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We present a study on the emergence of spatial variability, or patchiness, in biophysical simulations of
plankton ecosystems. Using a standard approach to modelling such ecosystems, we represent a distribu-
tion of plankton as a lattice of non-identical interacting oscillatory populations. Spatial variation is
imposed in population parameters, such as maximum growth rate, leading to a spread in the natural
(uncoupled) population properties. Using the methods of synchronisation theory, the emergent spatial
structure of the coupled system is investigated as a function of the strength of interaction between pop-
ulations. Surprisingly, a range of coupling strength is found to induce a tenfold increase in the spread in
frequency of oscillation of populations in comparison with the uncoupled level of spatial variation. This
apparent desynchronisation corresponds to the formation of temporally evolving clusters of local syn-
chronisation: the interplay of grid-cell scale variability and dispersal between populations leads to patch-
iness at larger scales. However, the occurrence and length-scale of this patchiness is found to be sensitive
to typical simulation parameters such as spatial resolution and strength of dispersal, with emergent spa-
tial structure altering abruptly from patchy to homogeneous as these parameters are varied. These results
indicate that whilst cluster synchronisation may be a genuine mechanism for the formation of spatial
structure in plankton distributions, biophysical modellers should be aware of the possibility of artificial
patchiness arising from the basic physical structure of their model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In this study, we use the methods of synchronisation theory to
explore how the emergence of plankton patchiness in biophysical
models of the surface ocean is influenced by the underlying model
assumptions and structure.

The distribution of plankton in the ocean is spatially and tempo-
rally heterogeneous with ‘‘patchiness” on scales of centimetres to
several hundred kilometres. This is a well-known phenomenon that
has been observed for many years from ships (see e.g. Bainbridge,
1956) and, more recently, by satellite. Patchiness and its conse-
quences are not fully described or understood, and the importance
of plankton cannot be denied: plankton are significant players in
the carbon cycle and form the base of most marine foodwebs. Patch-
iness in plankton distributions has been linked with levels of
primary productivity and the stability and persistence of a popula-
tion (Steele, 1974). For example, in their study of freshwater protists,
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Holyoak and Lawler (1996) found that a patchy population has a
reduced risk of extinction, since migration between interacting
patches allows recolonisation of depleted patches. Since current
Global Carbon Cycle Models that are used in global and regional
modelling are incapable of resolving features of the mesoscale and
smaller (Fasham, 2003), the scale at which much of the variability
in plankton distribution is seen (Steele, 1978), they may be incurring
large errors. A better understanding of heterogeneity in real-world
and modelled plankton dynamics may therefore improve our ability
to model, understand and predict carbon cycle dynamics.

A typical approach to modelling plankton ecosystems is to discre-
tise the region into spatial grid-cells with the physical flow repre-
sented as interactions between grid-cells. The biological dynamics
in each grid-cell, assuming well-mixed dynamics, is represented
by a plankton ecosystem model which attempts to break down the
complicated structure of a marine ecosystem into a number of com-
ponents (zooplankton, phytoplankton, detritus, etc.) and the inter-
actions between them. The coupled biophysical model can then be
used to investigate and predict observed features of plankton distri-
butions and production (e.g. Levy and Klein, 2004; Abraham, 1998).

This type of system is the concern of synchronisation theory,
which studies how the natural rhythms of time-varying entities
adjust as a result of coupling between them (Pikovsky et al., 2001).
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Examples of synchronised dynamics in systems of interacting
oscillators have been found in all areas of science including electron-
ics (e.g. Taherion and Lai, 1999; Neff and Carroll, 1993), biology (e.g.
Strogatz and Stewart, 1993), epidemiology (e.g. Boccaletti, 2002),
lasers (e.g. Barbay et al., 2000) and human behaviour (e.g. Néda
et al., 2000). If the interaction between oscillators causes their states
to become uniform in time, then the system is fully synchronised.
Alternatively, the frequencies or phases of the oscillators may be-
come synchronised whilst the amplitudes remain uncorrelated. In
addition, instead of synchrony occurring across the whole ensemble,
the system may break up into subgroups of (fully/phase/frequency,
etc.) synchronised oscillators, with no synchrony between sub-
groups. This is referred to as cluster synchronisation (Osipov and
Sushchik, 1997; Belykh et al., 2003; Pascual et al., 2002). Spatially
synchronised fluctuations in population sizes across large distances
have been documented for wide variety of species including rodents
(Sherratt et al., 2000; Ydenberg, 1987; Haydon et al., 2001), birds
(Ranta et al., 1995), fish (Ranta et al., 1995), mammals (Haydon
et al., 2001; Grenfall et al., 1998) and insects (Benton et al., 2001).
Ecologists have applied synchronisation theory to a variety of terres-
trial ecosystems by modelling an area of interest as a spatially-ex-
tended metapopulation of discrete populations, interacting
directly or indirectly via, for example, migration or a common envi-
ronmental forcing. Clearly, this is directly analogous to how plank-
ton ecosystems are typically modelled. Given this, what can
synchronisation theory tell us about the emergent spatial structure
seen in these simulations and in the ocean?

Initial studies addressing this question have focused on spatial
synchrony for the simple case of a one-dimensional chain of iden-
tical plankton populations coupled by a nearest neighbour flux
(Hillary and Bees, 2004a,b; Guirey et al., 2007). Hillary and Bees
(2004a) calculated the stability of fully synchronised dynamics
for a chain of identical chaotic populations as a function of the
strength of interaction between them. It was found that a critical
coupling strength was required for stably homogeneous dynamics.
Their results suggested some dependence of this critical coupling
on the number of populations. A study by Guirey et al. (2007) con-
firmed this, showing that the required coupling increased with the
number of populations. Guirey et al. (2007) also showed that the
choice of grid-cell biological representation and parameters has a
strong influence on the spatial dynamics of the simulation. A wor-
rying consequence for modelling studies is that a simulation could
exhibit patchy or stably homogeneous dynamics depending on
possibly arbitrary choices of the spatial resolution and biological
model parameters.

Here, we apply the methods of synchronisation theory to a
plankton distribution modelled as a two-dimensional lattice of
interacting oscillatory populations. This is immediately more
oceanographically relevant and applicable to typical biophysical
plankton studies. This study deals in particular with coupled regu-
larly oscillating populations. Oscillatory dynamics occur generically
in plankton population models (e.g. Ryabchenko et al., 1997; Tot-
terdell, 1993; Steele and Henderson, 1992) so it is important to
understand their coupled behaviour, and empirical work provides
evidence for oscillatory dynamics in real-world populations (e.g.
Fussman et al., 2000; Ylikarjula et al., 2000). We also introduce
spatial variation in dynamics by allowing the biological parameters
to vary across the lattice. Previous work (Hillary and Bees, 2004a;
Guirey et al., 2007) has represented the populations as identical
oscillators; this implies that the same set of parameter values rep-
resents the biological dynamics equally well across the whole
modelled region. In reality, spatial variation is inherent in nature
so that the most appropriate set of biological parameters is likely
to vary in space. Initial work (Hillary and Bees, 2004b) applied
parameter mismatch to the zooplankton mortality rate in a chain
of plankton populations. For certain values of coupling, phase syn-
chronisation was found to occur, with populations frequency-
locked and in-phase but with different amplitudes. This is a phe-
nomenon commonly observed in terrestrial ecological data (Elton
and Nicholson, 1942). Here, we apply mismatch to the phytoplank-
ton growth rate of each population in order to represent simply the
kind of small-scale biological variability that may arise from phys-
ical variability, for example in mixed layer depth. This mismatch
leads to a spread in the amplitude and period of oscillation of the
uncoupled populations. A two-dimensional coupled system of
non-identical oscillators was first studied in a terrestrial context
by Blasius et al. (1999), looking in particular at the effect of the rate
of migration between populations on the spatio-temporal dynam-
ics of the simulation. Frequency-locking and full synchronisation
were found to occur, depending on the rate of migration, with fre-
quency-locking leading to large quasi-regular travelling waves of
synchronised dynamics.

We would like to understand how the parameters of the
stripped-down biophysical plankton model influence the emergent
spatial structure and in particular the occurrence of plankton
patchiness. This study focuses on the strength of interaction, repre-
senting the effects of the physical flow, between populations and
the associated length-scale of the grid-cell. The emergent spatial
dynamics of the simulation, characterised in terms of the dominant
length-scale of spatial structure and the altered amplitudes and
periods of oscillation of the coupled populations, is investigated
as a function of the rate of interaction between populations. We
show that interaction between these non-identical populations
can result in persistent clustering of populations into pockets of lo-
cally synchronised dynamics. The occurrence and length-scale of
this patchiness is found to vary unpredictably with changes in
the strength of interaction, a result which is of interest and concern
to biophysical modellers hoping to reproduce plankton patchiness
and its consequences in their models.
2. Methods

Following the standard approach to plankton ecosystem model-
ling, we simulate a spatially varying surface ocean distribution of
plankton as a lattice of interacting plankton sub-populations. The
biological dynamics of each sub-population is represented by the
same Nutrient–Phytoplankton–Zooplankton (NPZ) model (see
Eqs. (1)–(3)), originally formulated by Steele and Henderson
(1981).

dN
dt
¼ � a0N
ðeþ NÞðbþ cPÞ P þ rP þ fbP2

l2 þ P2 Z þ cdZ þ kðN0 � NÞ

¼ �uptakeþ respirationþ Z excretion

þ Z predators excretionþmixing; ð1Þ

dP
dt
¼ a0N
ðeþ NÞðbþ cPÞ P � rP � fP2

l2 þ P2 Z � sP � kP

¼ uptake� respiration� grazing by Z � sinking�mixing; ð2Þ

dZ
dt
¼ faP2

l2 þ P2 Z � dZ

¼ growth due to grazing on P � higher predation: ð3Þ

Briefly, this is a zero-dimensional model representing, by a system
of ordinary differential equations, the processes occurring in a phys-
ically homogeneous region of upper ocean mixed layer. An implicit
biologically inactive deeper layer with a fixed nutrient content acts
by way of vertical mixing as a nutrient source for the upper layer
biology. The change in phytoplankton concentration is modelled
as the sum of growth, co-limited by nutrients and light (represented
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as a self-shading term), and losses due to respiration, mixing and
sinking out of the upper layer, and grazing by zooplankton. Of the
material grazed by zooplankton, a fixed fraction is assimilated, con-
tributing to zooplankton growth. A parameterisation of predation
by higher predators closes the food chain from above. A fixed pro-
portion of the material grazed by zooplankton and higher predators
is excreted back to the nutrient pool. The zooplankton are assumed
to possess enough mobility to remain within the mixed layer.

A fuller description of the NPZ model can be found in Steele and
Henderson (1981) and subsequent explorations by Edwards and
Brindley (1996) and Edwards (2001). See also Guirey et al. (2007)
for a study of synchronisation of identical plankton populations
using this and alternative plankton models for a range of biological
model parameters. For the purposes of the work presented here we
use a default parameter set (Table 1) for which the model exhibits
regular oscillatory behaviour. This is the simplest time-varying
behaviour possible that is not due to any external forcing. We
stress that this study is intended to be illustrative; we do not at-
tempt to accurately model the seasonal cycle of plankton dynamics
in the surface ocean.

The general set-up is a region of surface ocean of size
L km � L km modelled as a two-dimensional lattice of n� n non-
identical interacting populations, giving spatial resolution L

n. To
incorporate the spatial variation inherent in nature, we allow the
biological model parameters to vary across the modelled domain:
a small mismatch is added to the default phytoplankton growth
rate a0 for each population. This is justified on the basis that phy-
toplankton growth has been shown to vary with such factors as
temperature (Eppley, 1972) and mixed layer depth (Alpine and
Cloern, 1988), which vary on the submeso- and mesoscale. Making
no assumptions about the source of the spatial variation, the phy-
toplankton growth rates ai;j are chosen at random from a uniform
distribution of width D centred on a0 so that ai;j 2 ½a0 � D

2 ; a0 þ D
2�

for i; j ¼ 1: . . . ;n.
Components of this framework are typical of any marine biophys-

ical simulation: number of grid-cells, strength of interaction be-
tween these grid-cells, spatial resolution, representation of
physical flow and biological dynamics. Here we focus in detail on
the impact of varying the strength of interaction between grid-cells
and the associated spatial resolution. We set n ¼ 100, a number of
grid-cells chosen so that the ensemble remains small enough to be
computationally inexpensive but large enough to give an unbiased
sample of the probability distribution underlying ai;j. The central
phytoplankton growth parameter is a0 ¼ 0:2. The spread D in growth
rate values is chosen as 5% of a0, giving ai;j 2 ½0:195;0:205�. The
choice of D is deliberately conservative so that each sub-population
essentially has the same type of dynamics but with a small difference
in amplitude and period of oscillation. For this range, the biological
Table 1
Biological model parameters.

Parameter Symbol Value Units

P growth parameter a0 0.2 m�1 d�1

Light attenuation by water b 0.2 m�1

Self-shading by P c 0.4 m2 gC�1

Herbivorous Z mortality d 0.14 d�1

N half-saturation constant e 0.03 gC m�3

Exchange rate with lower layer k 0.05 d�1

P respiration r 0.15 d�1

P sinking s 0.04 d�1

Lower layer N concentration N0 1.0 gC m�3

Herbivorous Z assimilation efficiency a 0.25 –
Z excretion fraction b 0.33 –
Remineralisation of Z excretion c 0.5 –
Herbivorous Z grazing rate f 0.6 d�1

Herbivorous Z grazing half-saturation constant l 0.035 gC m�3
model has oscillatory dynamics. The spread in natural (uncoupled)
frequencies is �2.5% with mean angular frequency x ¼ 0:052
2p d�1. In the absence of interaction between populations, even for
this small spread in natural properties, a simulation run from ini-
tially homogeneous conditions leads quickly to a random field of
abundances.

The populations interact via a nearest neighbour coupling term,
with no-flux boundary conditions on all edges of the domain (iden-
tical results are obtained for periodic boundary conditions):

_vi;j ¼ Fi;jðvi;jÞ þ e � ðvi�1;j þ viþ1;j � 4vi;j þ vi;j�1 þ vi;jþ1Þ;

where vi;j ¼ ðNi;j; Pi;j; Zi;jÞ, the function Fi;j is the NPZ model described
above with phytoplankton growth rate ai;j and e is the strength of
interaction between populations. The coupling term represents
mixing processes between adjacent grid-cells so that

e � ðvi�1;j þ viþ1;j � 4vi;j þ vi;j�1 þ vi;jþ1Þ � D
@2vi;j

@x2 ;

where D is the effective diffusivity between grid-cells. Hence we
may equate e with the effective diffusivity so that

e � D

l2 ;

where l ¼ L
n is the grid-cell length-scale and 1

l2
approximates the sec-

ond order spatial derivative. The effective diffusivity has been
shown by Okubo (1971) to scale with spatial length-scale according
to the empirical relationship

DðlsÞ � 0:01l1:15
s ;

with ls in cm and effective diffusivity DðlsÞ in cm2 s�1. If we then
take the grid-cell length-scale l km of the lattice as the spatial scale
at which effective diffusivity acts in the model, then

e � 0:01l�0:85 � 60� 60� 24;

for e in d�1. For mesoscale processes on the order of 1–100 km, this
gives a range of coupling e 2 ½0:001;0:05� d�1 between adjacent
grid-cells with coupling strength increasing with decreasing
length-scale. Varying e in this range is equivalent to varying the
spatial resolution of the model from 100 to 1 km, i.e. l 2 ½1;100�
km. However, since an understanding of the uncoupled system
(e ¼ 0) is essential to an understanding of the coupled system
(e > 0), we consider the range e 2 0 [ ½0:001;0:05� d�1.

For each value of e, the system is integrated from an initially
spatially homogeneous state until transient dynamics die away.
Results were found to be insensitive to choice of initial conditions.
The resultant behaviour of the simulation for these different
strengths of interaction between populations is characterised using
several diagnostics, which are described here and summarised in
Table 2. See the Appendix for full definitions.

A visual indication of spatial structure is obtained from the two-
dimensional fields of phytoplankton, nutrient and zooplankton
concentrations in time and space.

Frequency-locking is checked for by calculating frequency of
oscillation Xi;j of each sub-population and the relative standard
Table 2
Summary of diagnostic statistics.

Measure Symbol Range Units

Phytoplankton biomass of population ði; jÞ Pi;j 0–0.5 gC m�3

Angular frequency of population ði; jÞ xi;j 0.05–0.15 2p d�1

Frequency spread r 0–25 %
Phase order R 0–1 –
Cluster measures cx , cy 1–n Grid-cells
Gradient measure g 0–1 –
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deviation r of these frequencies. The populations are frequency-
locked when r ¼ 0.

The phase of oscillation of each population is determined and
used to calculate a measure R of the phase coherence of the ensem-
ble (Pikovsky et al., 2001). See Appendix for a fuller definition.
R ¼ 1 for a phase-locked ensemble. For uncorrelated populations,
the phases are uniformly distributed on ½0;2p� so R is close to 0.
Intermediate values of R indicate some degree of local synchrony
or clustering of phases.

Whilst r and R give an indication of the coherency of behaviour
of the ensemble as a whole, they can mask local synchronous ef-
fects such as clustering of the domain into synchronised subsets
of populations. This is precisely the spatial variability in which
researchers into plankton patchiness are interested. Hence, we
use two simple measures, c and g, of spatial structure. The cluster
measure c 2 ½1;100� of grid-cells measures the mean size of clus-
ters or patches in one-dimension. It may be calculated in either
dimension of the lattice to give cx and cy. For zero coupling, c ¼ 1
grid-cell because populations oscillate independently and so there
is no spatial structure larger than the scale of underlying variabil-
ity. If the whole ensemble is synchronised (spatially homoge-
neous), we expect a c value of the length of the domain, i.e.
c ¼ 100. c 2 ð1;100Þ indicates some level of local synchronisation
(patchiness). The gradient measure g 2 ½0;1� measures the sharp-
ness of transition in state variable values between patches (see
Appendix for more details).

Used together, these tools allow us to describe in detail the
emergent spatial structure of the simulation as the strength of
interaction between the plankton populations is varied.
3. Results

3.1. Temporal evolution of spatial structure

Fig. 1 gives an example of how spatial structure emerges from
the initially homogeneous state; the phytoplankton field is shown
at 100 day intervals for an example coupling strength of
e ¼ 0:01 d�1. Similar spatial properties are observed for the nutri-
ent, phytoplankton and zooplankton biomass values, so results
are presented only for phytoplankton for brevity. The initial do-
main-sized structure breaks down into clusters. Circular regions
appear, containing small-scale clusters, which are themselves not
circular but appear as elongated shapes. These circular regions
grow, increase in number and merge until the domain is filled with
the small-scale clusters, which appear to reach a constant size at
around t ¼ 2;000 days. See Section 4 for a discussion of the long
time-scale of these transient dynamics. The calculated cluster mea-
sures cxðtÞ and cyðtÞ plotted in Fig. 2 confirm what can be seen visu-
ally: the structure in both directions reaches an equilibrium
length-scale of 4–5 grid-cells. Relating the coupling strength
e ¼ 0:01 to a grid-cell length-scale of around 6.4 km using the Oku-
bo relationship, this gives a steady-state cluster size of�25–32 km.
The clusters are synchronised regions, with sharp transitions at
their boundaries, as indicated by a value of gðtÞ � 0:85 in Fig. 2.
Although the cluster size converges, the position of these clusters
is non-stationary, indicating that the spatial arrangement of the
structure is not a simple reflection of the spatial arrangement of
the underlying natural frequencies; larger scale patchiness has
emerged from the interaction of small-scale variability and dis-
persal between populations, and the clustering structure continues
to evolve in time after the spatial structure mean size has reached a
steady-state. In other words, the patches appear, move and disap-
pear, but the characteristic spatial length-scale remains constant.
The time-evolution plots clearly show that e ¼ 0:01 d�1 is not a
strong enough coupling to counteract the natural frequency
disorder and keep the system in full synchronisation despite the
small spread in natural frequencies.

3.2. Equilibrium spatial structure as a function of coupling strength

Fig. 3 shows how the frequency spread r, phase order parame-
ter R, the frequencies of the oscillators and the spatial measures cx,
cy and g, for the system having reached steady-state, vary as a func-
tion of coupling strength for e 2 ½0;0:05� d�1. Calculation of the
measures is made once the system has been judged to reach a sta-
tistical steady-state, e.g. after 2000 days for the example of
e ¼ 0:01 d�1 given above. The transient length was found to vary
with e so that, especially near to bifurcations in system behaviour
(see below), an integration of up to 5000 days was required for the
measures to approach equilibrium.

It is immediately seen that increasing the coupling strength
does not have the intuitive effect of monotonically increasing the
degree of synchrony exhibited by the ensemble: we do not have
a monotonic decrease in r and increase in R as e is increased. Over
the range of e, the diagnostic tools and spatial phytoplankton bio-
mass plots indicate that the dynamics of the ensemble exhibits
several qualitatively different states. The equilibrium phytoplank-
ton field for values for e ¼ 0 d�1, e ¼ 0:001 d�1, e ¼ 0:002 d�1,
e ¼ 0:01 d�1 and e ¼ 0:04 d�1, for which the system enters each
of the states described below, respectively, are shown in Fig. 4.

� e ¼ 0 d�1: independent populations.
For zero coupling the plankton populations oscillate indepen-
dently, so that the phytoplankton field shown in Fig. 4a is ran-
dom with no spatial structure larger than the grid-cell, as
confirmed by cx and cy values of 1 in Fig. 3. As expected,
r � 2:5%. Since there is no interaction between neighbouring
populations, there can be a sharp transition in phytoplankton
biomass from grid-cell to grid-cell, indicated by gradient mea-
sure value of g ¼ 1 (Fig. 3).

� 0:001 6 e < 0:002 d�1: small increase in frequency spread;
small-scale clustering.
For 0:001 6 e < 0:002 the spread in frequencies increases with
increased coupling strength (Fig. 3). The frequencies are seen in
general to increase and the frequency spread, r, increases to more
than 5%. Despite the increase in r, the clustering in the biomass
plots indicates that the size of spatial structure in the phytoplank-
ton field has increased (Figs. 3 and 4b). The increase in coupling
has caused an increase in local synchronisation although the size
of the clusters remain small at 2–3 grid-cells. These clusters are
well-defined, as indicated by g ¼ 1 in this region (Fig. 3).

� 0:002 6 e 6 0:0025 d�1: frequency-locking; medium-scale clus-
tering.
For coupling around e ¼ 0:002 d�1 there is a small region of near
frequency-locking, seen by a rapid decrease in r to < 1% (Fig. 3).
The scale of spatial structure increases; the phytoplankton bio-
mass field shows much larger clusters (Fig. 4c) and the cluster
measure increases to cx ¼ cy ¼ 10 grid-cells (Fig. 3). However,
the system is clearly not phase-locked since neighbouring clus-
ters coexist with some at their peak in phytoplankton biomass
and some at their trough, confirmed by an order parameter
value of R � 0:6 (Fig. 3), with sharp transitions at cluster bound-
aries indicated by g ¼ 0:9 (Fig. 3). The spatio-temporal pattern
here is of numerous interfering ‘‘target patterns” or travelling
waves. The clusters are characteristically quasi-regular, unlike
the irregularly-shaped clusters seen for 0:001 6 e < 0:002 d�1

and 0:0025 < e < 0:02 d�1.
� 0:0025 < e < 0:02 d�1: large frequency spread; small-scale clus-

tering.
Note that the dynamics shown in Fig. 1 occupies this small-scale
clustering region.



Fig. 1. Temporal dynamics. Evolution of phytoplankton biomass field for 5000 days from initially homogeneous conditions for a lattice of 100 � 100 populations interacting
with effective diffusivity e ¼ 0:01 d�1. Figure labels indicate time in days.
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As e is increased above 0.0025 d�1, the ensemble bursts out of
frequency-locking and enters a desynchronised region for
e 2 ð0:0025;0:02Þ d�1. The spread in frequencies reaches an
order of magnitude higher than the spread in independent fre-
quencies and increasing e within this region apparently has no
effect on the amount of disorder in the frequencies (Fig. 3). How-
ever, clustering is clearly visible in the phytoplankton distribu-
tion snap-shots for coupling in this region (e.g. e ¼ 0:01;
Fig. 4d). Additionally, although r gives no evidence of an
increase in the amount of synchrony for increased coupling,
the phytoplankton fields clearly show an increase in the size
of clusters as e is increased; the amount of local synchrony in
both the x and y directions increases and cx and cy increase
slowly and monotonically from 2 to 7 grid-cells (see Fig. 3).
However, the actual cluster size monotonically decreases from
around 50 to 20 km because the grid-cell length-scale decreases
with increasing e. The gradient measure remains high (g > 0:7)
in this region as clusters are still well-defined (Fig. 3).

� 0:02 6 e 6 0:05 d�1: frequency-locking; near domain-sized spa-
tial dynamics; near phase-locking.
At e ¼ 0:02 there is a rapid, threshold-like transition to a fre-
quency-locked state, with a decrease in r to near zero. The
dynamics are largely synchronised, with no sharp transitions
between neighbouring grid-cells, unlike in the clustering state
(e.g. e ¼ 0:04; Fig. 4e). We see a rapid decrease in g at this
threshold to values around 0.3 (Fig. 3), showing that changes
in phytoplankton biomass occur more smoothly across the lat-
tice. cx and cy increase rapidly to approximately half the domain
size at this threshold (Fig. 3), indicating a rapid increase in dom-
inant spatial structure. The system remains frequency-locked for
increased coupling after this transition and the resultant fre-
quency of the synchronised system tends towards the mean of
the natural frequencies, X ¼ 0:052.
In contrast to the threshold-like change to frequency-locking,
the transition to phase-locking after e ¼ 0:02 is gradual, as seen
by a slow monotonic increase in R towards 1 (Fig. 3). For cou-
pling in the range considered here of e < 0:05, we see that the
ensemble never achieves fully phase-locked dynamics, as R < 1
(Fig. 3) and the variation in colour in the biomass plots for e in
this region always indicates some variation in the phase of oscil-
lation of the populations across the domain.
The spatio-temporal dynamics for this range of coupling are as
described for 0:002 6 e 6 0:0025 above: travelling quasi-regular
waves of synchronised abundances. However, the length-scale
of the waves is much larger for this range of stronger coupling.

4. Discussion and conclusions

Using a standard approach to plankton ecosystem modelling, a
distribution of plankton has been modelled as a lattice of inter-
acting non-identical oscillatory populations, each represented by
the same NPZ model but with a spread of phytoplankton maxi-
mum growth rates. Typical characteristics of a biophysical simu-
lation such as spatial resolution, grid-cell biological model and
representation of the physical flow are often selected for subjec-
tive or non-oceanographic reasons like available computing
power or common usage in the literature. It is important that bio-
physical modellers examine and understand the sensitivity of
modelling results to these model components. The aim of the
study has therefore been to explore how the emergence of spatial
structure in biophysical simulations is a function of the underly-
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ing model structure. The results have shown an unusual but
potentially problematic mechanism for the formation of plankton
patchiness.

In this study, we have focused on the impact of the rate of dis-
persal between populations and the associated spatial scale of the
grid-cell. The numerical experiment has shown that altering the
strength of interaction between populations alters the emergent
spatial structure of the simulation. An increase in the strength of
interaction does not lead to a monotonic increase in synchrony:
remarkably, interaction between populations has been shown for
some coupling strengths to increase the frequency disorder of
the ensemble by an order of magnitude in comparison with the
natural (uncoupled) level. Eventually, as the coupling strength is
increased beyond a critical value, intuitive behaviour returns and



Fig. 4. Phytoplankton biomass field (gC m�3) for effective diffusivity (a) e ¼ 0 d�1, (b) e ¼ 0:001 d�1, (c) e ¼ 0:002 d�1, (d) e ¼ 0:01 d�1 and (e) e ¼ 0:04 d�1.
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the system locks into frequency synchronisation. Since the cou-
pling strength is inversely related to the grid-cell length-scale,
the existence of a critical coupling strength implies the existence
of a critical spatial resolution for frequency-locking: for high en-
ough spatial resolution, the frequency disorder does not occur.

The non-monotonic response of the system to coupling strength
has been observed for a system of non-identical foodweb oscilla-
tors by Blasius and Montbrió (2003) and termed an ‘‘anomalous
transition to synchronisation”: increased coupling was seen to first
increase the amount of frequency disorder before larger coupling
was able to draw the system into synchrony. In that study, how-
ever, only the system-level behaviour was explored, with no exam-
ination of the local effects or the spatial structure. Here, we have
seen that the anomalous region of apparent desynchronisation
manifests as clustering of nearby populations into persistent pock-
ets of synchronised dynamics. The interplay between the built-in
spatial variation (the spread in phytoplankton growth rates) and
the dispersal between populations results in patchiness which is
temporally evolving but has a stable characteristic length-scale.
The spatial structure of the patchiness is emergent and is not di-
rectly generated by any underlying structure in the parameters
of the uncoupled populations. Although in a real-world distribu-
tion these parameters may be expected to be spatially correlated,
for this study they were deliberately chosen from a random distri-
bution to avoid introducing another spatial scale into the system.
This is the simplest and clearest case for an initial study and en-
sures that any spatial structure in the simulations is emergent
and not a direct corollary of any imposed spatial structure.

When the system is frequency-locked, the spatio-temporal
dynamics consist of quasi-regular travelling waves of phase syn-
chronisation. These waves appear on different spatial scales
depending on the strength of coupling. Blasius et al. (1999) and
Blasius and Tönjes (2005) observed this type of dynamics in a
two-dimensional simulation of coupled non-identical predator–
prey populations and identified the structure as being caused by
entrainment of surrounding populations by fast-paced ‘‘pace-
maker” oscillators. In the simulations presented here, it appears
that for small coupling (� � 0:002 d�1), many oscillators act as such
pace-makers, resulting in a pattern of interfering travelling waves.
For larger coupling (� � 0:002 d�1), one dominant pace-maker con-
trols the other populations, resulting in a travelling wave with a
single epi-centre. As Blasius and Tönjes (2005) point out, it is unin-
tuitive that quasi-regular behaviour should emerge in a coupled
system of oscillators with no imposed directionality or spatial cor-
relation in frequency distribution. It is equally unintuitive that the
previously-unobserved irregular clustering should occur for a cou-
pling range (0:0025 < e < 0:02) between two regimes of regular
travelling waves.

Importantly, although there is a gradual increase in the cluster
size within the anomalous region of coupling as the coupling
strength is increased, the transition to large-scale structure is not
continuous but occurs abruptly at the threshold coupling strength.
In consequence, the emergent features of a biophysical simulation
can alter discontinuously as the coupling strength is varied. Since
the coupling strength is related to spatial scale, altering the spatial
resolution of a simulation could therefore have unpredictable con-
sequences for the model results and, importantly, for conclusions
and predictions drawn from them. For example, the presence of
such discontinuities is of concern if a model is to be used to study
length-scales of plankton patchiness since increasing the model
resolution could obliterate the patches, even if the patch length-
scale is significantly larger than the grid-cell. More generally, it is
worrying that the subjective choice of spatial resolution affects
the scale of patchiness.

The clustering behaviour has also been found to occur for differ-
ent modelling scenarios (Guirey, 2007): for a fixed area of ocean
with varying number of grid-cells and therefore spatial resolution,
for a large number of differently seeded random mismatch values,
and for parameter mismatch applied to a different biological model
parameter. This suggests that this mechanism for patchiness
potentially occurs generically in biophysical ocean simulations.
However, these experiments showed that the critical value for
the transition to frequency-locking, i.e. the threshold between
patchiness and domain-scale structure, is very sensitive to the
model.

This study deals directly only with oscillatory plankton popula-
tions. This makes it widely applicable; regular oscillatory dynamics
occur generically in plankton population models and have been
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seen to occur in the real-world (see Section 1). To check further
applicability of the results of the simulations, alternative coupled
dynamics need to be explored. However, evidence suggests that
the results are more generally applicable. For example, spatial syn-
chronisation effects, in general, have been observed for coupled
chaotic plankton populations (e.g. Hillary and Bees, 2004a; Guirey
et al., 2007). As part of the present study, the clustering behaviour,
in particular, was also found to occur with a set of biological model
parameters giving chaotic rather than cyclic population dynamics.
Additionally, synchronisation effects in population dynamics have
been shown to persist for other types of time-varying behaviour
including driving by stochastic noise or deterministic forcing
(Blasius et al., 1999; Hillary and Bees, 2004a).

For the simulations presented here, the equilibrium dynamics
of the system take a long time (�2000 days) to become established.
This is partly due to the long (�120 day) period of oscillation of
each sub-population and it is hypothesised, although not explored
here, that a shorter period of oscillation would lead to a shorter
transient time. Long transients are expected in systems of non-
identical oscillators with similar frequencies: the difference in fre-
quency between oscillators is typically of order DX ¼ 10�3, which,
following Blasius and Tönjes (2005), gives the transition time to
equilibrium T � ðDXÞ�1 of the order of 100 days. The length of
the transient varies with the coupling strength; close to the thresh-
old-like bifurcations in system behaviour, the statistical steady-
state takes longer to become established. These long time-scales
might lead us to question the relevance of the equilibrium spatial
structure to real-world plankton populations with a seasonal per-
iod of 365 days. However, it is clear from Fig. 1 that much of the
spatial structure at the eventual steady-state length-scale emerges
on much shorter time-scales of order 100 days. It must also be
stressed that the results of this study should be taken as illustrative
of the kind of synchronous effects that occur in biophysical model-
ling; the system studied here is not intended to reproduce the sea-
sonal dynamics of surface ocean plankton and the period of
oscillation of a sub-population has not been tuned to any particular
time-scale. The application of external (seasonal) forcing to this
system should be a focus of future work. Such a system-level forc-
ing acts as an additional, indirect, form of coupling between sub-
populations (the Moran effect; Moran (1953)), so it is very likely
that synchronous effects similar to those seen in this study will
occur.

From this study, we may draw two conclusions.
Firstly, synchronisation effects may be a genuine mechanism for

plankton patchiness and explain some of the spatial structure seen
in real-world plankton distributions. To confirm this, future work
should look at increasing the realism of the representation of the
flow. Given the range of complex phenomena possible in fully tur-
bulent models, this is beyond the scope of this paper. However, ini-
tial investigations (manuscript in preparation and see Guirey,
2007) into the impact of a simple advective flow at scales larger
than the grid-cell suggest that stable clustering is able to persist
under this influence. Future work should also look at the impact
of large-scale seasonal forcing on the emergence of clustering. An
alternative approach would be a synergistic satellite data study:
altimeter-derived or modelled horizontal current velocities could
be used to characterise a region of ocean in terms of the strength
of coupling between populations at different points in space and
time. With a suitable representation of the biological dynamics of
the region, making comparisons with satellite ocean colour chloro-
phyll data, such a set-up could be used to further explore how
emergent structure in real plankton distributions may be under-
stood in terms of synchronisation phenomena. The results pre-
sented here would form a firm basis for such work.

Secondly, we have clearly shown that the emergent spatial struc-
ture is very sensitive to the underlying model structure, with abrupt
and somewhat unpredictable changes from patchy to homogeneous
dynamics as key parameters of the simulation are varied. This was
also seen in previous studies of the simpler one-dimensional case
(Hillary and Bees, 2004a,b; Guirey et al., 2007). It is therefore clearly
difficult for models to reproduce plankton patchiness objectively.
Modellers should therefore be aware of the possibility of artificial
patchiness arising from the basic physical structure of their model.
Although spatial structure in plankton concentration related to
hydrographic features such as eddies and fronts may be ‘‘real”, struc-
ture unrelated to such obvious features may be spurious. For exam-
ple, spurious small-scale structure may cause errors in studies
aiming to reproduce spatial spectra for plankton in the ocean (e.g.
Martin and Srokosz, 2002; Tzella and Haynes, 2007). At this stage,
it is difficult to say what spatial resolution should be used to ‘‘best”
model plankton patchiness; it would be unwise to artificially elimi-
nate or encourage particular spatial properties until they have been
more closely tied to real-world plankton dynamics. Without future
work investigating the influence of large-scale seasonal forcing
and explicit advection, it is also impossible at this stage to give clear
advice about the conditions under which clustering may arise in a
biophysical simulation.

Overall, our results indicate that whilst cluster synchronisation
may be a genuine mechanism for the formation of plankton patch-
iness and thus of relevance to real-world observations, modellers
need to be aware that artificial patchiness could also arise in sim-
ulations through the same mechanism. More generally, this study
reaffirms the importance of sensitivity analysis in biophysical
modelling.
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Appendix A. Diagnostics for synchrony

The average angular frequency xi;j, i; j ¼ 1; . . . ;n, of each oscilla-
tor in the n� n lattice is calculated in order to check for frequency-
locking of the ensemble. During integration of the system, a note is
made of times when each oscillator reaches a peak in its phyto-
plankton concentration. This gives a series fTi;jg of peak times for
each oscillator which is used to calculate the average frequency

xi;j ¼
N � 1

Ti;jðNÞ � Ti;jð1Þ

� �
� 2p;

where there are N peaks in the series.
The average rather than instantaneous frequency is calculated

in case any of the oscillators are chaotic or have a variable period
as a result of interaction with the other oscillators, the interaction
having the effect of constantly pulling the populations away from
their natural attractors.

From the set of frequencies we calculate the relative standard
deviation

r ¼ standard deviationðxi;jÞ
meanðxi;jÞ

� 100:

The peak times data are used to calculate phase information for
each population. We linearly interpolate between peaks so that the
phase at time t is
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hi;jðtÞ ¼
t � Tm

Tmþ1 � Tm

� �
2p;

where Tm and Tmþ1 are the peaks in Pi;j occurring before and after t.
Given the phase hi;j of each oscillator, we then calculate the cen-

troid of the oscillators positions on the circle

Z ¼ R eıw ¼ 1
n2

Xn

i¼1

Xn

j¼1

eıhi;j ;

so that w gives the average phase and the order parameter R is a
measure of the phase coherence of the ensemble.

For each time-step, the cluster measure cðtÞ is calculated by tak-
ing the n� n Pi;j field

PðtÞ ¼

P1;1 P1;2 � � � P1;n

P2;1 � � � � � � P1;n

..

.

Pn;1 Pn;2 � � � Pn;n

0
BBBB@

1
CCCCA;

and removing its mean to obtain

�PðtÞ ¼ PðtÞ �meanðPðtÞÞ:

We look at the size of structure in the x and y directions separately
to obtain measures cx and cy. For cx we take a transect

�Pi ¼ ð �Pi1; �Pi2; . . . ; �PinÞ;

across the lattice for each of the i ¼ 1; . . . ;n rows of grid-cells of the
mean-removed field. Clusters are defined as regions of adjacent
grid-cells with continuously positive or negative values and their
boundaries are found by recording zero-crossings of Pi. Over all
rows, this gives a set of clusters

clustersx ¼ fc1; c2; . . . ; cmg;

where ck, for k ¼ 1; . . . ;m, are integer numbers of grid-cells forming
each cluster and

Pm
k¼1ðckÞ ¼ n2. The median of this set of clusters is

then calculated for each time-step to give a measure of the local
coherency cxðtÞ, which can also be averaged over time. cyðtÞ is calcu-
lated in exactly the same manner, but using columns rather than
rows of �PðtÞ. The cluster measure given here is only well-defined
when clusters exist. That is, it has meaning when there exist well-
defined synchronised regions separated by sharp transitions. In this
case, c is a good representation of the size, in grid-cells, of these
clusters. If such clusters do not exist, and we have instead a gradual
shift in phytoplankton biomass values from grid-cell to grid-cell,
then the cluster measure as defined here is not appropriate. Take
the simple example of a frequency-locked but not phase-locked
ensemble with a linear increase in phytoplankton biomass from
the left-hand edge to the right-hand edge of the lattice; removing
the mean and calculating c in this example will give c ¼ n

2, appar-
ently indicating a representative cluster size of half the lattice,
whereas actually a cluster size of n is more meaningful since no
sharp transitions exist. Additionally, for large cluster sizes with re-
spect to the domain size, the c measure will be inherently less reli-
able than for small clustering: fewer larger clusters will fit into the
domain, reducing the probability when taking the median of obtain-
ing an accurate estimate for c. For this reason, in conjunction with
the cluster measure we also consider a measure of the sharpness
of transitions from grid-cell to grid-cell across the lattice to show
the sharp edges of clusters and to highlight where c is less appropri-
ate. For each time-step we normalise the PðtÞ field to obtain

P̂ðtÞ ¼ PðtÞ �minðPi;jðtÞÞ
maxðPðtÞ �minðPi;jðtÞÞÞ

� �
;

with 0 6 P̂i;jðtÞ 6 1 for i; j ¼ 1; . . . ;n. For each grid-cell, we define
gi;jðtÞ as the maximum value of the absolute difference between
P̂i;jðtÞ and the phytoplankton biomass in each of its up to eight
(for interior populations) nearest neighbours, i.e. for interior
populations,

gi;jðtÞ ¼maxfjP̂i;j � P̂i0 ;j0 jg;

for i0 ¼ i� 1; i; iþ 1 and j0 ¼ j� 1; j; jþ 1. Then,

gðtÞ ¼ max
i;j
ðgi;jðtÞÞ:
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