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The apparent synchronisation of spatially discrete populations is a well documented
phenomenon. However, it is not clear what the governing mechanisms are for this
synchrony, and whether they are robust over a range of environmental conditions
and patch specific population dynamic behaviours. In this paper, we explore two
(possibly interacting) modes of coupling, and investigate their theoretically dis-
cernible, and perhaps even experimentally measurable, signatures. To aid us in this
investigation we employ a planktonic example system, with direct application to
plankton patchiness. Furthermore, we address the role of chaos in complex spatio-
temporal dynamics; we find that chaos associated with funnel attractors can play a
distinguished role, over dynamics less sensitive to small variations, in being more
susceptible to generalised synchronisation (suchas phase synchronisation) in the
presence of small local parameter variation. This is in contrast to the case for cou-
pled systems with identical dynamics, and suggests that non-identically coupled
systems are more vulnerable to global extinction events when exhibiting funnel-
type chaotic dynamics.

c© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

There are myriad examples of ecosystems where there are well defined individual
habitats that may also be weakly interconnected. From fish stocks to humans, fac-
tors such as migration, resource availability and environmental effects link these
discrete habitats in a number of different ways. This weak coupling between
population patches can cause the various patch dynamics to behave in a spatially
coherent fashion, as if they are synchronised. One of the most popular examples
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of such behaviour is the Canadian Hare–Lynx data set (Keith, 1963; Blasius and
Stone, 2000a), where the individual population amplitudes evolve chaotically yet
have almost exactly the same phase. This is not an uncommon phenomenon. For
instance, evidence for population synchrony has been observed in recruiting plaice
stocks around the British Isles (Fox et al., 2002) and fluctuations in sheep popu-
lations, located on separate islands (Grenfell et al., 1998). TheMoran effect has
been suggested as a possible explanation of some cases of observed population
synchrony (Moran, 1953; Hudson and Cattadori, 1999; Blasius and Stone, 2000b).
As a simple example, consider a system of identical linear, autoregressive sys-
tems, each with an additive stochastic forcing term. The Moran effect occurs when
the asymptotic spatial correlation between the population abundance variables is
equal to the spatial correlation between the associated stochastic terms. Essentially,
strongly (spatially) correlated noise will eventually give rise to strongly synchro-
nised dynamics, while spatially independent noise terms will cause the collective
dynamics to appear unrelated. Later on we will see that, for the case of indirect
coupling, there is a non-linear synchronising mechanism conceptually similar to
the Moran effect.

One of the aims of this paper is to clarify the nature of the various mechanisms
which are likely to be causing the observed synchrony. In patchy ecosystems, the
coupling between habitats can be direct (due to migration or mixing) or indirect
(via external environmental factors, such as the weather) or a mixture of the two.
For directly coupled patches, the individual populations exert an effect on each
other. On the other hand, indirect coupling due to temperature fluctuations, for
example, may act over large spatial scales and so affect equally each patch. In this
case, the individual populations are unlikely to exert a discernible influence on the
temperature/climate. Climatic effects and migration/mixing are two of the main
candidate mechanisms for population synchrony but, as inFox et al. (2002), it is
sometimes difficult to tell which process is principally responsible if significant
mixing occurs together with a measure of correlation between the populations and
environmental effects.

Using as an example a three-component model for the dynamics of nitrogen, phy-
toplankton and zooplankton, first developed bySteele and Henderson(1981), we
shall investigate the two synchronising mechanisms in associated coupled patch
systems. Furthermore, we shall demonstrate methods for calculating the bound-
aries of the synchronous types of behaviour in such systems and discuss the perti-
nent question of how one can possibly distinguish one mechanism from the other;
we discuss how this may be achieved in practice.

If one allows for small, local variations in the underlying patch dynamics, a much
richer array of synchronised behaviour can be observed (Pikovskyet al., 1997), as
has been observed in biological time series, such as the Canadian Hare–Lynx data
set. We shall provide an example of one of these more relaxed forms of general
synchronous behaviour and illustrate how to calculate the regions in the coupling
parameter space for which the patch-to-patch relationship is smooth.
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Most, if not all, predator–prey-type models are inherently non-linear and there is
significant evidence for the presence of chaos both in theoretical population mod-
els (Hastings and Powell, 1991; Edwards andBrindley, 1996; Edwards and Bees,
2001) and in Nature [diatom communitiesSughihara and May(1990), and in the
aforementioned Canadian Hare–Lynx data]. Previous work on the role of chaos
in meta-population dynamics [e.g.,Allen et al. (1993)] was concerned with diffu-
sively coupled, identical Ricker and logistic maps. Therein, it was observed that
the desynchronising influence of chaotic dynamics allowed for a higher probability
of global survival, in response to global perturbations, compared with non-chaotic
dynamics. In this paper, we find that the opposite of this is true when we allow for
variations in the local dynamics, for two structurally different example systems.
Moreover, chaos from a common typeof attractor in ecological models aids the
formation of a smooth collective relationship for lower coupling values than for
non-chaotic dynamics.

In the following section we shall introduce the generic forms for the two distinct
(general) models of patchy, coupled ecosystems. Furthermore, we shall outline the
structure of the paper.

2. MODELLING THE DYNAMICS OF PATCHY ECOSYSTEMS

In this paper, we work with two general classes of dynamical, coupled patch
models. Although it is quite likely that both direct and indirect patch coupling will
both be present, for the sake of clarity we model the two separately. However, to
contrast the two classes we shall discuss them concurrently.

For the case of indirect/external coupling, the general model can be formulated
in terms of adrive system (the external forcing factors,E) and aresponse system
(them patch inhabitants, given by them-vectorsi , for each patchi = 1, . . . , n) as
follows:

Ė = F(E),

ṡi = G(si ,�, E).
(1)

The functionsF(·) andG(·) denote the dynamics of the external forcing and the
patch inhabitants, respectively. The coupling between the drive,E, and response,
si , systemsis characterised by the parameter vector�.

Thesecond case we shall consider is that where the patches interact directly with
each other. For this particular scenario, the following general model is appropriate:

Ṡ = G(S) + EL ⊗ H(S), (2)

where ⊗ is the direct product. Here,S = (s1, s2, . . . , sn)
T represents the

species present (again thesi are m-dimensional vectors andi = 1, . . . , n
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denotes the lattice point). The reaction dynamics is governed by the func-
tion G(S) = (G(s1), G(s2), . . . , G(sn))

T . The function H is an as yet
arbitrary (assumedC1) function defined similarly in action toG(S) and
H(S) = (H(s1), H(s2), . . . , H(sn))

T . This function H encompasses both the
nature of the coupling (linear/non-linear) and determines which patch species will
be coupled to similar/different species in the other patches in the lattice. Then × n
coupling matrixEL can take many forms, depending on the coupling structure of
the system concerned. One fairly common example, and the situation we consider
in this paper, is that of nearest-neighbour coupling in a non-ring form (akin to
a discretised reaction–diffusion system with no flux, as opposed to periodic,
boundary conditions). The coupling matrix would then be defined as

EL =




−ε2 ε2 0 . . . 0
ε1 −(ε1 + ε3) ε3 . . . 0
...

...
...

...
...

0 . . . 0 εn−1 −εn−1


 , (3)

and the corresponding coupling functionH would be them-dimensional identity
matrix (i.e., no cross-species coupling between patches).

Coupled oscillators, in a system such as (2), are well known to exhibit syn-
chronisation (Fujisaka and Yamada, 1983; Pikovsky, 1984; Pecora and Carroll,
1990). Other phenomena, such as complex attracting basins and basin boundaries
(Alexanderet al., 1992; Ott and Sommerer, 1994) andhigh sensitivity to low levels
of system noise (Ashwin et al., 1994), have also been documented and are generic
features of coupled oscillators.

In the following two sections, the mechanisms behind the transition from unsyn-
chronised to synchronised populations are discussed, for each patch model when
the individual patch dynamics are chaotic. InSection 5, the effect of slight differ-
ences in the individual reaction systems is investigated; such systems may explain
many of the examples of near-synchronous dynamics observed in nature, particu-
larly strong phase similarity in population oscillations. Finally, inSection 6, the
role of chaos in meta-population dynamics is explored. We find that chaos can aid
generalised synchronisation of the patch dynamics, contrary to intuitive notions of
chaos.

3. DIRECTLY COUPLED PATCH SYNCHRONISATION

This work was inspired by the investigation of interacting planktonic popula-
tions as coupled oscillators with application to patchy dynamics (Hillary, 2003;
Hillary and Bees, 2004). With this in mind, we will employ, as an example, a
three-component nutrient–phytoplankton–zooplankton (NPZ) model to represent
the individual patch dynamics,G(·):
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Table 1. Abrief explanation of model parameters and default parameter values for the
NPZl model in (4).

Parameter Symbol Default value

Phytoplankton growth rate a 0.2 (m day)−1

Light attenuation by water b 0.2 m−1

Light attenuation by phytoplankton c 0.4 m2 (g C)−1

Higher predation of zooplankton d 0.142 g C m−3 day−1

Nutrient half-saturation constant e 0.03 g C m−3

Cross-thermocline exchange rate k 0.05 day−1

Phytoplankton respiration r 0.15 day−1

Phytoplankton sinking s 0.04 day−1

Lower mixed level nutrient concentration N0 1 g C m−3

Zooplankton growth efficiency α 0.25
Zooplankton excretion fraction β 0.33
Regeneration of zooplankton excretion γ 0.5
Zooplankton grazing rate λ 0.6 day−1

Zooplankton half-saturation constant µ 0.035 g C m−3

Patch to patch flux εi Bifurcation parameter

d N

dt
= − Na

(e + N)(b + cP)
P + r P + λβ P2

µ2 + P2
Z + γ d Z p + k(N0 − N),

d P

dt
= Na

(e + N)(b + cP)
P − r P − λP2

µ2 + P2
Z − (s + k)P,

d Z

dt
= αλP2

µ2 + P2
Z − d Z p.

(4)

Steele and Henderson(1981) first proposed the structure of the model. Briefly,
phytoplankton grow (limited by nutrient and available light) and are lost via a
combined respiration and natural mortality term (r ; recycled into nutrient), sinking
(s), exchange with phytoplankton-free deep water(k) and grazing by zooplank-
ton (Holling type III). Additionally, there is a source of nutrients from mixing
with nutrient laden(N0) deep water and the system is closed by a higher preda-
tion term (d Z p). The bifurcational structure was investigated byEdwards and
Brindley (1996) and further advanced with 1≤ p ≤ 2 by Edwards and Bees
(2001). For a thorough review of the parameters in the model seeTable 1and
the above references. The model exhibits stable equilibria, limit cycles and chaos
(via the period-doubling route) under variation of the closure/higher predation
rate d. In this section, we will assume thatp = 1, and discuss the quadratic
closure model inSection 6. This particular model was specifically formulated to
model planktonic dynamics but serves equally well as a representative model of a
nutrient–prey–predator system. One of the simplest coupled systems that one can
envisage is just two patches, coupled via a small diffusive (e.g., swimming diffu-
sivity of magnitudeε = ε1 = ε2) term in the predator (zooplankton) dynamics.
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Throughout the remainder of this paper, we will refer to different incarnations
of the above model and coupling structures to demonstrate various phenomena.
To try to keep these switches in models clear, we propose the following coupled
system nomenclature. The model denoted by NPZi

j,= refers to the system with
underlying dynamics given by the indexi (wherei = l for the linear closure model;
i = q for the quadratic case);j is the number of coupled patches; and the final
index,= or �=, tells us whether the coupled systems are identical(=), or if there
are local parameter variations in the underlying dynamics( �=). For example, the
model denoted by NPZl10,= comprises ten, identically coupled, linear closure NPZ
systems.

In general, the patches are assumed to evolve chaotically and independently
(for differing initial conditions) whenεi = 0,∀i . The synchronisation setMS ,
defined by

MS = {s1, s2, . . . , sn|s1(t) = s2(t) = · · · = sn(t)}, (5)

is where the synchronised state, denoted byA, resides (and, for the NPZ exam-
ple, si = (Ni , Pi , Zi)). The synchronised state will be stable if the Lyapunov
exponents (Eckmann and Ruelle, 1985) transverse toMS are negative. Thesenor-
mal exponents (Fujisaka and Yamada, 1983) are definedin the following manner.
The normal Lyapunov exponent,λ⊥(x, v), from the pointx ∈ A in the direction
v ∈ (Tx MS)⊥, is given by

λ⊥(x, v) = lim
T →∞

1

T

∫ T

0
ln

∥∥∥∥∥∥
∏

(Tx MS )⊥
◦ DGt(v)

∥∥∥∥∥∥ dt, (6)

where DGt(·) is the Jacobian ofG(·) at time t and
∏

V denotes an orthogonal
projection onto the vector spaceV . In essence, these exponents measure the expo-
nential growth rate of transverse perturbations to the synchronous state. If we let
λmax

⊥ denote the largest of the exponents then any transverse perturbations grow in
the manner of exp(λmax

⊥ t). Consequently, if λmax
⊥ < 0 then the synchronised state

will be stable to small perturbations. Under the reasonable assumption thatA is an
ergodic attractor (Eckmann and Ruelle, 1985), the expression in (6) will converge
to a finite set of values that are independent of the choice ofx ∈ A.

For the example NPZi2,= system, we plot the coupling parameterε against the
largest normal exponentλmax

⊥ in Fig. 1. It can be seen that, fromε = 0 up to
aroundε = 0.002, λmax

⊥ > 0 (for the most part), whence the synchronised state
will not be attracting. After this point however, the coupling is strong enough
that A will attract a positive measure set of nearby initial conditions. The change
in the stability of A is termed ablowout bifurcation (Ott and Sommerer, 1994).
Other factors can influence the stability of the synchronous behaviour, such as
noise (Alexanderet al., 1992; Ashwin et al., 1994).

The difference of the synchronised and unsynchronised dynamical regimes can
be seen inFig. 2 where we plot thetime series ofN2 − N1, before and after the
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Figure 1. A plot of the maximal normal Lyapunov exponent,λmax⊥ , versus thepatch cou-
pling, ε. The results shown are for the NPZl2,= prototype two-patch systems. Forε greater
than approximately 0.002, the coupling is strong enough to synchronise the dynamics of
the two patches.

Figure 2. Time series ofN2 − N1, for the NPZl2,= system, after a small perturbation of
the synchronised dynamics before (full line) the blowout bifurcation,ε = 0.003, and after
(dotted line) the blowout bifurcation,ε = 0.001. Pre-blowout, we see a decay back into
synchrony; post-blowout, we see the persistence of the perturbation.

blowout bifurcation, after a small, identical perturbation to the synchronised solu-
tion. Before the blowout, the perturbation dies out and the system returns to syn-
chronicity. After the blowout, the perturbation expands exponentially (because
λmax

⊥ > 0) until the growth is checked by the non-linear terms.
This phenomenon is not restricted to just two coupled patches; it was numerically

observed (Hillary, 2003; Hillary and Bees, 2004) that, under certain conditions,
localised coupling variations could cause a blowout bifurcation. Furthermore it
was also proven that this locally initiated blowout must always result in a global
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loss of stable synchronisation, for an arbitrary number of patches coupled as they
are here. For more complex global coupling scenarios, such coupled arrays have
been seen to exhibit cluster synchronisation (Belykh et al., 2001), where some
patches synchronise in discrete clusters. Also, for systems which are coupled via
only one species (a migratory predator for example) it was demonstrated inPecora
(1998) that certain systems can synchronise at lower coupling and then desynchro-
nise at higher coupling values; the extreme end of this is where there can exist an
upper limit to the number of patches for which a globally synchronised state can
be realised.

4. INDIRECTLY COUPLED PATCH SYNCHRONISATION

We shall now address system (1), where the patches are coupled via some exter-
nal forcing. For these drive–response systems, we again propose a symbolic rep-
resentation: NPZij,=[E], wherei determines the NPZ model to be used (linear or
quadratic closure, as before);j is again the number of response systems present;
= or �= describes whether the coupled systems are identical or not; andE deter-
mines the nature of the driving system. For example, the drive response system
NPZl

2,=[NPZq] corresponds to a single, quadratic closure NPZ system, driving two
equivalent linear closure NPZ systems (a case we shall consider later).

Abarbanel et al. (1996) investigated this type of drive–response system in order
to establish a relatively simple method of detecting a deterministic relationship
between the drive and the response systems when both exhibit chaotic dynamics.

Thegeneralised synchronisation of chaotic drive–response systems, such as the
one in (1), was thus defined to be associated with the existence of some transfor-
mation φ : E → S taking trajectories on the attractor in the drive spaceE to the
attractor in response spaceS, i.e., s(t) = φ(E(t)) [Abarbanel et al. (1996), see
Appendix A].

On constructing anauxiliary system (Abarbanel et al., 1996),

ṙ = G(r,�, E), (7)

which is identical to the original response system, the presence of generalised
synchronisation can be detected. If the response and auxiliary systems are in
full synchronisation[s(t) = r(t)] then there exists a functionφ, with proper-
ties as defined inAppendix A, and the drive and response systems are generally
synchronised.

Moreover, it seems reasonable that if the coupling between the drive and response
systems is sufficiently strong (they are generally synchronised) then the response
systems will be fully synchronised. Extending the analysis ofAbarbanel et al.
(1996) to an arbitrary number of response systems, we can demonstrate why this is
the case. The premise begins with the assumption that if all the response systems
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(s1, . . . , sn) are being driven by the same driving signal,E, then they will inhabit
the same attractor, so long as their respective initial conditions lie in the same basin
of attraction. It is possible thats1(t) = s2(t) = · · · = sn(t), but quite unlikely if
s1(0) �= s2(0) �= · · · �= sn(0), especially in the chaotic case, due to exponential
separation of nearby orbits. However, if the response systems are synchronised to
the drive system (viaφ) then it is naturalthat the solutions1(t) = s2(t) = · · · =
sn(t) occurs.

More formally, the local stability of the complex, generally synchronised oscil-
lations,si(t) = φ(E(t)), is equivalent to the stability of the comparatively simple
regime wheres1(t) = · · · = sn(t). To see this equivalence, first consider the lin-
earised equations for the evolution ofξ i (t) = si (t) − φ(E(t)) andi = 1, . . . , n.
We have that

ξ̇1 = DGt(φ(E),�, E) · ξ1,

ξ̇2 = DGt(φ(E),�, E) · ξ2
...

ξ̇ n = DGt(φ(E),�, E) · ξn,

(8)

and DGt = ∂X G(X,�, E(t)) is the Jacobian matrix ofG, to be evaluated for the
generally synchronised solution. For anyi �= j , the linear evolution ofξ i(t) −
ξ j (t) = si (t) − s j (t) is identical to that ofξ i(t) and ξ j (t); they have thesame
Jacobian matrix,DGt(φ(E),�, E), as seen in (8). This now means that the linear
stability of the generally synchronised motionsξ i (t) = si (t) − φ(E(t)) in E ⊕ Si

is both a necessaryand a sufficient condition for the linear stability of the synchro-
nised motionssi (t) = s j (t), in thespaceS1 ⊕ · · · ⊕ Sn. This result is proved in
Appendix B.

Consequently, for initial conditions inside the associated basin of attraction, if
the external forces act strongly on the patches, the dynamics of the individual
patches will become synchronised. This analysis applies to all types of dynamical
behaviour, from periodic to quasi-periodic to chaotic. We also point out that the
linear stability of the synchronous solution depends only on the generally synchro-
nised solution,φ(E(t)), and the coupling parametrisation vector,�. This indicates
that the strength of the coupling required will be independent of the number of
response systems involved; this is not true for the case of directly coupled systems
(Pecora, 1998).

We give two brief numerical examples of this phenomenon: the first using the
well known Rössler (Rössler, 1976) system as the external forcing field,E, to rep-
resent some abstract notion of a complex, completely different field forcing the
patch system—such as the weather; secondly, we employ an NPZq model as the
forcing field, to mimic some similar (in terms of timescales etc.), yet independent
patch influence. In our defined terminology, the first model would be of the type
NPZl

2,=[Röss.], with the second defined as NPZl
2,=[NPZq]. The Rössler system
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was originally designed as a model of a model in a sense and to show that chaos
could spring from just one simple non-linearity:

ẋ1 = −(x2 + x3),

ẋ2 = x1 + 0.2x2,

ẋ3 = 0.2 + x3(x1 − µ),

(9)

where we chooseµ = 5.7. Our drive system is defined byE = T (x) (where
x = (x1, x2, x3) andT is a linear translation with rescaling so that, for orbits on
the attractor,E j ∈ (0, 1), j = 1, . . . , 3, as in the examplesi ∈ (0, 1)). Again, for
simplicity, we consider the case where only one of the drive variables is coupled to
only one of the response variables; we couple the variableE1 to the equation for
the nutrient evolution (to mimic a climatic influence on the nutrient) in the response
systems from (4) such that

Ṅi = ṡ1
i = G1(si ) + θ(E1 − s1

i ), (10)

andθ > 0. For the NPZl2,=[NPZq] system, again only the nutrient evolution of the
driving system is coupled to that of the response systems, as above (so as to be some
representation of one-way nutrient mixing; perhaps an estuary, for example). With
the drive–response structure, setting up the calculation for the Lyapunov exponents
of the system is slightly more complicated than for the directly coupled systems. To
easily observe how a transition from synchronised to unsynchronised dynamics can
occur, based upon the driving strength, we consider the following simple quantity:

ζ = lim
T →∞

1

T

∫ T

0
‖s2(t) − s1(t)‖ dt. (11)

In this limit, ζ = 0 indicates synchronised dynamics; for non-zero values ofζ ,
the collective regime will be unsynchronised. For both drive–response systems,
NPZl

2,[Röss.] and NPZl2,=[NPZq], we plot inFig. 3the values ofζ defined in (11),
in terms of the coupling strength,θ . In Fig. 3, we find that both drive–response
systems display a transition from unsynchronised to synchronised dynamics, asθ

increases. For system NPZl
2,=[NPZq ], the critical value ofθ is approximately 0.08,

and for system NPZl2,=[Röss.], the transition occurs atθ ≈ 0.0066. This disparity
of the magnitudes at which the transitions occur in the different systems is due to
the difference in the characteristic timescale of the driving systems. The R¨ossler
system has a timescale of the order of days, compared to those of weeks and months
in the driving and response NPZ systems. This is why the level of coupling needed
in system NPZl2,=[Röss.] to see synchronisation is much lower than that needed in
system NPZl2,=[NPZq]. In acolloquial sense, the ‘wrinkles’ are ‘ironed out’ faster
by the driving system with the faster timescales. InFig. 4, we plot theattractors
in the (N1, N2) plane for the synchronised and unsynchronised cases for system
NPZl

2,=[Röss.].
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Figure 3. The mean distance from synchronisation,ζ , in terms of the coupling strength,
θ , for (left) the drive–response systems NPZl

2,=[NPZq ] and (right) the drive–response

system NPZl2,=[Röss.]. The transition from non-zero to zero values ofζ marks the value
of θ above which we see synchronised patch dynamics in the response systems.

Figure 4. Attractors in the(N1, N2) plane for the unsynchronised (left,θ = 0.001) and
the synchronised (right,θ = 0.01) motions for NPZl2,=[Röss.]. For both cases,N1(0) �=
N2(0).

5. NON-IDENTICAL REACTION DYNAMICS

The general patch models in (1) and (2) assume that the individual reaction
dynamics are the same but, in reality, there are likely to be some intrinsic dif-
ferences between the various patches. Factors such as terrain, predatory pressure
and nutrient regeneration may vary between habitats so, in general, we have some
specific patch dynamics governed byGi(·). In this scenario, the patches cannot
synchronise exactly, but they do exhibit a rich array of near-synchronous behaviour.
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Figure 5. Phase synchronisation in the patch lattice dynamics for the patch system
NPZl

10, �=. For the example ten-patch system, we plotthe time series of the variablesZi ,
for i = 2, 5. Here,ε = 0.075, and there is a small, time-independent stochastic variation
of O(10−3) in the closure rated.

As an illustrative example, consider the coupled system NPZl
10, �=, which, by our

notation, defines ten patches, with non-identical dynamics, coupled together as
defined in (2). In Fig. 5, we plot thetime series of the predators,Zi , from two,
non-adjacent patches. To simulate habitat variations, a small, uniformly distributed
stochastic perturbation,χi , O(10−3), wasadded to the patch higher predation rate,
di , at thebeginning of the simulations (but thedi , while different, were constant
throughout). For a coupling strength ofε = 0.075, even though the amplitudes
vary in size, the phases of the oscillations are the same. This is an example of
phase synchronisation (Pikovskyet al., 1997), and is the phenomenon observed in
the Canadian Hare–Lynx data (Blasius and Stone, 2000a).

In the previous section it was demonstrated that there are threshold values of
the coupling above which we see the onset of synchronised population dynamics.
The same is true for the generally synchronised behaviour seen inFig. 5, and
these threshold coupling values can be computed. As an example, for a strong
relationship between two generally synchronised patches, we might expect that
there is some smooth function� such thats2 = �(s1). This is the definition
of smooth generalised synchronisation, and the conditions under which this can
occur were described, for both directly coupled oscillators and drive–response
systems, byJosic(1998). For direct coupling regimes, the results for two coupled
patches (Josic, 1998) have been extended to arbitrarily many patches (Hillary and
Bees, 2004).

It can be proven that the existence of the above strong relationship, for suitably
small patch parameter mismatch, requires that the synchronous stateA is normally
hyperbolic (Wiggins, 1994). In essence, this means that the contraction of pertur-
bation vectors transverse toMS is greater than the contraction of vectors inside
MS . This can be stated in terms of the normal and standard Lyapunov exponents.
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Figure 6. The neutral normal hyperbolicity curve in(d, ε) space for the non-identical two-
patch system NPZl2, �=. For values of ε above the curve, and for small perturbations in
the parameterd, the two patches will be (asymptotically) smoothly related via a smooth
function,�.

The synchronous stateA is normally hyperbolic if, for all pointsx ∈ A, v ∈ Tx M⊥
S

andu ∈ Tx MS ,

λmax
⊥ (x, v) < λmin

A (x, u), (12)

whereλmax
⊥ is the maximal normal Lyapunov exponent andλmin

A is the smallest
Lyapunov exponent ofA. The function� acts when all transient behaviour van-
ishes, taking attracting points in one patch to the corresponding points in the other
patch.

As a further illustrative and simple example, we compute the boundaries of
smooth collective behaviour for a two-patch system, NPZl

2, �=, resulting from a per-
turbation to the underlying parameters of an NPZl

2,= system. The ideas extend to
arbitrarily many patches, but both the computation and visualisation of the results
and dynamics become harder as we include more patches. InFig. 6, the strength
of coupling required forA to be normally hyperbolic is plotted against the closure
rate,d. This curve marks the transition from smooth to non-differentiable collec-
tive dynamics.

In Fig. 7(a) and 7(b), the dynamics of NPZl2, �= in the predator phase plane
(Z1, Z2) are plotted for coupling (a) above the curve inFig. 6 (ε = 0.075) and
(b) below the curve inFig. 6 (ε = 0.025), respectively. In both cases, there was
a small initial stochastic variation in the closure rate within the chaotic regime,
aboutd = 0.142. For the case of stronger coupling, the dynamics of the variables
Z1 and Z2 are smoothly related, and in phase synchronisation; seeFig. 5. For the
weaker coupling, the smoothness of the relationship is lost, because the coupling
is below the normal hyperbolicity curve inFig. 6, if a deterministic relationship
still exists at all. The neutral normal hyperbolicity curve defines where the transi-
tion from smooth to non-smooth generalised synchronisation occurs, but actually
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Figure 7. Predator phase plane dynamics for a two-patch system with a small stochastic
variation in the respective patch closure rates, NPZl

2, �=: (a) ε = 0.075 (left) and (b)ε =
0.025 (right). Hered ≈ 0.142.

detecting this sharp transition in the dynamics can be very difficult. The values ofε

chosen to highlight the difference of the smooth and non-smooth collective regimes
were sufficiently far apart for visually displaying the differences in the dynamics.
However, as we cross the neutral normal hyperbolicity curve, the transition to
non-differentiability in the invariant manifold can occur at a (subjective) compu-
tationally small scale. The concept of assessing the differentiability of generally
synchronised time series was considered byPecoraet al. (1995); here confidence
in differentiability takes the form of a simple probability, necessarily evaluated at
a given spatial scale in the phase space. However, such probabilistic computations,
based on a specified precision, are hard to interpret and unfortunately give no
clear-cut transition associated with the loss of differentiability.

The chaotic oscillations seen in the NPZl model occur aroundd = 0.142 (see
Fig. 8) which intriguingly corresponds to the region around which the coupling
required to guarantee normal hyperbolicity is at its lowest (seeFig. 6). This sug-
gests that chaos could actually aid synchronisation in systems with non-identical
dynamics, a possibility which we shall explore in the next section.

6. IMPACT OF CHAOS ON META-POPULATION DYNAMICS

Chaotic population oscillations have been observed in both theoretical ecology
models and in experimental observations. Indeed, it has even been suggested that
chaos is advantageous (Allen et al., 1993) for the persistence of coexisting popu-
lations. Using coupled Ricker and logistic maps and both local and global noise
terms,Allen et al. (1993) found that, over a range of diffusive coupling values,
the strong oscillatory tendency of chaotic solutions indicated that extreme local
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Figure 8. The maximal Lyapunov exponent of the attractorA aroundd = 0.142 for NPZl .
For the regions whereλmax

A > 0, A is chaotic. The noisy oscillation about zero is due to
the fact that the calculation is merely a finite time average.

perturbation events were more likely to cause local extinction when in the chaotic
regime, whereas, for global perturbations, the fact that only chaos permitted the
existence of (asymptotically) unsynchronised solutions of identical oscillators in
such diffusive coupling scenarios implied that global extinction was less likely
as the whole lattice was unlikely to be simultaneously at a susceptible popula-
tion minimum. Hence, global survival was most probable in the chaotic regime
of parameter space, at least for the example systems employed. For clarity, we
state that neitherAllen et al. (1993) nor this work addresses the possibility of
multi-stable synchronous solutions or the coexistence of synchronous and non-
synchronous solutions. If we did have such possibilities then statements about the
synchronising nature of the system would be relevant only in the context of ini-
tial conditions inside the appropriate basin of attraction. Furthermore,Allen et al.
(1993) only considered patch systems whose individual dynamics were identical,
and did not address the possibility of local variations.

In this paper, we have allowed for local parameter variations and have demon-
strated how one may calculate the boundary of the region where the collective
dynamics lose their differentiability. This smooth relationship often takes the form
of phase synchronisation and has been observed with field data (the Canadian
Hare–Lynx cycle for example). For NPZl2, �=, the area around the chaotic regime
(Fig. 8) seems to facilitate the formation of a smooth relationship between the patch
dynamics because the coupling required for this to happen (Fig. 6) is at itslowest.
To see whether this is an isolated result, we compute the neutral normal hyperbol-
icity curve as inFig. 6, but for the case of a coupled NPZ system, with quadratic
closure terms, NPZq2, �=. The single-patch system, NPZq , exhibits a small region of
chaos for a closure rate ofd ≈ 0.5 [seeFig. 9 andEdwards and Bees(2001) for
the other default parameter values].Fig. 10presents the coupling strength required
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Figure 9. The maximal Lyapunov exponent of the attractorA aroundd ≈ 0.5 for the
quadratic closure model, NPZq . For the regions whereλmax

A > 0, A is chaotic. The noisy
oscillation about zero is due to the fact that thecalculation is merely a finite time average.

Figure 10. The neutral normal hyperbolicity curve in(d, ε) space for the quadratic clo-
sure model, NPZq2, �=. The lack of resolution in the vertical direction is due to numerical

constraints.

for the existence of a smooth inter-patch relationship against the closure rated.
As in the linear closure model, NPZl

2, �=, the coupling strength needed for smooth
generalised synchronisation decreases around the regime of chaotic oscillations.
From these limited results (and similar results not presented), we hypothesise that
chaotic oscillations can aid the formation of a differentiable relationship between
the non-identical patch dynamics, perhaps leading to increased susceptibility to
global extinction.

Of course, one should wonder why this is the case. Such behaviour has not
been observed in coupled chaotic R¨ossler systems, suggesting that it might be an
isolated result. However, we propose that it is not an isolated result, but that it is
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Figure 11. The chaotic attractor for the NPZl system (left), in(P, Z) space; on the right,
the chaotic attractorfor our driving Rössler system, in(x1, x2) space. The attractor on the
left is a so-called ‘funnel’ attractor; the R¨ossler attractor on the right is a uniform phase
chaotic attractor (UPCA).

dependent on the form of the chaotic attractor employed; which may also explain
its absence in coupled R¨ossler systems. InFig. 11, we plot thechaotic attractors
for the example NPZl system, and for the R¨ossler system used in NPZl

2,[Röss.].
For the NPZl system a ‘funnel’ attractor (Blasius and Stone, 2000a) is obtained,
whereas for the R¨ossler system the attractor is a uniform phase chaotic attractor
(UPCA). We claim that this is the crucial factor responsible for the manifestation
or not of the above phenomenon.

Consider the restriction of the dynamics of both attractors to a prescribed set
of Poincaré sections, and the associated return times of the chaotic orbits. Let us
first introduce some simple, but necessary terminology. We shall deal with not just
chaotic orbits, but also the orbits involved in the period-doubling cascade to the
chaotic solution. With this in mind, the general orbit on some specified attractor
ϕ p(t), wherep ∈ N, represents the orbit with periodp. Theset of times of return
to a particular Poincar´e section, given by� = {t1, . . . , tp}, are the smallest
such times where, givenϕ p(t0) ∈ , if ϕ p(ti ) ∈  then ϕ p(ti + ti+1) ∈ ,
i = 0, . . . , p − 1. Essential to the following argument is that we can quantify
the amount of phase disparity in the various different orbits; that is, the amount of
variation in these first return times. We use the following simple measure: given
our set of return times, we define the parameterτ = tmin/tmax, wheretmin = min �

etc. Consequently,τ ∈ [0, 1], and if there is low phase disparity in the orbitϕ p(t)
thenτ ≈ 1, and high phase disparity meansτ ≈ 0. Note that, for period-1 orbits,
τ = 1 as only one phase is present. In an obvious way we extend these definitions
to chaotic orbits, although note the finite times of the simulations.

To demonstrate the differences in the phase disparity of both the fun-
nel and UPCA attractors,Fig. 12 plots the phase disparity,τ , against the
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Figure 12. Phase disparity,τ , for the NPZl system (left), in terms of the closure rate,
d; for the Rössler system (right), in terms of the usual bifurcation parameter,µ. For the
funnel attractor case (left), there is high variation inτ as we go through the period-doubling
cascade to chaos and back again; for the UPCA case (right), there is comparatively little
variation in τ as we go from a period-1 orbit, through the usual cascade to chaos, and back
to a simple period-2 orbit.

relevant bifurcation parameters, for the NPZl and Rössler systems, using eight
different, equally spaced Poincar´e sections for each attractor. For the funnel
attractor case, there is high variation inτ as we proceed through a period-doubling
cascade. This is due to the nature of the formation of funnel attractors; they do not
form neatly around low period orbits as in the UPCA case. For the UPCA case in
Fig. 12, the phase disparity shows relatively little variation all the way through a
period-doubling cascade and back to a period-2 orbit.

For low period orbits in a funnel regime, a small change in the parameters
can illicit a large change in the phase of the orbits. For two coupled systems,
with small differences in their parameters, there can be large differences in
their respective phases. As the period of the orbit increases, the number of
nearby phases in the coupled oscillators increases. After the emergence of the
period-2 orbit inFig. 12 at aroundd = 0.141, there is a fairly high level of
phase disparity in the NPZl system, in contrast to the R¨ossler case (after the
period-2 emergence atµ ≈ 2.8). On reaching the chaotic funnel state, each
NPZl system has acquired a broad spectrum of return times which are likely to
overlap, suggesting that strong coupling in NPZl

2, �= will not be required for phase
synchronisation. For the UPCA regime, there is no major change in the low
phase disparity as we ascend the periods of the orbits. The spectrum of return
times is already narrow(τ ≈ 1) and there is no coupling advantage from chaos
as both low and high period orbits already possess strong phase similarity. This,
we hypothesise, is the mechanism for chaos aiding synchronisation in the funnel
NPZ system, and the reason that it has not been observed in the UPCA R¨ossler
system.
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7. DISCUSSION

There is an increasing amount of evidence, from both theoretical studies and
empirical observations, for coherent (synchronised) dynamical behaviour in patchy
ecosystems (Grenfell et al., 1998; Fox et al., 2002), even when the populations
seem to be evolving chaotically (Blasius and Stone, 2000a). As a prototypical
example of a coupled, patchy ecosystem, we considered arbitrarily many cou-
pled three-species models for the population dynamics of nitrogen, phytoplank-
ton and zooplankton (a so-called NPZ model). This particular model serves well
as a generic resource–prey–predator model as it exhibits a variety of dynamical
behaviours, from stable equilibria to limit cycles to chaos (Steele and Henderson,
1981; Edwards and Bees, 2001).

Initially, we considered the case where the equations governing the individual
patch dynamics were identical and solutions evolved chaotically. Examples were
given of the non-linear mechanisms which cause the synchronisation of the indi-
vidual patch dynamics. For clarity, two distinct scenarios were considered: indi-
rect patch coupling arising from external forcing effects (such as the climate) and
direct patch coupling arising from factors such as migration and/or mixing. As
has been observed experimentally, if the external forcing is sufficiently strong, the
patch populations will synchronise, even though they may exert no explicit effect
on each other. Also, explicit patch coupling factors such as migration can force
chaotically evolving populations to become synchronised.

This leads to the question of how one may be able to elucidate which mecha-
nism is acting. For example, inFox et al. (2002), there is deemed to be a sta-
tistically significant correlation between the time series of newly recruited plaice
and historical temperature levels, but there is also strong evidence for significant
mixing of the maturing populations of plaice around the British Isles (Dunn and
Pawson, 2002). From a theoretical viewpoint, we highlight a possible method for
distinguishing between the synchronising mechanisms, although the method may
be hard to implement in practice. Contrary to the results on synchronisation of
directly coupled patch models (Sections 3and5), the value of the coupling required
for synchronisation of indirectly coupled patches is independent of the number of
response systems (patches;Section 4). By adding an extra patch to a system and
evaluating the effect (or lack of an effect) this has on the system, one may attempt
to ascertain the mechanism at work. We must stress, however, that this idea applies
only to identically coupled systems (via a blowout bifurcation); the dependence of
the critical coupling on the number of patches is not necessarily observed when
allowing for local parameter variations.

In practice, it is very unlikely that the equations of the governing patch dynam-
ics will be identical. This scenario leads to a much richer array of collective
behaviour, in theoretical models (Pikovsky et al., 1997) and biological studies
(Keith, 1963; Blasius and Stone, 2000a); such systems exhibit a more relaxed type
of synchronous behaviour termedgeneralised synchronisation. This can take the
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form of phase/anti-phase synchronisation or other forms of complex, yet determin-
istic, collective behaviour. It was demonstrated how one can compute the boundary
across which this inter-patch functional relationship loses its smoothness. Exam-
ples were given of the difference in the subsequent dynamics, after this smoothness
is lost. This analysis yielded an initially curious result: the patch dynamics formed
a smooth collective relationship most easily (i.e., required the smallest coupling
strength) in the chaotic regime. The effect was seen in both NPZ systems with
linear and quadratic closure terms.

This result for directly coupled patch systems, with local parameter variations,
leads to conclusions which are in stark contrast to those ofAllen et al. (1993)
with regard to the role of chaos in directly coupled identical patch systems. When
allowing for such local variations, our results suggest that certain types of chaos
can in fact enhance the ability of the system to form a strong collective relationship
(such as phase synchronisation). This phenomenon increases the potential of global
extinction for the following reason. For these particular chaotic regimes, over a
range of coupling values, the system is more likely to be in a state of smooth gen-
eralised synchronisation—specifically phase synchronisation. So, while the ampli-
tudes of the patch oscillations are different, any population maxima and minima
occur at the same time throughout the whole lattice. This means that any global
perturbation has a higher likelihood of causing a global extinction as all the patch
inhabitants reach their respective population minima at the same time. This is pre-
cisely the same argument as applied to non-chaotic dynamics (Allen et al., 1993).

The increased predisposition for non-identical patches with chaotic dynamics
to synchronise in the test-case systems presented here strongly suggests a link
to the type of chaotic attractor involved. The NPZ chaotic attractors are of
the funnel class. We showed that, compared to the case for a previously well
studied R¨ossler UPCA (uniform phase chaotic attractor) system, the structural
sensitivity in the phases of the periodic orbits, which occur in the period-doubling
cascade to funnel-type chaos, intimates that synchronising close—yet non-
identical—oscillators takes less coupling strength as the chaotic state is ultimately
approached through period doubling. This phase sensitivity is not present in the
UPCA Rössler system, explaining why this phenomenon was not observed in
such a system before. We suggest that we have merely touched upon the true
complexity of this topic: the calculation of the normal hyperbolicity curve, from
which this phenomenon became apparent, is closely linked to the most negative
Lyapunov exponents in the underlying dynamics which would require a thorough
exploration in relation to the phases of periodic orbits.

Recent developments in non-linear dynamics are helping to unravel some of the
mechanisms at work in more complex ecosystems. In this paper, we have presented
some of the various modes of population synchrony in non-linear, possibly chaoti-
cally evolving patchy ecosystems, with reference to both observed phenomena and
new evidence that the true role of chaos in interacting ecosystems is more complex
than expected.
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APPENDIX A: GENERALISED SYNCHRONISATION

Here, welist the full set of conditions on the generalised synchronisation rela-
tion,φ. The functionφ must be independent of the initial conditions of the response
system,s(0), as long as they are inside the basin of attraction of the generally
synchronised attractor. The existence ofφ is only requiredafter transients have
decayed. In Abarbanel et al. (1996), the following properties ofφ are laid down:

(1) φ has no explicit time dependence.
(2) Points inE space are mapped topoints in S space. The functionφ need

not be injective and consequently not be invertible but has a finite number of
branches (with some rule for moving from branch to branch).

(3) On each branch,φ is locally continuous.

APPENDIX B: PROOF THAT STABLE GENERALISED SYNCHRONISATION

IS EQUIVALENT TO STABLE SYNCHRONISATION IN THE

DRIVE–RESPONSE SYSTEM

Abarbanel et al. (1996) described but did not formally prove this equivalence; it
was observed that the linear evolutions of the two stability problems were identical.
For completeness, we formalise this approach as it additionally requires smooth-
ness conditions in the underlying dynamics. To prove that stable generalised syn-
chronisation⇔ stable synchronisation in (1), first consider the linear evolution
operators for the variablesξ i(t) = si (t) − φ(E(t)) and ξ i j (t) = si (t) − s j (t)
denoted by�i (t) and �i, j (t), respectively. Using a different definition for the
Lyapunov exponents (Eckmann and Ruelle, 1985), the stability of the generally
synchronised motions is determined by the logarithms of the limiting eigenvalues,
log(µi ), of the matrix:

lim
t→∞((�i (t))

†�i (t))
1
2t , (B.1)

where † denotes the adjoint of the operator.
Analogously, the stability of the synchronised motions is governed by the loga-

rithms of the limiting eigenvalues, log(µi, j ), of the matrix:

lim
t→∞((�i, j (t))

†�i, j (t))
1
2t . (B.2)
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If all the log(µi ) < 0 and the log(µi, j ) < 0, then both the generally synchro-
nised and the fully synchronised systems will be linearly stable. If just one of the
log(µi ) > 0 andone of the log(µi, j ) > 0 then the respective systems will be
linearly unstable. However, both�i (t) and�i, j (t) satisfy the following ODE:

d�∗(t)
dt

= DGt(φ(E),�, E)�∗(t),

�∗(0) = Im,

(B.3)

whereIm is them-dimensional identity matrix and the index∗ = i or i, j . The
matrix DGt(φ(E),�, E) is simply the Jacobian of the response system dynamics,
defined by the functionG(·), evaluated at timet for the generally synchronised
solution,φ(E). Now, we first note thatDGt(φ(E),�, E) is C0(Rm), becauseG(·)
is assumed to beC1(Rm). Coupled with the fact that�i (0) = �i, j (0), we must
have that�i (t) and�i, j (t) are in fact the same operators onC1(Rm), due to the
existence and uniqueness of the solution of an initial value problem such as this.
Finally, because they are the same operators, log(µi ) ≡ log(µi, j ) and we must have
that the generally synchronised solution is stable/unstable iff the fully synchronised
solution is stable/unstable.

REFERENCES

Abarbanel, H. D. I., N. F. Rulkov and M. M. Sushchik (1996). Generalized synchronization
of chaos: the auxiliary systems approach.Phys. Rev. E 53, 4258–4535.

Alexander, J. C., J. A. Yorke, Z. You and I. Kan (1992). Riddled basins.Int. J. Bifurcation
Chaos 2, 795–813.

Allen, J., W. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplify-
ing local population noise.Nature 364, 229–234.

Ashwin, P., J. Buescu and I. Stewart (1994). Bubbling of attractors and synchronisation of
chaotic oscillators.Phys. Lett. A 193, 126–139.

Belykh, B., I. V. Belykh and E. Mosekilde (2001). Cluster synchronization modes in an
ensemble of coupled chaotic oscillators.Phys. Rev. E 63, 036216.

Blasius, B. and L. Stone (2000a). Chaos and phase synchronization in ecological systems.
Int. J. Bifurcation Chaos 10, 2361–2380.

Blasius, B. and L. Stone (2000b). Nonlinearity and the Moran effect.Nature 406, 846–847.
Dunn, M. R. and M. G. Pawson (2002). The stock structure and migrations of plaice pop-

ulations on the west coast of England and Wales.J. Fish Biol. 61, 360–393.
Eckmann, J.-P. and D. Ruelle (1985). Ergodic theory of chaos and strange attractors.Rev.

Mod. Phys. 57, 617–656.
Edwards, A. M. and M. A. Bees (2001). Generic dynamics of a simple plankton population

model with a non-integer exponent of closure.Chaos Solitons Fractals 12, 289–300.
Edwards, A. M. and J. Brindley (1996). Oscillatory behaviour in a three component plank-

ton population model.Dyn. Stab. Syst. 11, 347–370.



Synchrony & Chaos in Patchy Ecosystems 1931

Fox, C. J., B. P. Planque and C. P. Darby (2002). Synchrony in the recruitment time-series
of plaice (Pleuronectes platessa L) around the United Kingdom and the influence of sea
temperature.J. Sea. Res. 44, 159–168.

Fujisaka, H. and T. Yamada (1983). Stability theory of synchronized motion in coupled-
oscillator systems.Prog. Theor. Phys. 69, 32–48.

Grenfell, B. T., K. Wilson, B. F. Finkelst¨adt, T. N. Coulson, S. Murray, S. D. Albon, J. M.
Pemberton, T. H. Clutton-Brock and M. J. Crawley (1998). Noise and determinism in
synchronized sheep dynamics.Nature 394, 674–677.

Hastings, A. and T. Powell (1991). Chaos in a three species food chain.Ecology 72,
896–903.

Hillary, R. M. (2003). Effects of turbulence and a patchy environment on the dynamics of
plankton populations, PhD thesis, University of Surrey.

Hillary, R. M. and M. A. Bees (2004). Plankton lattices and the role of chaos in plankton
patchiness.Phys. Rev. E 69, 031913.

Hudson, P. J. and I. M. Cattadori (1999). The Moran effect: a cause of population syn-
chrony.TREE 14, 1–2.

Josic, K. (1998). Invariant manifolds and synchronization of coupled dynamical systems.
Phys. Rev. Lett. 80, 3053–3056.

Keith, L. B. (1963).Wildlife’s Ten Year Cycle, Cambridge: Cambridge University Press.
Moran, P. A. P. (1953). The statistical analysis of the Canadian lynx cycle.Aust. J. Zool. 1,

291–298.
Ott, E. and J. C. Sommerer (1994). Blowout bifurcations: the occurrence of riddled basins

and on–off intermittency.Phys. Lett. A 188, 39–47.
Pecora, L. M. (1998). Synchronization conditions and desynchronizing patterns in coupled

limit-cycle and chaotic systems.Phys. Rev. E 58, 347–360.
Pecora, L. M. and T. L. Carroll (1990). Synchronization in chaotic systems.Phys. Rev.

Lett. 64, 821–825.
Pecora, L. M., T. L. Carroll and J. F. Heagy (1995). Statistics for mathematical properties

of maps between time series embeddings.Phys. Rev. E 52, 3420–3439.
Pikovsky, A. S. (1984). On the interaction of strange attractors.Z. Phys. B 55, 149–154.
Pikovsky, A. S., M. G. Rosenblum, J. V. Osipov and J. Kurths (1997). Phase synchroniza-

tion of chaotic oscillators by external driving.Physica D 104, 219–238.
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