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Abstract Modelling studies of upper ocean phenomena, such as that of the spatial
and temporal patchiness in plankton distributions, typically employ coupled bio-
physical models, with biology in each grid-cell represented by a plankton ecosys-
tem model. It has not generally been considered what impact the choice of grid-cell
ecosystem model, from the many developed in the literature, might have upon the
results of such a study. We use the methods of synchronisation theory, which is
concerned with ensembles of interacting oscillators, to address this question, con-
sidering the simplest possible case of a chain of identically represented interacting
plankton grid-cells. It is shown that the ability of the system to exhibit stably ho-
mogeneous (fully synchronised) dynamics depends crucially upon the choice of
biological model and number of grid-cells, with dynamics changing dramatically
at a threshold strength of mixing between grid-cells. Consequently, for modelling
studies of the ocean the resolution chosen, and therefore number of grid-cells used,
could drastically alter the emergent features of the model. It is shown that chaotic
ecosystem dynamics, in particular, should be used with care.

Keywords Plankton patchiness . Synchronisation . Metapopulation . Biophysical
modelling

1. Introduction

The growing awareness of possible anthrogenic forcing of the global carbon cycle
has increased interest in its study. Since phytoplanktons are the primary produc-
ers of the marine ecosystem (Lalli and Parsons, 1997), a study of the global car-

∗Corresponding author.
E-mail address: ejg@noc.soton.ac.uk (E. J. Guirey).



Bulletin of Mathematical Biology (2007)

bon cycle is impossible without a model of the upper ocean ecosystem (Popova,
1995). Such models attempt to break down the complicated structure of a marine
ecosystem into a number of components and the flows between them. A wide
range of models exists, reflecting the variety of ocean regions and modelling aims
that have been the concerns of different studies (Totterdell, 1993). In standard car-
bon cycle studies, such an ecosystem model is usually assumed to have geograph-
ical generality and is embedded in a general ocean circulation model (e.g., Slater,
1993). The resulting biophysical model of the carbon cycle can then be examined
for its ability to predict features of phytoplankton distribution and production ob-
served in the real ocean.

One such feature, observed from ships (see Bainbridge, 1956) as discoloured
patches of water, in collected biological data (e.g., Popova et al., 2002) and, more
recently, in satellite imagery, is the heterogeneous (or patchy) nature of plank-
ton distributions in space and time. Despite much recent progress, this “patch-
iness” and its consequences are not fully understood (Martin, 2003) and it is a
phenomenon worthy of study not least because of an evident link with levels of pri-
mary production (Smith et al., 1996; Martin and Richards, 2002). Plankton distri-
butions are patchy on length-scales of centimetres to several hundred kilometres,
raising the question of what sets the spatial scales of structure observed. Modelling
studies may attempt to use the output from coupled biophysical models to answer
such questions (e.g., Abraham, 1998; Levy and Klein, 2004).

In essence, the usual biophysical model consists of an ensemble of interacting
grid-cells, in each of which the biology evolves according to the chosen ecosystem
model, with the interaction provided by the prescribed physical circulation model.
Such a system becomes the concern of the area of mathematics known as synchro-
nisation theory, which studies how the natural rhythms of individually oscillating
objects adjust as a result of couplings between them (Pikovsky et al., 2001). If the
coupling causes the oscillations to become identical in time, then we describe the
system as synchronised.

The earliest recorded interest in a phenomenon of this kind was by Christiaan
Huygens, the Dutch Astronomer, Mathematician and Physicist, who observed in
1673 how two swinging pendulum clocks hanging from a wooden beam may be-
come phase-locked as a result of vibrations, caused by the motion, travelling along
the beam (Pikovsky et al., 2001).

More recently, synchrony has also been observed in the dynamics of natural
populations. One study, by Grenfall et al. (1998), looked at fluctuations in the den-
sity of feral sheep populations on separate islands. Fluctuations exhibited a high
degree of synchrony, despite no direct link existing between the populations. In
this case, the synchronising influence was understood to be the indirect correlat-
ing effect of a common environmental forcing. Another well-studied example is
the cycle of Canadian lynx numbers (Elton and Nicholson, 1942), which oscillate
on a roughly 10-year cycle. Remarkably, the abundances in regions thousands of
miles apart are in phase, although amplitudes differ. This phase-synchronisation
has been shown by Blasius and Stone (2000), who considered the lynx distribution
as a lattice of coupled oscillating “patches,” to be at least partly due to migration
of animals between adjacent regions.
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Hillary and Bees (2004) studied synchronisation in plankton distributions
in a similar manner. They considered an ensemble of plankton populations,
represented by the Nutrient–Phytoplankton–Zooplankton model of Steele and
Henderson (1981) with a fixed set of parameter values, coupled via a simple
nearest-neighbour flux between patches. By varying the strength of flow between
patches and looking at the stability of the fully synchronised state, they were able
to establish a critical strength of coupling required for homogeneous dynamics
to persist. Two, eight and ten patch ensembles were considered, with results
suggesting some dependence of this critical coupling on the number of patches.

A set-up such as that of Hillary and Bees (2004) is a simple parody of a biophys-
ical carbon model: biological dynamics are represented by an ecosystem model
common to all grid-cells and the nearest-neighbour coupling approximates the ad-
vective and diffusive processes of the physical flow. In many cases, carbon cycle
modellers may select a biological model “off-the-shelf” through subjective choice
or simply because the model is well-studied. A particular set of biological model
parameter values will be chosen, with each parameter subject to a lesser or greater
degree of uncertainty. The number of grid-cells used in the simulation will be dic-
tated by a variety of factors such as available computing power, the sampling reso-
lution of empirical data that the simulation hopes to reproduce or, again, subjective
choice. Following the approach of Hillary and Bees (2004), the present study there-
fore aims to address the following question: for oceanographic modelling, what im-
pact does the choice of biological representation at grid-cell level, and the number
of grid-cells used, have upon the dynamic features of the fully coupled biophysical
system? The results of such a study will be of importance to biophysical modellers.

Specifically, we consider a chain of n grid-cells coupled via a nearest-neighbour
flow (with no-flux boundary conditions) designed to approximate mixing processes
between adjacent grid-cells. This mixing is a proxy for the effectively diffusive
effects of flow at scales smaller than the grid-cell. The biology within each grid-cell
is identically represented by a plankton ecosystem model. We consider three
different plankton models, which are all typical of those used in the literature to
represent upper-ocean biological processes. The models, which will be introduced
in Section 2, all represent plankton population dynamics but differ in terms of
state variables and functional forms. Within this framework, varying the strength
of the flux between grid-cells, we establish the strength of coupling required
for the system to exhibit synchronised (spatially homogeneous) dynamics as a
function of the choice of (i) biological model, (ii) biological model parameter
values and (iii) the number of grid-cells forming the ensemble. This is referred to
as the critical coupling.

It is necessary in this preliminary study to consider the simplest possible case;
more detailed studies will build on its results. Namely, we consider the case of
identical chaotic oscillators: the biology within each grid-cell of the ensemble is
represented by the same system of ordinary differential equations and accompa-
nying set of parameter values. Realistically, we would expect spatial and temporal
variation in plankton dyamics; for example, phytoplankton growth rates may vary
spatially as a result of differences in temperature or species composition. Later
studies will need to incorporate such variation. Ecosystem models may exhibit dif-
ferent types of dynamical behaviour, from steady state to limit cycles to chaos,
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depending upon the functional forms used to represent biological processes and
choice of parameter values (e.g., Edwards and Brindley, 1999). This change in
dynamical behaviour is also observed in empirical plankton studies (Fussman
et al., 2000). Work has shown that a coupled system of identical oscillators, such
as that being considered here, will always synchronise stably if the individual os-
cillators exhibit steady state or limit cycle solutions (Pikovsky et al., 2001); this is
a property that vanishes immediately if we consider nonidentical oscillators (rep-
resenting spatial variation), because the mismatch in representation of each oscil-
lator introduces a desynchronising influence that is lacking in the system of iden-
tical oscillators. On the other hand, a system of coupled chaotic oscillators has an
inherent desynchronising mechanism provided by the exponential divergence of
nearby trajectories that is characteristic of a chaotic system (Strogatz, 1994), even
when each oscillator is identically represented mathematically. Hence, since iden-
tical coupled limit-cycle or steady-state osillators will always stably synchronise,
this study focuses on regions of model parameter space for which the models ex-
hibit chaotic dynamics. In particular, we determine the ability of the coupled sys-
tem to synchronise for the “most chaotic” (i.e. nearby trajectories separate most
rapidly) region of parameter space. Behaviour at this most extreme point will then
bound the behaviour for the whole of parameter space. The effects of the noise
and spatial variation in parameters that would, in the real-world case, be inherent
in the system, are not directly studied here. However, future studies will consider
the more biologically realistic set-up of non-identically represented patches and so
will consider both desynchronising influences.

For the system considered here, of n identically-represented chaotic patches,
we show that the critical coupling may be inferred from the dynamic properties
of a single grid-cell and the number of grid-cells comprising the ensemble. Con-
sequently, the emergent features of the coupled biophysical model are depen-
dent upon the choice of grid-cell-level biology and the spatial resolution of the
simulation.

2. Methods

2.1. The biological models

To reduce typical models of the global ocean carbon cycle to the simplest possi-
ble case, we consider an ensemble of effectively diffusively-coupled, biologically-
dynamic grid-cells. The population dynamics within each grid-cell, which may be
thought of as a region of ocean of, as yet, unspecified length-scale, is represented
by a plankton ecosystem model typical of those used in the literature. In particular,
we have a chain of n coupled grid-cells, with the plankton population within each
grid-cell evolving according to

v̇i = F(vi) + ε (vi−1, vi, vi + 1) · q,

where each population vi = (s1, s2, . . . , sm) consists of m species s j at position i
along the chain. ε determines the strength of coupling between grid-cells and
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the vector

q =

⎧
⎪⎨

⎪⎩

(1,−2, 1) i ∈ [2, n − 1]

(0,−1, 1) i = 1

(1,−1, 0) i = n

,

specifies the coupling configuration, i.e. nearest-neighbour coupling with no-flux
boundary conditions.

The function F(·) is the system of differential equations representing the biolog-
ical evolution of each patch in isolation. The basic biological models selected for
this study were first formulated by Steele and Henderson (1981) and Hastings and
Powell (1991) (hereafter referred to as SH81 and HP91, respectively), and are typ-
ical of those used in biophysical modelling studies of the pelagic ocean (Totterdell,
1993). The models were selected as examples that use different state variables, i.e.
representing explicitly different components of the ecosystem, and different func-
tional forms for the trophic interactions. A brief description of the models will
be given here, but fuller details may be found in the earlier-mentioned references
and in Edwards and Brindley (1996) and Edwards (2001) for SH81 and Caswell
and Neubert (1998) for HP91.

Both SH81 and HP91 are zero-dimensional models representing, by a system of
autonomous ordinary differential equations, the processes occurring in a physically
homogeneous upper ocean layer. SH81 (Eqs. (1)–(3), with parameters given in
Table 1), however, contains an implicit, biologically-inactive deeper layer with a
fixed nutrient content, which acts by way of vertical mixing as a nutrient source for
the upper layer biology.

SH81 models nutrient (N), phytoplankton (P) and zooplankton (Z) concentra-
tions as follows:

dN
dt

= − aN
(e + N)(b + cP)

P + r P + ζβ P2

µ2 + P2
Z + γ dZ + k(N0 − N)

= −uptake + respiration + Z excretion + Z predators excretion + mixing,

(1)
dP
dt

= aN
(e + N)(b + cP)

P − r P − ζ P2

µ2 + P2
Z − s P − kP

= uptake − respiration − grazing by Z − sinking − mixing, (2)

dZ
dt

= ζαP2

µ2 + P2
Z − γ dZ

= growth due to grazing on P − higher predation. (3)

The change in the autotrophic phytoplankton concentration is modelled as the
sum of their growth, co-limited by nutrients and light, and losses due to respira-
tion, mixing and sinking out of the upper layer, and grazing by zooplankton. Of the
material grazed by zooplankton, a fixed fraction is assimilated, contributing to zoo-
plankton growth. Predation by higher predators closes the food chain from above.
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A fixed proportion of the material grazed by zooplankton and higher predators is
excreted back to the nutrient pool.

To investigate the effect of a simple change of functional form, leaving choice
of state variables and general structure intact, a variation on the above model with
alternative nutrient uptake term a

b(e+N) P will also be considered and is hereafter
referred to as SH81b. Here, we have a scenario where self-shading by the phyto-
plankton is assumed to be a negligible component of the light limitation.

The model HP91 was not specifically formulated to represent a plankton ecosys-
tem, rather as a generic three-species food chain, but Caswell and Neubert (1998)
and Srokosz et al. (2003) applied the model to a plankton ecosystem by taking the
three trophic levels to represent phytoplankton, herbivorous zooplankton (H) and
carnivorous zooplankton (C) components:

dP
dt

= RP
(

1 − P
K

)

− a1 PH
b1 + P

= logistic growth − grazing by H, (4)

dH
dt

= c1a1 PH
b1 + P

− a2 HC
b2 + H

− d1 H

= growth due to grazing on P − grazing by C − natural mortality, (5)

dC
dt

= c2a2 HC
b2 + H

− d2C

= growth due to grazing on H − higher predation, (6)

with parameter values given in Table 1.
In HP91, carnivores are explicitly modelled and nutrient concentrations are not;

that is, nutrients are taken to be non-limiting to phytoplankton growth. The model
is somewhat simpler than SH81 in that recycling processes are not considered, so
that the fundamental flow structure differs. Phytoplankton population increases
according to logistic growth, limited by a carrying capacity, and decreases due to
grazing by herbivores, which are, in turn, grazed by carnivores. At each trophic
level, a fixed proportion of grazed material is assimilated and the rest lost from the
system. Herbivores and carnivores are each subject to a linear natural mortality
term. SH81/SH81b and HP91 represent different interpretations of the planktonic
ecosystem: SH81 and SH81b are built on the assumption of bottom-up control;
HP91 is built on the assumption of top-down control.

Historically, plankton modellers have settled upon a variety of functional forms
to describe the interactions between the components of the ecosystem, and the
previously mentioned models are no exception. In order to make the models as
directly comparable as possible, we can relate the parameters from the different
functional forms in such a way that a similar range of values for that process can
be used.

The model HP91 contains functions for growth, grazing and mortality, of which
only the latter is of an equivalent form in SH81. In SH81, autotrophic growth
is taken to be co-limited by nutrients, in the Michaelis–Menten form, and light
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availability. Growth takes maximum value a
b at P = 0 in the limit as N tends to

infinity. HP91 assumes logistic growth, limited by a carrying capacity. This has
maximum value R, again at P = 0. Taking R ≡ a

b , we therefore set the models to
have the same intrinsic maximum growth rate.

Taking nutrients to be non-limiting in the growth rate term of HP91, so that
growth is limited by self-shading by the phytoplankton themselves, then the term
R(1 − P

K ) may be equated with the self-shading component of the SH81 growth
rate term. Since we have R ≡ a

b , this leads us to compare 1 − P
K and b

b+cP . We may
then equate half-saturation constants of these two forms: max(1 − P

K ) = 1, half of
which is attained at P = K

2 . Similarly, max( b
b+cP ) = 1, half of which is attained at

P = b
c . Equating these two, we get K ≡ 2b

c .
Grazing terms, although different, are formulated in both models in terms of

the half-saturation constant (ζ and ai ), the maximum grazing rate (µ and bi ) and
the assimilation coefficient (α and ci ), making each of these parameters directly
relatable.

Table 1 summarises the previous discussion. Reported parameter ranges are as
collated by Edwards and Brindley (1996) in their study of SH81.

2.2. Single grid-cell dynamics

Both models, under variation of parameter values within the reported ranges (see
Table 1), are known to exhibit steady state, limit cycle and chaotic dynamics. It
is necessary to quantify this behaviour because, as explained later, the behaviour
of the individual grid-cell, as described by the biological model, impacts upon the
fully coupled system. An indication of the behaviour may be obtained by calculat-
ing the Lyapunov characteristic exponent, which measures the exponential rate of
separation of nearby trajectories of the system in phase space. An m-dimensional
dynamical system will have m Lyapunov exponents, quantifying the separation
rate in all m directions of movement, but it is the largest Lyapunov exponent that
indicates the kind of dynamics to be expected. A positive largest Lyapunov expo-
nent indicates that there is at least one direction in which exponential separation
rather than convergence of nearby trajectories in phase space can occur, leading to
chaos in a dynamical system (Strogatz, 1994). If the largest Lyapunov exponent is
zero or negative, then the system will exhibit limit cycles or steady states, respec-
tively. We calculate a finite-time approximation of the largest Lyapunov exponent
λ of a dynamical system using the following method:

The system is integrated until transients have died and we are ‘on’ the attractor.
The trajectory (u) on the attractor will be a ‘reference’ trajectory. We then use a
‘test’ trajectory (w), which at time t0 is set a small distance d0 from u, to examine
the rate at which nearby trajectories diverge.

If Si−1 denotes the amount by which the original perturbation has been
‘stretched’ at iteration step i − 1, then the exponential rate of divergence λi is
given by

Si−1 = eλi−1ti−1 .
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Let dS denote the stretch experienced over the next time step. Then

Si = eλi ti = eλi−1ti−1 dS,

and, taking logs of both sides and dividing by ti , we obtain

λi = λi−1ti−1 + log dS
ti

,

as a finite-time estimate of the Lyapunov exponent λ, so that λ can be calculated
iteratively.

In the case of chaotic behaviour, the distance between the two trajectories
quickly becomes too large for the definition of λ (as the growth of the distance
between two initially close trajectories) to be valid. To avoid this problem, we
rescale the distance to u at each time-step, preserving the direction of the vector
but restoring the distance between u and w to d0,

wnew = u + w − u
dS

.

The process of iteration and rescaling is repeated until λ has converged. λ may be
calculated for a range of values of a specified biological model parameter, allowing
the occurrence of chaos or limit cycles to be tracked within a biologically accept-
able range of parameters.

2.3. Ensemble dynamics

The coupled system is synchronised if the dynamics resides on the region of phase
space contained within the synchronisation manifold

Ms = {v1, v2, . . . , vn|v1(t) = v2(t) = · · · = vn(t)}.

On perturbation from synchrony, the evolution of the coupled ensemble of grid-
cells may return to synchrony (become spatially homogeneous) or remain unsyn-
chronised (spatially patchy), depending on the dynamics of the individual grid-cells
and the strength of coupling between them.

By analogy to the real world, where a plankton “patch” is a region of sea of
homogeneous plankton biomass, we may consider a model plankton “patch” to
be a synchronised subset of grid-cells Ck, 1 ≤ k ≤ n. However, the system con-
sidered here – that of an ensemble of identically represented oscillators – is ca-
pable of exhibiting only two system-level stable states as the coupling strength is
increased: complete asynchrony (k = 1) or complete synchrony (k = n); if the cou-
pling strength is sufficient for synchrony then as soon as two adjacent oscillators be-
come synchronised they are, since they are identically represented, locked into that
state and thereafter act as one oscillator, leading eventually to synchrony of all os-
cillators. Alternative set-ups, such as ensembles of non-identical oscillators, allow
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stable dynamics with 1 < k < n, a phenomenon referred to as clustering(Belykh
et al., 2003).

The stability of the fully synchronised state is established by calculating the
largest normal (or transverse) Lyapuov exponent �; that is, the rate of growth of
perturbations away from synchrony in the direction transverse to the synchronisa-
tion manifold.

We have a chain of n-coupled plankton grid-cells v1, v2, . . . , vn and wish to de-
termine the rate of expansion of a perturbation away from the synchronous state
v1 = v2 = · · · = vn, which resides on Ms . To enable the separation of dynamics
on and normal to Ms , a change of variables from the set v1, v2, . . . , vn of grid-
cells to an orthogonal set π1, π2, . . . , πn is applied such that π2 = π3 = · · · = πn = 0
when the populations are synchronised, and π1 represents the dynamics on the
synchronous attractor; for example, as follows,
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As with the calculation of Lyapunov exponents described earlier, a single uncou-
pled oscillator is initially integrated until transient behaviour dies and dynamics
lie on the synchronisation manifold, with values π0. For a reference trajectory
u ∈ Ms , we set

u = (π0, 0, . . . , 0).

Since Ms is invariant, the reference trajectory u remains within Ms for all time.
A test trajectory w is initiated by adding a small initial perturbation away from
synchrony of magnitude d0 (O(10−5)) to trajectory u so that

w = u +
(

0,
d0√

n − 1
, . . . ,

d0√
n − 1

)

,

i.e. a perturbation normal to Ms .
Both trajectories are integrated forward for a few time-steps and the extension

dS⊥ from synchrony normal to the synchronisation manifold relative to the original
perturbation d0 is given by

dS⊥ =
√∑n

j=2(wj − uj)2

d0
,

where uj and vj are the jth components of the reference and test trajectories at
time t , respectively. The finite-time transverse Lyapunov exponent at iteration step
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i is then

�i = �i−1ti−1 + log(dS⊥)
ti

,

measuring the stretch in the direction transverse to synchrony of the initial pertur-
bation with time.

The process is repeated until convergence of � is achieved. However, as with
the calculation of λ described earlier, in the case of chaotic orbits the separation
quickly becomes too large for us to be considering nearby trajectories. Again, a
rescaling must be applied to avoid this problem.

If � < 0, then the synchronous state is stable since perturbations from synchrony
will decay. This is a threshold phenomenon; it depends upon the magnitude of
coupling and there exists a critical strength of coupling above which synchrony will
re-establish itself after perturbation. In other words, there exists critical coupling
ε = εc such that �(εc) = 0.

Theory (Fujisaka and Yamada, 1983) shows that εc is directly proportional to the
largest Lyapunov exponent λ of the dynamics in an individual grid-cell. Therefore,
in order to place an upper bound on εc for each model, it is required to find where
λ attains its maximum within the reported range of parameters. Since λ = 0 in
non-chaotic regions of parameter space, εc = 0, and therefore a coupled system of
non-chaotic identical oscillators will always stably synchronise. We therefore only
need consider chaotic regions of parameter space, identified by λ > 0, and look for
the “most chaotic” point, i.e. where λ attains its maximum.

An iterative method is used to find an approximation of the maximum value of
λ as a function of the biological model parameters. Each biological model has a
set 	 = {a1, a2, . . . , al} of l parameters. Since λ = 0 for steady-state and limit cycle
dynamics, we need only consider chaotic regions. We initiate the algorithm at a
point a(0) = (a1(0), a2(0), . . . , al(0)) ∈ 	 for which the model exhibits chaos. Such
a point is known to exist for SH81 from the work of Edwards and Brindley (1999);
for HP91 chaotic regions are clearly demonstrated in the original paper.

For each parameter a j , we have a biologically-plausible range [a jmin , a jmax ] (see
Table 1), giving an l-dimensional hypercube bounded by the a jmin and a jmax , for
j = 1, . . . , l, containing the initial point a(0). For each step i of the iteration, and
for each parameter a j of the set, λ is calculated with parameters ak(i), k < j ,
and ak(i − 1), k > j , fixed for k �= j and parameter a j varied across the range
[a jmin , a jmax ]. The value of a j (i) is then set as the value within [a jmin , a jmax ] giving
maximum λ. This is repeated for all parameters a j , giving a new parameter set
a(i). If inspection of these “slices” across parameter space indicates that

maxa1∈[a1min ,a1max ] λ (a1, a2(i), a3(i), . . . , al(i))

≈ maxa2∈[a2min ,a2max ] λ (a1(i), a2, a3(i), . . . , al(i))
...

≈ maxal∈[almin ,almax ] λ (a1(i), a2(i), a3(i), . . . , al)

,
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Fig. 1 Parameter space: Largest Lyapunov exponent λ calculated across the chaotic windows for
herbivorous zooplankton growth efficiency parameters α (SH81 in blue; SH81b in red) and c1
(HP91). All other parameters are held at those giving maximum largest Lyapunov exponent λ.
Dotted lines indicate the parameter values giving λmax. The calculations are shown only across the
chaotic regions of parameter space, since λ = 0 for equilibrium and limit cycle regions.

to within a specified level of accuracy, then the parameter values giving the ap-
proximate maximum λ are judged to have been found (see Fig. 1 and Table 1).
Otherwise, the process is repeated for step i + 1.

It is possible that the approximate method detailed here may miss the chaotic
apex of a model. For example, a disconnected region of chaotic parameter space
may exist that does not intersect with the parameter “slices” through the initial
chaotic point. No such isolated chaotic regions were found during investigation of
the models using the dynamical systems package AUTO. An exhaustive search
of the l-dimensional parameter space of the models considered here would be ex-
tremely computationally expensive. The method is therefore considered a good
necessary approximation for the most chaotic point within biologically acceptable
bounds. Of course, the global apex for the model may lie outside these bounds.

3. Results

3.1. Single grid-cell

The iterative method described earlier was used to find the region of parame-
ter space giving the maximum largest Lyapunov exponent λ for each model. As
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Fig. 2 Model dynamics: Phase space attractors and temporal evolution of state variables for SH81
(left), SH81b (middle) and HP91 (right). Parameter values set to those giving maximum largest
Lyapunov exponent λ. Transient dynamics not shown. Key: blue – nutrients, green – phytoplank-
ton, black – herbivorous zooplankton, red – carnivorous zooplankton.

an example, Fig. 1 shows how λ varies as a function of herbivorous zooplankton
growth efficiency across ‘slices’ of parameter space for all three models; all other
parameters are kept constant at the established λ apex. Because λ > 0 only where
dynamics are chaotic, Fig. 1 shows calculations only across the chaotic regions of
parameter space. However, since this a necessarily finite-time calculated approxi-
mation of a quantity defined for infinite-time, the exponent does not quite go to 0
in the limit-cycle and steady-state regions. Chaotic ranges established in this way
for all other model parameters are included in Table 1. The global chaotic apex for
the model HP91 lies outside the suggested parameter ranges. For this reason, we
consider two apices for this model: the points in parameter space giving maximum
λ inside and outside suggested ranges, respectively.

λmax (denoted by dotted lines in Fig. 1) is approximately 0.0063 d−1 and 0.01 d−1

for models SH81 and SH81b, respectively. Constrained to suggested parameter
ranges, HP91 has apex 0.011 d−1; λmax reaches 0.013 d−1 if parameters are allowed
to vary beyond these ranges. Model dynamics at these points in parameter space,
both as a time series and in phase space, are shown in Fig. 2.

3.2. Two-patch stability

Figure 3 shows the calculated transverse Lyapunov exponent, �, for a two grid-
cell coupled system as a function of varying strength of coupling ε for each model.
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Fig. 3 Critical coupling strength: Calculated largest normal Lyapunov exponent � as a func-
tion of coupling strength ε for models SH81 (black), SH81b (red), HP91 restricted to suggested
parameter ranges (blue) and HP91 not restricted to suggested parameter ranges (green). Model
parameters set at values giving maximum largest Lyapunov exponent λ. Critical coupling strength
εc indicated by value of ε giving �(ε) = 0.

The coupling strength at which �(ε) changes from positive (perturbations from
synchrony grow) to negative (such perturbations decay) is the critical coupling
strength εc required for stable synchrony. εc is seen to equal 0.0031 d−1, 0.0051 d−1,
0.0061 d−1 and 0.0056 d−1 for models SH81, SH81b, HP91 (outside) and HP91 (in-
side), respectively. Since theory (Fujisaka and Yamada, 1983) shows that εc is di-
rectly proportional to λ for this type of coupling, and we have established λmax

within parameter space, εc(λmax) gives an upper bound on εc for each model: a
coupling strength of ε > εc(λmax) is sufficient to stably synchronise the two-grid-
cell coupled system for any set of biological parameter values. As an example, us-
ing the model SH81, Fig. 4 shows how system dynamics differ below and above this
‘blowout bifurcation’ (as the parameter ε moves below the critical point, the sta-
bility of the synchronous state is ‘blown out’). We initiate the integration with the
two coupled patches out of synchrony with one another, so that |v1 − v2| = δ > 0
where δ is a small perturbation from synchrony. In Fig. 4, the evolution of this
perturbation, for the phytoplankton components P1 and P2 of the two patches, is
plotted with time for a coupling strength of ε < εc (top) and ε > εc (bottom). It is
seen that a coupling strength of 0.0025 d−1, which is below εc, is insufficient to re-
store synchrony, so that the system displays heterogeneous dynamics. A coupling
of 0.0035 d−1 is strong enough to draw the oscillators back into synchrony.



Bulletin of Mathematical Biology (2007)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2
P

1
2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

5
x 10

t

P
1

2

Fig. 4 Two-patch dynamics: Time evolution of difference between phytoplankton components
P1 and P2 plotted for coupling strength ε = 0.0025 (<εc) and ε = 0.0035 (>εc) in top and bottom
panels, respectively. Model used is SH81 and parameters are set at values giving maximum largest
Lyapunov exponent λ.

The results in Fig. 3 fit well with the predictions of Fujisaka and Yamada (1983).
For a two-grid-cell system, the theory states that εc = λ

2 . Using calculated λ, this
gives predicted critical coupling strengths of 0.0032 d−1, 0.0048 d−1, 0.0065 d−1 and
0.0055 d−1 for models SH81, SH81b, HP91 (outside) and HP91 (inside), respec-
tively. Figure 5 gives an example of how well the empirical and theoretical results
match for a cross section through parameter space; for model SH81, calculated
εc is plotted along with λ

2 for the phytoplankton growth rate parameter a varied
across the chaotic window of parameter space, keeping all other parameters at λ

apex values. This clearly illustrates the dependence of the critical coupling strength
upon the parameter values, and therefore dynamics, of the isolated model in an in-
dividual grid-cell.

3.3. n-patch stability

Next considered was a chain of n-coupled grid-cells, with nearest-neighbour cou-
pling and the biology in each patch represented by the SH81 model. εc was estab-
lished as a function of n: firstly, by direct computation and, secondly, by using the
calculated values of λmax to apply the theory of Fujisaka and Yamada (1983).

The results are plotted in Fig. 6. It is seen that the critical coupling strength in-
creases with the length of the chain, so that a greater strength of mixing between
patches is needed to synchronise a chain with more patches. Additionally, we see
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Fig. 5 Comparison with theory of Fujisaka and Yamada (1983): Calculated critical coupling
strength εc (solid line) and half-largest Lypaunov exponent λ (dotted) plotted across chaotic win-
dow for model SH81 phytoplankton growth parameter a.

that the theory of Fujisaka and Yamada (1983), which states that the critical cou-
pling strength is related to chain length and largest Lyapunov exponent λ of the
single-patch biological model as

εc = λ

mink=1,...,n−1
(
4 sin2 ( kπ

2n

) ) (7)

agrees well with the computed values.
It is evident that a prediction of εc for a system of this type with any number

of grid-cells may be inferred from knowledge of the Lyapunov exponent of the
isolated biological model in any one grid-cell.

Although n-patch results have been presented here for a chain of patches each
represented by the SH81 model, the same results are obtained with the other mod-
els considered.

4. Discussion

To address the question of how grid-cell biology and the number of grid-cells
impacts upon the behaviour of coupled biophysical simulations, we applied the
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Fig. 6 n-patch chain: Critical coupling strength εc as a function of number of patches n. Each
patch is represented by SH81 model and the chain has fixed-ends. Crosses indicate � as predicted
by Fujisaka and Yamada (1983). Circles indicate experimental results for 3, 4, 5 and 10-patch
chains.

methods of sychronisation theory to an ensemble of identically-represented in-
teracting plankton populations. Using several different typical plankton ecosys-
tem models to represent the evolution of each patch, and varying the number of
patches comprising the ensemble, we calculated the critical strength of patch-to-
patch coupling required for stably synchronous dynamics to occur. The study fo-
cused on chaotic regions of parameter space since identical steady-state and limit
cycle oscillators always stably synchronise.

4.1. Critical coupling strength for synchrony

For a chain of n-coupled plankton grid-cells, each represented by the same biolog-
ical model, the strength of coupling εc required for stably homogeneous (synchro-
nised) dynamics to occur is found to vary as a function of biological model, model
parameters and n. In fact, results bear out the theory of Fujisaka and Yamada
(1983) as in Eq. (7).

We see that the critical coupling varies linearly with λ, implying that the use
of “more chaotic” biological dynamics at grid-cell level reduces the ability of the
chain to exhibit homogeneous dynamics. More significantly, εc increases with n.
In other words, a stronger mixing between grid-cells is required to synchronise a
longer chain.
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The relationship between εc and n can be established as follows. As n becomes
large, π

2n becomes small and, therefore,

εc ≈ λn2

π2
(8)

(because sin(x) ≈ x for small x) so that the critical coupling increases as n2.
This has implications for modelling studies. Suppose we wish to model the dy-

namics of a particular transect of ocean of length L, perhaps to compare the results
with observed data. For the purposes of simulation, the transect is divided into
a number of grid-cells, depending on various factors such as available comput-
ing power and the spatial resolution of the observed data. A plankton ecosystem
model is chosen to describe the biology in each grid-cell. To simulate the physical
flow, we impose a fixed effectively diffusive coupling of strength ε between grid-
cells. Since εc ∝ λn2

π2 , we know that, for a fixed ε and fixed biological model, there
exists a corresponding critical number of grid-cells nc such that the use of a number
of grid-cells n > nc to divide up the transect L will lead to unsynchronised dynam-
ics. Therefore, the resolution chosen for the simulation of a particular region of
ocean could drastically alter the results in a discontinuous manner, as it sets the
number of grid-cells used.

As explained, this threshold phenomenon occurs only when the individual grid-
cell dynamics are chaotic. That an ensemble of identical chaotic oscillators may
have emergent characteristics that bifurcate in this manner is a case against us-
ing chaotic plankton ecosystem models in a system like this to study plankton
patchiness. This is worrying in the light of recent findings by Gross et al. (2006)
that chaotic parameter ranges exist generically in food chains of greater than three
components. The model of Hastings and Powell (1991), in particular, contains in-
terspersed windows of chaotic and periodic behaviour throughout its parameter
space (as illustrated by Caswell and Neubert (1998) and see also Fig. 1), which in
the context of the results of this study might make it unsuitable for use in a coupled
biophysical model.

More generally, the results illustrate that the choice of biological model at grid-
cell level can have a significant impact at system level. It is noteworthy that SH81b,
although differing from SH81 only by a small change of functional form and hav-
ing similar parameter values and almost identical structure, exhibits chaos over
smaller sized regions of parameter space and attains a larger “degree of chaos,”
as measured by a greater λmax (Fig. 1), which, in turn, reduces the ability of cou-
pled SH81b oscillators to synchronise (Fig. 3). Why the small change to functional
form should make a large difference and whether this is of biological significance
is not known and would, since the models represent distinct biological scenarios,
be a valid line of future enquiry. HP91, despite differing greatly in structure from
SH81, has a similar λmax and therefore synchronising ability. For all three mod-
els, λ, and therefore εc, varies greatly across parameter space. We conclude from
this that choice of biological model and parameter set affects the system-level
dynamics.
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4.2. Critical spatial scale for plankton patchiness

In their study of synchronisation in ensembles of plankton populations, Hillary and
Bees (2004) used the empirical relationship between spatial scale l and effective
diffusivity D(l) (Okubo, 1971) to relate the critical coupling strength εc to an emer-
gent critical length-scale for patchiness in plankton. The observations of Okubo
show that for D(l) in cm2 s−1 and l in cm

D(l) ≈ 0.01l1.15.

Hillary and Bees (2004) consider a chain of length L consisting of n-coupled grid-
cells, giving a grid-cell length-scale � = L

n . They then equate the diffusive coupling
ε with diffusive processes between grid-cells, so that ε(l) ≈ D(l)

�2 , where 1
�2 approx-

imates the second-order spatial derivative. Using the relationship of Okubo, and
taking l as the patch length-scale this gives

ε ≈ 0.01�−0.85.

For their eight-grid-cell system, Hillary and Bees (2004) found a critical coupling
strength of 0.0075 d−1. Using the relationship mentioned earlier, they equated this
with a critical length-scale Lc of around 100 km. Since with increasing length-scale
the diffusivity according to the Okubo relationship increases and the appropriate
coupling strength decreases, an eight-grid-cell system of length L > Lc will have a
diffusivity-related coupling strength ε < εc and unsynchronised dynamics will re-
sult. Lc therefore represents a upper bound on the scale at which we expect to see
synchronised patches for a fixed number of grid-cells.

However, we have seen in this study that εc ∝ n2 and from the earlier discussion
we know ε ∝ L−0.85 n0.85, so we have a relationship between the number of grid-
cells and the critical length-scale:

L−0.85
c ∝ n1.15.

Hence, as Hillary and Bees (2004) in fact predict, the critical length-scale found us-
ing this method is a function of the number of grid-cells and therefore resolution of
the simulation. As discussed earlier, the model resolution may be dependent upon
such arbitrary factors as available computing power. Although we can establish a
critical length-scale for a given number of grid-cells, in many cases this relation-
ship can therefore tell us little about the scale at which plankton patches should
synchronise, because only the number of grid-cells into which a study region is
partitioned, and not the true length-scale, has an effect on whether synchronisa-
tion will occur.

The previous discussion depends upon assumptions about the length-scale taken
in the approximation of the effective diffusivity. Since, in the work by Okubo
(1971), the length-scale is arbitrarily set to a value such that a circle of that radius
would contain 95% of the dye material, our patch length-scale � as used here is a
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natural choice. However, we expect in the case of synchronisation for information
to diffuse over the full system, so that the system length-scale L or an intermediate
value may be more appropriate. If we set l = L, we obtain

ε ≈ 0.01 n2 L−0.85

so that, upon application of Eq. (8), the n2 terms cancel to give a constant Lc.
Additionally, care must be taken with our treatment of Eq. (7), where we have

taken n to be large. For a fixed system length-scale L, increasing n leads to decreas-
ing �. The Okubo (1971) paper deals with a closed range 30 m to 100 km of spatial
scales, so that we may reach a value of � for which this relationship is not valid.

4.3. Impact on biophysical modelling

To illustrate the impact of these results on physical quantities that may be derived
from biophysical models, we examined the effect of synchrony on total primary
production (TPP), a quantity frequently estimated from such models. For the ex-
ample case of a 10-grid-cell chain of SH81 oscillators with parameter values set at
the chaotic apex, we calculated TPP as a function of time for (i) a coupling strength
of ε = 0 (representing for non-identical initial conditions the “most asynchronous”
state achievable) and (ii) ε > εc.

As a function of time, it was found that synchrony increased and decreased the
values of TPP attained at maxima and minima, respectively – an effect caused by
the additive affect of the concurrent nature of these events in the synchronous case:
maximum and minimum TPP were for (i) 0.84 gC m−3 d−1 and 1.03 gC m−3 d−1 and
for (ii) 0.67 gC m−3 d−1 and 1.29 gC m−3 d−1 (to 2 d.p.). The mean TPP, however,
was found to be around 1 gC m−3 d−1 for both (i) and (ii).

These results, while only qualitative in nature as we are not modelling the sea-
sonal cycle, indicate the need for directing major effort into the understanding of
more realistic biophysical models. Otherwise, our confidence in the bulk proper-
ties derived from them will be diminished.

5. Conclusions and future considerations

This study has shown that the choice of grid-cell level biology has a direct impact
on the ability of a coupled biophysical simulation to exhibit spatially homogeneous
dynamics. More alarmingly, we have shown that system-level behaviour can alter
in a discontinuous manner as a function of the number of grid-cells. Carbon cy-
cle modelling studies should take these effects into consideration. Furthermore,
the results suggest that chaotic ecosystem models should be used with caution to
guard against spurious or misleading emergent features. Since the extent of chaotic
regions of parameter space has not been determined for plankton models, this is an
important result. For SH81, the parameter space appears to contain only relatively
small chaotic regions, so that the effect may be of minor concern, whereas HP91
is an example of a model exhibiting chaotic regions spanning most of parameter
space.
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It is important to stress that this is a preliminary study of the synchronising prop-
erties of coupled plankton patches. It has been necessary to consider the simplest
possible case, that of identical oscillators. This study provides the basis for future
work which will build on the results by considering the impact of both environmen-
tal noise and spatially varying properties on the ability of patches to synchronise.
The use of non-identical oscillators, both chaotic and periodic, in a system of cou-
pled patches prevents the occurrence of full synchronisation. However, a much
richer array of behaviour of approximate synchronisation is then possible, which
we refer to as generalised synchronisation (see Pikovsky et al. (2001) and the ref-
erences therein). This less rigid definition requires that there exist a continuous
one-to-one mapping relating the dynamics of the oscillators. For example, phase
synchronisation may occur, where oscillator phases are locked but amplitudes re-
main uncorrelated. Additionally, for intermediate coupling strengths, a stable state
of clustering may occur where the system groups into subsets of synchronised grid-
cells (Belykh et al., 2003), i.e. “patches” larger than the size L

n of an individual
grid-cell and smaller than the size L of the full system. This type of behaviour
has been shown to occur in observed data (e.g., Elton and Nicholson, 1942) and
in models similar to that used in this study to model a plankton distribution. If
systems of non-identical oscillators are found to exhibit the same kind of phenom-
ena as found here in systems of identical oscillators, then there will be significant
impacts on the modelling of spatial variablility in ecosystems.
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