
Persistence of cluster synchronization under the influence of advection

Emma Guirey,1,*,† Martin Bees,2 Adrian Martin,1,† and Meric Srokosz1,†

1National Oceanography Centre, Southampton SO14 3ZH, United Kingdom
2Department of Mathematics, University Gardens, University of Glasgow, Glasgow G12 8QW, United Kingdom

�Received 3 November 2009; revised manuscript received 1 February 2010; published 3 May 2010�

We present a study on the emergence of spatial structure in plankton dynamics under the influence of stirring
and mixing. A distribution of plankton is represented as a lattice of nonidentical, interacting, oscillatory
plankton populations. Each population evolves according to �i� the internal biological dynamics represented by
an NPZ model with population-specific phytoplankton growth rate, �ii� sub-grid-cell stirring and mixing pa-
rameterized by a nearest-neighbor coupling, and �iii� explicit advection resulting from a constant horizontal
shear. Using the methods of synchronization theory, the emergent spatial structure of the simulation is inves-
tigated as a function of the coupling strength and rate of advection. Previous work using similar methods has
neglected the effects of explicit stirring �i.e., at scales larger than the grid cell�, leaving as an open question the
relevance of the work to real marine systems. Here, we show that persistent spatial structure emerges for a
range of coupling strengths for all realistic levels of surface ocean shear. Spatially, this corresponds to the
formation of temporally evolving clusters of local synchronization. Increasing shear alters the spatial charac-
teristics of this clustering by stretching and narrowing patches of synchronized dynamics. These patches are
not stretched into stripes of synchronized abundance aligned with the flow, as may be expected, but instead lie
at an angle to the flow. This study shows that advection does not diminish the relevance of conclusions from
previous studies of spatial structure in plankton simulations. In fact, the inclusion of advection adds charac-
teristic filamental structure, as observed in real-world plankton distributions. The results also show that the
ability of coupled oscillators to synchronize depends strongly on the spatial arrangement of oscillator natural
frequencies; under the influence of advection, therefore, the impact of the coupling strength on the emergent
spatial structure of a biophysical simulation is time-dependent.
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I. INTRODUCTION

There has, in the scientific literature, been extensive and
continued interest in the use of synchronization theory to
study spatiotemporal fluctuations in natural populations.
Synchronization theory is concerned with how the natural
rhythms of time-varying entities adjust as a result of interac-
tion between them �1� and finds examples across all areas of
science from electronics �e.g., �2,3�� and lasers �e.g., �4�� to
epidemiology �e.g., �5��, fireflies �6� and the human body
�e.g., �7,8��. Spatially synchronized fluctuations in natural
populations have been documented for a wide variety of spe-
cies including rodents �9–11�, birds �12�, fish �12�, mammals
�11,13�, insects �14�, and plankton �15�. This has lead Ranta
et al. �12� to claim that studying spatial synchrony, where
previously the focus has been on temporal fluctuations of
individual populations, should help ecologists get to the core
of the workings of population dynamics.

Ecologists have applied synchronization theory to a vari-
ety of, mainly terrestrial, ecosystems by modeling a region of
interest as a metapopulation of discrete populations interact-
ing directly or indirectly via, for example, common environ-
mental forcing, a common predator or migration between
populations �e.g., �9,10,13,16��. Researchers have applied
similar methods in a marine context, looking at the spatial

structure arising in distributions of surface ocean plankton
�15,17–20�. The motivation for studying spatial and temporal
heterogeneity, or “patchiness,” in plankton comes from their
key role in the carbon cycle, their significance as the base of
most marine foodwebs and the inherent interest in how mi-
croscopic apparently “free floating” organisms can form and
maintain spatial structure under the homogenizing influence
of ocean stirring and mixing. Empirical studies �21� have
shown that a patchy plankton distribution has a lower risk of
extinction than a homogeneous one because asynchronously
varying populations allow recolonization of depleted
patches. It is, therefore, important to understand the condi-
tions under which nearby populations might vary synchro-
nously.

Initial modeling studies represented a spatial distribution
of plankton as a one-dimensional chain of identical plankton
populations with nearest-neighbor interaction �17,19�. The
key result from these studies is that a critical strength of
coupling between populations exists, with system-level dy-
namics altering from asynchronous �heterogeneous�, for cou-
pling weaker than the critical value, to fully synchronized
�homogeneous; all populations evolve identically in time� for
stronger coupling. Furthermore, the critical coupling was
found to depend upon the size of the system, the spatial
resolution, the biological model representing plankton dy-
namics of each population and the biological model param-
eters. The worrying consequence of this work for biophysical
modeling is that potentially arbitrary choices of standard
simulation parameters can determine whether patchy or ho-
mogenous system-level dynamics occur.
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Further work incorporated spatial variability by looking at
interacting nonidentical populations; the biological model
parameters describing the dynamics of each population were
allowed to vary in space �18,20�. It was shown that coupling
between populations could induce phase synchronization,
with populations frequency-locked �i.e., all populations fluc-
tuate with the same frequency� and in-phase but with varying
amplitudes. This is a phenomenon widely documented in
natural spatial population dynamics �11,22�.

Subsequent work �20� increased the realism and oceano-
graphic relevance of this approach by simulating a distribu-
tion of surface ocean plankton as a two-dimensional lattice
of nonidentical oscillatory populations. The populations in-
teracted via a nearest-neighbor parameterization of sub-grid-
cell mixing and stirring. Recognizing that this setup, al-
though simplified, is directly analogous to the standard
approach to biophysical simulation of the surface ocean,
Guirey et al. �20� explored the emergence of spatial structure
in biophysical simulations as a function of underlying physi-
cal model structure. It was found that the emergent spatial
structure depends in a discontinuous manner on the strength
of interaction between populations. A critical value of cou-
pling was found above which the populations became fre-
quency locked. Surprisingly, however, the relationship be-
tween strength of interaction and degree of synchrony
between populations was not monotonic. Instead, intermedi-
ate coupling strengths less than the critical value for fre-
quency locking were found that induced a tenfold increase in
the spatial variability between populations over the un-
coupled level. This “anomalous route to synchrony” has been
described by Blasius and Montbrió �16� for coupled oscilla-
tory predator-prey systems. Guirey et al. �20� reported that
the anomalous coupling range of apparent desynchronization
manifested spatially as clustering of populations into persis-
tent, irregularly shaped and constantly evolving and shifting
patches of local synchrony. This phenomenon is known as
cluster synchronization �23–26�. Within the frequency-
locked regions of coupling strength, the spatiotemporal dy-
namics consisted of quasiregular traveling waves of phase
synchronization. This effect has been observed by Blasius et
al. �27� and Blasius and Tönjes �28� for a two-dimensional
simulation of coupled nonidentical predator-prey populations
and has been reported for natural populations �e.g., �9��.

A key criticism that can be leveled at previous work, from
a marine perspective, is that the only representation of the
effects of the flow of water is the sub-grid-cell stirring and
mixing, parameterized as an effective diffusivity. Whilst all
ocean simulations have to take account of the sub-grid-cell
flow processes, they will in general also have an explicit
representation of stirring at larger scales. Critics could argue
that the inclusion of these processes will destroy the spatial
structure due to synchronization effects seen in previous
studies, thereby rendering the results irrelevant. Therefore, it
is important to address the question: will spatial structure
related to synchronization effects persist under the influence
of explicit stirring? This is related to the question of how
plankton retain coherent structure under the homogenizing
influence of stirring and mixing in the real world �see, e.g.,
�29��.

To address these valid criticisms, we apply to the frame-
work used by Guirey et al. �20� a simple shear flow resulting

in differential horizontal advection at scales larger than the
grid cell, and explore the impact of the rate of this flow on
the emergent spatial properties of a surface ocean plankton
simulation. The scheme is chosen as the simplest possible
flow such that water masses can move at different speeds
relative to one another; it provides an ideal basis to begin
studying the influence of advection on interacting popula-
tions. This has not been studied previously, largely because
most studies of synchronization phenomena in metapopula-
tions have been carried out in a terrestrial context, with
which the present study is not directly analogous. This study
addresses the question of whether synchronization-related
spatial clustering occurs under the influence of explicit ad-
vection and how the flow affects the ability of a coupled
system of plankton populations to synchronize.

In particular, we model the distribution of plankton in a
surface ocean region as a two-dimensional lattice of oscilla-
tory populations, the biological dynamics of each repre-
sented by a typical Nutrient-Phytoplankton-Zooplankton
model. Parameter mismatch is applied to the biological pa-
rameters of the populations to give small variation in the
frequency and amplitude of oscillation in the absence of in-
teraction, which we refer to as the “natural” properties of the
populations. The populations interact through a nearest
neighbor coupling parameterizing sub-grid-cell stirring and
mixing. A constant horizontal shear is applied to the lattice in
one dimension, resulting in advection of populations with
respect to one another. The degree of synchrony between
populations and the emergent spatial structure of the simula-
tion is a function of both the nearest neighbor coupling
strength and the rate of shear, which are varied within real-
istic oceanic ranges.

This study will address the issue of whether the results
and methods of synchronization theory from terrestrial
metapopulation dynamics and the previous studies on plank-
ton patchiness are relevant in a marine context. Additionally,
it will show whether the worrying abrupt changes in system-
level dynamics observed in previous simulations remain a
concern for more realistic scenarios. The increase in realism
will also help to show the way forward in developing these
methods for studying real-world plankton distributions.

II. METHODS

A. Model

We represent the distribution of plankton in a spatially
varying surface ocean region of size L km�L km as a two-
dimensional lattice of n�n populations. Each population
evolves according to �i� the internal biological dynamics rep-
resented by the same Nutrient-Phytoplankton-Zooplankton
model but with population-specific parameters, �ii� sub-grid-
cell-scale stirring and mixing processes parameterized by a
nearest neighbor coupling term and �iii� an explicit advection
term resulting from a constant horizontal shear. This model,
without �iii�, is exactly that used by Guirey et al. �20� to
study the dependence of emergent spatial structure in plank-
ton simulations on the strength of interaction between popu-
lations �i.e., �ii��. The essential details are summarized here.
See Guirey et al. �20� for more information.
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The biological dynamics of each population is represented
by the Nutrient-Phytoplankton-Zooplankton �NPZ� model
originally formulated by Steele and Henderson �30�,

dN

dt
= −

a0N

�e + N��b + cP�
P + rP +

��P2

�2 + P2Z

+ �dZ + k�N0 − N�

= − uptake + respiration + Z excretion

+ Z predators excretion + mixing, �1�

dP

dt
=

a0N

�e + N��b + cP�
P − rP −

�P2

�2 + P2Z − sP − kP

= uptake − respiration − grazing by Z − sinking

− mixing, �2�

dZ

dt
=

��P2

�2 + P2Z − dZ

= growth due to grazing on P − higher predation.

�3�

Briefly, this is a zero-dimensional model representing the
processes occurring in a physically homogeneous region of
upper ocean mixed layer, with mixed layer depth and irradi-
ance assumed constant. Phytoplankton, P, zooplankton, Z,
and nutrient, N, concentrations are explicitly represented. An
implicit biologically inactive deeper layer with a fixed nutri-
ent content acts by way of vertical mixing as a nutrient
source for the upper layer biology. The change in phy-
toplankton concentration is modeled as the sum of growth,
colimited by nutrients and light �represented as a self-
shading term�, and losses due to respiration, mixing and
sinking out of the upper layer, and grazing by zooplankton.
Of the material grazed by zooplankton, a constant fraction is
assimilated, contributing to zooplankton growth. A param-
eterization of predation by higher predators closes the food
chain from above. A fixed proportion of the material grazed
by zooplankton and higher predators is excreted back to the
nutrient pool. The zooplankton is assumed to possess enough
mobility to remain within the mixed layer.

Exploration of the dynamics of this model for an indi-
vidual population can be found in work by Guirey et al. �19�,
Steele and Henderson �30�, Edwards and Brindley �31,32�.
Here, we use a default biological model parameter set �Table
I� for which the model exhibits regular oscillatory behavior.
This is the simplest time-varying behavior not due to any
external forcing, which is neglected to avoid introducing an
additional time scale of variation. This study is intended
to be illustrative; we do not attempt to accurately reproduce
the plankton dynamics of any particular time and place but
instead focus on exploring the underlying dynamics and
mechanisms of pattern formation.

To incorporate the spatial variability inherent in nature,
the parameter set best describing the dynamics of each sub-
population is assumed to vary: a small mismatch is added to
the default phytoplankton growth rate a0 for each population.
Such variability could arise, for example, from spatial varia-

tion in temperature �33� or mixed layer depth �34�. The phy-
toplankton growth rates are chosen from a uniform distribu-
tion of width � centered on a0, so that ai,j � �a0− �

2 ,a0+ �
2 �

for i , j=1, . . . ,n.
Stirring and mixing between populations at sub-grid-cell

scales is parameterized by a nearest neighbor coupling term.
In the usual case of no explicit advection, this may be for-
mulated as

v̇i,j = Fi,j�vi,j� + � · �vi−1,j + vi+1,j − 4vi,j + vi,j−1 + vi,j+1� ,

where vi,j = �Ni,j , Pi,j ,Zi,j�, the function Fi,j is the NPZ model
described above with population-specific phytoplankton
growth rate ai,j and � is the strength of interaction between
populations in days−1.

The coupling term represents mixing processes between
adjacent grid-cells so that

� · �vi−1,j + vi+1,j − 4vi,j + vi,j−1 + vi,j+1� � D
�2vi,j

�x2 ,

where D is the effective diffusivity between grid cells.
Hence we may equate � with the effective diffusivity so that
��Dl−2 where l= L

n is the grid-cell length scale and 1
l2 ap-

proximates the second order spatial derivative. The effective
diffusivity has been shown by Okubo �35� to scale with
length scale according to the empirical relationship D�ls�
�0.01ls

1.15 with ls in cm and effective diffusivity D�ls� in
cm2 s−1. If we take the grid-cell length scale l of the lattice
as the spatial scale at which effective diffusivity acts in
the model, then ��0.01l−0.85�60�60�24 for � in days−1.
For mesoscale processes on the order of 1 km to 100 km,
this gives a range of coupling �� �0.001,0.05� days−1 be-
tween adjacent grid cells with coupling strength increasing
with decreasing length scale. Since an understanding of
the uncoupled system ��=0� is essential to an understand-
ing of the coupled system ��	0�, we consider the range

TABLE I. Default biological model parameters. Population-
specific phytoplankton growth rates ai,j, for i , j=1, . . . ,n, are se-
lected from a uniform distribution of width 5% of a0 centered on a0.

Parameter Symbol Value Units

P growth parameter a0 0.2 m−1 days−1

Light attenuation by water b 0.2 m−1

Self-shading by P c 0.4 m2 gC−1

Herbivorous Z mortality d 0.14 days−1

N half-saturation constant e 0.03 gC m−3

Exchange rate with lower layer k 0.05 days−1

P respiration r 0.15 days−1

P sinking s 0.04 days−1

Lower layer N concentration N0 1.0 gC m−3

Herbivorous Z assimilation efficiency � 0.25

Z excretion fraction � 0.33

Remineralization of Z excretion � 0.5

Herbivorous Z grazing rate � 0.6 days−1

Herbivorous Z grazing half-sat. const. � 0.035 gC m−3
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��0� �0.001,0.05� days−1. Varying � in this range is
equivalent to varying the spatial resolution of the model from
100 km to 1 km, i.e., l� �1,100� km, and the domain size L
therefore also varies with �. It is possible instead to vary n
with � so that L is fixed. However, the ability of coupled
populations to synchronize their dynamics varies with the
number of populations �e.g., �1,19,36��, so here n is fixed to
allow for a clearer analysis.

Here, we introduce explicit advection into the simulation,
resulting from constant shear

�u

�y
= − 
 ,

�where the positive y axis is defined as distance from the top
edge of the lattice and 
 is in days−1� so that the water speed
u in the x direction varies linearly with y.

In the spatially discrete model, this means that row i ad-
vects at a speed 
 · l km days−1 with respect to row i+1.
Boundary conditions are singly periodic, allowing advected
material leaving the domain at x=0 to re-enter at x=L; no-
flux boundary conditions are imposed at y=0 and y=L. Pre-
vious work �20� found no sensitivity to the choice of bound-
ary conditions and singly periodic boundary conditions are
the natural choice under the flow scheme imposed here. The
implementation of this shear requires that rows of the lattice
travel at different speeds and, therefore, the grid cells be-
come misaligned in the y direction. At each time-step of �t
days, row i is shifted with respect to row i+1 by a distance
� · l where �� �0,1�. The fraction � of a grid cell moved at
each time step is determined by the rate of shear, such that


 =
�u

�y
=

�l/�t

l
=

�

�t
,

and, therefore, �=
��t. Since the inclusion of shear causes
rows to become misaligned, there is an additional nearest-
neighbor interaction of population vi,j with populations
vi−1,j−1 and vi+1,j+1 and the coupling term becomes a time-
varying function,

���A�t�vi−1,j−1 + �1 − A�t��vi−1,j + vi,j−1 − 4vi,j + vi,j+1

+ �1 − A�t��vi+1,j + A�t�vi+1,j+1� ,�

for rows i=1, . . . ,n and columns j=1, . . . ,n, with

A�t� = ��	 t

�t

mod	1

�

� ,

so that 0A�t��1. Every 1
� time steps, the rows are mis-

aligned with one another by a whole grid cell, whereupon
there is a reindexing of the populations to reflect the new
position occupied in the lattice and accounting for the singly
periodic boundary conditions. The populations are taken to
advect with the parcels of water, so that a reindexing of the
population-specific growth rates ai,j is also applied, resulting
in a time-dependent arrangement of population growth rates
and, therefore, natural �uncoupled� properties. This assumes
that the spatial variability is related to local properties of the
water or the populations themselves. The dynamics vi,j�t�,
therefore, represent an Eulerian time series describing the

biological evolution of the area of ocean bounded by the
lattice. Additionally, a Lagrangian time series is recorded de-
scribing the evolution of the biology in the parcel of water
originally labeled �i , j� and subsequently occupying a time-
varying position on the lattice. To clarify, if �I ,J� and �i , j�
denote a population’s original position and time-varying po-
sition, respectively, on the lattice, then we have an Eulerian
time series as described above: vi,j with i= I∀ t and j
=g�I ,J , t�= �J−
t�mod�n�, where �x� denotes the largest in-
teger less than or equal to x. Then we have a Lagrangian time
series vI,J, with

v̇I,J = F�I,J� + ��A�t�vI−1,J�−1 + �1 − A�t��vI−1,J� + vI,J−1

− 4vI,J + vI,J+1 + �1 − A�t��vI+1,J� + A�t�vI+1,J�+1� ,

where J�=g�I−1,J , t�, J�=g�I+1,J , t�, A�t�= �J−
t�− �J
−
t� and a0 in FI,J is aI,J∀ t.

B. Details of runs

We explore the impact of shear on the emergent spa-
tial structure generated by interaction between popula-
tions. The parameter spread �=5% of a0 so that ai,j
� �0.195,0.205� days−1. This choice of � is deliberately
conservative to give a set of subpopulations with essentially
the same dynamics but small variation in amplitude and
period of oscillation. The resulting spread in natural frequen-
cies is �2.5%. Without interaction between populations
��=0�, a simulation run from initially homogenous condi-
tions leads quickly to a random field.

Simulations are carried out for 
=0.0 days−1,

=0.001 days−1, 
=0.005 days−1, 
=0.01 days−1, 

=0.05 days−1, and 
=0.1 days−1, covering a range typical
of surface ocean shear �37,38�. For each value of shear, the
coupling strength � is varied in the range given above. As
explained, the emergent dynamics of the lattice are deter-
mined by the influences of the biological dynamics, the ef-
fective diffusivity and the advection caused by shear, each
of which has an associated time scale: TNPZ, T�, and T
,
respectively. TNPZ�100 days is the period of oscillation of
the populations. T�= 1

� ranges from 20 to 1000 days since �
� �0.001,0.05� days−1. Hence the values of 
 give advec-
tion time scales T
� �10,1000�, covering a range slower
than, equal to and faster than TNPZ and T�. Note that this
study is intended to be illustrative; no attempt has been made
to reproduce seasonal plankton dynamics and TNPZ has not
been tuned to any particular time scale. It is expected that the
results will remain qualitatively unchanged unless TNPZ is
faster than 10 days, the fastest time scale associated with the
shear, 
. The case �=0 days−1 is included for completeness.
� and 
 are held constant throughout each simulation, which
is run from initially homogenous conditions until transient
dynamics die away. For a detailed description of the transient
dynamics see Guirey et al. �20�. The length of transient was
found to vary with � so that, especially near to bifurcations
in system behavior �see below�, an integration of up to 5000
days was required. Results for zero shear were not found to
be sensitive to the choice of initial conditions; results for
nonzero shear are time varying and therefore do depend on
initial conditions, as will be seen below.
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Since this advection scheme results in a time-varying ar-
rangement of phytoplankton growth rates and, therefore,
population natural properties, some additional simulations
were carried out to highlight the impact of the spatial ar-
rangement of population properties on the synchronization
effects exhibited by the system. Every 1

� time steps, the
populations in each row have shifted by a whole grid cell
with respect to neighboring rows. Because of the differential
rate of horizontal flow, it takes n�

1
� time steps before all

populations return to their original position on the lattice.
Hence, n different configurations with grid-cells aligned re-
sult from the shear flow: a0�m�=AI,J+mI, where m
=0,1 , . . . ,n−1 and AI,J is the configuration under zero shear.
For ease of performing ensemble runs, a 10�10 lattice of
populations was chosen, with all other parameters as above.
For shear rates 
=0 days−1, 
=0.001 days−1, and 

=0.1 days−1, simulations were carried out for the full range
of coupling strength � for each of the ten possible advection-
induced initial spatial arrangements of the natural frequen-
cies.

C. Diagnostics

The resultant behavior of the simulation for varying � and

 is characterized using several metrics.

�1� Two-dimensional phytoplankton biomass field, Pi,j. A
visual indication of the spatial dynamics is obtained from the
two-dimensional Eulerian fields of phytoplankton, zooplank-
ton, and nutrient concentration. For brevity, results are pre-
sented for phytoplankton dynamics only; similar synchro-
nous properties are observed for zooplankton and nutrient
dynamics.

�2� Frequency spread, �. The time average angular fre-
quency �i,j of each subpopulation is calculated by using the
Lagrangian time series, for 500 days after steady state dy-
namics have been reached, to obtain a time series Ti,j of peak
abundance in one of the state variables, Ni,j, Pi,j, or Zi,j. Then

�i,j = 	 n − 1

Ti,j�n� − Ti,j�1�
 � 2� ,

where there are n peaks in the series. From the set of fre-
quencies, the spread is

� =
s.d.��i,j�

mean��i,j�
� 100,

where s.d. denotes standard deviation and mean��i,j�
= 1

n2 i=1
n  j=1

n �i,j. The populations are said to be frequency
locked when �=0.

�3� Phase order, R. By linearly interpolating between
peaks, the phase of oscillation of each population at a time t
is approximated by

�i,j�t� = 	 t − Ti,j�m − 1�
Ti,j�m� − Ti,j�m − 1�
2� ,

where T�m� is the first peak occurring after time t. The cen-
troid of the oscillators positions on the circle is then

Z = Reı� =
1

n2
i=1

n


j=1

n

eı�i,j ,

so that � gives the average phase and the order parameter R
is a measure of the phase coherence of the populations. For
uncorrelated phases, R is around 0. For populations oscillat-
ing with a common phase, R=1 and the system is said to be
phase synchronized. Intermediate values of R indicate that
the phases of the populations are neither equal nor randomly
spread, e.g., local synchrony or clustering.

�4� Cluster measures, cx and cy. While � and R measure
the coherency in behavior of the ensemble as a whole, they
can mask local synchronous effects such as clustering of the
lattice into synchronized subsets of populations. Hence, we
use a simple cluster measure c� �1,n� in numbers of grid
cells that gives an indication of the size of spatial structure in
one dimension. For zero coupling, c=1 because populations
oscillate in isolation and no spatial structure exists larger
than the grid cell. For a fully �phase and frequency� synchro-
nized system, c=n. A value of c between 1 and n indicates
some degree of local synchronization. The size of structure is
examined in the x and y directions separately to obtain cx and
cy. cx is calculated by taking the n�n Pi,j field

P�t� =�
P11 P12 ¯ P1n

P21 ¯ ¯ P1n

]

Pn1 Pn2 ¯ Pnn

�
and removing its mean to obtain P̄�t�=P�t�− 1

n2 i=1
n  j=1

n Pi,j.

A transect Pi= �P̄i1 , P̄i2 , . . . , P̄in� is taken across the lattice for
each of the i=1, . . . ,n rows of grid cells of the mean-
removed field. A cluster is defined as a region of adjacent
grid cells with continuously positive or negative values and
is calculated by recording zero-crossings of Pi. Over all
rows, this gives a set of clusters Cx= �c1 ,c2 , . . . ,cm�, where
ck, for k=1, . . . ,m, are integer numbers of grid-cells and
k=1

m �ck�=n2. The median of this set of clusters is then cal-
culated for each time step to give a measure of the local
coherency cx�t�. The median, rather than mean, value is se-
lected to prevent errors arising from clusters that straddle the
x=0 and x=L boundaries as a result of the periodic boundary
conditions. cy�t� is calculated in exactly the same manner,

but using columns rather than rows of P̄�t�.
These measures, summarized in Table II, are used to-

gether to enable a full description of how the emergent spa-
tial structure of the plankton distribution, as a function of the
strength of interaction between populations, is modified by
the inclusion of advection.

III. RESULTS

A. Zero shear

We first present the results for 100�100 populations as a
function of coupling strength � for 
=0 days−1, i.e., no ex-
plicit advection. The results for these simulations have been
reported by Guirey et al. �20� but are presented here for ease
of comparison with the results for nonzero shear �
	0�.
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Figure 1 shows the phytoplankton biomass fields as a
function of �. The emergent spatial structure of the simula-
tion depends in a nonintuitive way on the strength of inter-
action between populations. The degree of synchrony exhib-
ited by the system does not increase monotonically with
coupling strength; there is not a monotonic decrease in � and
increase in R as � is increased �see Fig. 2�. In fact, for � in
the range 0.0025��0.02 days−1, there is a coupling-
induced desynchronization of populations, indicated by a fre-
quency spread ��20%, an order of magnitude higher than
the spread in uncoupled frequencies �Fig. 2�. Within this re-
gion of apparent disorder, the populations cluster into irregu-
lar pockets of locally synchronized dynamics, as seen in Fig.
1. This “patchiness” is temporally evolving but statistically
stable, with a characteristic length scale �Fig. 3�. The spatial
structure of this patchiness is not directly generated by any
underlying structure in the parameters of the uncoupled
populations, but arises from the interplay between the spatial
variability �the spread in phytoplankton growth rates� and
dispersal between populations. The cluster measures, cx and
cy, are equal and increase gradually from around 3 to 7 grid
cells as � is increased within this range, with no effect on �,
which remains at around 20%. For the range of � leading to
clustering of populations, Fig. 4 shows cx and cy scaled by
the grid-cell length scale l��� to give the size of clusters in
km. It is seen that the physical length scale of clusters also
varies, decreasing from around 50 km to around 20 km over
this range of coupling. At ��0.02 days−1, the system under-
goes an abrupt switch to frequency-locked, domain-scale dy-
namics, indicated by �=0 �Fig. 2�.

For �� �0.002,0.0025� days−1 and �	0.02 days−1, the
populations are frequency-locked but never fully phase lock;
the phase order R gradually approaches but never equals 1 as
� is increased �Fig. 2�. The spatiotemporal pattern here is of
numerous interfering traveling waves of phase-locked abun-
dance �27,28�. Patches of synchronized biomass are quasi-
regular, unlike the irregularly shaped clusters seen for �
� �0.001,0.002� days−1 and �� �0.0025,0.02� days−1. The
spatial scale of these “target patterns” depends on the
strength of coupling. The value of � above which frequency
locking persists is referred to as the critical coupling strength
for frequency locking, �FL.

To summarize, the key features of the zero shear case are
�i� coupling-induced frequency disorder with small-scale
synchronous clustering, �ii� frequency-locked dynamics with
larger-scale traveling waves of phase-locked populations and
�iii� abrupt bifurcations in emergent spatial dynamics as a
function of coupling strength.

B. Shear 	0

The phytoplankton biomass fields in gC m−3 for
�=0 days−1, �=0.005 days−1, �=0.01 days−1, �
=0.02 days−1, �=0.04 days−1, and �=0.05 days−1 are
shown in Fig. 5 for 
=0.001 days−1, 
=0.005 days−1, 

=0.01 days−1, 
=0.05 days−1, and 
=0.1 days−1. The bio-
mass plots for �=0 all look alike: in the absence of effective
diffusivity the plankton populations do not interact and,
therefore, do not alter their natural oscillations and are
merely advected as a result of the shear, resulting in the same
grainy structure of independently oscillating populations for
any rate of shear.

Figure 5 clearly shows that under the influence of shear
the system exhibits coherent structure �local synchrony or
clustering� for a range of effective diffusivity for all rates of
shear considered. Figure 6 illustrates the local population
dynamics for a desynchronized, clustering case �

=0.01 days−1, �=0.01 days−1� and a frequency-locked case
�
=0.01 days−1, �=0.04 days−1�. Each population retains
the basic form of its attractor and is oscillatory for all values
of shear and coupling. As for 
=0, small-scale clustering
persists for increasing � until a critical value �FL at which the
whole ensemble frequency-locks and spatial pattern is do-
main sized.

This is seen more clearly in Fig. 2, which shows the fre-
quency disorder � and phase coherency parameter R as a
function of effective diffusivity for the different rates of
shear. The general pattern is as described above for 
=0 and
reported by Guirey et al. �20�, with a region of frequency
disorder indicated by high values of � that increase from
���=0��2.5% to as much as 20%, followed by an abrupt
shift to frequency locking signaled by ��0%. For shear
rates of 
=0.001, 0.005, 0.01, 0.05 and 0.1 days−1, �FL
=0.035, 0.041, 0.044, 0.027, and 0.019 days−1, respectively.
However, unlike in the zero shear case, the system “jumps”
in and out of frequency locking for values of effective diffu-
sivity lower than the final critical �FL. This is seen in Fig. 2
as a series of changes in system state from ��0% to �
�20% and in the biomass plots in Fig. 5 as a succession of
transitions from small-scale clustering to domain-scale syn-
chronization and back again as � is increased. For example,
for 
=0.001 days−1 Fig. 2 indicates that for �
=0.03 days−1 and �=0.034 days−1 the system is desynchro-
nized and for �=0.032 days−1 the system is frequency
locked.

Figure 5 shows that, in comparison with the zero shear
case, the inclusion of shear alters the spatial characteristics of
the clustering seen in the ranges 0����FL. The advection

TABLE II. Summary of diagnostic statistics.

Measure Symbol Range Units

Phytoplankton biomass of population �i , j� Pi,j 0–0.5 gC m−3

Angular frequency of population �i , j� �i,j 0.05–0.15 2� days−1

Frequency spread � 0–25 %

Phase order R 0–1

Cluster measures cx, cy 1-n Grid cells

GUIREY et al. PHYSICAL REVIEW E 81, 051902 �2010�

051902-6



does not destroy the local synchrony; there is still clear evi-
dence of coherent structure. Even for the largest shear
�
=0.1 days−1�, the clusters are not simply stripes of uni-
form phytoplankton biomass aligned with the x direction, as
might be expected. This indicates that the spatial positioning
of the clusters is nonstationary, since otherwise the effect of
shear would be to narrow and stretch the clusters until they
reached a steady state as a horizontal stripe. The populations
composing each “patch” vary in time.

For the lowest values of shear, 
=0.001 days−1 and 

=0.005 days−1, the clustering observed in Fig. 5 is indistin-
guishable by eye from the kind of structure seen in the zero
shear case in Fig. 1. The shear rate is too slow to impose
directionality upon the clustering generated by the effec-
tively diffusive coupling. For higher values of shear, 

=0.01 days−1, 
=0.05 days−1, and 
=0.1 days−1, there is
a definite directionality to the spatial structure. With respect
to the no-shear simulation, the clusters are narrowed and

FIG. 1. Zero shear. Phytoplankton biomass in gC m−3 for 100�100 populations as a function of nearest-neighbor coupling strength � for

=0. Simulations were run until diagnostics reached steady state �see text�. Subplot labels indicate the value of � in days−1.
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stretched by the shear and are increasingly aligned with the x
axis, but are still nonstationary.

The change in structure that can be seen by eye is well
supported by the cluster measures cx��� and cy��� shown in
Fig. 3. The cluster measure only has clear meaning outside
the frequency-locked regions �see Guirey et al. �20��. Hence
we only discuss the behavior of the cluster measures in
the desynchronized region, i.e., where small-scale clustering
dominates.

For 
=0.001 days−1 and 
=0.005 days−1, cx����cy���
for all ���FL, confirming that the clusters are not skewed in
a particular direction. There is a steady increase in cx and cy
from 1 to 8 grid cells with increasing �, interrupted by the
aforementioned “jumps” to the frequency locked state. For

=0.01 days−1, cx���	cy���∀ ���FL, with cx increasing
from 1 to 10 grid cells and cy increasing from 1 to 8 grid
cells with increasing �. The difference �cx−cy� between the
cluster size in each direction increases with increasing �. The
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same trend is seen more markedly for increasing shear. For

=0.05 days−1, cx increases from 1 to 14 grid cells, whilst
cy increases from 1 to only 5 grid-cells, and for 

=0.1 days−1, cx increases from 1 to 15 grid cells, whilst cy
increases from 1 to only 4 grid cells with increasing �. These
numbers show a trend of increasing stretching of clusters in
the x direction and narrowing in the y direction, as expected
from the shear applied to the ensemble. Over the clustering
region of �, Fig. 4 shows that the physical scale of spatial

structure in km is also not constant; there is a trend of de-
creasing length scale of clustering with increasing �.

In all cases, for �	�FL the order parameter R tends rap-
idly to 1 �see Fig. 2�. As observed for zero shear, quasiregu-
lar traveling waves occur �e.g., for 
=0.001 days−1 and �
=0.02 days−1; see Fig. 5�. However, the waves are less dis-
tinct, showing less variation in abundance, because the sys-
tem is closer to phase locking. For high shear �e.g., for 

=0.1 days−1 and �=0.02 days−1; see Fig. 5�, the regions of
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phase-locked abundance are stretched by the flow, as de-
scribed above, instead of occurring as quasiregular waves.

There is no clear pattern in the value of �FL with increas-
ing 
. However, it is evident that the inclusion of realistic
levels of shear alters the spatial characteristics of the en-
semble whilst allowing coherent clusters to persist.

C. Influence of subpopulation natural properties

Figure 7 shows the calculations of � as a function of � for
each of the spatial configurations of the set �ai,j� that are
possible under the influence of the shear for 
=0 days−1,

=0.001 days−1, and 
=0.1 days−1 for 10�10 populations.
To clarify, each simulation uses the same set of phytoplank-
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ton growth rates but in a different spatial configuration. Ten
different configurations with grid cells aligned are possible
under this advection scheme.

For 
=0 days−1, the initial arrangement of natural fre-
quencies is constant with time. The resultant �FL is
seen to range from min��FL�=0.002 days−1 to max��FL�
=0.016 days−1, each spatial arrangement leading to a spe-
cific �FL �Fig. 7�. For nonzero shear, the initially imposed

spatial arrangement of natural frequencies varies with time,
at a rate dependent upon 
.

For 
=0.001 days−1, for each initial configuration of
populations, there is a range of � for which the ensemble
dynamics move in and out of frequency locking with in-
creasing � before eventually permanently frequency locking.
This range is roughly coincident with the range of �FL
� �0.002,0.016� days−1 found above for 
=0 days−1. For

FIG. 5. Shear �0. Phytoplankton biomass in gC m−3 for 100�100 populations as a function of nearest-neighbor coupling strength � and
shear 
. Simulations were run until diagnostics reached steady state �see text�. Row labels indicate the value of � in days−1; column labels
indicate 
 in days−1.
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=0.1 days−1 the ensemble is frequency locked for �
	0.002 days−1 and the profile of � with varying � looks
alike for all initial spatial configurations of the populations
�see Fig. 7�.

These results show that the impact of the time-dependent
spatial arrangement of subpopulations on the ability of the
system to synchronize depends on the rate of shear. The re-
arrangement of populations, and corresponding natural fre-
quencies, with time leads to a time-dependent value of criti-
cal coupling and causes a succession of transitions within
this range. For low shear �
=0.001 days−1�, the time scale
of the advection is T
= 1


 =1000 days, which, within the
range of effective diffusivities �� �0.002,0.016� days−1,
gives T
	T�. Hence, the dominant effect on the ensemble
dynamics is the effective diffusivity, with the system being
pulled towards frequency locking at a value of � varying
with the time-dependent configuration of populations. This is
what causes the “jumping” between the frequency-locked
and disordered states described in the previous section �Figs.
5, 2, and 3�. For 
=0.1 days−1, we have T
=10 days, so
that T
�T� for the full range of effective diffusivity. In this
case, the faster shear actually alters the ability of the en-
semble to synchronize, by increasing the network of influ-
ence of each population. In other words, advection at this
rate allows each population to be coupled with a greater
number of populations on the relevant time scale and, there-
fore, effectively alters the coupling geometry of the system
and enhances the subgrid mixing. Hence, advection increases
the ability of the lattice of populations to synchronize their
dynamics.

IV. DISCUSSION AND CONCLUSIONS

In this study, we have incorporated an explicit advection
scheme into a standard model for spatially extended plankon
dynamics. The rate of shear has been varied in order to in-

vestigate how the emergent spatiotemporal dynamics of the
simulation are modified by explicit advection. The primary
aim has been to establish whether the results and methods of
synchronization theory from terrestrial population dynamics
and previous work on spatial structure in plankton dynamics
are relevant in a marine context. In particular, we asked
whether the inclusion of explicit stirring would prevent for-
mation of coherent structure created by synchronous cluster-
ing of populations.

It has been found that many of the features seen for the
mixing-only simulation also occur under the action of advec-
tion. The properties of synchrony exhibited by the system as
a function of the coupling strength are broadly similar, with
an “anomalous region” of increased frequency disorder and
small-scale clustering followed by a shift to frequency lock-
ing at a critical coupling strength �FL. For nonzero shear,
there is not a single value of � at which the transition to
frequency locking occurs; rather, the system moves in and
out of frequency locking as a function of � until eventually
remaining frequency-locked for coupling higher than the
critical value.

We have shown that this “jumping” results from the time-
varying spatial arrangement of the populations caused by
advection; �FL varies with the spatial arrangement of natural
frequencies and hence is time varying, potentially resulting
in transitions in and out of frequency locking. The impact of
the spatial arrangement of natural frequencies on the syn-
chronization of coupling oscillators has been seen previously
by Osipov and Sushchik �23�.

This phenomenon is dependent on the rate of shear. For
the fastest shear �
=0.1 days−1�, there is only one transition
to frequency locking, as in the mixing-only �
=0� case. This
is because the time scale of advection �10 days� is faster than
that of the biological dynamics ��100 days� and the effec-
tive diffusivity �	50 days�. The rapid rearrangement of
populations allows previously separated populations to inter-
act on time scales faster than the other influences on the
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dynamics. The net effect is to effectively alter the coupling
geometry of the system, increasing the range of influence of
each population and reducing the variability in �FL associ-
ated with the spatial arrangement of natural frequencies. This
does not occur for slower advection because the time scale of

interaction of separated populations is longer than that of the
nearest-neighbor coupling. Modification of the coupling ge-
ometry of a system by explicit stirring has been reported by
Neufeld �39�. A more realistic representation of upper ocean
stirring and mixing could allow populations to come into
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contact with a larger number of populations in the simula-
tion. Clearly the particular spatial arrangement of natural fre-
quencies would then be less influential.

With the inclusion of advection, the bifurcations in
system-level dynamics reported by previous authors �17–20�
still occur. The emergent spatial structure of a simulation
may alter from patchy to homogenous as an apparently in-
nocuous model parameter is varied. For example, it has been
seen here that system-level dynamics may be frequency
locked with large-scale structure or desynchronized with
small-scale clustering even though domain size, spatial res-
olution, number of populations, parameter spread, biological
model and coupling strength are all fixed and only the par-
ticular spatial arrangement of population parameters, with a
standard deviation of only 5%, is varied. Further work �see
Appendix� explored this sensitivity further by varying the
phytoplankton growth rate values, taking them from the
same uniform distribution but varying the seed value used in
the random number generator. No shear was applied, so that
the spatial arrangements of natural frequencies remained
constant in time. ���� was calculated for each set of growth
rates. It was found that the ability of the coupled populations
to synchronize their dynamics varied enormously. The
frequency-disorder region did not always occur and its oc-
currence or otherwise was not related to the natural fre-
quency spread, ���=0�. This result is of concern to biophysi-
cal modelers wishing to objectively investigate plankton
patchiness and its biogeochemical consequences in their
models. This alarming sensitivity to the spatial arrangement
of natural frequencies appears to be mitigated by sufficiently
fast stirring. Further work should also investigate the sensi-
tivity to the width and probability distribution of mismatch in
the biological model parameters, and should relate this to
observed patterns of variability in biological measurements
in the ocean.

The results from this study suggest that explicit advection
increases the ability of coupled plankton populations to syn-
chronize their dynamics. First, for coupling strengths greater
than the critical value for frequency locking, the simulations
phase-lock almost instantly for non-zero shear; in the case of
zero shear, the approach to phase locking is slow and gradual
and the simulation never fully phase locks for the full range
of nearest neighbor coupling. Second, all simulations found
that the fastest rate of shear resulted in the lowest value of
critical coupling for frequency locking. However, no clear
relationship was found between the rate of shear and the
critical coupling strength. This is because of the confounding
influence of the variability in �FL caused by the time-varying
arrangement of population natural properties. To remove this
effect, further work could look at not allowing the popula-
tions to advect with the parcels of water, i.e., making the
assumption that the spatial variability in biological param-
eters is �indirectly� related to spatially fixed properties such
as bathymetry. Here, it was chosen to focus on the more
oceanographically relevant case of advection with the water
parcels.

Most importantly, we have seen that for realistic rates of
surface ocean shear, the spatial clustering of populations into
subsets of locally synchronized dynamics, as reported in the
case of no explicit advection, still occurs; the inclusion of

stirring does not prevent the formation of spatial structure.
Exclusion of explicit stirring from previous work on syn-
chronization in spatial plankton distributions raised the ques-
tion of how applicable the results would be to the marine
environment. The results presented here move the approach
away from terrestrial metapopulation dynamics and provide
support for the use of synchronization theory methods and
results in exploring spatial structure in surface ocean bio-
physical simulations.

Inclusion of stirring alters the characteristics of the spatial
structure. Advection draws the clusters out in the direction of
the flow, causing stretching and narrowing of the patches of
synchronized dynamics. This stretching and narrowing is the
mechanism responsible for the filamental structure observed
in real-world plankton distributions observed by satellite
�e.g., �40�� and from research ships �38�. We have seen that
the degree of elongation and narrowing of clusters depends
on the rate of shear. Even for the largest shear, the clusters
are not simply stripes of uniform biomass aligned with the
flow. This indicates that the spatial positioning of the clusters
is nonstationary, since otherwise the effect would be to nar-
row and stretch the clusters until they reached a steady state
as a horizontal stripe.

In conclusion, these results have shown that explicit stir-
ring does not prevent the formation of coherent structure in
biophysical simulations through the clustering of populations
into patches of synchronized dynamics. This affirms the ap-
plicability of synchronization theory in the study of plankton
patchiness. By incorporating many features of typical ocean
situations, in a framework simple enough to allow analysis
of the relative influences on the biological dynamics of a
spatial plankton distribution, this work provides the basis for
future studies incorporating a more realistic ocean flow.
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APPENDIX

This section presents experiments that were carried out to
further investigate the finding that the spatial arrangement of
nonidentical populations has a strong influence on the ability
of the coupled populations to synchronize their dynamics
�see Results�.

100 simulations were carried out of a lattice of 10�10
populations. The populations interact via the nearest neigh-
bor coupling of strength � but there is no shear. The biologi-
cal dynamics are represented by the NPZ model described
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above. For each simulation, the set of phytoplankton growth
rates ai,j is chosen from the same uniform distribution of
width �=5% but using a different integer seed for the ran-
dom number generator. A different seed leads to a different
set of random numbers. Therefore, each simulation varies
only in the particular values of ai,j taken from the same prob-
ability distribution. Because the rate of shear is zero, the
spatial arrangement of populations is constant in time. Each
simulation is run until the diagnostics described in the Meth-
ods are at steady state.

Figure 8 shows the calculation of the frequency spread �
of populations as a function of � for each simulation �top
panel� and gives four characteristic examples �middle panel�.
There is huge variability in the curve ����. All simulations
are alike for �0.002, with a small increase in frequency
spread followed by a transition to frequency locking, al-
though the maximum frequency spread attained in this re-
gion varies between simulations. For �	0.002, the simula-

tions fall into two categories. Either, the simulation bursts
out of frequency locking, entering a region of high frequency
disorder before returning to frequency locking at a value �FL

that varies with simulation; or, the frequency-disorder region
does not occur and the system remains frequency locked.
The third panel of Fig. 8 shows a scatter plot of the maxi-
mum frequency spread attained over the range of � against
the natural �uncoupled� frequency spread. The two distinct
behaviors can be seen in the scatter plot as two clouds of
points with max�����25% and max�����5%, respectively.
It might be supposed that the maximum frequency spread,
and the occurrence or otherwise of a frequency-disorder re-
gion, would be related to the natural frequency spread. Fig-
ure 8 shows that this is not the case. The natural frequency
spread varies from 2.3% to 2.9% and there is no relationship
with the maximum frequency spread. This shows that the
spatial arrangement of the natural frequencies is important.
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