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ABSTRACT We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions
based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the
intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate
our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and
the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking.
From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and
diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for
C. reinhardtii. In both cases, the motility parameters were averaged over � 104 cells and obtained in a few minutes.
INTRODUCTION
The motility of single-celled prokaryotes and eukaryotes is
important in biology and medicine. The virulence ofHelico-
bacter pylori depends on migration through host epithelial
mucosa (1), and the phototaxis of Chlamydomonas rein-
hardtii and similar photosynthetic algae is predicated on
motility (2). Animal reproduction relies on motile sperms.
In all cases, organisms with typical linear dimension R
in the range of 0:5mm(R(10mm swim with speeds
of v � 10� 100mm=s, and thus the Reynolds numbers,
Re ¼ rvR=h (r and h are the liquid’s density and viscosity)
are vanishingly small ((10�3 in water). Microorganisms
use a variety of strategies to generate the nonreciprocating
motion necessary for low-Re propulsion, e.g., by rotating
or beating one or more flagella.

The motility of Escherichia coli bacteria is well under-
stood (3). A wild-type (WT) cell (� 1mm� 2mm spherocy-
linder) bears six to ten 6� 10mm helical flagella. When
these flagella rotate counterclockwise (CCW, viewed from
flagella to cell body), they bundle and propel the cell forward
in a straight run. Every � 1 s, one or more flagella rotate
clockwise (CW) briefly and then unbundle, and the cell
tumbles. Rebundling leads to a new run in an essentially
random direction. This run and tumble gives rise to a random
walk.

Such detailed information can only be obtained by single-
cell tracking. However, in some situations, only a few
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parameters may be required, such as the average speed
and the motile fraction. Moreover, tracking is laborious
and typically averages over � 102 cells, limiting the statis-
tical accuracy. Lastly, because three-dimensional (3D)
tracking requires specialized equipment (4–6), tracking is
usually performed on two-dimensional (2D) projections,
which further limits statistical accuracy because of cells
moving out of the imaging plane.

We recently demonstrated the use of differential dynamic
microscopy (DDM) for characterizing the motility of WT
E. coli in 3D (7). The method complements rather than
replaces tracking; indeed, it relies on fitting data using a
parametrized swimming model that was obtained from
tracking in the first place. The advantage of DDM is that it
delivers a limited number of motility parameters with high
throughput by averaging over � 104 cells in a few minutes
using standard microscopy. In this work, we explain the full
details and limitations of DDM, and justify in depth the
approximations made using simulations and tracking. We
apply the method to a smooth swimming (run only) mutant
of E. coli, investigate its use on the WT in more detail, and
extend it to study thebiflagellateWTalgaC. reinhardtii,which
is a completely different microorganism in terms of time-
scales, length scales, and swimming dynamics. Our results
provide the basis for generalizing DDM to many other bio-
medically important microswimmers, including spermatozoa.
DDM

The key idea of DDM (7,8) is to characterize the motility of
a population of particles (colloids or microorganisms) by
studying the temporal fluctuations of the local number
density of particles over different length scales via image
analysis. This method yields the same quantity accessed by
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dynamic light scattering (DLS), the intermediate scattering
function (ISF), but can access the relevant length scales
for microorganism motility more readily than DLS (9).

DDM utilizes time-lapse images of particles, described
by the intensity Ið~r; tÞ in the image plane, where~r is pixel
position and t is time. As the particles move, Ið~r; tÞ fluctu-
ates with time. DDM analyzes the statistics of Ið~r; tÞ to
provide information about the particle motions by mea-
suring the differential image correlation function (DICF),
gð~q; tÞ, i.e., the square modulus of the Fourier transform
of the difference of two images separated by t in time:

gð~q; tÞ ¼ �jIð~q; t þ tÞ � Ið~q; tÞj2�
t
: (1)

Here, h.it means the average over the initial time t, and
FIGURE 1 (a) Theoretical ISF, f ðq; tÞ, versus t at q ¼ 1mm�1, for (black

dotted line) a population of diffusing spheres with D ¼ 0:3mm2=s, (red

dashed line) a population of equivalent-size spheres swimming isotropi-

cally in 3D with a Schulz speed distribution PðvÞ (see Eq. 5) with average

speed v ¼ 15mm=s and width s ¼ 7:5mm=s, and (green line) a 30:70

mixture of diffusers and swimmers. (b) Schematic of the image processing
Ið~q; tÞ is the Fourier transform of Ið~r; tÞ, which picks out
the component in the image Ið~r; tÞ that varies sinusoidally
with wavelength 2p=q in the direction~q. With no preferred
direction of motion, the relevant variable is the magnitude q
of~q. It can be shown that gðq; tÞ is related to the ISF, f ðq; tÞ,
by (7,8,10)

gðq; tÞ ¼ AðqÞ½1� f ðq; tÞ� þ BðqÞ: (2)

where AðqÞ depends on the optics, particle shape, and

to obtain the DICFs, gðq; tÞ, from the videos (left) collected in an experi-

ment. (middle) nonaveraged image, jFDið q!; tÞj2 and (right) averaged

image, gð q!; tÞ, over initial times ti at t ¼ 0:52s.
mutual arrangement, and BðqÞ represents the camera noise.
For independent particles (11),

f ðq; tÞ ¼ �
ei~q ,D~rjðtÞ

�
j
; (3)

where D~rjðtÞ is the jth-particle displacement and h.ij is an
average over all particles.
Equation 3 shows that f ðq; 0Þ ¼ 1 and f ðq; t/NÞ ¼ 0.
This decay of the ISF from unity to zero reflects the fact
that particle configurations (and hence images) separated
by a progressively longer delay time, t, become more decor-
related due to particle motion. The precise form of f ðq; tÞ
encodes information on these motions on the length scale
2p=q. The analytic form of the ISF is known in a number
of cases (11). Thus, for identical diffusing spheres with
diffusion coefficient D, f ðq; tÞ ¼ e�Dq2t. For an isotropic
population of straight swimmers in 3D with speed v,
f ðq; tÞ ¼ sinðqvtÞ=qvt.

Fig. 1 shows the calculated f ðq; tÞ for 1), diffusing
spheres with approximately the same volume as a typical
E. coli cell; 2), isotropic swimmers with a speed distribution
PðvÞ typical of E. coli; and 3), a mixture of these (12) at
q ¼ 1mm�1 (see Eq. 4). Note that in the third case, plotting
the ISF against log t makes it obvious that there are two
processes: a fast one due to swimming that decorrelates
density (or, equivalently, intensity) fluctuations over
� 10�1 s, and a slower diffusive process that decorrelates
over � 1 s (at this q), with fractional contributions z7 : 3.

We note that any bias due to, e.g., chemotaxis, leads to
anisotropy in the measured gð~q; tÞ, and therefore the method
that was recently demonstrated for anisotropic colloids,
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where gð~q; tÞ was analyzed sector by sector (13) rather
than azimuthally averaged over ~q, needs to be used. The
isotropy assumption seems reasonable for E. coli in the
absence of gradients. However, C. reinhardtii is known to
be gravitactic (14). Below, we disregard these small but
persistent anisotropic effects as a first approximation, and
postpone a full exploration to future work. We find that
azimuthally averaging over~q still allows us to extract useful
information that is substantially validated by tracking.
MATERIALS AND METHODS

Samples

E. coli AB1157 (WT and DcheY strains; see Supporting Material) were

grown in Luria-Bertani broth (LB) at 30�C and shaken at 200 rpm, har-

vested in the exponential phase, washed three times by careful filtration

(0.45-micron filter) with, and resuspended in, motility buffer (6.2 mM

K2HPO4, 3.8 mM KH2PO4, 67 mM NaCl, 0.1 mM EDTA, pH ¼ 7.0)

to optical density 0.3 (at 600 nm), corresponding to z5� 108 cells/ml,

and z0:06 % by cell volume. Care was taken throughout to minimize

damage to flagella. Az400mm deep flat glass cell was filled withz150 ml

of cell suspension, sealed, and observed at 2251�C. Swimming behavior

was constant over z10 min.

Batch cultures of WT C. reinhardtii (CCAP 11/32B) were grown on 3N

Bold’s medium (2) and concentrated in cotton by gravitaxis (15). Concen-

trated cell stock was diluted in growth media to an optical density of 0.175

(at 590 nm), corresponding to 1:4� 106 cells/ml, andz0:002% by volume

of cells. Cells were observed at 2251�C in the same glass cells used for

E. coli under a 600 nm long-pass filter (Cokin) to avoid a phototactic
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response (16). The sample dimensions were sufficiently large to avoid

boundary effects and small enough to avoid bioconvection or thermal

convection (6). Algal motility was constant for 20 min. In all cases, we

waited at least 1min before capturing images to avoid drift due to mixing

flows.
DDM

We used a Nikon Eclipse Ti inverted microscope and a PC-controlled high-

speed camera (MikrotronMC 1362) with a frame grabber card with 1 GB of

onboard memory. The CMOS pixel size ð14� 14mm2Þ and magnification

determine the inverse pixel size k (in pixel/mm) in the image plane, which

together with the image size L (in pixels) define the spatial sampling

frequency ðqmin ¼ 2pk=LÞ. For bacteria, 10� phase-contrast movies (Nikon

Plan Fluor with numerical aperture¼ 0.3) were acquired at L ¼ 500, giving

k ¼ 0:712mm�1 and 0:01)q)2:2mm�1. This allowed the imaging of

� 104 cells at a bulk density of 5� 108 cells/ml in a 0:49mm2 field of

view with a depth of field dz40mm, over 38 s at a frame rate of 100 fps.

For algae, 4� bright-field movies (Nikon Plan Apo with numerical

aperture ¼ 0.2) were acquired at L ¼ 500, giving k ¼ 0:285mm�1 and

0:004)q)0:9mm�1, which allowed the imaging of � 104 cells at a bulk

density of 1:4� 106 cells/ml in a 3:2mm2 field of view with dz200mm,

over 3.8 s at 1000 fps. Imaging at z200mm from the bottom of a 400mm

thick glass capillary minimized wall effects.
Data reduction and fitting

The image processing and fitting are easily automated (see below; all

relevant software is available on request). Fig. 1 b illustrates how we

obtain the DICF from the movies. For a given t, the difference images

Dið~r; tÞ ¼ Ið~r; ti þ tÞ � Ið~r; tiÞ are calculated for a set of N different initial

times ti (typically i ¼ 1; 4; 7;.; 313). After computing the fast Fourier

transform, FDið~q; tÞ, of each Dið~r; tÞ and calculating jFDið~q; tÞj2, we

average over the initial times ti, giving gð~q; tÞ ¼ hjFDið~q; tÞj2ii, to

improve the signal/noise ratio (the averaged image appears less grainy;

Fig. 1 b).

For isotropic swimmers, gð~q; tÞ is azimuthally symmetric and can be

azimuthally averaged to give gðq; tÞ ¼ hgð~q; tÞi~q. We linearly interpolate

between four adjacent points in discrete ~q -space to find values for

gð~q; tÞ along a circle with radius q. The finite image size causes numerical

artifacts (18) mainly along the horizontal and vertical center lines of gð~q; tÞ,
which are reduced by omitting the values for qx ¼ 0 and qy ¼ 0 during

the azimuthal averaging. This is repeated for different t-values to obtain

the full time evolution of gðq; tÞ. Calculations were done in LabView

(National Instruments) on a four-core PC (3 GHz quad core, 3 GB RAM).

Processing (4000 frames with L ¼ 500 and averaging over z100 initial

times ti takez 5 min.

We fitted each gðq; tÞ independently to Eq. 2 using the appropriate

parametrized model for f ðq; tÞ. At each q, nonlinear least-squares fitting

based on c2 minimization using the Levenberg-Marquardt algorithm and

the all-at-once fitting procedure in IGOR Pro (WaveMetrics) returns

AðqÞ, BðqÞ, and motility parameters.
Simulation

We carried out Brownian dynamics simulations in 3D of noninteracting

point particles (bacteria) at a concentration and in a sample chamber geom-

etry directly comparable to our experiments, using periodic boundary

conditions to keep the bulk density of swimmers constant. Each particle

has a drift velocity whose direction and magnitude were chosen from

uniform and Schulz distributions, respectively. At each tumble, a WT

swimmer undergoes Brownian diffusion and a new swimming direction is

chosen uniformly at random after each tumble. The swimming speed is

constant for each bacterium.
From these simulations, we constructed 2D pixelated images. Particles in

a slice of thickness d, centered at z ¼ 0, contribute to the image. A particle

at ðx; y; zÞ is smeared into an image covering the pixel containing ðx; yÞ and
the eight neighboring pixels. To define the image contrast of a bacterium,

which depends on z, we used the experimentally measured z-contrast func-

tion cðzÞ. This mimics the finite depth of field in a microscope.
Tracking

Both experimental and simulated data were tracked (19) to obtain 2D

trajectories, r2DðtÞ. We used inverted 20� videos of E. coli with bright cells

ofz3 pixels on a dark background and a running average of three frames to

improve the signal/noise ratio. In the simulations, equivalent 10� videos

could be tracked due to the absence of noise. In all cases, 400 plus features

were identified per frame, using only high brightness features near the focal

plane. Tracking of simulated movies of nonmotile (NM) or motile cells

reproduced the input diffusion coefficient D and swimming speed distribu-

tion PðvÞ. Tracking experimental data for purely NM E. coli yields the same

D as obtained by DDM.

The analysis of mixed populations of motile and NM cells is more chal-

lenging. We generalized a recently proposed method (21) to analyze such

data. Each trajectory is split into short elementary segments of duration

Dt over which an average swimmer movesz1 pixel. First, the mean angle

hjqji between successive segments is calculated (hjqji ¼ p=2 for a random

walk and hjqji ¼ 0 for a straight swimmer). Then, using the trajectory’s

start-to-end distance L, duration T, and the mean elementary segment length

Dr2DðDtÞ, we calculate the parameter Nc ¼ ðL=Dr2DÞ=ðT=DtÞ. Thus,

Nc ¼ 0 for a random walk with T/N and Nc ¼ 1 for a straight swimmer.

Previous tracking of mixed swimmers and diffusing particles in 2D (at

a wall) (21) returned two well-separated clusters in the ðNc; hjqjiÞ plane,

from which motile and NM populations could be separated and the respec-

tive PðvÞ and D could be extracted via fitting of the mean-squared displace-

ment (MSD), hDr22D;NMðtÞi ¼ 4Dt.
However, our 3D data (see below) show a much less well-defined sepa-

ration, in contrast to the clear distinction in the study by Miño et al. (21)

between motile and NM populations in 2D. Therefore, we studied the

dependence of motility parameters with the population selection criteria

ðNc; hjqjiÞ. In addition, we used another estimate for the diffusion co-

efficient, Dg, obtained by fitting the distribution of 1D displacements,

PðDxNMðtÞÞ, to a Gaussian and using the linear increase of the variance

of the fitted distribution with t to obtain Dg. Computerized tracking of

200 cells over 200 frames to give the data presented in ‘‘Tracking results’’

took 5 min.

Finally, we tracked the C. reinhardtii videos, identifyingz300 algae per

frame with z5 pixels per cell, and applied the above diagnostic (using Dt

such that DrðDtÞz1 pixel on average) to separate straight tracks in the

imaging plane from other tracks. Further details are given below.

2D tracking measures Pðv cosðbÞÞ (where b is the angle with the image

plane) rather than PðvÞ, but this has only a small effect on the results.

Tracking only the brightest features within z of the focal plane ensures

that only tracks with tv sinðbÞ<z contribute, which suppresses projection

effects. Moreover, the diagnostic method to select straight swimmers

further excludes large b tracks from the motile population, because these

tracks exhibit a stronger diffusive (E. coli) or circular (algae) component

as a result of the projection.
SMOOTH SWIMMING E. COLI

We previously demonstrated DDM using a WT run-and-
tumble E. coli (7). Although many features of the data can
be fitted by ignoring the effect of tumbling, some details,
such as a small q dependence in the fitted swimming
velocity, probably can only be understood by taking tum-
bling into account. Here, we present measurements for
Biophysical Journal 103(8) 1637–1647
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a smooth swimming (SW) mutant. The simplicity of the
motion compared with the WT makes this mutant the ideal
organism for presenting the details of DDM. We return to
the WT further below.

Model of ISF

An SW cell is propelled somewhat off-center by a flagellar
bundle rotating CCW at � 100 Hz, causing the cell body to
wobble as it rotates at � 10 Hz CW. To extract motility
parameters from the ISF, it is important to work in the
appropriate q range. An upper bound exists because at
qT2p=R � 6mm�1, where R � 1mm is a typical cell size,
both swimming and body wobble contribute to the decay
of f ðq; tÞ, making impractical to extract swimming param-
eters cleanly in this regime. A lower bound for q is set by
deviations from straight-line swimming due to Brownian
orientational fluctuations and/or tumbling. For E. coli, cells
run for z20mm between tumbles, which is also the persis-
tence length of the trajectory of SW cells due to orienta-
tional fluctuations.

Thus, within the optimized range of 0:5(q(6mm�1, it is
possible to model a population of swimming E. coli as
straight swimmers with a speed distribution PðvÞ and
isotropic directions. Each particle also undergoes Brownian
motion, with diffusivity D. To model a natural population,
which inevitably contains NM cells, we specify that only
a fraction a of the particles are swimming. The resulting
ISF is known (12):

f ðq; tÞ ¼ ð1� aÞe�q2Dt þ ae�q2Dt

ZN

0

PðvÞ sinðqvtÞ
qvt

dv: (4)

Limited previous data (12,22) suggest that PðvÞ is peaked.
4
6

10

1.0
b

Using a Schulz (or generalized exponential) distribution,

PðvÞ ¼ vZ

Z!

�
Z þ 1

v

�Zþ1

exp
h
� v

v
ðZ þ 1Þ

i
; (5)

where Z is related to the variance s2 of PðvÞ via
�1=2
0.8

0.6

0.4

f(q
,

)

s ¼ vðZ þ 1Þ , gives (23)

ZN

0

PðvÞ sinðqvtÞ
qvt

dv ¼
�
Z þ 1

Zqvt

�
sinðZ tan�1LÞ�
1þL2

�Z=2 ; (6)

where L ¼ ðqvtÞ=ðZ þ 1Þ.
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FIGURE 2 DDM for SW E. coli. (a) Measured (symbols) and fitted

(lines) DICFs, gðq; tÞ. (b) ISFs, f ðq; tÞ, reconstructed from gðq; tÞ using

Eqs. 2, 4, and 6.
Fig. 1 (green curve) shows an example ISF calculated at
q ¼ 1mm�1 using typical E. coli motility parameters in Eqs.
4–6. It shows a characteristic two-stage decay. The integral
in Eq. 4 due to the straight swimmers dominates the first,
faster process, whereas the purely diffusive first term due
to the Brownian motion of nonswimmers dominates the
second, slower process.

Much can be learned from visual inspection of this
f ðq; tÞ. The relative amplitudes of the fast and slow
Biophysical Journal 103(8) 1637–1647
processes can easily be estimated to be z7 : 3, which gives
an estimated az0:7. The length scale probed at this q is
‘ � 2p=qz6mm. By extrapolating the green curve or
by reference to the red curve for pure swimmers, we
can estimate that the fast process decays completely in
tswimz0:5 s. An order-of-magnitude estimate of the swim-
ming speed is therefore v � ‘=tswimz12mm=s. The slower,
diffusive process decays completely in tdiffz20 s, and
thus an estimate of the diffusion coefficient of the non-
swimmers can be obtained from 6Dtdiff � ‘2, giving
Dz0:35mm2=s. These are credible estimates of the param-
eters used to generate this ISF: v ¼ 15mm=s,D ¼ 0:3mm2=s,
and a ¼ 0:7.
DDM results

Fig. 2 a shows typical DICFs, gðq; tÞ, measured using DDM
in the range of 0:45%q%2:22mm�1 for a suspension of SW
E.coli. The measured gðq; tÞ have a characteristic shape
reminiscent of the calculated f ðq; tÞ shown in Fig. 1 a
(note the log-scale for the y axis in Fig. 2 a); indeed, Eq. 2
shows that gðq; tÞ should take the shape of an (unnormal-
ized) upside-down f ðq; tÞ. Moreover, the value of gðq; tÞ
at small t gives a measure of the camera noise BðqÞ, which
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FIGURE 3 Reconstructed ISFs, f ðq; tÞ, shown in Fig. 2 plotted against

(a) qt and (b) q2t. The data collapse for the fast process in a and the

slow process in b. The q-value increases by step of z 0.009 mm�1 from

the red to the blue end of the spectrum in the range of 0:3%q%2:2mm�1.
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is therefore seen to be more or less q independent. The total
amplitude of gðq; tÞ measures AðqÞ, which evidently in-
creases rapidly as q decreases. This reflects the strong q
dependence of both the form factor of a single bacterium
and the contrast function of the microscope objective.

The above qualitative remarks can be quantified by fitting
the measured gðq; tÞ using Eqs. 2, 4, and 6. From the fit, we
extract six parameters: v, s, D, a, A, and B. The fitted func-
tions AðqÞ and BðqÞ allow us to calculate f ðq; tÞ from
the measured gðq; tÞ via Eq. 2 (Fig. 2 b). The determina-
tion of AðqÞ and BðqÞ does not necessarily require fitting
of gðq; tÞ and consequently a model for f ðq; tÞ. They
can simply be determined from the short and long time
limits of gðq; tÞ, such as BðqÞ ¼ gðq; t/0Þ and AðqÞ ¼
gðq; t/NÞ � BðqÞ. However, the latter requires well-
defined plateaus at both short and long time regimes, which
are not always observed depending on the value of q, and
the experimental time window restrictions (at short times
by the frame rate and at long times by the duration of the
movie).

The ISFs calculated from experimental data (especially
those for qz1mm�1) show the characteristic shape already
encountered in the theoretical ISF shown in Fig. 1 a, i.e.,
a fast decay due to swimming, followed by a slow decay
due to diffusion. The identity of these two processes is
confirmed by the different scaling of the time axis required
to collapse the data at different q values: the fast (swim-
ming, or ballistic) decay scales as qt (Fig. 3 a), and the
slow (diffusive) decay scales as q2t (Fig. 3 b).

A clear separation of the swimming and diffusive decays
is important for robust fitting of the ISF using Eq. 4. Such
separation of timescales will be achieved if a cell takes
much less time to swim the characteristic distance probed,
‘ ¼ 2p=q, than to diffuse over the same distance (in the
image plane), i.e., tswim � ‘=v � tdiff � ‘2=4D, which
requires q � qc � v=D � 20� 50mm�1 for typical E. coli
values of v and D. All of the data shown in Fig. 2 b fit
comfortably into this regime. (In the regime of q[qc, the
ISF separates into a fast diffusive process followed by a
slower swimming process.)

Fig. 4 shows the fit parameters ðv; s;a;D;A;BÞ from Eqs.
4–6 as functions of q. A common feature, most evident in
DðqÞ, is the enhanced noise at low q. This is because at
low q, the long-time, diffusive part of f ðq; tÞ has not fully
decayed in our time window, rendering it harder to deter-
mine D accurately. This can be improved by probing gðq; tÞ
over long times. To within experimental uncertainties, the
motility parameters ðv; s;a;DÞ are all q independent for
qT1mm�1, which suggests that our model (Eq. 4) is indeed
able to capture essential aspects of the dynamics of a dilute
mixture of NM and SW E. coli. A fit using fixed D,
over the full q range, results in q-independent motility
parameters only when the value used for D is within 10%
of the value found in free fitting (data not shown).
Averaging over q in the range of 0:5)q)2:2mm�1
yields v ¼ 10:950:3mm=s, s ¼ 6:4350:04mm=s, a ¼
0:58550:002 and D ¼ 0:34850:003mm2=s (where error
bars are the standard deviation of the mean in all cases
except for v, where they reflect the residual q dependence).
Note that the fitting of D is dominated by the diffusion of
NM organisms: changing our model from Eq. 4 to one in
which the motile cells do not diffuse does not change the
results (data not shown). Our Dz0:35mm2=s is slightly
higher than the Dz0:30mm2=s obtained for NM E. coli
mutants with paralyzed flagella (motA) (7), possibly
because of collisional encounters with the motile cells.

We used a Schulz distribution for PðvÞ in Eq. 4 for
analytic convenience. In Fig. S1 in the Supporting Material
we show the fitting parameters obtained by fitting with three
different probability distributions. The results for the Schulz
and log-normal distributions agree closely (Fig. S2 b), but
using a Gaussian form produced noisier data and a sig-
nificantly lower v. The latter is because Pðv ¼ 0Þs0 for
the Gaussian distribution, strongly overestimating the
number of slow swimmers. These spurious slow swimmers
in turn cause noisier data for the other parameters. One can
draw the same conclusion by fitting (using the same three
distributions) the simulated data generated using a Schulz
PðvÞ with experimental parameters from Fig. 4 (Fig. S2b).
Significantly, the calculated f ðq; tÞ from fitting the
simulated data generated using a Schulz distribution agree
Biophysical Journal 103(8) 1637–1647
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FIGURE 5 TrackingofSWE. coli. (a) ProbabilityPðNc; hjqjiÞ (Dt ¼ 0:1 s)

for all tracks. White denotes large values of P. Circles (radius ε, see text) are

selection criteria for motile (red, lower right) or NM (green, upper left)

cells. (b) PðvÞ for 3¼ 3 (Dt ¼ 0:1 s) for two time lags t. Dashed line:

Schulz distribution from DDM. (c) v ð-Þ and s (C) of PðvÞ versus ε for
t ¼ 0:1 s (solid symbols) and t ¼ 1 s (open symbols). (d) Diffusion coeffi-

cient of NM cells versus ε, from Gaussian fits to PðDxNMðtÞÞ ð-Þ and

linear fits to the MSD ð,Þ. (e) MSD versus t for motile ð-Þ and NM cells

(C) for 3¼ 3, Dt ¼ 0:1 s. Solid line: Motile MSD calculated using v 3¼3

from panel c. Dashed line: NM MSD calculated using Dg; 3¼3 from panel d.
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from tracking, with thickness corresponding to the error bars. No reliable

value for a could be obtained from tracking.

1642 Martinez et al.
closely with the ISFs obtained from fitting the experimental
data using a Schulz distribution (Fig. S2 a).

We fitted the data satisfactorily irrespective of whether
bright-field, phase-contrast, or fluorescence imaging was
used. However, phase-contrast imaging shows a better
signal/noise ratio, AðqÞ=BðqÞ. Changing AðqÞ and BðqÞ by
using a 20� phase-contrast objective (which is suboptimal
for our experiment) produced the same results in the rele-
vant q range (data not shown).
Tracking results

Fig. 5 a shows the probability density of the track diagnos-
tics ðNc; hjqjiÞ (see above). Recall that ðNc; hjqjiÞ ¼ ð1; 0Þ
for straight swimming and ð0;p=2Þ for Brownian diffusion.
Although two clear maxima corresponding to diffusion and
(nearly straight) swimming are observed, there is a substan-
tial statistical weight of tracks with intermediate ðNc; hjqjiÞ
values. The actual distribution obtained depends on Dt, the
elementary time interval into which we segment trajectories.
Our optimal choice, Dt ¼ 0:1 s, over which the average
swimming distance isz1 pixel, gave the most sharply sepa-
rated peaks. However, the motile and NM populations are
still not cleanly separated in our ðNc; hjqjiÞ data (Fig. 5 a).
We therefore select various populations of motile and NM
cells by including tracks with ðNc; hjqjiÞ values within pro-
gressively larger circles centered on their respective peaks in
the ðNc; hjqjiÞ space. The radius of the circle (ε) is measured
Biophysical Journal 103(8) 1637–1647
in units such that the ð0%Nc%1; 0%hjqji%p=2Þ space in
Fig. 5 a is a 10� 10 rectangle.

For motile cells, we determined PðvÞ at each ε by calcu-
lating the speed, v ¼ hDr2DðtÞ=tiT , for each trajectory,
averaged over the trajectory duration, T, for various t. The
limit t/0 gives the instantaneous linear speed. In practice,
the lowest reasonable t is set by Dt ¼ 0:1 s. Fig. 5 b shows
PðvÞ at ε ¼ 3 for t ¼ 0:1 s and 0.4 s, and Fig. 5 c shows v
and s of PðvÞ for t ¼ 0:1 s and t ¼ 1 s. Unsurprisingly, v
decreases with ε as progressively more nonideal swimming
tracks are included (first more curved trajectories and then,
at larger ε, some diffusive ones). Thus, certain ambiguities
in the motility characterization arise with the use of
tracking. It was also not possible to extract a value for a reli-
ably, due to the strong dependence on ε.

However, the results for the other motility parameters
show reasonable agreement with DDM (Fig. 4). In partic-
ular, using ðDt; tÞ ¼ ð0:1s; 0:1sÞ (Fig. 5 c), and averaging
over all ε, v ¼ 10:750:3mm=s and s ¼ 5:150:1mm=s.
The mean speed vε for each ε is also consistent with the
MSD of the swimmers (Fig. 5 e). The measured PðvÞ
depends on t; for example, some fast swimmers will not
be tracked for large t unless they are perfectly aligned
with the image plane, whereas for very short t the 2D
projection will contribute to PðvÞ at small v (see above).
Yet, for t � 0:1� 0:2 s, our measured PðvÞ shows broad
agreement with the Schulz distribution inferred from
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FIGURE 6 Swimming speed versus q from DDM. (a) Effect of tumbling

(experiments): four data sets from the SW (black, top) and four data sets

from the WT (red, bottom). (b) Effect of tumbling (simulations): SW

(B) and WT ð,Þ. (c) Effect of depth of field d for straight swimmers

(simulations): d ¼ 5, 10, 20, 40, 75 and 100 mm from top to bottom. To

enable comparison and highlight the difference in q dependence, the swim-
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DDM (Fig. 5 b). Residual differences between the tracking
and DDM PðvÞ are within experimental uncertainties, espe-
cially because we cannot readily distinguish between fitting
the DDM data with Schulz and log-normal distributions
(Fig. S2 b). Thus, the exact form of PðvÞ is likely the least
certain of the output from fitting, although its mean and vari-
ance are probably well estimated.

For NM cells, we determined D by fitting the MSDs for
selected tracks at several ε. We again found a dependence
on ðDt; tÞ and ε. The MSD for ε>1 showed deviations from
purely diffusive behavior, and/or the resulting values of D
depend significantly on ε (Fig. 5 d, open squares). Both
effects are due to (likely artificial) non-Gaussian tails in
PðDxNMðtÞÞ (not shown). Another estimate of the diffusion
coefficient is Dg (based on Gaussian fits to PðDxNMðtÞÞ;
see above), shown as a function of ε in Fig. 5 d. The average
value Dg ¼ 0:36mm2=s agrees with the DDM value of
0:35mm2=s and to the one from the MSD for 3¼ 1. Fig. 5 e
shows both the incorrect MSD of the diffusers obtained for
3¼ 3 and the appropriate MSD based on Dg.
ming speed has been normalized to (a and b) hvihigh q or (c) the input mean

swimming speed, vinput ¼ 15mm=s, used to generate the simulated data.
Vertical motion and depth of field

Our derivation of Eq. 2 assumes that the image contrast
of a bacterium does not vary with its position along the
vertical (optical) z axis, i.e., it assumes an infinite depth of
field (d). The validity of this assumption depends on how
fast cells move relative to the finite d in reality. Giavazzi
et al. (18) presented a complex theoretical model, based
on the coherence theory, to take this effect into account.
Here, we suggest a simple model and use simulations to
investigate this effect and its importance over the accessible
q-range. Our simple model captures the essential features
and reproduces qualitatively and quantitatively the experi-
mental results.

Experimentally, the intensity profile of a bacterium along
the z-axis can be described by the contrast function (7):

CðzÞ ¼ CB � C0

�
1� 4z2

d2

�
(7)

where CB and C0 are the background and the amplitude

of an object in the focal plane ðz ¼ 0Þ, respectively. We
determined CB and C0 experimentally, and then used this
function to smear the previously presented simulated data
(7) and obtain simulated images at a range of d. At each
d-value except the lowest, the input values fv; s;a;Dg are
recovered from DDM analysis of these images at qT
2p=d (the case of v is shown in Fig. 6 c). However, for
q(2p=d, the analysis returns v and D values that are too
high: disappearance of cells along the z axis due to the rapid
fading of CðzÞ is mistaken as swimming and diffusion. A
comparison of the experimental data (Figs. 4 and 6 a)
and the simulated data (Fig. 6 b) shows that the effect of
finite depth of field, d, is negligible for q>0:5mm�1 using
10� phase-contrast imaging, and that our experimental
depth of field dT20mm.
WT E. COLI

The motility pattern of WT E. coli in the absence of chem-
ical gradients is well known (5). A cell alternates between
running for trunz 1 s and tumbling for ttumz 0.1 s. During
the latter, they change direction abruptly. After many
tumbling events, the bacterium effectively performs a 3D
random walk.

Modeling the ISF using Eq. 4 assumes that swimmers
swim straight and do not tumble. We previously applied
our method to WT E. coli (7). Here we study the effect of
tumbling by comparing systematically the q dependence
of the average speed obtained from DDM for WT (run
and tumble) and SW (run only) swimmers. Because several
experimental data sets were obtained from different batches
of cells, we report the speed normalized to hvihigh q, the
average in the range ð2:0<q<2:2mm�1Þ.

The simulations and experiments show a qualitative
difference in vðqÞ of SW and WT cells (Fig. 6). All of the
data for WT cells show a slight decrease in vðqÞ toward
low q, whereas the data for SW cells show the opposite
trend. The increase toward low q in the vðqÞ of the SW is
presumably largely due to depth of field effects (see above).
The opposite trend in the behavior of vðqÞ for the WT can be
understood as follows: The mean speed, vðqÞ, measured by
DDM at a certain q is estimated by vðqÞ � ð2p=qÞ=tq, i.e.,
the time ðtqÞ taken to advect density between two points
spatially separated by distance 2p=q. For a straight
swimmer, the track length s will be equal to the distance
Biophysical Journal 103(8) 1637–1647
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between the two points, i.e., s ¼ 2p=q, so that vðqÞ ¼ v. Any
deviation from a straight track, e.g., due to changes in direc-
tion from tumbling, renders s>2p=q. Because tq ¼ s=v, we
now have vðqÞ<v. This effect becomes progressively more
pronounced at low q, as observed.

Finally, note that collisions with diffusers (and indeed
other swimmers) will likely affect the trajectory of the
swimmers in a qualitatively similar way to occasional tum-
bling. Thus, the largely q-independent motility parameters
we obtained suggest that in the space-time window we
probe, collisions are at most perturbative; indeed, they
should appear as q dependence at low q, as in the case of
tumbling. Of course, in more strongly interacting sus-
pensions, the nonswimmer dynamics may be so strongly
coupled to those of the swimmers that the motion of the
former is no longer diffusive in any sense. New models of
the ISF will then be needed to fit the DDM data.
a

b

SWIMMING ALGAE: WT C. REINHARDTII

As a final example, we apply DDM to the biflagellate fresh-
water alga C. reinhardtii, a model for eukaryotic flagellar
motility (2). C. reinhardtii has a prolate spheroidal cell
body ~10mm across with two flagella roughly 10–12mm
long (2). Beating of the latter at z50 Hz in an alternation
of effective (forward moving) and recovery (backward
moving) strokes propels the cell body forward on average,
and the cell body oscillates as it advances. The flagellar
beat is not perfectly planar, so cells precess around their
long axis at z2 Hz. This rotation, which is critical for
phototaxis (16), results in helical swimming trajectories.
For length scales � 100mm the direction of the axis of the
helical tracks is approximately straight, but on larger scales
the stochastic nature of the flagellar beat causes directional
changes resulting in random walk (6,14,26).

Racey et al. (27) carried out the first high-speed micro-
scopic tracking study of C. reinhardtii, obtaining a PðvÞ
with mean v ¼ 84mm/s, as well as an average amplitude
A ¼ 1:53mm and frequency f ¼ 49 Hz of the beat. More
recent tracking provided a 2D PðvÞ with vz100mm/s (28).
The swimming of C. reinhardtii has also been studied by
DLS (27,29); however, the q limitation of conventional
DLS is even greater here than in the case of bacteria because
algae swim on larger length scales, requiring smaller values
of q. Here, we present the first characterization (to our
knowledge) of the swimming motility of C. reinhardtii
using DDM.
FIGURE 7 DDM for WT C. reinhardtii. (a) Measured gðq; tÞ values

(symbols). The solid line and dashed line are fits obtained with the oscilla-

tory model (Eqs. 2 and 9) and the linear model (Eqs. 2, 4, and 6), respec-

tively. Inset: Sketch of a helical C. reinhardtii trajectory. The progressive,

Lp, and (zoomed-in) oscillatory, L0, length scales probed by DDM are

shown, with the frequencies of the helical precession (2 Hz) and oscillatory

swimming (50 Hz). (b) ISFs, f ðq; tÞ, obtained using Eqs. 2 and 9.
Model of ISF

The swimming dynamics of C. reinhardtii are on larger
length scales and shorter timescales (i.e., the algae swim
faster) and of a different nature compared with those of
E. coli. The decay of the ISF, f ðq; tÞ, will reflect will reflect
the swimming stroke of the alga. Cells oscillate at length
Biophysical Journal 103(8) 1637–1647
scales <10mm, translate in the range of 10mm<L<30mm,
spiral over 30mm<L<100mm, and diffuse for L>100mm.
A schematic representation of a helical trajectory, high-
lighting the small-scale oscillatory motion, is shown in the
inset of Fig. 7 (diffusive length scales are not shown).

At length scales L(30mm, the time-dependent displace-
ment of a C. reinhardtii cell, DrðtÞ, can be approximated as
a sinusoidal oscillation superimposed on a linear progres-
sion (29):

DrðtÞ ¼ vt þ A0½sinð2pf0t þ fÞ � sinðfÞ�; (8)

where A0 and f0 are the amplitude and frequency of the

swimming oscillation, respectively, and f is a random phase
to desynchronize the beating of different cells. Substituting
this into Eq. 3, averaging over f, and assuming a Schulz
distribution for PðvÞ (Eq. 5) gives

falgaeðq; tÞ ¼ 1

2

Z1

�1

cos½ðZ þ 1Þtan�1ðLcÞ��
1þ ðLcÞ2	ðZþ1Þ=2

� J0½2qA0c sinðpf0tÞ�dc;
(9)

where L ¼ qvt=ðZ þ 1Þ, c ¼ cosj, j is the angle between

~q and~r, and J0 is the zeroth-order Bessel function. All other
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terms are as previously defined. The first and second terms
describe the contribution from straight swimming and oscil-
latory beat, respectively. In the limit qA0 � 1 ðJ0/1Þ, Eq.
9 reduces to Eq. 6, the same expression as for the progres-
sive model used for E. coli.

The derivation of Eq. 9 assumes that the distributions
PðAÞ and Pðf Þ for swimming amplitude and frequency,
respectively, are narrowly centered around the values A0

and f0. Moreover, it neglects the diffusion of NM algae,
any bias in the swimming direction caused by gravitaxis
(30), and the helical nature of the swimming.
DDM results

Fig. 7 a shows a typical DICF, gðq; tÞ, at q ¼ 0:54 mm�1

ðlz12mmÞ, for a suspension of WT C. reinhardtiimeasured
by DDM. The reconstructed ISFs are shown in Fig. 7 b for
0:2)q)0:9mm�1, corresponding to a length scale range of
7)l)30mm�1. f ðq; tÞ shows a characteristic shape for all
q-values, i.e., a fast decay at t%0:02 s due to the oscillatory
beat and a slower decay at tR0:02 s due to swimming. The
identity of these two processes is confirmed by their differ-
ence in t and q dependencies. The characteristic time of the
fast process is q independent, whereas its amplitude
decreases with q. Both observations fully agree with the
term ðJ0Þ due to the oscillatory contribution in Eq. 9.
Moreover, 0.02 s corresponds to the period of a 50 Hz oscil-
latory beat. Finally, the slow process scales perfectly with qt
(Fig. S3), confirming the ballistic nature (swimming) of this
process.

Fig. 8 shows the fitting parameters ðv; s;A0; f0Þ from Eq. 2
using the oscillatory model (Eq. 9) as a function of q. All
parameters display a small q dependence. This is likely
110
100
90
80v 

(µ
m

/s
)

40

20 (µ
m

/s
)

1.5

1.0

A
0 

(µ
m

)

50

45

40

f 0 
(H

z)

0.90.80.70.60.50.40.30.2

q (µm
-1

)

FIGURE 8 Fitting parameters obtained using the oscillatory model

(B, black) or linear model (,, green) as a function of q for C. reinhardtii.

From top to bottom: v and s of the Schulz distribution, amplitude A0, and

frequency f0. Lines are results from tracking, with dashed lines correspond-

ing to error bars.
due to effects that are not captured by the simple oscilla-
tory model (e.g., body precession and helical swimming)
and will be discussed elsewhere. Averaging over q yields
v ¼ 89:652:8mm/s, s ¼ 24:954:6mm/s, A0 ¼ 0:985
0:06mm and f0 ¼ 48:650:6 Hz, with estimated error bars
reflecting the residual q dependence. Fitting the experi-
mental data using Eq. 9 requires numerical integration.
Using the linear model (Eq. 6) instead, thus ignoring the
oscillatory beat, yields similar results for (v,s) (Fig. 8).
This is because the fast process is mainly ignored when
a fit such as that shown in Fig. 7 a is performed. Moreover,
using the linear model and a movie for which the lowest
tU1=f0 (e.g., 100 fps) so that the oscillatory beat does not
contribute to the ISF, we obtain the same ðv; sÞ, thus allow-
ing high-throughput economical measurements of the mean
speed of biflagellate algae.
Tracking results

Tracking resulted in two well-separated groups of ðNc; hjqjiÞ
values (see above) that were independent of Dt, provided
Dt>1=f0 (Fig. 9 a). We used tracks with ðNcR0:7;
hjqji<0:5Þ, reflecting nearly straight swimmers aligned
with the image plane, to obtain PðvÞ. Misaligned tracks
are excluded in the following way: motion perpendicular
to the helical axis enhances the circular contribution in the
2D projection, thus reducing Nc and increasing hjqji (insets
in Fig. 9 a).

We measured PðvÞ for several t-values and found a slight
t dependency, e.g., due to undetected fast swimmers for
large t (Fig. 9 b). Note that our PðvÞ is smaller at small v
than in a previous study (28) in which all projected trajecto-
ries were considered. Our small-v data are likely closer to
the true distribution, due to our exclusion of misaligned
tracks. Moreover, our PðvÞ values are in reasonable agree-
ment with the result inferred from DDM (Fig. 9 b). We
find v ¼ 8151mm/s and s ¼ 2253mm/s (averaged over
different t), which agree well with the DDM values
(Fig. 8). Extending the selected trajectories to (NcR 0.55,
FIGURE 9 Tracking of C. reinhardtii. (a) Probability PðNc; hjqjiÞ of all
tracks (Dt ¼ 0:05 s). Tracks within the (red, lower right) bordered region

(example in top-right inset, 7 s, scale bar ¼ 150mm) are used to measure

PðvÞ; top-left inset: an excluded track with Nc<0:4, 30 s, scale bar ¼
30mm). (b) Normalized PðvÞ from tracks selected in panel a, for two values

of t. Dashed line: PðvÞ from DDM analysis.

Biophysical Journal 103(8) 1637–1647
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hjqji<0:7) changes PðvÞ and v by <5%. We analyzed the
oscillating component of the displacement, rosðtÞ, for
straight tracks, defined as rosðtÞ ¼ ðxos; yosÞðtÞ ¼ r2DðtÞ�
hr2DðtÞidt, with dt ¼ 2=f0. rosðtÞ is well resolved due to sub-
pixel accuracy � 0:2mm of the coordinates. Fourier analysis
of rosðtÞ gave f0 ¼ 49:350:5 Hz. We identified an addi-
tional modulation frequency of � 10 Hz (i.e., an extra
peak at f � f0x10 Hz in the power spectrum of rosðtÞ; to
be discussed elsewhere). From the root mean-square value
of rosðtÞ, we determined the average oscillation amplitude
A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hx2os þ y2osi

p ¼ 0:9350:22mm. These values are in
agreement with a previous study (27) and the DDM results.

Thus, our results simultaneously validate DDM and the
simple model (Eqs. 8 and 9) for swimming C. reinhardtii.
Our method can therefore be used to characterize the
motility of large ensembles of this organism (and potentially
of other algae) rapidly and accurately.
CONCLUSIONS

DDM is a powerful, high-throughput technique to charac-
terize the 3D swimming dynamics of microorganisms over
a range of timescales and length scales (� 3 and � 1 order
of magnitude, respectively) simultaneously in a fewminutes,
based on standard imaging microscopy. The timescales and
length scales of interest depend on the swimming dynamics
of the microorganism, and are easily tuned by changing the
frame rate or optical magnification, respectively.

We studied in detail the use of DDM to characterize the
motility of SW (run only) and WT (run and tumble)
E. coli, as well as WT alga C. reinhardtii. We validated the
methodology using tracking and simulations. The latter
were also used to investigate the effect of a finite depth of
field and tumbling in case of E.coli. Using DDM, we were
able to extract 1), the swimming speed distribution, fraction
of motile cells, and diffusivity for E. coli; and 2), the swim-
ming speed distribution, and amplitude and frequency of the
oscillatory dynamics for C. reinhardtii. In both cases, we ob-
tained these parameters by averaging over many thousands
of cells in a few minutes without specialized equipment.

Further developments are possible. For E. coli, analytic
expressions for vðqÞ that take into account the trajectory
curvature due to rotational Brownian motion (SW) or direc-
tional changes due to tumbling (WT) can be derived. Fitting
these expressions to data should yield information about
the respective features. For C. reinhardtii, the helical
motion, the asymmetric nature of the swimming stroke,
and the higher harmonics in the body oscillations observed
by tracking could be explored theoretically and with the use
of DDM. This will allow us to test simulations that use the
method of regularized stokeslets to reproduce the fine
details of swimming biflagellate algae (32).

DDM is based on the measurement of the spatiotemporal
fluctuations in intensity, and therefore does not require
high optical resolution of the motile objects. Thus, DDM
Biophysical Journal 103(8) 1637–1647
can probe a large field of view and yield good statistics
even under relatively poor imaging conditions. Moreover,
DDM could also be used to probe the anisotropic or
asymmetric dynamics (13) of microorganisms, e.g., due to
chemotaxis. Finally, DDM is not restricted to dilute suspen-
sions, and can be used to investigate the collective dynam-
ical behavior of concentrated populations (33), although
new models of the ISF will be needed. This is analogous
to the use of DLS to study concentrated passive colloids
(34–36), which also involves the development of new theo-
ries for the ISF.

With the availability of DDM, quantitative characteriza-
tion of motility can become a routine laboratory method,
provided that suitable theoretical models are available for
fitting of the ISF. We emphasize again that such models
can only come from direct microscopic observation or
tracking, which therefore remains an indispensable tech-
nique, especially if detailed information beyond a few
motility parameters is required. On the other hand, even
without analytical models, the qualitative features of the
measured ISF may still allow conclusions to be drawn and
trends to be studied (e.g., the speeding up of the decay of
the ISF almost invariably corresponds to faster motion).
Thus, DDM has the potential to become a powerful tool
for studying microorganism locomotion alongside estab-
lished techniques of tracking.
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