introduction

The behaviour of microbial biofluids is important to a broad range of diverse fields
from medicine and biotechnology to biogeochemistry, aquatic ecology and climate sci-
ence. When suspended cells self-propel the contrast with passive particle hydrodynamics
is particularly dramatic. For example, dilute suspensions of swimming bacteria, algae
and ciliates display self-concentration and hydrodynamic instabilities (Pedley & Kessler
1992). The dilute and concentrated suspension rheology of swimmers is also of much inter-
est: for example, swimming algae and bacteria can enhance or reduce effective suspension
viscosity, respectively (Marchetti et al. 2013). Many motile microorganisms respond to
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their environment and migrate towards nutrients (chemotaxis) or light (phototaxis). In-
triguingly they also respond to flow gradients. In this work we focus on gyrotaxis, the
passive orientational bias on swimming microalgae due to a combination of viscous and
gravitational torques, but the results may be generalized to other taxes or combinations
thereof. In downwelling pipe flow, gyrotactic swimmers self-focus in structures known as
plumes (Kessler 1985). Though the discovery of gyrotaxis in algae is now over 30 years
old, many open questions remain. Here, we shall address the dispersion of gyrotactic
swimmers, and how well experiments can be described by existing theoretical models of
gyrotaxis.

The classic papers by G. I. Taylor and R. Aris considered the dispersion of passive
solutes in laminar pipe flow, and showed that the cross-sectional averaged axial solute
dispersion can be mapped to an effective diffusion, with diffusivity De = Dm(1+Pe2/48)
(Taylor 1953; Aris 1956). Taylor tested this prediction experimentally himself (Taylor
1953), as well as its extension to turbulent pipe flow (Taylor 1954). Recently, we revisited
the Taylor-Aris analytical theory for laminar flow to describe the dispersion of swimmers
in confined flow (Bees & Croze 2010) and used it to predict the dispersion of gyrotactic
swimmers in laminar and turbulent flows (Bearon et al. 2012; Croze et al. 2013). The
Bees & Croze (2010) theory is general and applicable to any microswimmer. It requires
as input the mean response to flow of swimmers from stochastic microscopic models.
We have applied it to gyrotactic microalgae, where stochastic models of self-propelled
spheroids in flows have been developed (Pedley & Kessler 1990, 1992; Hill & Bees 2002;
Manela & Frankel 2003; Bearon et al. 2012), comparing predictions from analytical theory
with individual based numerical simulations (Croze et al. 2013) and numerical solutions
of the model advection-diffusion equation (Bearon et al. 2012).

The present work on dispersion was inspired by the notion that biotechnologically
useful microalgal species, such as the β-carotene producing biflagellated alga Dunaliella
salina are cultured in pipe flow within industrial tubular photobioreactors (Croze et al.
2013; Bees & Croze 2014). As we shall discuss below, gyrotaxis at the individual cell
level dramatically modifies the population-scale behaviour of suspensions of biflagellates
such as D. salina, and this has important consequences for the engineering design of
photobioreactors, for both laminar and turbulent flow regimes (Croze et al. 2013). Ev-
idence is also mounting that gyrotactic behaviour is relevant to environmental flows.
Durham et al. (2009) proposed gyrotactic trapping to be one of the mechanisms leading
to the formation of oceanic thin layers (Durham & Stocker 2012). Theory and simula-
tion also predict similar effects in turbulent flows, where gyrotactic swimmers ‘unmix’
in downwelling regions of turbulent flows (Croze et al. 2013; Durham et al. 2013), or
even due to acceleration in strong turbulence (De Lillo et al. 2014). Furthermore, the
study of bioconvection (Pedley & Kessler 1992; Hill & Pedley 2005), an instability driven
by upswimming and gyrotaxis, has recently seen some interesting developments. Weak
shear flow has been shown to distort but not destroy bioconvection patterns (Croze et al.
2010; Hwang & Pedley 2014a). Light from below can frustrate the patterns (Willams &
Bees 2011; Williams & Bees 2011), while in microchannels, light from the side gives rise
to horizontal accumulation (Garcia et al. 2013). The cell excess density (the difference
between cell and surrounding medium density) can give rise to instabilities in gyrotactic
plumes known as blips (Kessler 1986; Pedley & Kessler 1992; Dennisenko & Lukaschuk
2007). The existence of blips as a function of imposed flow and swimmer concentration
can be predicted theoretically using linear stability analysis (Hwang & Pedley 2014b).
Even in the absence of a gravitational torque, algae can display peculiar behaviour, such
as limit cycle oscillations in pipe flow (Zöttl & Stark 2012). Finally, while it is well
known that algae swim with a helical trajectory, only recently have the mechanics been
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addressed (Bearon 2013), qualitatively explaining resonant alignment in oscillatory shear
flow (Hope et al. 2016).

Quantitative comparison between mathematical theory and experiment is essential in
fluid mechanics. G.I. Taylor excelled and delighted in this comparison (Croze & Peaude-
cerf 2016). Without it theory has no constraint and experiments no mechanism. Further-
more, a quantitatively tested theory is of greater engineering use. In this paper, we set
out to test the theory of gyrotactic swimmer dispersion experimentally for vertical pipe
flow. In section 2 we summarise the theory of axial cell dispersion, which links the statis-
tical individual-level response to flow, predicted from two distinct microscopic stochastic
models, with the population-level transport measures: the effective axial drift and diffu-
sivity. In the process of experiment-theory iteration, we identified that cell concentration
affected dispersion. Therefore we explore how algal cell negative buoyancy perturbs the
flow field from simple Poiseuille flow, which further modifies the radial distribution of
cells, altering axial dispersion. Dispersion with negative buoyancy had previously only
been considered for a linearised response to flow (Bees & Croze 2010). Here, we employ
expressions for the nonlinear response to flow predicted by microscopic stochastic descrip-
tions. In section 3 we describe experimental methods for cell culture, fluorescent staining
and imaging, as well as data analysis and comparison with theoretical predictions. We
also explain the challenges due to having to maximise fluorescent image contrast while
avoiding blip instabilities. In spite of these issues, we establish a robust experimental
protocol to study gyrotactic dispersion and obtain preliminary results allowing one to
compare predicted and measured axial drift for various average cell concentrations. Fi-
nally, in section 4 we propose further experiments to quantify dispersion and discuss the
broader relevance of our results for growing algae in photobioreactors.

2. Theory

In this paper, we test theoretical predictions of biased microswimmer dispersion with
experimental data. To enable a direct comparison we derive new results from the general
axial dispersion framework (Bees & Croze 2010; Bearon et al. 2012; Croze et al. 2013)
to include both the effect of swimmer negative buoyancy and the complete nonlinear
response of swimmers to shear. We summarise the theory below, referring the reader to
the above papers for further mathematical details.

Consider a suspension of gyrotactic swimming algae (such as D. salina) subject to
imposed flow in a pipe. Gyrotactic swimmers actively cross streamlines and focus in
downwelling flows, which is at the root of their peculiar non-Taylor dispersion. Following
Pedley & Kessler (1992) and the assumptions discussed therein, an incompressible, dilute
suspension of gyrotactic swimming cells in an axial flow in a tube can be described by
the equations

∂u

∂t
=

1

ρ

[
−∇p+ µ∇2u + nvc∆ρg

]
; (2.1)

∂n

∂t
= −∇ ·

[
n (u + qVs)−

V 2
s

dr
D · ∇n

]
, (2.2)

where (2.1) is the Navier-Stokes equation for the pipe flow u, incorporating a driving
pressure gradient term (with pressure, p), a Newtonian viscous stress (medium viscosity,
µ, approximately equal to that of water) and a negative buoyancy term (cell volume,
vc; density excess, ∆ρ; gravitational acceleration, g; cell concentration, n). Negative
buoyancy causes cell accumulations to sink, which can result in instabilities such as
blips (Hwang & Pedley 2014b); see sections 3 and 3.2 below. Equation (2.2) expresses
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conservation of cells, with advection contributions from flow and swimming (velocity, qVs;
mean orientation, q; and speed, Vs) and swimming diffusion (with anisotropic diffusivity
tensor, D, and magnitude V 2

s /dr, where dr is the rotational diffusivity). No-slip and
no-flux boundary conditions are applied at the tube wall.

Equations (2.1) and (2.2) describe the dynamics of a suspension of gyrotactic swimming
algae. As mentioned in Section 1, such suspensions self-concentrate into plumes; cells
focus in a plume at the center of a vertically aligned tube and drive axial flow. However,
we are free to label (or dye) locally some of these cells (which we call a ‘slug’) without
affecting the cell concentration profile or the flow. The theory presented here describes
the dispersion of a labelled slug of algae in the flow associated with an existing plume.
The dynamics of the moments of a distribution of labelled cells are evaluated, providing
information on axial drift and diffusion. We summarise the derivation of the main results
as follows. Steady axisymmetric solutions will be obtained for (2.1) and (2.2) (steady
plume solutions). Then, moment equations from (2.2) will be used to evaluate dispersion
measures, using the mean cell response to flow from two alternative stochastic microscopic
models. Finally, the predictions will be analysed for direct comparison with experiments.

2.1. The steady plume background

First, consider the background flow within which the slug of cells will disperse, provided
by the steady solutions to (2.1) and (2.2) (a steady plume). As in Bees & Croze (2010),
we assume a plume with no blips or varicose instabilities has formed in a long pipe, so
that the dynamics are translationally invariant along the axial direction z. We further
assume axisymmetric solutions for the cell concentration n(r) and flow deviation about
the mean χ(r). In cylindrical polars, the flow field is u(r) = u(r)ez = U [1+χ(r)]ez, with
U the mean flow. We nondimensionalize lengths by the pipe radius, x̂ = x/a, times by
τd = a2dr/V

2
s , the time to diffuse across it, such that t̂ = t/τd, and concentrations by the

background mean cell concentration nav, such that R0
0 = n/nav (this notation is chosen

for consistency with Bees & Croze (2010); see next section). Equations (2.1) and (2.2)
then become (omitting hats for clarity)

1

r

d

dr

(
r
dχ

dr

)
= Pz − RiR0

0; (2.3)

dR0
0

dr
= β

qr

Drr
R0

0, (2.4)

subject to no-slip and no-flux boundary conditions at the tube surface, and the integral
constraints

χ = 2

∫ 1

0

rχ(r)dr = 0; R0
0 = 2

∫ 1

0

rR0
0(r)dr = 1, (2.5)

where we denote cross-sectional averages by overbars: f(z, t) = 1
π

∫ 2π

0

∫ 1

0
f(r, θ, z, t)r dr dθ.

If f is independent of θ then f(z, t) = 2
∫ 1

0
f(r, z, t) dr. Equations (2.5) follow from the

definition of χ and normalisation of the cross-sectional average concentration. In (2.3)
and (2.4), we have defined the dimensionless parameters

Pz =
1

µ

dp

dz

a

U
; Ri =

vc ∆ρ g

µ

a2

U
nav; β =

adr
Vs

. (2.6)

where Pz represents the dimensionless pressure gradient in the z-direction; Ri is a Richard-
son number quantifying the relative importance of buoyancy and viscous flow (µ is the
dynamic viscosity); β is the swimming Péclet number gauging the relative importance
of advection by swimming to swimming diffusion (see also equation (2.7)). Alternatively,



Testing gyrotactic swimmer dispersion in pipes 5

β = 1/Kn, where Kn = (Vsd
−1
r )/a is a swimming Knudsen number: the ratio of the cell

mean free path to the tube radius. To close equations (2.3) and (2.4), we require the ra-
dial components of the swimming direction, qr = qr(χ′), and diffusivity tensor, Drr(χ′),
where χ′ ≡ dχ/dr. These are known functions of shear obtained from stochastic models
of gyrotactic response to flow and are discussed in section 2.3.

2.2. Slug dispersion

Next, we consider the dynamics of a slug of dyed cells dispersing within the plume flow
background provided by the solutions of equations (2.3) and (2.4). A suspension of dyed
swimmers replace cells in the pipe within an existing plume, forming a dyed slug. The
dyed swimmers are identical to the background cells in the plume and the slug dynamics
are also governed by (2.2). However, since the cells are initially localised and subsequently
disperse the solutions are no longer independent of the axial coordinate or time. The slug
concentration, denoted by ns (nondimensionalized by nav as above, but not yet cross-
sectionally averaged) is governed by

∂ns
∂t

= ∇ · (D · ∇ns)− Pe(1 + χ)
∂ns
∂z
− β∇ · (nsq) , (2.7)

where

Pe =
Uadr
V 2
s

(2.8)

is the flow Péclet number quantifying the relative importance of advection by the flow
to swimming diffusion.

Except for a few special cases, equation (2.7) is not amenable to analytical solution. It
can be solved numerically using a spatially adaptive finite element method, as described in
Bearon et al. (2012). This method allows to probe the transient dispersion of a slug and
the approach to steady state. To characterise dispersion it is convenient to transform
to a frame of reference moving with the mean flow: z → z − Pe t and consider axial
moments of concentration. The p-th radially varying moment is defined as cp(r, t) =∫ +∞
−∞ zpns(z, r, t)dz, and its cross-sectional average as mp(t) = cp = 2

∫ 1

0
rcp(r, t)dr. We

define the transient drift and diffusivity of the dispersing slug as:

Λ0(t) ≡ d

dt
m1(t); De(t) ≡

1

2

d

dt

[
m2(t)−m2

1(t)
]
. (2.9)

An alternative to solving equation (2.7) is to solve for the axial moments cp(r, t) and
cross-sectionally averaged moments mp(t) (Bees & Croze 2010). The theory then allows
one to predict that at long times the drift, Λ0, and effective diffusivity, De, of a dyed
slug of swimmers are given by (with the notation f ′ = df/dr):

Λ0 ≡ lim
t→∞

Λ0(t) = −DrzR0′
0 + (Peχ+ βqz)R0

0, (2.10)

De ≡ lim
t→∞

De(t) = −Drzg′ + (Peχ+ βqz − Λ0) g +DzzR0
0, (2.11)

where R0
0(r) is the background normalised concentration of cells from equations (2.3)

and (2.4), and

g(r) = R0
0

∫ r

0

(
Drx(s)

Drr(s)
− 1

2

Λ∗0(s),−Λ0m
∗
0(s)

sDrr(s)R0
0(s)

)
ds (2.12)

with

Λ∗0(r) = 2

∫ r

0

s
(
−DrxR0

0
′
+ (Peχ+ βqx)R0

0

)
ds; m∗0(r) = 2

∫ r

0

sR0
0(s)ds. (2.13)
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The function g(r) (first axial moment) gauges how the center-of-mass (mean axial
position) of a dyed slug varies radially. This controls the effective diffusivity, De, of
the slug together with the cell concentration distribution R0

0(r) (zeroth moment), which
prescribes the slug drift, Λ0. The function Λ∗0(r) in equation (2.13) is the radially averaged
slug cell flux (due to anisotropic diffusion, flow and swimming) up to radius r. Evaluated
at the wall (r = 1) this provides the full non-dimensional drift: Λ∗0(1) = Λ0. Similarly,
m∗0(r) represents the radially averaged slug cell concentration up to r. At the wall this
gives m∗0(1) = 1 (equivalent to equation (2.5)), which is the total nondimensional number
of cells reflecting cell conservation.

To obtain experimental predictions from (2.10) and (2.11) we require functional forms
for the flow about the mean, χ, the average swimming direction, q, and diffusivity ten-
sor, D. Expressions for q and D for gyrotactic algae can be obtained from microscopic
stochastic models, as detailed in the next section. If we neglect reciprocal coupling of the
flow to the cells via cell negative buoyancy, we have Poiseuille flow, and expressions for
q and D are given in (Bearon et al. 2012). Accounting for reciprocal coupling requires
solving equations (2.3) and (2.4) for χ and R0

0, subject to the constraints (2.5). From this
we can make predictions for dispersion using the integrals (2.10) and (2.11). Numerically
it is easier to solve the equivalent ODE system (see next section and Appendix E for
details).

2.3. Shear dependence of transport, model parameters and solution

The components of the mean cell orientation, q, and diffusivity, D, in equations (2.7)
and (2.10-2.12) gauge average gyrotactic cell response to shear flow. They can be ob-
tained from the orientational moments of the probability density function (PDF) for cell
orientation and possibly position in a flow from stochastic continuum descriptions. As
in previous work, we consider two such models, denoted F and G (described as Fokker-
Planck and Generalised Taylor Dispersion models in the literature). In model F (Pedley
& Kessler 1990) the cell PDF depends only on orientation, while in G (Hill & Bees 2002;
Manela & Frankel 2003; Bearon et al. 2012) it depends on position and orientation.
Models F and G were originally derived for unbounded linear shear flows (Hill & Bees
2002; Bees et al. 1998) (see appendix for (C) a model equation summary. However, they
also provide a good approximation for the swimmers pipe (radius ∼ a) flow, if the flow
shear is linear on the scale of a cell (radius rc): rc � a (Bearon et al. 2012). A separate
requirement is that the cell diffusion is not in the Knudsen regime, Kn(= β−1) ∼ 1, in
which the cell random walk strongly affected by walls. Using parameters from Table 1
and rc ∼ R, where R ∼ 10−4 cm is the cell hydrodynamic radius (see appendix (C),
we see that rc/a ∼ 10−4 and Kn ∼ 0.1, so that both conditions are well-satisfied in our
experiments. In both models F and G, a key dimensionless parameter is the stochastic-
ity parameter λ = 1/(2drB), expressing the relative importance of random reorientation
from rotational diffusion dr to reorientation by gravity at a rate 1/(2B). The PDF can be
solved using a Galerkin method for a given value of λ. This has been achieved previously
for C .augustae (Bees et al. 1998; Bearon et al. 2012). Here, we have obtained solutions
for D. salina (see below and Appendix A), allowing the evaluation of the functions qi(σ)
and Dij

m(σ), where m = F or G and σ = −χ′Pe/(2β2), the dimensionless shear rate. The
model subscript in the average orientation components has been omitted intentionally:
the predictions are the same for both models. The difference is in the diffusivity compo-
nents, reflecting the different physics in the models. In F the cell orientation distribution
alone determines spatial dispersion, but in G both orientation and position (leading to
differential advection by swimming and flow) contribute to dispersion via spatial mo-
ments. Indeed, predictions for diffusion from the F model are strictly valid at low shear
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Mean swimming speed Vs (6.27± 0.04)×10−3 cm s−1 this work
Bias parameter λ 0.21± 0.05 this work
Gravitactic reorientation time B 10.5± 1.3 s this work
Rotational diffusivity dr = (2Bλ)−1 0.23± 0.06 s−1 this work
Excess buoyant mass ∆ρ vc (0.92± 0.36)×10−11 g this work
Tube radius a 0.35± 0.02 cm this work
Gravitational acceleration g 9.8×102 cm s−2 (Lider 2004)
Dynamic viscosity (25◦ C) µ 9×10−3g cm−1 s−1 (Phillips et al. 1980)
Mean cell concentration nav 0.70-3.65×106 cells cm−3 this work
Imposed flow rate Φ 100-400 cm3 h−1 this work
Mean flow speed U = Φ

πa2
0.07-0.29 cm s−1 this work

Swimming Péclet number β = adr
Vs

12.2

Péclet number Pe = Uadr
V 2
s

280-560

Cell-flow coupling parameter γ ≡ vc ∆ρg
µ

Vs
d2r
nav 0.08-0.44

Richardson number Ri = γ β
3

Pe
0.26-2.85

Table 1. Dimensional and nondimensional parameter values and ranges used in the dispersion
model predictions. The D. salina gyrotactic motility and buoyancy parameters were estimated
from tracking videomicroscopy measurements (see text and Appendix A).

rates, and break down for large shear rates (see Croze et al. (2013)). The G model is valid
for all shear rates, provided the shear flow can be locally approximated as linear. The
description is appropriate for the Poiseuille flows considered here, but not straining flows
(Bearon et al. 2011). Both models provide approximations to the full Schmoluchowski
advection-diffusion equation for the cell PDF (Doi & Edwards 1986), which could be
solved numerically directly for the cell PDF(Saintillan & Shelley 2006). However, this
route does not allow one to take advantage of the simplification and analytical results
that have been obtained for the F and G models (Pedley & Kessler 1992; Bearon et al.
2012).

The dispersion measurements described in Section 2.5 provide the first experimental
test of the validity of the microscopic stochastic models described above. The dispersion
model was parametrised from independent tracking video microscopy measurements, car-
ried out on suspensions of D. salina in vertically oriented capillaries. The model parame-
ters thus obtained and used in predictions are summarised in Table 1. The stochasticity
parameter λ from tracking was used to determine the specific forms of qi(σ) and Dij

m(σ)
for D. salina (Appendix A). Tracking microscopy was also used to quantify the settling
of heat-immobilised cells, which allows to infer the buoyant mass ∆ρ vc of D. salina
cells. More details of the tracking measurements and error estimation can be found Ap-
pendix C. The model was solved numerically using MATLAB (Mathworks, Natick, MA,
USA). As detailed in Appendix D, it is easier to recast the dispersion prediction (inte-
gral equations (2.10-2.11) and dependent equations) as a boundary value ODE problem
in which the coupled flow, cell concentration and dispersion are evaluated together. It
should be noted that the dimensionless parameters of the dispersion and microscopic
models are not all independent. In particular, the Richardson number depends on Pe

and β: Ri = γ β
3

Pe . The coupling of cells and flow thus depends on imposed flow and the

coupling strength γ ≡ vc ∆ρg
µ

Vs

d2r
nav, which we can control by changing the background

mean cell concentration nav.
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2.4. Dispersion predictions

Before turning to a comparison between dispersion theory and experiment, it is useful to
consider predictions for the distribution of gyrotactic algae in pipe flow and the ensuing
dispersion. Similar predictions have been obtained using the swimming parameters of
C. augustae (Bearon et al. 2012), and also for channel geometries (Croze et al. 2013),
comparing predictions for the F and G microscopic models. These studies assumed the
coupling via buoyancy between cells and flow dynamics is negligible. Reciprocal coupling
was considered by Bees & Croze (2010), but only with asymptotic results from the F
model. Here, we present the first solutions of the dispersion equations with reciprocal cou-
pling by buoyancy and nonlinear expressions from the stochastic microscopic descriptions
F and G, and use them to investigate the dispersion of D. salina, the fully parametrised
candidate species for experimental tests of the theory. We consider long-time dispersion,
i.e. when axial moments are stationary in time. This is true when t � 1/ζ2

1 , where ζ1
is the smallest positive eigenvalue arising in the moment equations for cell conservation;
ζ1(Pe) is a monotonically increasing function of Pe, which is laborious to evaluate (see
section 4 of Bees & Croze (2010) for details). Simulations of gyrotactic dispersion in
channels confirm that steady dispersion is reached faster for larger Pe and, further, that
the drift (measured in this work) becomes steady faster than the diffusivity (Croze et al.
2013). For Pe = 670, close to the largest Pe = 560 value studied here, these simulations
show that the drift is steady at t ≈ 0.5. That is to say, restoring dimensions, at a time
tc ≈ τd/2, where recall τd = a2dr/V

2
s is the swimming diffusivity timescale. Multiplying

by the mean flow speed U , and recalling the definition of Pe (equation 2.8), this implies
dispersion will be steady beyond a distance Zc ≈ Pe a/2 from the inoculation point (for
general Pe, Zc ≈ Pe a/ζ2

1 ). Thus, with a = 0.35 cm (see Table 1) we estimate that for
the largest Pe = 560 used in our experiments, Zc ≈ 100 cm, the distance downstream
from dyed cell injection at which our imaging was carried out (see section 3.1). We can
thus assume our experimental drift data is steady and it is reasonable to compare it with
long-time dispersion predictions (see Figure 4).

In figure 1 we consider predicted cell distributions. For the case with no reciprocal
coupling (neutral buoyancy; Richardson number, Ri = 0), shown in Figure 1a, both the
F and G models predict gyrotactic focusing. However, the distributions are different: for
the G model, as the Péclet number Pe is increased, the distribution goes from almost
uniform to sharply focused (the width diminishes monotonically). On the other hand,
as Pe increases the F model (Figure 1a, inset) displays a broader distribution (with a
non-monotonic width progression). The differences between the two models, which are
noticeable for Pe= 1000, arise from the different average microscopic transport these
models predict (Bearon et al. 2012). In model G, local cell dispersion depends on reori-
entation by the flow and differential advection due to the spatial PDF; in the F model the
local spatial distribution is neglected (a good approximation only for weak flows). As a
result, the models predict the same mean cell orientation qi, but different diffusivities Dij

as a function of dimensionless shear σ (Hill & Bees 2002; Manela & Frankel 2003; Bearon
et al. 2012). The cell distribution is determined by the ratio of the radial components of
these transport parameters, qr/Drr, as is clear from equation (2.4). In model F, because
Drr asymptotes to a constant value at large σ (Bearon et al. 2012), gyrotactic advection
in high shear (near the pipe walls) is weak compared to diffusion, so the cell distribution
has significant tails at high Pe (see 1a, inset). In model G, on the other hand, Drr → 0
at large σ (Bearon et al. 2012): gyrotactic advection is strong compared to diffusion near
the walls, and the distribution is sharp, with low cell concentration close to the walls.

Next, we consider the distributions of cells and flow with the additional coupling via
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Figure 1. (a) Dimensionless normalised cell concentration profiles for different values of Péclet
number, Pe (from Equation 2.4) using the G model for neutrally buoyant cells (Ri= 0, no
cell-flow coupling). The distribution is increasingly focused with increasing Pe, unlike the F
model predictions (inset). (b, c) Reciprocally coupled cell concentration and flow as a function of
mean background cell concentration nav for the G model and Pe= 1000. The coupling generates
sharper focusing and distorts the flow from the parabolic Poiseuille shape. Insets: for the F
model the coupling hardly affects the cell and flow distributions. Note that, since Vs and dr are
fixed, changing Pe corresponds to changing the mean speed U (or flow rate), as in our dispersion
experiments.

the cells’ negative buoyancy (Figure 1b). As discussed above, the strength of coupling
γ for a given Pe depends on the cell concentration nav. In model G, for a given Pe
increasing nav results in a sharper distribution near the center of the tube with respect
to the uncoupled case. Concomitantly, cells that have accumulated close to the tube
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center due to gyrotaxis drive flow faster there and cause the vorticity profile to deviate
from zero around the origin more strongly than for the solutions with Ri = 0 (Figure
1c). The larger the value of nav, the sharper the accumulation and the stronger the flow
deviation, χ. This does not occur in model F because cells on average spend more time
by the walls (in the radial cell distribution tails). This prevents accumulations that would
lead to significant reciprocal coupling via negative buoyancy. The model F distributions
for concentrated cell suspensions (with nonzero reciprocal coupling) differ little from the
Ri = 0 case (Figure1b and c, inset).

The distribution of flow and cells determines dispersion, measured by the steady state
drift above the mean flow and effective diffusivity; the skewness vanishes at long times
(Bees & Croze 2010). Figure 2a presents a comparison of the dimensionless drift above
the mean flow, Λ0, predicted for models F and G in the absence of reciprocal cell-
flow coupling. Both models predict Λ0 > 0 for sufficiently large Pe, the distinguishing
characteristic of gyrotactic dispersion (Bees & Croze 2010; Bearon et al. 2012; Croze
et al. 2013). As expected, at low Pe (2a, inset) the F and G predictions coincide and,
for very low Pe, Λ0 is negative because cells are oriented upwards (Bees & Croze 2010).
At higher Pe, the predictions of the two models diverge: in G, Λ0 ∼ Pe; in F, it tends
to a constant. The reason for this is evident from the distributions of Figure 1a. The
increased concentration around the centreline with Pe in model G causes the larger drift
(more cells in fast flow). In model F, on the other hand, the number of cells in the fast
central zone of the pipe saturates, and with it the drift. Reciprocal cell-flow coupling
enhances the focusing of the distribution for model G, as well as the magnitude of the
flow, so a greater value of Λ0 is possible for the same Pe. In model F, coupling makes
little difference to the drift (Figure 2b, inset).

The predicted effective diffusivity of the dispersing population is shown in Figure 2c in
the absence of reciprocal coupling. It increases monotonically in this Pe range for both
the F and G models, which, as previously, agree for very low Pe. However, we see crucial
differences. In model G, De appears to saturate, while in model F it continues increasing
with Pe. To understand this, note that the axial dispersion measured by De is caused
principally by diffusion across streamlines and differential advection of cells distributed
by gyrotaxis. In model G, as Pe is increased, the cell distribution sharpens and less cells
are exposed to the high shear close to the pipe wall; the increase of De thus drops at high
Pe. In model F, on the other hand, the distribution tails ensure cells will reside in regions
of high shear, so De increases with Pe. The dispersion in the presence of coupling is shown
in Figure 2d. We see that in model G, larger cell concentrations provide a larger De for
the same Pe. The greater vorticity in the flow close to the tube center (providing greater
differential advection) contributes to a greater dispersion in the reciprocal coupling case.
The effect of reciprocal coupling on diffusion is not very significant in model F, whose
predictions for De are not very different from the uncoupled model (Figure 2d, inset), in
contrast to model G.

2.5. Connection with experiment

Experimentally we measure the absolute drift of a slug of fluorescently labelled cells
within a plume, given by Vd = dZ

dt , where Z is the vertical position of the peak intensity of
recorded plume (see experimental methods). A useful measure of the drift is the fractional
drift above the mean flow, δ = Vd−U

U , where U is the mean flow speed. This fractional
drift can be compared with the prediction from the dispersion model. Recall that the

theoretical drift is defined in (2.9) as Λ0 = dm̂1

dt̂
, with t̂ = t(a2Dr/V

2
s )−1, m̂1 = 〈Z〉−Ut

a ,
and Pe defined in (2.8). It then follows that the theoretical fractional drift is simply given
by δ = Λ0

Pe .
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Figure 2. Theoretical dispersion measures: drift and diffusivity in the absence (a and c) and
presence (b and d) of reciprocal coupling via buoyancy effects. Models F (dashed) and G (solid)
agree at low values of Pe for neutrally buoyant cells (a, c insets, where overlapping F and G
predictions are shown), but predict different drift behaviour for large Pe. Coupling via negative
cell buoyancy quantitatively changes the predictions of model G: negative buoyancy increases
cell drift and enhances diffusivity (greater differential advection due to modified vorticity profile,
see text) with respect to the neutrally buoyant case. On the other hand, coupling affects model
F predictions very little (b, d insets).

3. Experiments

3.1. Methods

Algae and culture. Batch cultures of Dunaliella salina (CCAP 19/18) were grown on
a 12:12 light/dark cycle on a modification of the medium of Pick et al. (1986), which
we will denote herein as DSM (Dunaliella salina medium). Healthy motile cells were
gravitactically concentrated overnight on rafts of cotton wool at the surface of a culture,
in a similar fashion to Croze et al. (2010). These cultures were kept under the same
light cycle as batch cultures to preserve circadian rhythms. Light intensity, however, was
reduced to minimise the disruption of upswimming by phototaxis during concentration.
Cells were harvested using a Pasteur pipette. Cell concentrations were obtained from
readings of A, the suspension absorbance at 590 nm, measured using a spectrophotometer
(WPA CO7500), calibrated to haemocytometer counts; concentrations are given by c =
5× 106A cells/cm3, with fractional error ∆c/c = 0.07.
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Figure 3. (i) Experimental set-up: fluorescently labelled slugs of D. salina dispersing in pipe
flow, driven by a syringe pump. Labelled cells are injected near the top of the tube, recruited to an
existing plume, and imaged downstream. Image (ii) shows a blippy slug for a flow rate Φ = 100ml
h−1, nav = 3.65 × 106 cells/cm3 at L =60 cm from injection [Φ, nav , L] = [100, 3.6, 60]. The
next images show blip-less plumes: (iii) [200, 4.5, 60], (iv) [200, 3.65, 100], (v) [300, 2.95, 100],
and (vi) [400, 2.95, 100] (faint). Images are 1.1 cm ×11.0 cm.

Fluorescent staining. Cells were stained with fluorescein diacetate (FDA, Sigma), a
vital dye. We mixed 8 µl of dye from a 5 µM stock (acetone) into 20 ml of cell suspension
with absorbance typically in the range A = 0.7-1.5. After letting the dye act for about 5
min, dyed cells were ‘washed’ by letting them swim up through a raft of cotton overlaid
by a fresh layer of DSM medium. This step ensures the dye is only inside the cells.
However, since fluorescein cleaved from FDA inside the cell slowly leaks out, dispersion
experiments were performed within 20 min of washing to allow macroscopic imaging with
good contrast between dyed cells and the background medium.

Experimental set-up and imaging. A schematic of the apparatus is shown in figure 3i.
A Graseby 3500 syringe pump (Graseby Medical Ltd., Watford, UK) attached at the top
of the set-up drives flow in a vertically oriented perspex tube that is 2 m in length and
7 mm in diameter. Experiments were performed with flow rates in the range 100 − 400
ml h−1 at a stable ambient temperature of T = 24± 1◦C. Sub-populations of D. salina,
fluorescently labelled as above, were introduced into the flow using a 1 ml syringe at the
top of the tube, 2 cm downstream from the pump; dyed cells were injected into a steady
flow of unlabelled cells. The ensuing dispersion does not depend on the rate of injection
because this rate, ∼ 103 ml h−1, was much larger than the largest advection flow rate
used. The absorbance of labeled and unlabelled populations was matched. We imaged
the ensuing dispersion using a GE680C CCD camera (Prosilica) and excitation/emission
filters (MF475-35/MF525-39, Thorlabs) suitable for the fluorescence of fluorescein from
FDA whose absorption/emission peaks are 495 nm/520 nm (blue/green). The imaging
was centred on a point L = 60 or 100 cm below the inoculation point. Sequences were
captured at 2.1 Hz.
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Image analysis. Dispersion measures were obtained from captured image sequences of
descending slugs. The total pixel intensity in four regions of interest (ROI) of an image
was calculated for each image in a sequence of a given plume. The time t at which
the intensity peaked corresponded to the time at which the plumed passed the vertical
position Z (on which the ROI was centred). Thus, a linear fit to a plot of Z versus t
provides a value for the plume drift speed Vd = dZ/dt. As discussed in the next section, it
was very challenging to obtain non-blippy, high contrast plumes. For low contrast plumes,
it was possible to estimate the drift from the displacement of the plume endpoints. The
error in the drift was estimated as the standard deviation over measurements with the
same sample (same mean concentration nav).

3.2. Plumes and blips

In order for the experiments to test meaningfully the theory of gyrotactic dispersion, the
fluorescently stained cells have to be recruited to the plumes formed by non-stained cells.
It is clear from the images shown in Figure 3ii-vi that fluorescent D. salina swimmers are
indeed recruited to the plumes. A blip instability has occurred in Figure (3ii): fluorescence
is localised in the blip nodules. The theory of dispersion described in section 2 assumes
axial invariance of the background cell concentration and flow, which is broken when
blip instabilities arise. The instability occupies certain regions of the flow-concentration
parameter space, as predicted for channel flows for C. augustae parameters by Hwang
& Pedley (2014b). A similar stability analysis has not been carried out for D. salina in
pipe flow. The dispersion experiments are challenging because of competing constraints.
In particular, moderately concentrated suspensions are necessary for good fluorescent
image contrast, but high concentrations are more likely to produce blips (by increasing
the suspension Richardson number). However, with some care, it is possible to find blip-
free plumes over the length and time scales of dispersion experiments.

3.3. Results: drift above the mean flow

The dispersion data were used to evaluate the drift speed, and hence the fractional drift
above the mean flow, δ = (Vd−U)/U , where Vd is the measured drift and U is the mean
flow speed, as described in the methods. The predictions from the reciprocally coupled
dispersion theory for the F and G models are shown in Figure 4 for different values of the
background mean cell concentration, nav. In the absence of reciprocal cell-flow coupling
(Ri = 0), the model G fractional drift δ increases monotonically with Pe, increasing to 1
for large Pe. The model F prediction on the other hand at first increases before reaching
a peak and decreasing to zero (see Figure 6 in Appendix F). We can interpret these
results in terms of the distribution of cells, in a similar manner to how we interpreted
the drift in Figure 2a. The cells in Model G can be sharply focused to travel close to the
maximum flow speed Vd = 2U (δ = 1). In model F, on the other hand, δ tends to zero at
large Pe (see Figure 6 in Appendix F), reflecting the uniformity of the cell distribution.
Coupling for model G increases the value of δ significantly above 1 at intermediate Pe,
but, since Ri ∼ 1/Pe, at large Pe the fractional drift tends to 1. For model F, reciprocal
coupling has little effect due to the uniformity of the cell distribution.

The experimental results provide good evidence for δ > 0: the dispersion of gyrotactic
swimmers is not the same as that of passive tracers. Furthermore, the experimental drift
values are consistent with the predictions of model G in the presence of reciprocal cell-
flow coupling. Model F (with or without coupling) agrees poorly with the experimental
observations, even for the lowest experimental values of Pe studied (Figure 4, inset). The
data suggest that it is necessary to include reciprocal cell-flow coupling in theoretical
descriptions of fast flowing suspensions of gyrotactic swimmers.
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Figure 4. Comparison of theoretical predictions and preliminary experimental observations of
fractional drift in dispersing slugs of D. salina, for different background cell concentrations, nav.
Same colour lines (theory) and symbols (experiment) denote equal concentrations. Quantita-
tively, predictions using microscopic model G (Generalised Taylor dispersion) and accounting
for cell-flow coupling agree much better with experiment than using model F (Fokker-Planck
model), even for the lowest Pe data (inset, symbols/line-types as in main figure). Dashed black
lines indicate predictions neglecting reciprocal coupling due to negative buoyancy (Ri = 0).
For clarity, the model G prediction for nav = 106 cells cm−3 (pink line) is shown only in the
inset. Vertical error bars (from same-run repeats) are smaller than the data point symbol size.
Horizontal error bars stem from uncertainties in dr (see Appendix C).

4. Discussion and outlook

We have carried out the first experimental test of the theory of gyrotactic dispersion
in pipe flow and associated stochastic microscopic models. We injected Dunaliella salina
algae, fluorescently labelled by fluorescein diacetate, into an unlabelled population in
downwelling pipe flow, and imaged the dispersing ‘slugs’ to measure their fractional
drift above the mean flow. Experimental drift values were compared with predictions
from an axial dispersion model (Bees & Croze 2010; Bearon et al. 2012) with swimming
and buoyancy parameters measured using tracking microscopy. The dispersion model
requires as inputs transport functions (local mean orientation and cell diffusivity tensor)
dependent on the local shear rate, which can be evaluated from stochastic microscopic
models. Predictions using two such models, referred to as model F (Pedley & Kessler
1990, 1992) and G (Hill & Bees 2002; Manela & Frankel 2003; Bearon et al. 2012), were
employed with parameters for D. salina. We derived new solutions of the axial dispersion
model combining the effects of both negative buoyancy and nonlinear solutions of the two
alternative stochastic microscopic models. Bees & Croze (2010) had previously considered
only linearised transport functions for the F model with negative buoyancy.

The experimental results provide clear evidence for the nonzero drift above the mean
flow expected in the dispersion of gyrtotactic swimmers (Bees & Croze 2010; Bearon
et al. 2012; Croze et al. 2013) (see Figure 4). This is in stark contrast to the zero drift of
passive, neutrally buoyant tracers (Taylor 1953; Aris 1956). Furthermore, in the Pe range
studied, we find quantitative agreement between experiment and theoretical predictions
obtained using model G and accounting for negative cell buoyancy (Ri> 0). As shown
in Table 3 of Appendix F, three out of the five experimental points agree well with
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theory within the stated errors. For the other two points (corresponding to the lowest
cell concentrations studied), theory underestimates the drift. Agreement with model F,
on the other hand, is poor with or without buoyancy, even for the lowest values of Pe
(Figure 4, inset). This should be expected for the relatively large Pe used (recall model
F and model G agree only at low Pe), as local spatial stochastic effects in strong shear
flow, neglected in model F, become important. The superior performance of model G
over model F expected at large Pe has been shown previously by Croze et al. (2013)
who compared analytical dispersion predictions for models F and G with Lagrangian
simulations. This work, however, ignored the effect of negative cell buoyancy. Without the
latter, agreement between the experimental results and model G is not very good. This
highlights the important role of reciprocal flow-cell coupling in the dispersion dynamics.

Given the reciprocal coupling between cells and flow it is very difficult to design exper-
imental apparatus to test microscopic stochastic models of macroscopic suspensions of
biased swimming cells. In this manuscript we have presented one method that has shown
great promise, demonstrating the shortcomings of the F model whilst providing evidence
in support of the G model with the inclusion of negative buoyancy effects. However, there
were some significant experimental challenges. The experiments were limited by the con-
straints of good image contrast, steady dispersion and the emergence of blip instabilities.
The latter proved antithetic to the former two, as high concentrations provided better
contrast but also a greater propensity for blip formation for the range of Pe investigated.
In addition, the use of long tubes to guarantee steady dispersion made blips more likely
(giving slow growing unstable modes time to develop). Blips are known to depend sen-
sitively on concentration and flow rate (Kessler 1986; Dennisenko & Lukaschuk 2007),
but we lack a quantitative guide to avoid the instability. The work of Hwang & Pedley
(2014b) provides only a qualitative guide, as this study focused on C. augustae, which
has different gyrotactic parameters (Hill & Häder 1997).

Future experiments should refine the drift measurements and test other dispersion
predictions, such as dependence of the effective diffusivity De of the swimming algae on
key flow and swimming parameters. Fluorescent imaging with at least two downstream
cameras will allow measurements of the axial variance Var (Z) of a dispersing slug. The-
ory predicts Var (Z) = 2DeV

2
s d
−1
r t from which De can be evaluated. The practical issues

associated with fluorescent dye diffusion and loss of contrast may be circumvented using
mutants (e.g. Chlamydomonas reinhardtii, expressing fluorescent protein). Our experi-
ence in experimenting with such approaches provides two important caveats: mutants
from ‘normally swimming’ wild-type background strains should be employed; motility
should not be compromised by the insertion of fluorescent gene constructs.

The dispersion models we have tested experimentally in this work are predicated on
swimmer suspension theories developed in the early 90s (see Pedley & Kessler (1992)
for a review). While several improvements have been made to these theories, they have
not been subject to extensive experimental tests since their formulation. In particular,
basic assumptions of the theories, such as the dilute nature of the swimmer suspensions
have not been challenged experimentally. In this work, we follow the traditional assump-
tion that swimmer suspensions are dilute, but, considering the formation of plumes, one
can question if the dilute assumption is appropriate for the description of self-focusing
suspensions of gyrotactic swimmers and axial dispersion. The cell concentration at the
center of the pipe depends on the applied flow rate. From Figure 1b, we find that for
Pe=1000 (and the parameters in Table 1), the concentration at the pipe center is approx-
imately 100 times that of the average, i.e. 108 cells/cm3. This corresponds to a volume
fraction of 0.02 and a mean distance between cells of 20 µm (two cell diameters). There-
fore, we might expect cell-cell interactions between cells to play a role (Drescher et al.
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2011). However, we note that the cell concentration drops very rapidly from the center,
so high concentration effects should match the dilute theory except for a narrow core at
the center of the pipe, which is advected at close to the maximum flow rate. Furthermore,
axial cell diffusivity is dominated by cell motion in the high shear regions and not within
the narrow core. Consequently, the axial dispersion predictions of the dilute theory are
likely to hold even for sharply focused plumes. The rationale of this work was precisely
to ascertain how well the predictions from dilute theory perform by testing them experi-
mentally. The experimental results suggest that the dilute assumption is not major issue.
However, it would be worthwhile to extend the theory to explore a semi-dilute regime.

Another assumption made in the original theories (again, refer to Pedley & Kessler
(1992)) is that the swimmer population heterogeneity is unimportant. It is assumed that
averages of swimming parameters over a population (e.g. mean swimming speed) are
adequate to describe the suspension behaviour and fluid mechanics. This will clearly
only be a good approximation if parameter distributions are sufficiently narrow. Bees
et al. (1998) studied theoretically the effect of deviations from narrow distributions on
gyrotactic transport in the F model. They evaluated how the ratio of speed variance to
mean, 〈V 2〉/〈V 〉2 (V denotes speed, angled brackets an average over the population),
changes the components of the diffusivity tensor D. We note that, as for the dilute
suspension assumption, the agreement we find between theory and experiments seems
to indicate that the neglect of swimming population heterogeneity is not a serious one
in the dispersion of D. salina. This cannot, however, be generalised to other swimming
species, which may have broad swimming parameter distributions. Furthermore, even
within a particular species, biological changes, such as metabolism, can drive significant
heterogeneity. It would be of interest to consider how swimming parameter distributions
and their changes affect suspension dynamics and dispersion.

Accurately predicting the unusual dispersion of swimming algae in pipe flow is impor-
tant for the design of more efficient and ‘considerate’ photobioreactors for their culti-
vation (Bees & Croze 2014). Closed photobioreactor designs comprise channels or pipes
in which growing suspensions of algae are flowed. In tubular external loop air-lifts, cells
are bubbled with air in a riser tube and then recirculated in a downcomer connected
to the riser by two horizontal tubes. For gyrotactic biotechnological species of interest,
such as the β-carotene producer D. salina considered here, the dispersion observed in
this work is very relevant. For example, the non-zero drift above the mean flow we have
observed will cause nutrients or waste (passive tracers) to become separated from the
cells in the downcomer. Experiments are in progress quantifying the behaviour of gyro-
tactic swimmers in lab and pilot-scale photobioreactors. More complex dispersion may
ensue in photobioreactors operated in turbulent pipe flow. Simulations predict gyrotactic
dispersion due to cells focusing transiently in downwelling regions of the turbulent chan-
nel flows (Croze et al. 2013), but experiments on swimmers in bounded turbulent flows
have not yet been carried out. It will be of considerable ecological interest to explore the
consequences of gyrotactic dispersion in river, lake and oceanic flows.
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Appendix A. Stochastic models and shear-dependent transport

We summarise very briefly the mathematical structure of models F (the orientation-
only Fokker-Planck model) (Pedley & Kessler 1990, 1992) and G (Generalised Taylor
dispersion) (Hill & Bees 2002; Manela & Frankel 2003). The reader is referred to the
original literature for more details.

Consider P (p,x, t), the probability of finding a cell with orientation p at position x
at time t. This evolves according to (Hill & Bees 2002)

∂P

∂t
+∇x · [(u + Vsp)P ] + dr∇p · [ṗP −∇pP ] = 0, (A 1)

where u is the fluid velocity, Vs is the constant cell swimming speed, dr is the rotational
diffusivity due to the intrinsic randomness in cell swimming, and ∇x and ∇p are physical
and orientational gradients, respectively. For gyrotactic cells

ṗ = λ(k− (k.p)p)− σj ∧ p (A 2)

where, as in the main text, λ = 1
2drB

is the stochasticity parameter and σ = −χ′Pe/(2β2)
is the dimensionless shear strength. The unit vectors k and j are in the upwards (an-
tiparallel to gravity) and positive voriticity direction, respectively.

A.1. Model G

By calculating the moments of the distribution function P , Frankel & Brenner (1991,
1993) showed that, on timescales long compared to 1/dr, the concentration of cells,
n(x, t), in a homogeneous shear flow satisfies an advection-diffusion equation (Hill &
Bees 2002):

∂n

∂t
+∇x · [(u + Vsq)n−DcD · ∇xn] = 0, (A 3)

where Dc = V 2
s /dr is the magnitude of the swimming diffusivity. The mean swimming

direction, q, and non-dimensional diffusivity tensor, D, can be written as integrals over
cell orientation, p (Hill & Bees 2002; Manela & Frankel 2003), such that

q =

∫
p

pf(p)dp, (A 4)

D =

∫
p

[bp +
2σ

f(p)
bb.Ĝ]symdp. (A 5)

Here []sym denotes the symmetric part of the tensor, and Ĝ denotes the non-dimensional
fluid velocity gradient. The equilibrium orientation, f(p), and vector b(p) are given by
(Hill & Bees 2002; Manela & Frankel 2003)

∇p · [ṗf −∇pf ] = 0, (A 6)

∇p.(ṗb−∇pb)− 2σb.Ĝ = f(p)(p− q), (A 7)

subject to the integral constraints
∫
p
fdp = 1 and

∫
p

bdp = 0. Equations (A 6-A 7) follow

from evaluating the moments of the distribution function P (Hill & Bees 2002; Manela
& Frankel 2003).

The orientation distribution f(p) represents the steady state distribution of swim-
mer orientations. The meaning of the vector b(p) is less intuitive. It can be written as
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b = fBdr/Vs, where B(p) quantifies the difference between the average position of a
swimmer, given its instantaneous orientation is p, and its average position averaged over
all values of p (Hill & Bees 2002).

A.2. Model F

In model F, the same advection-diffusion equation (A 3) is assumed, but the transport
functions are obtained from a PDF in terms of orientation only. The distribution f for
the orientation is governed by (A 6) with (A 2). The solution for the mean orientation
(which only depends on f), is the same as in model G. However, in model F the diffusivity
tensor is given by the approximation

DF = Dc

∫
p

(p− q)2f(p)dp, (A 8)

where now Dc = V 2
s τ , and τ is a direction correlation time estimated from experiment.

This is not as straightforward as measuring the rotational diffusivity dr required for the
G model. However, following Bearon et al. (2012), we can use the fact that model F
and G must coincide asymptotically at low shear, so that τ = J1/(K1λdr), where values
of λ and dr can be found from experiment (see Appendix C), and J1(λ) and K1(λ)
are rationally derived functions that can be calculated (for more details, please refer to
Appendix D of Bearon et al. (2012); Pedley & Kessler (1990)).

A.3. Model solutions

The dispersion model requires knowledge of the functional dependence on dimensionless
shear σ of the components of the transport tensors q and D. We follow the approach
of Bearon et al. (2012) where these components are evaluated from solutions of mod-
els F and G using a Galerkin method. The solutions depend on the bias parameter
λ = 1/(2drB) evaluated from tracking experiments. Previously, solutions were obtained
for models parametrised for C. augustae algae. Here we present new results for D. salina,
for which λ = 0.21 (see Table 1 in main text). For analytical convenience, these solu-
tions are then fitted with rational functions. The relevant components for dispersion are:
qr(σ) = −σP (σ; ar,br), qz(σ) = −P (σ; az,bz); ; Drr

m (σ) = P (σ; arr,brr); Dzz
m (σ) =

P (σ; azz,bzz);Drz
m (σ) = −σP (σ; arz,brz), where the rational function P (σ; a,b) is given

by

P (σ; a,b) =
a0 + a2σ

2 + a4σ
4

1 + b2σ2 + b4σ4
. (A 9)

The parameters a0, a2, a4, b2 and b4, are chosen to ensure the polynomials match asymp-
totic solutions to the stochastic equations of model F and G (Bearon et al. 2012).

Appendix B. Modified Pick medium

The D. salina cells were grown in a modification of Pick’s medium (Pick et al. 1986),
with final salt concentration of 0.5 M. The medium consists of (J. Polle, private com-
munication): a 100× concentrated nutrient mix (2M Tris-HCl, pH= 7.5; 1M KNO3; 1M
MgSO4; 60 mM CaCl2; 20 mM KH2PO4; 0.4 mM FeCl3 in 4 mM EDTA, pH= 7.5); a
1000× concentrated trace micronutrients (150mM H3BO3; 10 mM MnCl2; 0.8 mM ZnCl2;
0.3 mM CuCl2; 2 mM Na2MoO4; 2 mM NaVO3; 0.2 mM CoCl2); a 4× concentrated salt
soliution (2 M NaCl); and a 20× concentrated bicarbonate soliution (0.5 M NaHCO3,
filter sterilised and added after autoclaving the nutrients and salt mixed together).
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a0 a2 a4 b2 b4

ar 3.48× 10−2 4.62× 10−3 0 3.80× 10−1 3.30× 10−2

az 6.98× 10−2 7.71× 10−3 0 3.58× 10−1 2.75× 10−2

arrG 1.66× 10−1 −1.03× 10−4 0 2.47× 10−1 −1.54× 10−4

arzG 1.66× 10−1 3.37× 10−6 0 4.98× 10−1 6.19× 10−2

azzG 1.67× 10−1 3.64× 10−1 1.10× 10−6 4.84× 10−1 6.07× 10−2

arrF 1.66× 10−1 3.36× 10−2 1.15× 10−2 2.04× 10−1 6.91× 10−2

arzF 5.94× 10−4 0 0 4.34× 10−1 2.54× 10−1

azzF 1.65× 10−1 1.04× 10−1 6.91× 10−4 6.28× 10−1 4.16× 10−3

Table 2. Parameters used in the rational function fits of solutions for models F and G used in
our dispersion theory predictions.

Appendix C. Model parameters from microscopy

The swimming speed Vs and bias parameter λ were obtained by tracking video mi-
croscopy of a suspension of D. salina swimming in a vertically oriented capillary. The
mean speed Vs is obtained straightforwardly from the distribution of cell displacements
(). The distribution of angles to the vertical was inferred from the tracking data and
fitted with a Von Mises distribution, as in (Hill & Häder 1997):

f(θ) =
exp[λ cos(θ − θ0)]

2πI0(λ)
. (C 1)

The fit allowed us to estimate λ. Alternatively, λ can be found from the ratio of the
mean upswimming speed Vu to the mean swimming speed Vs, since Vu/Vs = K1(λ) =
coth(λ)−1/λ (Pedley & Kessler 1992). The video data was captured at 100 fps in videos
lasting 40 s. These captured D. salina cells swimming in a 400 µm deep flat glass cham-
ber (CM Scientific, 50 mm × 8 mm × 0.4 mm). Particle tracking using the established
algorithms of Crocker & Grier (1996) was implemented via the Kilfoil lab MATLAB rou-
tines (http://people.umass.edu/kilfoil/downloads.html). This typically provided ≈ 2500
tracks per video that were analysed to obtain the values of Vs and λ shown in table 1.
Values of λ obtained from the alternative methods discussed above from the same data
were averaged; values from independent data sets were also averaged. The final error
in the parameter was estimated by evaluating the standard error in the mean of these
independent data.

Tracking also provides an estimate from the gravitational reorientation time B. It
was estimated from the reorientation of cells immobilised by heating the suspension
to 40◦C. Tracking the reorientation of the sedimenting cells provided B by comparing
with the analytical solution of equation (A 2) (with σ = 0) for the reorientation of θ:
θ(t) = 2 arctan[exp(−(1/2B)(t − t0)]. We find B = 10.5 ± 0.8s. With B and λ known,
the value for the rotational diffusivity follows from the definition of λ = 1/(2Bdr). The
errors in the tracking parameters determine the error in derived quantities. In particular,
by standard error propagation it can be shown that the error in Pe is dominated by the
error in the rotational diffusivity. This uncertainty ∆Pe/Pe ≈ ∆dr/dr = 0.18 is sizeable,
and is represented as horizontal error bars in Figure 4.

Tracking microscopy of sedimenting cells (the same data that was used to estimate
B) also allows to quantify their negative buoyancy. The drag force on a sedimenting cell
can be estimated from F = 6πµRUs (generalised Stokes law), where R is the effective
hydrodynamic radius of a sphere with the same viscous resistance to flow as the cell and



20 O. A. Croze, R. N. Bearon and M. A. Bees

Us is the average sedimentation speed of the cells. These were heat-immobilised as above
and their settling was captured in 100s long videos at 2.52 fps and tracked (as above)
to provide Us = (1.44± 0.37)× 10−4cm/s. For sedimenting negatively buoyant cells, the
buoyant force ∆ρ vc g, where vc is cell volume and g is the gravitational acceleration,
balances the viscous drag. Thus we can estimate

∆ρ vc = 6π
µ

g
RUs, (C 2)

if R is provided. This radius can be estimated from the angularly averaged friction
factor of a prolate ellipsoid, our chosen approximation for the D. salina cells. Using an
electrostatic analogy it can be shown that for ellipsoids R = 2/ξ0 (Hubbard & F.Douglas
1993), where

ξ0 =

∫ ∞
0

1√
(a2 + ζ)(b2 + ζ)(c2 + ζ)

dζ =
b=c<a

2 cosh−1(a/b)√
a2 − b2

. (C 3)

By image analysis of micrographs, we estimate a = (4.8 ± 2.7) × 10−4 cm and b(=
c) = (3.2 ± 1.9) × 10−4cm. With these values ξ0 = 5.4 ± 1.6 × 10−4 cm−1 and R =
(3.7± 1.1)× 10−4cm, so that, with µ and g from Table 1, we can use equation (C 2) to
find ∆ρ vc = (0.92±0.36)×10−11g. This product is all that is required to parametrise the
model: knowledge of the independent values of ∆ρ and vc is not necessary. Calculating the
product ∆ρ vc rather than its factors has the added benefit of reducing the experimental
uncertainty in our estimate with respect to the one evaluated from the factors. Apart from
general values for biflagellates quoted by Kessler (1986), we could not find measurements
of the excess density of D. salina in the literature. However, a fluorometric study of
phytoplankton sinking rates included measurements of Dunaliella tertiolecta (a close
relative of D. salina), providing its excess density of ∆ρ = 0.1 and estimated cell volume
2.7 × 10−10 cm3 (Eppley et al. 1967). This gives ∆ρ vc = 2.7 × 10−11 g, which is of the
same order as our estimate for D. salina.

Appendix D. Model numerical solution

To obtain predictions from the steady state dispersion model we need to solve equations
(2.10) and (2.11) with the coupled flow and cell concentrations given by (2.3) and (2.4),
subject to the constraints (2.5). As mentioned in the main text, this problem is more
simply tackled by writing down the equivalent differential equation system (a boundary
value problem). Recalling primes denote derivatives with respect to r, the dispersion
ODE system is given by

dχ′

dr
= −1

r
χ′ + Pz − RiR0

0 (D 1)

dR0
0

dr
= β

qr
Drr

R0
0 (D 2)

dm∗0
dr

= 2rR0
0 (D 3)

dX

dr
= 2rχ (D 4)

dPz
dr

= 0 (D 5)

dΛ∗0
dr

= 2r
[
DrzR0′

0 + (Peχ+ βqz)R0
0

]
(D 6)
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dg

dr
= β

qr

Drr
g +R0

0

Drz

Drr
− Λ∗0 −m∗0Λ0

2rDrr
(D 7)

dDe

dr
= 2[g′ + (Peχ+ βqz − Λ0)g +DzzR0

0], (D 8)

subject to the boundary conditions: χ′(0) = 0;χ(1) = −1;m∗(0) = 0;m∗(1) = 1;X(0) =
0;X(1) = 0; Λ∗0(0) = 0; g(0) = 0;De(0) = 0.

Equations (D 1) and (D 2) correspond to equations (2.3) and (2.4), respectively, for
the coupled flow deviation above the mean χ and (normalised) cell concentration R0

0.
Equation (D 3) corresponds to (2.13) for m∗0, the cumulative cell concentration within
a radius r. Equation (D 4) implements the constraint χ = 0 (from the definition of χ)
and (D 5) states no pressure gradient is imposed. Equation (D 6) corresponds to (2.13)
defining the partial drift. The full drift is then simply evaluated as Λ∗0(1) = Λ0. Equation
(D 7) corresponds to equation (2.12) for the diffusivity weight function g and, finally, (D 8)
corresponds to equation (2.11) for the effective axial diffusivity. Because this equation
requires the value of the full drift, the system (D 1-D 6) needs to be solved once, before
solving for the diffusivity. Numerical solutions of the ODEs were obtained using the
MATLAB (Mathworks, Natick, MA, USA) bvp4c routine. So that this routine could
handle the singular boundary value problem in equation (D 7), we carried out the change
of variables g̃ = g/r and D̃e = De/r. Solutions to the model equations were found using
both model F and G solutions for qr(σ) and Drr(σ), see Appendix A.

Appendix E. Blip instability

As indicated in the main text, several competing constraints made the observation of
high-contrast non-blipping plumes very challenging. Figure 5 shows a diagram charting
the parameter values where blips were observed. Note that sometimes blips were simply
observed and image sequences not recorded for analysis (either for practical reasons
or deliberately as we were not initially interested in blip data). The plot should not be
considered a stability diagram, which would include a careful observation of the instability
growth rates.

Appendix F. Drift data and full model F predictions

The experimental values of the fractional drift above the mean flow δ (Figure 4) are
provided in Table 3 together with theoretical values predicted using model G, with which
they compare favourably (a similar quantitative comparison with model F is not worth-
while, as is clear from the inset of Figure 4 and Figure 6). Bounds on the theoretical
values were estimated by calculating the variations in the drift for upper and lower esti-
mates of Pe and nav, i.e. ∆δPe = δ(Pe + ∆Pe,nav)− δ(Pe,nav) and similarly for ∆δnav

.
The resulting uncertainties were then combined by standard error propagation. The other
experimental uncertainties have been previously discussed (those in the drift in section
3.1, while those in Pe in appendix C). The uncertainties in nav derive from the spec-
trophotometric calibration to concentration, discussed in section 3.1. As discussed in the
text, the drift values predicted by model F are far from the experimentally observed
values, whether reciprocal coupling due to buoyancy is included or not. This is clearly
shown in Figure 6.
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Figure 5. Chart recording the concentration-flow values giving blips or clean plumes at the
time of observation of the dyed slug. This should not be considered a stability diagram: the
syringe pump flow rate did not allow exploration of slow growing instabilities.

Pe δ δGth nav(106 cells cm−3)

280± 50 1.10± 0.03 0.68+0.06
−0.08 1.00± 0.07

280± 50 2.02± 0.03 1.93+2.51
−0.54 3.65± 0.27

420± 76 1.01± 0.05 0.78± 0.06 0.70± 0.05
420± 76 1.40 1.34+0.45

−0.11 2.95± 0.22
560± 101 1.10± 0.01 1.13± 0.06 2.25± 0.17

Table 3. Experimental and theoretical values obtained using model G of the fractional drift
compared, for the values of Pe and nav at which experiments were carried out. The evaluation
of the uncertainties of the values shown is discussed in the text. No uncertainty is shown for
experimental drift on the fourth line, as it was only possible to acquire one measurement of
this drift (the single measurement error is negligible compared to the theoretical uncertainty
estimates).
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Figure 6. Predictions of model F for the fractional drift above the mean flow δ as a function of
Pe. The theoretical curves are far from experimental drift values, as expected for a model that
breaks down at large Pe, see discussion in section 4.
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