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Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow
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The theory of generalized Taylor dispersion for suspensions of Brownian patrticles is developed to
study the dispersion of gyrotactic swimming micro-organisms in a linear shear flow. Such creatures
are bottom-heavy and experience a gravitational torque which acts to right them when they are
tipped away from the vertical. They also suffer a net viscous torque in the presence of a local
vorticity field. The orientation of the cells is intrinsically random but the balance of the two torques
results in a bias toward a preferred swimming direction. The micro-organisms are sufficiently large
that Brownian motion is negligible but their random swimming across streamlines results in a mean
velocity together with diffusion. As an example, we consider the case of vertical shear flow and
calculate the diffusion coefficients for a suspension of the &ftamydomonas nivalisThis
rational derivation is compared with earlier approximations for the diffusivity. 2@2 American
Institute of Physics.[DOI: 10.1063/1.1458003

I. INTRODUCTION Pedley and Kessl&t developed a continuum model in
which the randomness in the cell swimming directipnjs
Many swimming micro-organisms, e.g., single-celled al-accounted for by requiring that the probability density func-
gae and bacteria, swim randomly with a bias toward a pretion for p satisfies a Fokker—Planck equation analagous to
ferred direction. The bias may be in response to a chemicahat obtained for suspensions of colloidal particles subject to
gradient(chemotaxiy light (phototaxi, upwards(negative  rotational Brownian motioR* The coefficients in the
gravitaxi9, or a combination of these and other taxes. SusFokker—Planck equation for both the deterministic torques
pensions of such creatures often form ordered, large scaknd the rotational diffusivityd,, have been calculated by
“bioconvection” patterns, which are manifest as variationsHill and Hader*® for C. nivalis and P. gatunenseand could
in the concentration of the micro-organisms throughout theye measured for other micro-organisms in princip_leandIS

suspension. The patterns occur because the cells are V&%, pe derived from the statistical moments me is
active swimmers and are also 5%-10% denser than the sus- _.

. . . Straightforward to calculate bud is not. In order to make
pending fluid(essentially watgr Where the cells aggregate, further analytical progress, Pedley and KesSlersed the
the bulk suspension is more dense than surrounding regiorgi S '

. L . . ) . proximation that
and tends to sink driving bulk circulation which reinforces
the aggregation of the cells. For further details, see the re- D~V2rva 1
view by Pedley and Kessfeand Refs. 2—22. Continuum sTVvar(p), @)

theories of bioconvection require knowledge of the meanyhere the correlation time is a parameter estimated from
swimming velocityU and the diffusion tensor due to swim- experimental data. Asymptotic results were obtained for
ming D, which depend on the local fluid velocity and fluid small values of the local rate of strain. Besisal'® extended
velocity gradient. the analysis of this approximation to cover all strain rates.
In the absence of light, many cells tend to swim upwardg=ven so, the approximation &d hocand in this paper we
in otherwise still water because they are bottom-heavy oflevelop further the theory of generalized Taylor dispersion
because there is an anterior—posterior asymmetry in thefer orientable Brownian particles due to Frankel and
body shap&? In either case, local shear flows impose a vis-Brenner?*#in order to calculate the dispersal of swimming
cous torques, , on the cell tipping it away from the vertical, micro-organisms in such a flow. This gives the asymptotic
which in turn generates a counterbalancing gravitationalalue of D for timest>d,‘1. Additionally, we assume that
torque, 7;. These two competing torques impose a bias orthe suspension is sufficiently dilute that cell-cell interactions
the cell's random motion that was termed gyrotaxis byare rare and unimportant, and that the variations in buoyancy
Kesslef Hill and Hader'® showed that individual single- in the suspension that drive bioconvection occur on length
celled algae, e.g., the common algalelamydomonas nivalis scales much greater than those under consideration. The ex-
and Peridinium gatunenseswim with constant speed and ample of a linear vertical-shear flow shows how #twhoc
vary their orientation, thus executing a random walk guidedapproximation used by Bees al1°is not correct in the limit
by gyrotaxis. as the vorticity becomes large.

1070-6631/2002/14(8)/2598/8/$19.00 2598 © 2002 American Institute of Physics

Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 8, August 2002 Taylor dispersion of swimming micro-organisms 2599

Il. FORMULATION OF THE GENERALIZED TAYLOR major axis and being the length of the semi-minor axis. For
DISPERSION PROBLEM spherical cellspy=0, and the rate of strain does not affect
the orientation. The experimentally determined parameters
Vs, d,, B, anda, are mean values averaged over the whole
The swimming cells have a typical diameter of 10-20p0pylation. We shall assume that the suspension is monodis-
um and are too large for Brownian translational diffusion to perse and neglect any effects due to polydispersivity.
be significant compared with their translation due to SWim-  This formulation of the Fokker—Planck equation extends
ming. Furthermore, the sedimentation speed for such microphat of Pedley and Kessfeand makes clear the separate
organisms is but a few percent of their swimming speed s@p|es of translation in physical space and rotation in orienta-
sedimentation can be neglected too. It follows that in &jonal space. Note that unlike the case of Brownian particles
steady linear shear flow, the probabill®(R,p,t|R".p’) of  considered by Frankel and Brenié?® there is no transla-
finding a swimming cell at positioR=(x,y,z) with orien-  tional Brownian diffusion. Instead our particles are active

tation (i.e., swimming directionp at timet>0, given that it  swimmers whose orientation changes stochastically.
was at positiorR’ with orientationp’ at timet=0, satisfies

A. Governing equations

the probability-flux conservation equation B. Boundary conditions
P . In the far field,P will decay away to zero and to ensure
E+VR'J+VP'J_O‘ 2) that integrals of the statistical moments Bfconverge, we
impose the condition that
where
(P,J,j)|lR—R’'|™—(0,0,0) as |R—R'|—w
J=[V(R")+(R-R’).G+Vp]P ()
for m=0,1,2,... 7
is the physical-space flux density and )
o and thatP be continuous and single-valued pnon the unit
J=pP—d/;V,P (4) sphere S,. BecauseP is a probability density function,
is the orientational-space flux density¥ g=(d/dx,dldy,
9l 9z)= (0l 9%y ,01 9%,,9l 9x3). p is specified by Euler angles fR LZPde d®R=1 for all times t>0, (8)

0 and ¢, 0 being the angle thgt makes with the verticat-
axis and¢ the meridional angle that the projectionmbnto R, being the whole Euclidean space, and we impose the
the horizontalky-plane makes with the-axis. Thus initial condition

V,=00/99+ ¢ cosed il i, (5) P=6(R-R")8(p—p’) at t=0. 9

Thus the initial position and orientation of the cells are speci-
fied. This is not restrictive because we shall show that the
long-time statistics are independent of the initial conditions.

where 8 and ¢ are unit vectors in the and ¢ directions.
{p.6,¢} form a right-handed spherical polar triad in the
body of the swimming cellV is the fluid velocity andG
=(VgV)", i.e., Gij=V,, is the (transpose of thefluid ve-
locity gradient. The cells swim with constant spaédn the
direction of their orientation vectqs. The orientational flux On the bulk or continuum scale, we seek to describe the
j in (4) contains two terms which represent its deterministicdispersion of the swimming cells and are interested in only
and random components. The data obtained by Hill andheir spatial distribution not their orientation, i.e., we wish to
Hader'® for gyrotactic cells in the absence of flow suggestcalculate the orientational average probability density func-
that the stochastic part ¢fis well-modeled by a constant tion (p.d.f)

rotational diffusivityd,, which is independent gb. The de- o

terministic part of the cells’ rate of change of direction is P(R,t|R’,p’)Ef P(R,p,t|R’,p")d?p. (10
given by S2

C. Spatial dispersion

1 1 E(R,th’,p’) satisfies a Fokker—Planck equation of the
p=5glk—(kp)p]+ 5 QUp+aop.E.(1-pp) (6)  form

(Ref. 19. The first term on the right-hand side &) de- £+V J=0 (11)

scribes the reorientation due to the cells’ being bottom-  dt R '

heavy;k is the unit vector in the-direction vertically up-

wards and the biological paramet& is the gyrotactic

reorientation time scale. The second term represents reoriel:

tation due to.the viscous torque on the cell cau;ed by the  3=[Vv(R')+(R-R’).G+U]P—D.VgP, (12)

angular velocityQ2=V g0V, of the fluid, and the third term ) ] N

is reorientation due to the rate of straifE=YVgv  Subject to far-field conditions

+(VRV)T], of the linear shear flow. Here we assume that P.IIR-R'I™-(00) as |IR—R'|—

the cell is a spheroid and,=(a®?—b?)/(a%+b?) measures (P.J) "= (00 | =

the asymmetry of the cell being the length of the semi- for m=0,1,2,..., (13

The asymptotic long-time leading order form of the fluxpof

Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2600 Phys. Fluids, Vol. 14, No. 8, August 2002 N. A. Hill and M. A. Bees

and the initial condition ThusPg(p) is the steady long-time p.d.f. for the orientation
_ of the cells. It is continuous and single-valued 85 and
P=6(R—R’) at t=0. (14 satisfies

The flux is given by(12) provided that the real parts of the V,.(pP;—d,V,Py)=0, (22

eigenvalues of5 are zero. This condition is needed so that

advection by the fluid motion alone does not lead to expoSubiect to the normalization condition

nentially rapid divergence of the position vector of adjacent

material points. Thus, for example, straining flows such as f Pod?p=1. (23
V=(x,0,—2)" are excluded* The phenomenological con- %2

stantsU and D appearing in(12) can be calculated using The definition ofU (18) is entirely intuitive, and we see

generalized Taylor dispersion theory for an unboundedmmediately that
flow.?*?° They represent a drift velocity and effective diffu- _
sivity for the swimming cells. They are defined in terms of U=V, (24)

the statistical moments i.e., the mean swimming velocity. The definition Dfis not

so obvious and was first derived for Brownian particles in an
MmEf f (R-R")™Pd’pd®R (m=0,1,2,.) (15  unbounded shear flow by Frankel and Brerfiéfhe vector
Re /%2 field B(p) in (19) is defined as

of P, the existem:e of which is guaranteed by the boundary P
conditions(13). U is defined by B(p)=Ilim (P—l— Ml), (25
t—ox 0
_ oMy dMmy
U+V(R)=Ilim——=Ilim|——-M;-G|, (16)  where
e O0 .\ dt

where &(.)/6t is the codeformational*Oldroyd” ) rate of E1(I0,'f
change?® Thus U is a drift velocity relative to the moving
fluid. Similarly, D is given by

R',p'):fR (R—=R")P(R,p,t|R",p")d°R. (26)

Thus B(p) is the long-time limit of the difference between
the average position of the particlgiven that its instanta-

_ 15 neous orientation ig, and its average positioaveraged
D:t“mg 5 (M2—M;My) over all values op [see Eq(15)]. B(p) satisfies
10d V,[pPgB—d,V,(P;B)]—-P;B-G=Pg(Vp—U) (27
_tlmg{a(Mz_MlMl)_(Mz_ MiMy)-G (see the Appendix subject to the obvious condition

~G™- (M= M;My) (17) LZF’??B d?p=0. (28)

and represents diffusiorelative to the moving fluid. On defining a Pelet number

An application of generalized Taylor dispersion theory  pe=G/d,, where G=|G]|, (29)
(see the Appendjxshows thatU and D can be evaluated

from the integrals Eq. (27) becomes

B ) , V,.[Pepb—V b]—Peb.G=Pg(p—p), (30)
U= Po(p)Vepdp (18) . A :
S, where_b: Po Eidr/VS, G=G/G, andp=p/G. Thus to detgr-
and mine U and D, we solve Eq.(22) for Py and evaluateJ
=V from the integral18). After substituting forP§ andp,
_ . Eq. (30) is solved forb, subject to the condition
D=st Po(p)[Bp]¥™d?p. (19
S
bd?p=0, (32)
Here[ ]¥™ denotes the symmetric part of the tensor argu- S
ment and . — .
and finallyD is found from the integral
Po(p)=lim Py(p,t|R’,p"), (20) 2
oo D:_Sf [bp]¥™d?p, (32
d Js,
where

which is derived irorr(lQ). Using b instead ofB simplifies
Po(p,t|R'.p')EJ P(R,p,t|R",p")d°R. (21) the eva_luat|on oD in Ehe follow_mg 2naly5|s. Note thdt is
o dimensionless so thd& scales likeVZ/d,.
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I1l. DISPERSION IN VERTICAL SHEAR FLOW and 5” is the Kronecker delta function.
Equationg36) and(37) are solved by expanding, and

As an example of the dispersion of gyrotactic micro-
P P 9y b in spherical harmonics viz.

organisms and to illustrate the method of solution, we con-

sider the vertical shear flow given by © n
© — m m

V=G1i 33 P5(6,p)= ngo mE:O A" cosm¢ PM(cos6) (39)

and suppose that the cells are spherical so#§at0 and the 44
last term in(6) vanishes. The haorizontal unit vectdrandj

together withk form a right-handed, mutually orthogonal S "
Cartesian triad. Writing bj(ﬁ,qb)ZnZO mz,o (Bp; cosme

p=00+¢sinbd, (34 90 sinmg)PM(cosd) (j=12,3, (40)
in (6) yields

where P]' are associated Legendre polynonfidland the

.1 v .1 _ coefficientsBy, yn; andAf' depend on the flow field. The
§=5c0s¢—5sind, $=—zcotdsing, (39 symmetry of the flow in this example implies that the expan-
. o sion of P§ in (39) requires only even harmonics . We
where y=1/BG. Equation(22) for P, and(30) for b then further dgfine q y ih
become
m —aAMm m —pMm m
£Pi=0 (36 FR(6.¢)=A] cosm P(x)=R7( ) P[l(cos6)
and =ATQn(6,¢)
Lbj—Peb3d;;j=Py(p;—p;) (j=12,3), (377 and
where the subscripit denotes the Cartesian components of  B[i( 6, ¢)=Ryj(¢)Py(cosh) (41)
the vectors. The linear differential operatfris defined as
Pe =[Bn} cosme+ ypi sinmgp1P(x) (42)
L(.)= cos sing cotésin
()= 7 | (eos6= ysine) 75~ 4350 =B Q(6,4)+YIST (6.9), 43
) 1 9 d where x=cosf < dldf=—sinfdldx, cf. Eq. (12) in Bees
—2vycosé(.) BT RT] smﬁ—() et all®
) The solution forP; now follows exactly that in Ref. 19
B 1 (7_( ) 39) (on identifying Py with f). Substituting the serie€9) into
Sit 6 9> (36) gives
0 n 1
2 E n(n-+1)F{+ 5 Pe[(ysin—cosg)sin6 RIPY' —cotgsing Ry PI'—2y coseF ] = (44)
n=0 m=0

where a prime denotes differentiation with respect to the dependent variable. The normalization c¢28jitrequires that
=1/44r.
The solution forb proceeds in a similar vein. The serig)) is substituted intq37), which gives

> (n(n+1)B +1Pe[(ysm6 cos¢)sind Ry PR

n=0 m=0

o n
41
—coté#sing RT PM—2ycosé BT ):nZO mE:O (PqBL”sQL“+ Pey™, S+ | sin 6 cos¢h— ?A} Aﬂ"Q[{‘), (45)

n=0 m=0

® n
1
> > ( n(n+1)BR+ 5 Pe[( sing—cos)sin & RY,PY

n

—cotfsing R, P)'— 2y cos6 B}, ) 2 2 A'Q'sin 6 sin ¢, (46)

=0 m=0

Downloaded 26 Oct 2006 to 130.209.6.41. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2602 Phys. Fluids, Vol. 14, No. 8, August 2002

S S (o

n=0 m=0

n=0 m=0

—cotfsing R\ Py'—2ycosHB; )

The normalization conditio31) gives
Bo=0 (i=1,23.
The following identities are useful in simplifyin@5)—(47):

(48)

Sit 9P =[(n+m)P_,

—n(n—m+1)P, ,1/(2n+1) (49
and
cos¢ sin 6 RYPIY +coté sin¢ Ry P
— an m+1_ m—1
==~ [Qnj "~ (n=m+1)(n+m)Qp; 7]
Vi et m—1
—7[8,”- —(n=m+1)(n+m)S5 7] (50

(see Ref. 18 Equations(44)—(47) were simplified using

1
n(n+1)B5+ 5 Pe[(ysma cos¢)sin ORISPLY

2 Z ATQR

N. A. Hill and M. A. Bees

(47)

6 o A
Ccos ? .

instead of Pe an, as in Ref. 19. In terms af and{, the
equations forPy andb, (36) and(37), become

L*P;=0 (55)
and
L£*bj—=2¢bgdyj=P5(pi—P)/N  (j=123, (56
and the linear differential operatdl* is
L*(.)=({ cosp—sing) — ’ 5 ()~ {cotdsing (;()
[sna50)
—2cosH(.)— NSing 70 smea—e(.)
1 &
“xsita s (57)

In order to make comparisons with Ref. 19, we take

identities for spherical harmonic functions as in Ref. 19 so= 2.2, which is typical for a suspension 6f nivalis
that the inner products could be calculated easily. The result-
ing equations were then truncated to give a set of simulta-

neous equations for the coefficier§', By}, andyy;. Us-
ing spherical harmonic identities, it can be shown that

p=(4m/3)(A},0,A)T (51)

as in Ref. 19their Eq.(39)] so thatU=Vp [see(18)] is
readily calculated. Similarly,

5 2811 Bty BhtBis
— 2w Vg 1t 2.4 041
D= 34, Bt 11 Y12 Bzt 7is (52
Bt Bis Blatyis  2B%

IV. RESULTS

In Figs. 1 and 2, we show the behaviormfwhich gives
the direction of the mean swimming velocit§4), as{ var-
ies. It was shown in Ref. 19 that the approximations gor
converge rapidly as increases from 2 to 4, with orders 3
and 4 being almost indistinguishable. We see that verti-
cal when{=0 and rotates toward the axis as{ increases
from 0. |p] and thus|U| decrease monotonically a4 in-
creases, becaus¥ (the steady long-time p.d.f. for the ori-
entation of the cellsbecomes more uniform a4 increases.

These expressions f@r andD are important becauge and

D depend on just a small number of the coefficiei§,,
Bnj andyy;, of Py andb. The truncated system of equations
for the coefficients was constructed and solved analytically
using a computer program written iMAPLE using exact
arithmetic.(A copy of the code is available from the authors
on requesj. The coefficients converge rapidly as the order of
truncation is increased, as we shall demonstrate. Conse
quently, in practice, we need only to include terms of fourth
order (h=4) in the calculation.

It is convenient to rescale the problem to reduce the
number of parameters. We define

N=1/(2Bd,), (53 0.1
which is fixed and pIoﬂS as a function of the “effective o5 ]
vorticity”
FIG. 1. The variation of the nonzero components of the mean swimming
=BG (54) directionp with effective vorticity .
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5 b0-0=0=S—6-0
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4 -0 -8 % 4 2 0 2 4

FIG. 2. The variation of the magnitude of the mean swimming direcion, R

with effective vorticity £. FIG. 4. Graph ofD,, as a function of the effective vorticity for approxi-
mations of order 2, 3, and 4. Dashed knerder 2, solid line= order 3, and
diamonds= order 4 solution.

Figure 1 also shows that the combination of the rotatiop of
and its decrease in magnitude caygeto increase initially
and then decrease &% increases. 0.087

The nonzero coefficients of the dimensionless effective
diffusivity, D=d,D/V?Z, are plotted as functions dfin Figs.
3-6. They show successive approximationsas increased
from 2 to 4. The graphs show that we obtain good conver-
gence across the whole range of valueg bf including the
fourth-order terms. To understand the behaviobofits ei-
genvalued; (i=1,2,3) are plotted as functions ¢fin Fig.
7. They are labeled such that the eigenvectors correspondint
to D;, D,, and D5 are parallel toi, j, andk, respectively,
when ¢ =0.

First note thatD is anisotropic. In the absence of flow,

D,=D, and they are about four times greater tizn Next
consider what happens &éncreases from Q.The case when
<0 is explained by the obvious symmetrieBhere are two
main competing effects. Ag increases from 0 to 1P, (p)

FIG. 5. Graph 011533 as a function of the effective vorticity for approxi-
mations of order 2, 3, and 4. Dashed knerder 2, solid line=order 3, and
diamonds- order 4 solution.

0.04
0.03 1

0.02

3 4 6 8 10 0,041

FIG. 6. Graph ofD;3=Dg; as a function of the effective vorticity for
approximations of order 2, 3, and 4. Dashed#rm@der 2, solidline
=order 3, and diamondsorder 4 solution.

FIG. 3. Graph oﬂf)11 as a function of the effective vorticity for approxi-
mations of order 2, 3, and 4. Dashed knerder 2, solid line=order 3, and
diamonds-order 4 solution.
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0.2 cf. Eq.(32). This is positive definite and still gives the long-
time matching of the moments &f in the co-deformational
'''''''' —— ’p:;\lsf / e reference frame. When the behavioidfandD; as{— is
NN compared with the results from Refs. 16 and 19, the limita-
N\ \ tions of their approximatior(1l) are exposed. For this ex-
/ &g \ ample, they erroneously predict tHat o<v§T) in the same
\ limit. This is because their approximation is proportional to
FaYal var(p), which tends td, the identity matrix, instead of van-
/ 5’0‘05%' S \\\ ishing.
— 0§ ‘%o T— Figure 8 shows the orientation of the principal eigenvec-
A %000‘12 5 é" A TS - tor, e; corre;ponding td, a;g varie_s. .It lies in thexz
S croRIeEIe 8T plane, and lies along the horizontabxis in the absence of
flow. As ¢ increases from 0g; first dips a little below thex-

=005 axis then reverses its sense of rotation until it is again hori-
zontal at{~0.4. This initial behavior appears to be associ-
ated with the slight decrease IADh for the same values af

As ¢ increases further from 0.4 to about 1€),continues to

becomes less peaked and dispersion increases, resulting in g@te upwards in the opposite sense to the rotatiop. of

increase in all three eigenvalues, except for a small initiapncde tumbling occurs attvalﬁjes @'Tl %1 Irota;hes qo‘f’V“'
2 . \ war incr , even intin w thaxis for
decrease i, . For values of>1, cells “tumble” about the ards ag increases, eventually po g belo axisto

y-axis in the sense that the deterministic torque baldfte values of{>2.

has no steady solution. Adncreases beyond 1, the tumbling

of the cells becomes faster, they tend to swim in tighter ang- CONCLUSIONS

tighter loops, and the autocorrelation times for thand z We have extended generalized Taylor dispersion theory
components of the velocity fluctuations about the meano gyrotactic swimming microorganisms and derived the first
shorten. As a resulf); and I53—>O as{—. Since the cells rational expressions for the diffusion coefficients of suspen-
tumble only about the-axis, tumbling does not affect the sions of such creatures in a flow. The results are valid in the
autocorrelation times for thg-component of the velocity long time Iimitt>dr’1. This work and its extensions to other
fluctuations so thab, increases monotonically and tends to types of micro-organism swimming behavior can be applied
a finite limit as¢—. We also note thalf)g, is negative for to calculgﬂons of patt_ern formatlon py bloconvectlon_m bul_k
values of ¢ >2.8. The possibility of negative eigenvalues SUSPENSIONS. Of partlcular_mterest is 'Fhe fact th_at d_|sper3|_on
was recognized by Frankel and Brerfdér and arises be- o_ccurs even when Broyvnlan translational .mot|on is neghl—
cause the Taylor dispersion mechanism is coupled to the diglible because of the size of the cells. It is the stochastic
tortion due to the flow. An alternative definition for the dif- reorientation of the swimming cells that leads to dispersion.

fusivity is

FIG. 7. Plot of the eigenvalues &f as functions of the effective vorticity.
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251 APPENDIX: GENERALIZED TAYLOR DISPERSION
THEORY

e
o

. The results of generalized Taylor dispersion theory can
21 ,/ be derived for gyrotactic swimming micro-organisms by es-
. / tablishing a direct correspondence with the form of the flux
/il / terms in the Fokker—Planck equatit®) for P(R,p,t|R’,p")

/ 157 \ / used by Frankel and Brenriefor spheroidal Brownian par-

/ vV ticles subject to external forces in an unbounded homoge-
/ neous linear shear flow. The flux terms used by these authors
v ] are (in our notation

- J=[V(R")+(R—R").G+M(p).FIP—D+(p).VgP
(A1

08 % 4 2 059 5 4 6 3 10 and

j=pP—d,V,P, A2
FIG. 8. Graph of change in the orientation of the principal eigenveetor, 1=P r'e (A2)
of D as¢ varies.0 is the angle thag, makes with the verticat axis. where
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p=3Q0p+ ap.E.(1—pp). (A3)

[p+~> ein Frankel and Brenner8 notation,ag—> \, E+> S,
1Q0p— e A, whereA=3G—G"), andp.E.(I—pp) — (I
—egeS.] In Eq. (Al), F is a constant external body force,
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