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Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow
N. A. Hill
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, United Kingdom

M. A. Bees
Department of Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 7XH,
United Kingdom

~Received 26 June 2001; accepted 10 January 2002; published 18 June 2002!

The theory of generalized Taylor dispersion for suspensions of Brownian particles is developed to
study the dispersion of gyrotactic swimming micro-organisms in a linear shear flow. Such creatures
are bottom-heavy and experience a gravitational torque which acts to right them when they are
tipped away from the vertical. They also suffer a net viscous torque in the presence of a local
vorticity field. The orientation of the cells is intrinsically random but the balance of the two torques
results in a bias toward a preferred swimming direction. The micro-organisms are sufficiently large
that Brownian motion is negligible but their random swimming across streamlines results in a mean
velocity together with diffusion. As an example, we consider the case of vertical shear flow and
calculate the diffusion coefficients for a suspension of the algaChlamydomonas nivalis. This
rational derivation is compared with earlier approximations for the diffusivity. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1458003#
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I. INTRODUCTION

Many swimming micro-organisms, e.g., single-celled
gae and bacteria, swim randomly with a bias toward a p
ferred direction. The bias may be in response to a chem
gradient~chemotaxis!, light ~phototaxis!, upwards~negative
gravitaxis!, or a combination of these and other taxes. S
pensions of such creatures often form ordered, large s
‘‘bioconvection’’ patterns, which are manifest as variatio
in the concentration of the micro-organisms throughout
suspension. The patterns occur because the cells are
active swimmers and are also 5%–10% denser than the
pending fluid~essentially water!. Where the cells aggregate
the bulk suspension is more dense than surrounding reg
and tends to sink driving bulk circulation which reinforc
the aggregation of the cells. For further details, see the
view by Pedley and Kessler1 and Refs. 2–22. Continuum
theories of bioconvection require knowledge of the me

swimming velocityŪ and the diffusion tensor due to swim

ming D̄, which depend on the local fluid velocity and flu
velocity gradient.

In the absence of light, many cells tend to swim upwa
in otherwise still water because they are bottom-heavy
because there is an anterior–posterior asymmetry in t
body shape.23 In either case, local shear flows impose a v
cous torque,tv , on the cell tipping it away from the vertica
which in turn generates a counterbalancing gravitatio
torque,tg . These two competing torques impose a bias
the cell’s random motion that was termed gyrotaxis
Kessler.8 Hill and Häder18 showed that individual single
celled algae, e.g., the common algaeChlamydomonas nivalis
and Peridinium gatunense, swim with constant speed an
vary their orientation, thus executing a random walk guid
by gyrotaxis.
2591070-6631/2002/14(8)/2598/8/$19.00
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Pedley and Kessler16 developed a continuum model i
which the randomness in the cell swimming direction,p, is
accounted for by requiring that the probability density fun
tion for p satisfies a Fokker–Planck equation analagous
that obtained for suspensions of colloidal particles subjec
rotational Brownian motion.24 The coefficients in the
Fokker–Planck equation for both the deterministic torqu
and the rotational diffusivity,dr , have been calculated b
Hill and Häder18 for C. nivalis andP. gatunense, and could
be measured for other micro-organisms in principle.Ū andD̄
can be derived from the statistical moments ofp. Ū is
straightforward to calculate butD̄ is not. In order to make
further analytical progress, Pedley and Kessler16 used the
approximation that

D̄'Vs
2t var~p!, ~1!

where the correlation timet is a parameter estimated from
experimental data. Asymptotic results were obtained
small values of the local rate of strain. Beeset al.19 extended
the analysis of this approximation to cover all strain rat
Even so, the approximation isad hocand in this paper we
develop further the theory of generalized Taylor dispers
for orientable Brownian particles due to Frankel a
Brenner,24,25 in order to calculate the dispersal of swimmin
micro-organisms in such a flow. This gives the asympto
value of D̄ for times t@dr

21. Additionally, we assume tha
the suspension is sufficiently dilute that cell–cell interactio
are rare and unimportant, and that the variations in buoya
in the suspension that drive bioconvection occur on len
scales much greater than those under consideration. The
ample of a linear vertical-shear flow shows how thead hoc
approximation used by Beeset al.19 is not correct in the limit
as the vorticity becomes large.
8 © 2002 American Institute of Physics
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2599Phys. Fluids, Vol. 14, No. 8, August 2002 Taylor dispersion of swimming micro-organisms
II. FORMULATION OF THE GENERALIZED TAYLOR
DISPERSION PROBLEM

A. Governing equations

The swimming cells have a typical diameter of 10–
mm and are too large for Brownian translational diffusion
be significant compared with their translation due to swi
ming. Furthermore, the sedimentation speed for such mi
organisms is but a few percent of their swimming speed
sedimentation can be neglected too. It follows that in
steady linear shear flow, the probabilityP(R,p,tuR8,p8) of
finding a swimming cell at positionR[(x,y,z) with orien-
tation ~i.e., swimming direction! p at timet.0, given that it
was at positionR8 with orientationp8 at time t50, satisfies
the probability-flux conservation equation

]P

]t
1“R.J1“p.j50, ~2!

where

J5@V~R8!1~R2R8!.G1Vsp#P ~3!

is the physical-space flux density and

j5ṗP2dr“pP ~4!

is the orientational-space flux density.“R[(]/]x,]/]y,
]/]z)[(]/]x1 ,]/]x2 ,]/]x3). p is specified by Euler angle
u andf, u being the angle thatp makes with the verticalz-
axis andf the meridional angle that the projection ofp on to
the horizontalxy-plane makes with thex-axis. Thus

“p[û ]/]u1f̂ cosecu ]/]f, ~5!

where û and f̂ are unit vectors in theu and f directions.

$p,û,f̂% form a right-handed spherical polar triad in th
body of the swimming cell.V is the fluid velocity andG
[(“RV)T, i.e., Gi j [Vj ,i is the ~transpose of the! fluid ve-
locity gradient. The cells swim with constant speedVs in the
direction of their orientation vectorp. The orientational flux
j in ~4! contains two terms which represent its determinis
and random components. The data obtained by Hill a
Häder18 for gyrotactic cells in the absence of flow sugge
that the stochastic part ofj is well-modeled by a constan
rotational diffusivitydr , which is independent ofp. The de-
terministic part of the cells’ rate of change of direction
given by

ṗ5
1

2B
@k2~k.p!p#1

1

2
V∧p1a0p.E.~12pp! ~6!

~Ref. 19!. The first term on the right-hand side of~6! de-
scribes the reorientation due to the cells’ being botto
heavy;k is the unit vector in thez-direction vertically up-
wards and the biological parameterB is the gyrotactic
reorientation time scale. The second term represents reo
tation due to the viscous torque on the cell caused by
angular velocity,V[“R∧V, of the fluid, and the third term
is reorientation due to the rate of strain,E[ 1

2@“RV
1(“RV)T#, of the linear shear flow. Here we assume th
the cell is a spheroid anda05(a22b2)/(a21b2) measures
the asymmetry of the cell,a being the length of the semi
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major axis andb being the length of the semi-minor axis. Fo
spherical cells,a050, and the rate of strain does not affe
the orientation. The experimentally determined parame
Vs, dr , B, anda0 are mean values averaged over the wh
population. We shall assume that the suspension is mono
perse and neglect any effects due to polydispersivity.

This formulation of the Fokker–Planck equation exten
that of Pedley and Kessler1 and makes clear the separa
roles of translation in physical space and rotation in orien
tional space. Note that unlike the case of Brownian partic
considered by Frankel and Brenner,24,25 there is no transla-
tional Brownian diffusion. Instead our particles are acti
swimmers whose orientation changes stochastically.

B. Boundary conditions

In the far field,P will decay away to zero and to ensur
that integrals of the statistical moments ofP converge, we
impose the condition that

~P,J,j !uR2R8um→~0,0,0! as uR2R8u→`

for m50,1,2,... ~7!

and thatP be continuous and single-valued inp on the unit
sphere,S2 . BecauseP is a probability density function,

E
R`

E
S2

Pd2p d3R51 for all times t.0, ~8!

R` being the whole Euclidean space, and we impose
initial condition

P5d~R2R8!d~p2p8! at t50. ~9!

Thus the initial position and orientation of the cells are spe
fied. This is not restrictive because we shall show that
long-time statistics are independent of the initial conditio

C. Spatial dispersion

On the bulk or continuum scale, we seek to describe
dispersion of the swimming cells and are interested in o
their spatial distribution not their orientation, i.e., we wish
calculate the orientational average probability density fu
tion ~p.d.f.!

P̄~R,tuR8,p8![E
S2

P~R,p,tuR8,p8!d2p. ~10!

P̄(R,tuR8,p8) satisfies a Fokker–Planck equation of t
form

] P̄

]t
1“R.J̄50. ~11!

The asymptotic long-time leading order form of the flux ofP̄
is

J̄5@V~R8!1~R2R8!.G1Ū# P̄2D̄.“RP̄, ~12!

subject to far-field conditions

~ P̄,J̄!uR2R8um→~0,0! as uR2R8u→`

for m50,1,2,..., ~13!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2600 Phys. Fluids, Vol. 14, No. 8, August 2002 N. A. Hill and M. A. Bees
and the initial condition

P̄5d~R2R8! at t50. ~14!

The flux is given by~12! provided that the real parts of th
eigenvalues ofG are zero. This condition is needed so th
advection by the fluid motion alone does not lead to ex
nentially rapid divergence of the position vector of adjac
material points. Thus, for example, straining flows such
V5(x,0,2z)T are excluded.24 The phenomenological con
stantsŪ and D̄ appearing in~12! can be calculated usin
generalized Taylor dispersion theory for an unbound
flow.24,25 They represent a drift velocity and effective diffu
sivity for the swimming cells. They are defined in terms
the statistical moments

Mm[E
R`

E
S2

~R2R8!mPd2p d3R ~m50,1,2,...! ~15!

of P, the existence of which is guaranteed by the bound
conditions~13!. Ū is defined by

Ū1V~R8!5 lim
t→`

dM1

dt
[ lim

t→`
S dM1

dt
2M1•GD , ~16!

where d(.)/dt is the codeformational~‘‘Oldroyd’’ ! rate of
change.26 Thus Ū is a drift velocity relative to the moving
fluid. Similarly, D̄ is given by

D̄5 lim
t→`

1

2

d

dt
~M22M1M1!

[ lim
t→`

1

2 F d

dt
~M22M1M1!2~M22M1M1!•G

2GT
•~M22M1M1!G , ~17!

and represents diffusionrelative to the moving fluid.
An application of generalized Taylor dispersion theo

~see the Appendix! shows thatŪ and D̄ can be evaluated
from the integrals

Ū5E
S2

P0
`~p!Vsp d2p ~18!

and

D̄5VsE
S2

P0
`~p!@Bp#symd2p. ~19!

Here @ #sym denotes the symmetric part of the tensor arg
ment and

P0
`~p!5 lim

t→`

P0~p,tuR8,p8!, ~20!

where

P0~p,tuR8,p8![E
R`

P~R,p,tuR8,p8!d3R. ~21!
Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP
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`(p) is the steady long-time p.d.f. for the orientatio

of the cells. It is continuous and single-valued onS2 , and
satisfies

“p.~ ṗP0
`2dr“pP0

`!50, ~22!

subject to the normalization condition

E
S2

P0
`d2p51. ~23!

The definition ofŪ ~18! is entirely intuitive, and we see
immediately that

Ū[Vsp̄, ~24!

i.e., the mean swimming velocity. The definition ofD̄ is not
so obvious and was first derived for Brownian particles in
unbounded shear flow by Frankel and Brenner.24 The vector
field B(p) in ~19! is defined as

B~p!5 lim
t→`

S P̄1

P0
2M1D , ~25!

where

P̄1~p,tuR8,p8!5E
R`

~R2R8!P~R,p,tuR8,p8!d3R. ~26!

Thus B(p) is the long-time limit of the difference betwee
the average position of the particle,given that its instanta-
neous orientation isp, and its average positionaveraged
over all values ofp @see Eq.~15!#. B(p) satisfies

“p.@ ṗP0
`B2dr“p~P0

`B!#2P0
`B"G5P0

`~Vsp2Ū! ~27!

~see the Appendix!, subject to the obvious condition

E
S2

P0
`B d2p50. ~28!

On defining a Pe´clet number

Pe5G/dr , where G5iGi , ~29!

Eq. ~27! becomes

“p.@PepNb2“pb#2Peb.Ĝ5P0
`~p2p̄!, ~30!

whereb5P0
`Bdr /Vs, Ĝ5G/G, andpN5ṗ/G. Thus to deter-

mine Ū and D̄, we solve Eq.~22! for P0
` and evaluateŪ

5Vsp̄ from the integral~18!. After substituting forP0
` andp̄,

Eq. ~30! is solved forb, subject to the condition

E
S2

b d2p50, ~31!

and finallyD̄ is found from the integral

D̄5
Vs

2

dr
E

S2

@bp#symd2p, ~32!

which is derived from~19!. Using b instead ofB simplifies
the evaluation ofD̄ in the following analysis. Note thatb is
dimensionless so thatD̄ scales likeVs

2/dr .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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III. DISPERSION IN VERTICAL SHEAR FLOW

As an example of the dispersion of gyrotactic micr
organisms and to illustrate the method of solution, we c
sider the vertical shear flow given by

V5Gzi ~33!

and suppose that the cells are spherical so thata050 and the
last term in~6! vanishes. The horizontal unit vectorsi and j
together withk form a right-handed, mutually orthogona
Cartesian triad. Writing

pN5 u̇û1ḟ sinuf̂, ~34!

in ~6! yields

u̇5
1

2
cosf2

g

2
sinu, ḟ52

1

2
cotu sinf, ~35!

whereg51/BG. Equation~22! for P0
` and ~30! for b then

become

LP0
`50 ~36!

and

Lbj2Peb3d1 j5P0
`~pj2 p̄ j ! ~ j 51,2,3!, ~37!

where the subscriptj denotes the Cartesian components
the vectors. The linear differential operatorL is defined as

L~ .!5
Pe

2 F ~cosf2g sinu!
]

]u
~ .!2cotu sinf

]

]f
~ .!

22g cosu~ .!G2
1

sinu

]

]u S sinu
]

]u
~ .! D

2
1

sin2 u

]2

]f2 ~ .! ~38!
Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP
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andd i j is the Kronecker delta function.
Equations~36! and~37! are solved by expandingP0

` and
b in spherical harmonics viz.

P0
`~u,f!5 (

n50

`

(
m50

n

An
m cosmf Pn

m~cosu! ~39!

and

bj~u,f!5 (
n50

`

(
m50

n

~bn j
m cosmf

1gn j
m sinmf!Pn

m~cosu! ~ j 51,2,3!, ~40!

where Pn
m are associated Legendre polynomials27 and the

coefficientsbn j
m , gn j

m andAn
m depend on the flow field. The

symmetry of the flow in this example implies that the expa
sion of P0

` in ~39! requires only even harmonics inf. We
further define

Fn
m~u,f![An

m cosmf Pn
m~x![Rn

m~f!Pn
m~cosu!

[An
mQn

m~u,f!

and

Bn j
m ~u,f![Rn j

m ~f!Pn
m~cosu! ~41!

[@bn j
m cosmf1gn j

m sinmf#Pn
m~x! ~42!

[bn j
m Qn

m~u,f!1gn j
m Sn

m ~u,f!, ~43!

where x[cosu ⇔ ]/]u52sinu ]/]x, cf. Eq. ~12! in Bees
et al.19

The solution forP0
` now follows exactly that in Ref. 19

~on identifying P0
` with f !. Substituting the series~39! into

~36! gives
(
n50

`

(
m50

n H n~n11!Fn
m1

1

2
Pe @~g sinu2cosf!sinu Rn

mPn
m82cotu sinf Rn

m8Pn
m22g cosuFn

m#J 50, ~44!

where a prime denotes differentiation with respect to the dependent variable. The normalization condition~23! requires that
A0

051/4p.
The solution forb proceeds in a similar vein. The series~40! is substituted into~37!, which gives

(
n50

`

(
m50

n S n~n11!Bn1
m 1

1

2
Pe@~g sinu 2cosf!sinu Rn1

m Pn
m8

2cotu sinf Rn1
m8Pn

m22g cosu Bn1
m # D5 (

n50

`

(
m50

n S Pebn3
m Qn

m1Pegn3
m Sn

m1Fsinu cosf2
4p

3
A1

1GAn
mQn

mD , ~45!

(
n50

`

(
m50

n S n~n11!Bn2
m 1

1

2
Pe@~g sinu2cosf!sinu Rn2

m Pn
m8

2cotu sinf Rn2
m8Pn

m22g cosu Bn2
m # D5 (

n50

`

(
m50

n

An
mQn

m sinu sinf, ~46!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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(
n50

`

(
m50

n S n~n11!Bn3
m 1

1

2
Pe@~g sinu2cosf!sinuRn3

m Pn
m8

2cotu sinf Rn3
m8Pn

m22g cosu Bn3
m # D5 (

n50

`

(
m50

n

An
mQn

mS cosu2
4p

3
A1

0D . ~47!
s
u
lta

s
al

rs
o

ns
rth

th

3

-

ing
The normalization condition~31! gives

b0 j
0 50 ~ j 51,2,3!. ~48!

The following identities are useful in simplifying~45!–~47!:

sin2 u Pn
m85@~n1m!Pn21

m

2n~n2m11!Pn11
m #/~2n11! ~49!

and

cosf sinu Rn j
m Pn

m81cotu sinf Rn j
m8Pn

m

52
bn j

m

2
@Qn j

m112~n2m11!~n1m!Qn j
m21#

2
gn j

m

2
@Sn j

m112~n2m11!~n1m!Sn j
m21# ~50!

~see Ref. 19!. Equations~44!–~47! were simplified using
identities for spherical harmonic functions as in Ref. 19
that the inner products could be calculated easily. The res
ing equations were then truncated to give a set of simu
neous equations for the coefficientsAn

m , bn j
m , andgn j

m . Us-
ing spherical harmonic identities, it can be shown that

p̄5~4p/3!~A1
1,0,A1

0!T ~51!

as in Ref. 19@their Eq. ~39!# so thatŪ5Vsp̄ @see~18!# is
readily calculated. Similarly,

D̄5
2p

3

Vs
2

dr
S 2b11

1 b12
1 1g11

1 b11
0 1b13

1

b12
1 1g11

1 2g12
1 b12

0 1g13
1

b11
0 1b13

1 b12
0 1g13

1 2b13
0

D . ~52!

These expressions forp̄ and D̄ are important becausep̄ and
D̄ depend on just a small number of the coefficients,An

m ,
bn j

m andgn j
m , of P0

` andb. The truncated system of equation
for the coefficients was constructed and solved analytic
using a computer program written inMAPLE using exact
arithmetic.~A copy of the code is available from the autho
on request.! The coefficients converge rapidly as the order
truncation is increased, as we shall demonstrate. Co
quently, in practice, we need only to include terms of fou
order (n54) in the calculation.

It is convenient to rescale the problem to reduce
number of parameters. We define

l51/~2Bdr!, ~53!

which is fixed and plotD̄ as a function of the ‘‘effective
vorticity’’

z5BG ~54!
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instead of Pe andG, as in Ref. 19. In terms ofl andz, the
equations forP0

` andb, ~36! and ~37!, become

L* P0
`50 ~55!

and

L* bj22zb3d1 j5P0
`~pj2 p̄ j !/l ~ j 51,2,3!, ~56!

and the linear differential operatorL* is

L* ~ .!5~z cosf2sinu!
]

]u
~ .!2z cotu sinf

]

]f
~ .!

22 cosu~ .!2
1

l sinu

]

]u S sinu
]

]u
~ .! D

2
1

l sin2 u

]2

]f2 ~ .!. ~57!

In order to make comparisons with Ref. 19, we takel
52.2, which is typical for a suspension ofC. nivalis.

IV. RESULTS

In Figs. 1 and 2, we show the behavior ofp̄, which gives
the direction of the mean swimming velocity~24!, asz var-
ies. It was shown in Ref. 19 that the approximations forp̄
converge rapidly asn increases from 2 to 4, with orders
and 4 being almost indistinguishable. We see thatp̄ is verti-
cal whenz50 and rotates toward thex axis asz increases
from 0. up̄u and thusuŪu decrease monotonically asuzu in-
creases, becauseP0

` ~the steady long-time p.d.f. for the ori
entation of the cells! becomes more uniform asuzu increases.

FIG. 1. The variation of the nonzero components of the mean swimm
direction p̄ with effective vorticityz.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Figure 1 also shows that the combination of the rotation op̄
and its decrease in magnitude causep̄x to increase initially
and then decrease asuzu increases.

The nonzero coefficients of the dimensionless effect
diffusivity, D̂5drD̄/Vs

2, are plotted as functions ofz in Figs.
3–6. They show successive approximations asm is increased
from 2 to 4. The graphs show that we obtain good conv
gence across the whole range of values ofz by including the
fourth-order terms. To understand the behavior ofD̂, its ei-
genvaluesD̂i ( i 51,2,3) are plotted as functions ofz in Fig.
7. They are labeled such that the eigenvectors correspon
to D̂1 , D̂2 , and D̂3 are parallel toi, j, and k, respectively,
whenz50.

First note thatD̂ is anisotropic. In the absence of flow
D̂15D̂2 and they are about four times greater thanD̂3 . Next
consider what happens asz increases from 0.~The case when
z,0 is explained by the obvious symmetries.! There are two
main competing effects. Asz increases from 0 to 1,P0

`(p)

FIG. 2. The variation of the magnitude of the mean swimming directionp̄,
with effective vorticityz.

FIG. 3. Graph ofD̂11 as a function of the effective vorticityz for approxi-
mations of order 2, 3, and 4. Dashed line5order 2, solid line5order 3, and
diamonds5order 4 solution.
Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP
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FIG. 4. Graph ofD̂22 as a function of the effective vorticityz for approxi-
mations of order 2, 3, and 4. Dashed line5order 2, solid line5order 3, and
diamonds5order 4 solution.

FIG. 5. Graph ofD̂33 as a function of the effective vorticityz for approxi-
mations of order 2, 3, and 4. Dashed line5order 2, solid line5order 3, and
diamonds5order 4 solution.

FIG. 6. Graph ofD̂135D̂31 as a function of the effective vorticityz for
approximations of order 2, 3, and 4. Dashed line5order 2, solid line
5order 3, and diamonds5order 4 solution.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



in
tia

g
n

a

e

to

s

d
f-

-

ita-
-

to
-

c-

f

ori-
ci-

f

ory
rst
en-
the
r

ied
lk
ion
li-

stic
on.

K.

an
s-
ux

ge-
hors

2604 Phys. Fluids, Vol. 14, No. 8, August 2002 N. A. Hill and M. A. Bees
becomes less peaked and dispersion increases, resulting
increase in all three eigenvalues, except for a small ini
decrease inD̂1 . For values ofz.1, cells ‘‘tumble’’ about the
y-axis in the sense that the deterministic torque balance~6!
has no steady solution. Asz increases beyond 1, the tumblin
of the cells becomes faster, they tend to swim in tighter a
tighter loops, and the autocorrelation times for thex and z
components of the velocity fluctuations about the me
shorten. As a result,D̂1 andD̂3→0 asz→`. Since the cells
tumble only about they-axis, tumbling does not affect th
autocorrelation times for they-component of the velocity
fluctuations so thatD̂2 increases monotonically and tends
a finite limit asz→`. We also note thatD̂3 is negative for
values ofz .2.8. Thepossibility of negative eigenvalue
was recognized by Frankel and Brenner24,25 and arises be-
cause the Taylor dispersion mechanism is coupled to the
tortion due to the flow. An alternative definition for the di
fusivity is

D̄5
Vs

2

dr
E

S2

@bp1PebB̂•Ĝ#symd2p where B̂[drB/Vs,

FIG. 7. Plot of the eigenvalues ofD̂ as functions of the effective vorticityz.

FIG. 8. Graph of change in the orientation of the principal eigenvector,e1 ,

of D̂ asz varies.Q is the angle thate1 makes with the verticalz axis.
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an
l

d

n

is-

cf. Eq. ~32!. This is positive definite and still gives the long
time matching of the moments ofP̄ in the co-deformational
reference frame. When the behavior ofD̂1 andD̂3 asz→` is
compared with the results from Refs. 16 and 19, the lim
tions of their approximation~1! are exposed. For this ex
ample, they erroneously predict thatD̄5O(Vs

2t) in the same
limit. This is because their approximation is proportional
var~p!, which tends toI, the identity matrix, instead of van
ishing.

Figure 8 shows the orientation of the principal eigenve
tor, e1 corresponding toD̂1 , as z varies. It lies in thexz-
plane, and lies along the horizontalx axis in the absence o
flow. As z increases from 0,e1 first dips a little below thex-
axis then reverses its sense of rotation until it is again h
zontal atz'0.4. This initial behavior appears to be asso
ated with the slight decrease inD̂1 for the same values ofz.
As z increases further from 0.4 to about 1.0,e1 continues to
rotate upwards in the opposite sense to the rotation op̄.
Once tumbling occurs at values ofz.1, e1 rotates down-
wards asz increases, eventually pointing below thex axis for
values ofz.2.

V. CONCLUSIONS

We have extended generalized Taylor dispersion the
to gyrotactic swimming microorganisms and derived the fi
rational expressions for the diffusion coefficients of susp
sions of such creatures in a flow. The results are valid in
long time limit t@dr

21. This work and its extensions to othe
types of micro-organism swimming behavior can be appl
to calculations of pattern formation by bioconvection in bu
suspensions. Of particular interest is the fact that dispers
occurs even when Brownian translational motion is neg
gible because of the size of the cells. It is the stocha
reorientation of the swimming cells that leads to dispersi

ACKNOWLEDGMENT

N.A.H. gratefully acknowledges the support of the U.
EPSRC~Grant Reference No. GR/J75470! for part of this
work.

APPENDIX: GENERALIZED TAYLOR DISPERSION
THEORY

The results of generalized Taylor dispersion theory c
be derived for gyrotactic swimming micro-organisms by e
tablishing a direct correspondence with the form of the fl
terms in the Fokker–Planck equation~2! for P(R,p,tuR8,p8)
used by Frankel and Brenner25 for spheroidal Brownian par-
ticles subject to external forces in an unbounded homo
neous linear shear flow. The flux terms used by these aut
are ~in our notation!

J5@V~R8!1~R2R8!.G1M~p!.F#P2DT~p!.“RP
~A1!

and

j5ṗP2dr“pP, ~A2!

where
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ṗ5 1
2V∧p1a0p.E.~ I2pp!. ~A3!

@p ° e in Frankel and Brenner’s25 notation,a0 ° l, E ° S,
1
2V∧p ° e.L, whereL5 1

2(G2GT), andp.E.(I2pp) ° (I
2ee)e:S.# In Eq. ~A1!, F is a constant external body force
typically gravity, M(p) is the translational mobility tensor
and DT(p) is the translational diffusivity tensor. The ne
terms in ~A1! in this paper are swimming, represented
Vsp in Eq. ~3! and gyrotaxis given by@k2(k.p)p#/2B in Eq.
~6!. DT(p)[0 in our case because the micro-organisms
too large to be significantly affected by Brownian motion

Frankel and Brenner show thatŪ andD̄ can be evaluated
from the integrals

Ū5E
S2

P0
`~p!M~p!.Fd2p ~A4!

and

D̄5E
S2

P0
`~p!@B~p!M~p!.F#symd2p ~A5!

@Eqs.~2.8! and ~2.9c! in Ref. 25#. B(p) satisfies

“p.@ ṗP0
`B2dr“p~P0

`B!#2P0
`B.G5P0

`~M2M̄!.F
~A6!

@Eq. ~2.19a! in Ref. 25#, where

M̄5E
S2

P0
`~p!M~p! d2p. ~A7!

The governing equations for the swimming micro-organis
follow directly from setting

M~p!.F[Vsp ~A8!

and modifying ṗ to include the gyrotactic term
@k2(k.p)p#/2B.
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