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Abstract

Biflagellated algae swim in mean directions that are governed by their en-
vironments. For example, many algae can swim upwards on average (gravi-
taxis) and towards downwelling fluid (gyrotaxis) via a variety of mechanisms.
Accumulations of cells within the fluid can induce hydrodynamic instabil-
ities leading to patterns and flow, termed bioconvection, which may be of
particular relevance to algal bioreactors and plankton dynamics. Further-
more, knowledge of the behaviour of an individual swimming cell subject to
imposed flow is prerequisite to a full understanding of the scaled-up bulk
behaviour and population dynamics of cells in oceans and lakes; swimming
behaviour and patchiness will impact opportunities for interactions, which
are at the heart of population models. Hence, better estimates of popu-
lation level parameters necessitate a detailed understanding of cell swim-
ming bias. Using the method of regularized Stokeslets, numerical computa-
tions are developed to investigate the swimming behaviour of and fluid flow
around gyrotactic prolate spheroidal biflagellates with five distinct flagel-
lar beats. In particular, we explore cell reorientation mechanisms associated
with bottom-heaviness and sedimentation and find that they are commensu-
rate and complementary. Furthermore, using an experimentally measured
flagellar beat for Chlamydomonas reinhardtii, we reveal that the effective
cell eccentricity of the swimming cell is much smaller than for the inanimate
body alone, suggesting that the cells may be modelled satisfactorily as self-
propelled spheres. Finally, we propose a method to estimate the effective
cell eccentricity of any biflagellate when flagellar beat images are obtained
haphazardly.

Key words: swimming algae; upswimming; gravitaxis; effective eccentric-

ity; bi-flagellate; regularized Stokeslets; gyrotaxis; sedimentation torque
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1 Introduction

Many micro-organisms swim in mean directions relative to external or local
cues, such as gravity, light, chemical gradients or the flow field, exhibiting
programmed strategies in order to optimize their environments. Such biased
behaviours are termed taxes. The precise mechanisms that individual cells
employ to facilitate this motion and the fine details of the associated low
Reynolds number flow (creeping flow) are only just being revealed (e.g. see
Pedley and Kessler, 1992; Hill and Pedley, 2005; Lauga and Powers, 2009;
Drescher et al., 2010; Guasto et al., 2010). The mechanisms that propel
swimming micro-organisms are many and varied. Methods of propulsion
range from a single appendage for spermatozoa and monotrichous bacteria
(examples of “pushers”), biflagellate locomotion for algae such as Chlamy-

domonas spp. (“pullers”) to those with multiple appendages such as the
peritrichously flagellated bacterium Escherichia coli and the ciliated proto-
zoan Paramecium. The composition and structure of the appendages differs
between species. Bacteria have helical flagella, which are driven by ro-
tary motors at their base (see Lauga and Powers, 2009). Eukaryotes, such
as spermatozoa and Chlamydomonas spp., have flexible flagella generally
composed of nine doublet microtubules (partial microtubules attached to
full microtubules) arranged around two distinct microtubules. Molecular
motors, known as dynein, bind to the full microtubule of the doublet and
extend arms that translate along the partial microtubule of the opposing
doublet, producing a shear force that bends the flagellum (Omoto et al.,
1999).

The manner in which the flagella beat greatly influences the charac-
teristics of a cell’s swimming motion. For instance, species of the genus
Chlamydomonas typically move their two anteriorly inserted flagella in a
whip-like breast-stroke fashion. The 50 Hz beat has two roughly distin-
guished aspects. The effective stroke encapsulates how the two flagella,
initially extending forwards, are rotated mostly in a plane about their bases
until they lie to each side of the body, resulting in forward motion. The
recovery stroke represents the propagation of bending waves from base to
tip that restore the flagella to their starting positions, and result in negative
displacement. However, these aspects are not entirely distinct; the propa-
gating wave of the recovery stroke overlaps the effective stroke at beginning
and end. The complete beat is asymmetric in time, which is necessary for
forward propulsion of swimming microorganisms at low Reynolds numbers
(i.e. when viscous effects dominate over inertia).

The theory of the hydrodynamics of locomotion at low Reynolds num-
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bers has a long history. “Slender body theory” (SBT) was proposed for
bodies with large length to breadth ratios (Hancock, 1953). It has been
employed to study a range of micro-biological systems, such as the hydro-
dynamics of cilia (Smith et al., 2007). However, for broad cell bodies, for
instance Spirillum volutans, results are not fully consistent with experimen-
tal observations (Myerscough and Swan, 1989). Gray and Hancock (1955)
proposed an approximation called “resistive force theory” (RFT), based on
SLB with the simple assumption that local relative velocities are propor-
tional to hydrodynamic resistance forces, which they used to estimate the
swimming speed of spermatozoa. However, RFT neglects the direct effect
that flagella have on the flow. Johnson and Brokaw (1979) compare RFT
and SBT for spermatozoa and conclude that SBT is required for accurate
analysis only if the cell body is present. Ramia (1991) showed that im-
proved predictions of swimming speed could be obtained with a boundary
element method (BEM). The BEM has recently been used to study inter-
actions between swimming micro-organisms (Ishikawa et al., 2007) and cilia
driven flow (Smith et al., 2007), providing good agreement with experi-
mental data. Furthermore, immersed boundary algorithms have provided
evidence for how an organism’s internal structure may determine form and
motility (Fauci, 1993, 1996, for two-dimensional simulation results). The
“method of regularized Stokeslets” (MRS) is a numerical method devel-
oped for Stokes flow driven by external forcing (Cortez, 2001; Cortez et al.,
2005). It employs regularized forces to approximate a boundary integral
formulation of the Stokes equations. Recently, it has been used to study the
hydrodynamics of bacteria such as E. coli (Flores et al., 2005) and Bacillus

subtilis (Cisneros et al., 2007), and the nematode Turbatrix (Cortez et al.,
2004). The beauty of the method lies in its relative simplicity, with com-
putations restricted to the boundary of the microorganism, from which the
flow at any point in the fluid can be obtained.

Whilst the motility of bacteria, spermatozoa and multicellular organisms
have been studied in some detail, little has been reported on the hydrody-
namics of unicellular biflagellates. Employing an immersed boundary algo-
rithm, Fauci (1993) studied the dynamics of a single biflagellate swimmer,
similar to Chlamydomonas sp. However, the estimates the two-dimensional
model provided for swimming speeds did not reflect experimental observa-
tions. Jones et al. (1994) (abbreviated to JLP) employed RFT on a bi-
flagellate with an idealized beat to obtain order-of-magnitude estimates for
swimming speed and angular velocity and, by fitting, were able to estimate
other useful parameters (see below).

To provide a concrete example of biflagellate swimming, we shall present
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a general model based upon experimental measurements of the green alga
Chlamydomonas reinhardtii. To a good approximation, the cell bodies are
prolate spheroidal, with a major diameter of around 10 µm, and have two
flagella, of diameter 0.2 µm and length approximately equal to that of the
body, attached to the anterior end of the cell. Chlamydomonas spp. ex-
hibit negative gravitaxis (biased swimming against gravity), gyrotaxis (cell
reorientation due to a balance between viscous and gravitational torques,
leading to cell focusing in downwelling regions of the flow; Kessler, 1986)
and phototaxis (swimming towards/away from weak/strong light). Such
biased swimming motion inevitably leads to cells accumulating in various
regions. As the cells are typically 5% more dense than the medium in which
they swim such accumulations can lead to hydrodynamic instabilities and
bioconvection patterns (Bees and Hill, 1997).
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Figure 1: (A) A schematic of the relationship between the fixed-space axes
(i,j,k), where j points into the page, and the body axes (p,q,r). The centre-
of-buoyancy is denoted C and is offset by a distance h from the centre-
of-mass G. (B) A representation of the cross-section of a 3-sided flagellar
prism. From the centreline node, we traverse along the normal n and the
binormal b to find nodes on the surface that are separated by the angles χk,
for k = 1, 2, 3.

Recently, there has been some debate in the literature over the main
mechanisms that lead to gravitactic and gyrotactic behaviour. In particular,
three mechanisms for Chlamydomonas spp. have been proposed, as follows.

Bottom-heaviness In equal density fluid, cells have been measured to be
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bottom-heavy: the centre-of-mass (G) of each cell is offset from its
centre-of-buoyancy (C) (see Fig. 1A). Hence, a balance of viscous
and gravitational torques leads to cells generally swimming upwards
(gravitaxis) but also swimming towards regions of locally downwelling
flow (gyrotaxis; Kessler, 1986).

Sedimentation torque Cell geometry asymmetry results in the cell body
sedimenting quicker than the flagella (Katz and Pedrotti, 1977; Roberts,
2006), biasing the cell to swim upwards. Translation due to sedimenta-
tion per se is insignificant as effects are swamped by the cell swimming
velocity (C. reinhardtii swim with speed 50−70 µm s−1 while the sed-
imentation speed is 2.5 µm s−1), but rotation can not be ignored. A
balance of sedimentation and viscous torques may lead to behaviour
similar to gyrotaxis.

Active It has been proposed that cells have a gravity receptor, which may
actively direct cells to swim upwards (Häder et al., 2005). However,
such a receptor has not been identified and the above two passive
mechanisms appear to explain all experimental observations.

In this study the relative magnitudes of the first two of these mechanisms
shall be explored, particularly with reference to the temporally-averaged
effective gyrotactic swimming behaviour. JLP implemented the bottom-
heaviness mechanism alone. Here, we shall consider three reorientation com-
binations: the individual bottom-heavy and sedimentation torque balances
described above and a combined model, where the net force and torque have
contributions from both viscous and gravitational forces and torques.

In the absence of sedimentation, the force-free far-field flow is domi-
nated by a Stokes-doublet (which can be decomposed into stresslet and
rotlet terms), and decays in three-dimensions as r−2. Inclusion of sedimen-
tation leads to a Stokeslet in the far-field, decaying as r−1. However, the
near-field flow is more complicated (see Fig. 4, later) and time dependent.
In this paper, we shall not dwell on the detail of the flow field (which will
be addressed in later papers). Instead, it is our aim to work out what ef-
fect the flow has on the orientation of the swimming cell and to investigate
whether a simple model description is adequate to describe this orientation
in linear shear flows. This is useful for studies of dilute suspensions where
cell-cell interactions may be neglected. And for this purpose we require an
approximation of the geometry of the spheroidal cell plus flagella, together
with a model of its gyrotactic behaviour. In this respect, we show that the
full swimming cell, with all of the complexities of its swimming motion, can
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be well approximated by a simple dipolar spheroid. Recent continuum
models of bioconvection Pedley and Kessler (1990) in dilute suspensions
(most natural suspensions are dilute) require knowledge of the mean swim-
ming velocity and the cell swimming diffusion tensor as a function of the
flow field. These functions can be computed from either a Fokker-Planck
equation for the probability density function for the cell orientation (Ped-
ley and Kessler, 1990; Bees et al., 1998), or an improved generalized Taylor
approach that clarifies the roles of translation in physical space and rota-
tion in orientational space (Hill and Bees, 2002). Both methods combine
random components with a deterministic balance of gravitational and vis-
cous torques acting on a gyrotactic self-propelled spheroidal cell body. The
random components represent biological fluctuations in the individual cell
behaviour and some of the variation between cells; the experimental re-
sults of Hill and Häder (1996) suggest that these stochastic aspects are well
modelled by a constant rotational diffusivity in p-space. Other variation
between cells, such as cell swimming speed, can also be incorporated within
the above descriptions (see Bees et al., 1998). These stochastic aspects will,
of course, lead to a spread of trajectories for natural swimming cells. How-
ever, the consensus is that the stochastic and deterministic components are
independent such that we only need consider the deterministic balance here
(Hill and Pedley, 2005). The viscous torque associated with the prolate
spheroidal body of a real cell has a major effect on its orientation. There-
fore, it is natural to ask how the slender beating flagella impact the cell’s
mean effective geometry; to leading order, the cell’s “effective eccentricity”
describes the geometry well. Furthermore, one may also attempt to establish
whether an effective gyrotactic reorientation time is a useful measure of the
cell’s behaviour, whichever method of gravitactic reorientation is employed
(described above). We pursue each of these questions in this paper.

The cell eccentricity and gyrotactic reorientation time, are defined as

α0 =
r2 − 1

r2 + 1
, and B = µα⊥/2hρg, (1)

respectively, where r is the ratio of semi-major to semi-minor axes, g is the
constant of gravitational acceleration, h is the distance between the cell’s
centre-of-mass and centre-of-buoyancy, and ρ and µ are the fluid density and
viscosity, respectively. The dimensionless parameter α⊥ relates the viscous
torque to the cell’s relative rotation rate (see Appendix A2; Pedley et al.,
1988). JLP estimated α0 and B by fitting results from RFT for a determin-
istic swimmer to the exact torque balance equation for the orientation, p, of
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a dipolar spheroid in a shear flow (Jeffery, 1922; Pedley and Kessler, 1990):

ṗ =
1

2B
[k − (k · p)p] +

1

2
ω ∧ p + α0p · E · [I − pp] , (2)

where k is a vertical unit vector in the upward direction (see Fig. 1A), ω

and E are the local vorticity vector and rate-of-strain tensor, respectively,
and I is the identity. Eq. (2) relates the rate-of-change of the unit vector
p for a spheroid to the viscous and gravitational torques acting upon it.
The JLP results stated that swimming biflagellates are more prolate than
their body eccentricities suggest. However, for simplicity, JLP employed a
spherical cell body with an ad hoc idealized flagellar beat, which as we shall
see has a detrimental impact on the realism of the results for the effective
cell dynamics. RFT’s lack of hydrodynamic coupling and mediocre accuracy
are also cause for concern (see Johnson and Brokaw, 1979).

In this paper, we shall describe how to employ the method of regularized
Stokeslets to solve the full fluid dynamics equations for swimming cells of
C. reinhardtii. Furthermore, we shall approximate these solutions by fitting
them to the deterministic dipolar model of Eq. (2). We shall interpret the
results physically, addressing some important biological questions, giving
particular attention to the following three themes.

1. Exploration of the reorientation mechanisms responsible for leading

cells to swim upwards: gravitaxis. The two distinct reorientation
torques, due to bottom-heaviness and sedimentation, are compared
directly. It will be shown that the two mechanisms are equally impor-
tant and are complementary. In other words, a reduction in one (e.g.
due to variation in the beat pattern) leads to an increase in the other;
the sum of the two effects is approximately constant. The results pro-
vide a compelling answer to the question “which of the mechanisms is
dominant?”: they both are, but both mechanisms can be represented
by the same equation.

2. Effective behaviour of swimming cells in linear shear flows: gyrotaxis.

This is established by inserting the swimming cell in a shear box, and
fitting the motion to that of a self-propelled spheroid. The results
show that this model is indeed excellent and suggest that the fine
details of the flagellar beat are critical to viscous torques associated
with the mean effective eccentricity of the cell. Contrary to previous
analysis, results for the experimentally acquired beat patterns show
that cells are better modelled as simple self-propelled spheres than pro-
late spheroids with the eccentricity of the body or greater. In other
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words, the full swimming cell is effectively much less prolate than the
body alone. This result is indeed startling, but can be explained with
due consideration of the mean geometry of the flagella-body ensem-
ble. Such a spherical-cell simplification is much desired in applications
involving the predicted motion of many swimming cells.

3. Practical computation of effective eccentricity. We shall present a tech-
nique to compute a good approximation to the effective eccentricity
of a biflagellate if all that is available is a collection of images of the
freely swimming cell that are neither in sequence nor taken at regular
intervals. This has the advantage that experimenters do not require
access to a high-speed camera and high power light source: the method
may be useful in field studies.

In the next section, the numerical approach is described (with the method
of calibration in the appendix) and the flagellar beat patterns expounded.
The results are then presented, first to establish estimates for orientation
time and sedimentation velocity for a free-swimming cell with no ambient
flow, and then to estimate the effective cell eccentricity for a cell swim-
ming in a shear flow. We go on to describe a simple method to measure
these effective parameters from an unordered collection of irregularly ob-
tained photographs of swimming cells. Finally, a discussion of the results is
provided.

2 Methods

The geometry of the biflagellate is modelled as a prolate spheroid with two
flagella, located at the anterior end, that beat with a prescribed motion at
50Hz. The Reynolds numbers of the body and flagella are 10−3, or less, im-
plying that fluid motion can be well-approximated by the Stokes equations.
Furthermore, a free-swimming cell must satisfy zero net force and torque at
all times (including external forces and torques). Chlamydomonas spp. are
known to exhibit gravitactic and gyrotactic behaviour: gravitational and
viscous torques and forces act to reorient the cell. The problem of a free-
swimming cell is formulated as a mobility problem, by coupling the method
of regularized Stokeslets, with the force/torque constraints and a no-slip
boundary condition on the surfaces of the cell body and each flagellum.
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2.1 Five flagella beats

The imposed flagellar beat patterns for the biflagellate are taken from the
literature; five distinct flagellar beats are employed, as described below.
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Figure 2: The five distinct biflagellate strokes. The beat patterns are replot-
ted from their original sources. (A) An idealized beat pattern developed by
Jones et al. (1994). (B) A model of a flexible beat pattern by Fauci (1993)
(only partially replotted data). (C) A beat pattern based on sketches of im-
ages of moving cells by Ringo (1967). (D) A non-symmetric beat captured
via high speed cinematography by Rüffer and Nultsch (1985). For ease of
analysis, two symmetric versions of this beat pattern are considered: the
left-hand flagellum and its reflection, and the right-hand flagellum and its
reflection.
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2.1.1 Beat I

JLP proposed an idealized beat, henceforth referred to as beat I. Beat I
represents the flagella as rigid linear structures, which move from an orien-
tation parallel to the cell’s principal axis to perpendicular during the effective
stroke. During the recovery stroke the flagella are partitioned into two linear
sections. The first segment is parallel to the cell’s principal axis, whereas
the second lies at a non-zero angle to the vertical segment. As the recovery
stroke progresses, the length of the angled section reduces whilst that of the
parallel section increases. The I beat is shown in Fig. 2A, where numbers
1 − 3 signify the effective stroke and 3 − 5 denote the recovery stroke.

2.1.2 Beat F

Fauci (1993) developed a second beat, referred to as F, modelling the flexible
properties of the flagella. This is replotted in Fig. 2B, where components
1− 12 and 13− 25 represent the effective and recovery strokes, respectively.
The flagella are modelled as discrete nodes connected by passive and active
elastic springs whose forces are obtained by energy functions driven by local
curvature, controlled by a bending wave passing along the flagellum from
base to tip. During the effective stroke the flagella behave in a similar
fashion to the I beat, while for the recovery stage of the beat the flagella are
curved and remain close to the body. While beat F captures aspects of the
whip-like nature of the beat it remains a mechanistic idealization.

2.1.3 Beat R

Ringo (1967) recorded beat patterns of C. reinhardtii using microscopy,
documented via a series of sketches made from flash images of swimming
cells (see Fig. 2C, where components 1−4 and 5−8 denote the effective and
recovery strokes, respectively). Like the I and F beats, the effective stroke
of the R beat sees the flagella orientation change from almost parallel to
the cell’s principal axis to perpendicular, although the flagella are mostly
curved. During the recovery stroke the R beat shares characteristics from
both the I and F beats; the flagella has a linear section and a curved section
with the arc length of the curve decreasing as the beat progresses. However,
it should be noted that this method of recording is less than ideal as it may
accommodate investigator error and bias.
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2.1.4 Beat RN: RNR & RNL

Rüffer and Nultsch (1985) employed high speed cinematography to obtain
a series of images of a single arbitrary beat from a freely-swimming cell
that accurately depicts the natural whip-like breast-stroke of the C. rein-

hardtii flagellar beat (herein termed the RN beat). The RN beats are replot-
ted in Fig. 2D. Note the asymmetry between the left and right flagellum,
which may in part be due to the fact that the RN images are of projections
of a rotating cell. Furthermore, the projected length of each flagellum varies
a little during the beat (up to 10%) due to limited image contrast at the tip
and out-of-plane motion. We choose to extrapolate the flagella rather than
scale them by different amounts (as in Jones, 1995), to obtain a consistent
length and preserve the smooth nature of their motion.

For ease of analysis we exploit symmetric strokes: the left flagellum
and its reflection is denoted RNL, and the right flagellum and its reflection
is denoted RNR. The digits on the RN schematic signify the stage of the
beat as recorded in (Rüffer and Nultsch, 1985). The cell’s effective stroke is
arbitrarily defined by components 1-6 and the recovery stroke by components
7-11.

2.2 Construction of the flagella and body

To implement the beat patterns in a numerical scheme, a process involving
imaging the original data, discretizing and re-normalizing is employed, as
described below for a general beat. In particular, it is very important to
ensure that the nodes are spaced equidistantly in terms of arclength and do
not translate in a direction tangent to the flagellum.

We assume that the flagella beat in the plane. Whilst it is likely that this
is not the full picture it is a reasonable approximation in the absence of data
in three dimensions. For each flagellar beat image, m = 1, T , for T images,
the location (xm

i , 0, zm
i ) of pm

a +1 roughly distributed nodes on the flagellum,
starting at the base, are recorded and parameterized with an order index i,
for i = 0, 1, 2 · · · pm

a . The components of the node locations are then fitted to
an appropriate vector of polynomials Xm(i), such that Xm(i) = (xm

i , 0, zm
i ),

for i = 0, 1, 2 · · · pm
a . The arc length along the flagellum is then given by

s(ζ) =

∫ ζ

0

∣

∣

∣

∣

∂Xm(α)

∂α

∣

∣

∣

∣

dα,

for ζ ∈ R
+, from which the discretization size ∆s = s(pM )/(pf − 1) can be

obtained, where pM = maxm (pm
a ) is the maximum of pm

a across all images
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and pf is the desired number of nodes. The nodes are then re-distributed
as (x̄m

i , 0, z̄m
i ), i = 0, 1, 2 · · · pf , along the length of the flagellum, using a

Newton-Raphson iterative scheme, such that the spacing between them is
∆s. This process is repeated for each image, m, ensuring equal length flag-
ella. The data for the beat patterns is limited to the total number of images,
which may limit the accuracy of the numerics. Thus it is advantageous to
be able to extend the number of time-steps. To achieve this, seek a Fourier
series representation Ξ(si, t) = (ξ1(si, t), 0, ξ3(si, t)), where si = i∆s, of the
new node points (x̄m

i , 0, z̄m
i ), i = 0, 1, 2 · · · pf . In a similar manner to Fulford

and Blake (1986) we write

ξj(si, t) =
1

2
c0(si) +

T
∑

n=1

cn(si) cos(ωnt) + dn(si) sin(ωnt), (3)

where ωn = 2πn, and j = 1, 2, 3. The Fourier coefficients cn and dn are
calculated in the usual way.

To represent the surfaces of the flagella, we extend the centreline data
Ξ(si, t) to n-sided prisms (n ≥ 3). For each flagellum, the coordinates of

the ith node at the kth corner of the prism are given by

zk(si, t) = Ξ(si, t) + ℓn(si, t) cos χk + ℓb(si, t) sinχk, (4)

where ℓ is the radius of the flagellum, χk = 2πk/n, for k = 1, 2, . . . , n − 1,
is the angle made between the normal and the surface of the prism. A
schematic of a cross section of the three-dimensional flagellum is shown in
Fig. 1B, for n = 3, we can see the relationship between the normals and
bi-normals with respect to the Cartesian fixed-space axis (i, j, k), where i

points out of the page and χk = 2πk/3, k = 0, 1, 2.
The body is constructed using a cuboid patch system (Cortez et al.,

2005). If a1 = a2 = a and a3 = b, where a and b are the semi-minor
and semi-major axis of the elliptical body in Fig. 1A, then we obtain a
prolate spheroidal body, with major axis in the direction of p. In the
single plane model discussed here the body axes (p, q, r) are defined in
terms of a right-handed fixed-space Cartesian co-ordinate system (i, j, k) by
p = (sin θ, 0, cos θ), q = (cos θ, 0, − sin θ) and r = (0, 1, 0). The Euler
angle θ is the angle the orientation vector p makes with the vertical axis
k, see Fig. 1A. The rotation of the cell will occur about r and the flagella
beat in the pq-plane. The data for the flagella and cell body are generated
in terms of the body axes. However, for the numerics the data should be
converted to the fixed-space axes. This can be achieved by multiplying on
the left by the rotation matrix R = [pqr].
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2.3 Numerical approach and the self-propelled spheroid

For an incompressible Newtonian fluid of dynamic viscosity µ, low Reynolds
number flow (with a small value of the frequency Reynolds number) is well-
approximated by the steady Stokes equations,

µ∇2u −∇P = −Fb and ∇ · u = 0, (5)

where u is the flow velocity, P is the fluid pressure and Fb represents external
body forces.

The method of regularized Stokeslets is a recently developed and easily
implemented technique to compute approximations for Stokes flow problems
based upon regularized point forces of the form Fb = fbφǫ(x) (Cortez, 2001).
Here, fb is the vector strength of the force and φǫ(x) is an appropriately-
defined, radially symmetric, smooth approximation of a delta function, with
ǫ controlling the spread from x = 0 (Cortez et al., 2005). The fundamental
solution for an isolated regularized point force is known as a regularized
Stokeslet, and has the regularized Greens function Sij . Employing a modi-
fied Lorentz reciprocal identity a boundary integral formulation of (5) can be
constructed (Cortez et al., 2005). Discretization and regularization approxi-
mations then provide an equation relating the flow velocity to a distribution
of N regularized Stokeslets on the boundary at xn, such that

ui(x0) =
1

8πµ

N
∑

n=1

3
∑

j=1

Sǫ
ij(x̃n)f̄n

j , (6)

where f̄n, n = 1, ..., N , are the forces acting on the body times the quadra-
ture weights (termed here the weighted forces) and x̃n = xn −x0. Following
Cortez et al. (2005) we choose

φǫ(x) =
15ǫ4

8π(r2 + ǫ2)7/2
, (7)

where r = |x|, from which we obtain the regularized Stokeslet tensor and
regularized Stokeslet flow field, uǫ(x),

Sǫ
ij(x) =

xixj + δij(r
2 + 2ǫ2)

(r2 + ǫ2)3/2
and uǫ(x) =

(f · x)x + f(r2 + 2ǫ2)

8πµ(r2 + ǫ2)3/2
, (8)

respectively.
There are two approaches for the standard method. The first is when the

weighted forces at the nodes f̄n
j are known and we use Eq. (6) to compute
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the velocity and angular velocity. The second is the reverse problem, which
involves computing the stress distribution subject to prescribed boundary
conditions.

Therefore, if the velocities of the nodes on the surface of the flagella and
body are known, relative to a fixed point in the body, then the method can
be utilized to compute the weighted forces exerted by these nodes on the
fluid as well as the translational and rotational velocities of the centre-of-
buoyancy, U and Ω, respectively. To evaluate the weighted forces we employ
Eq. (6) coupled with the no-slip boundary condition

u(x) = urel(x) + U + Ω ∧ x, (9)

where urel(x) is the velocity of the nodes with respect to the body axes (p,q, r).
Substituting Eq. (9) into Eq. (6) yields

urel,i(x) =
N

∑

n=1

3
∑

j=1

Sǫ
ij(x̃n)f̄n

j − Ui − ǫiklΩkxl, (10)

where ǫikl is the alternating tensor.
Furthermore, in the Stokes regime we also have the requirement that the

net force and torque on the surface of the swimming cell, ∂S, must balance
with the net external body force and torque, Fext and Lext, respectively.
Hence,

∫

∂S
dS f̄ = Fext and

∫

∂S
dS x × f̄ = Lext. (11)

The external body force and torque are related to the orientation mechanism.
For the sedimentation torque mechanism,

Fext = v(ρc − ρ)g, (12)

where v is the volume of the cell, g = −gk is the gravitational accelera-
tion, and ρ and ρc denote the densities of the fluid and cell, respectively,
and the external body torque due to bottom-heaviness is neglected, such
that Lext = 0. For the bottom-heavy mechanism, the external body
torque is generated by the centre-of-mass offset and the sedimentation force
is neglected:

Lext = −mh(p ∧ g), (13)

where m is the cell mass, h is the gravitational offset and p is the cell orien-
tation vector (see Fig. 1 B) and Fext = 0. For the combined mechanism,
we impose Eq. (12) and Eq. (13).
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Combining Eq. (10) with Eq. (11) provides the resistance problem





U
Fext
Lext



 =

(

S AT

A O

)





F

U

Ω



 , (14)

where U and F are 3N -vectors whose entries consist of the N relative ve-
locities and weighted forces, respectively. In other words, U is a vector of
the three-dimensional vectors urel for each node, and F are the associated
weighted forces. The 3N × 3N matrix S is derived from the regularized
Stokeslet tensor in Eq. (8), the 6 × 3N matrix A is constructed to satisfy
the equilibrium and boundary conditions and O is a 6 × 6 matrix of zeros.
The vector urel for each node is determined by its location: on the body
the nodes do not translate with respect to the (p,q, r) axes; while on the
flagella, velocities can be obtained by computing the time derivative of the
Fourier series representation of positions (see Section 2.2). Hence,

urel(x) =







∂Ξ(s, t)

∂t
for x lying on the flagella

0 for x lying on the body

Given that we know the net force and torque as well as the relative
velocity of each node on the cell, we can solve the inverse problem posed
by Eq. (14) to compute the translational and angular velocities of the or-
ganism. Solving the mobility problem requires inverting a large matrix,
which is achieved by employing an iterative linear solver associated with the
generalized minimal residual method (GMRES; implemented on Matlab;
Saad and Schultz, 1986). GMRES is particularly useful for non-symmetric
linear systems and has good convergence rates compared to other solvers.
Solving the mobility problem at each time step provides estimates for the
instantaneous swimming speed U and angular velocity Ω. (Smith, 2009)
has advanced the method of regularized Stokeslets recently by decoupling
force and quadrature discretizations. A significant reduction in the degrees
of freedom is possible for approximations of equal accuracy and nearly equal
simplicity with an associated reduction in the computational cost. However,
the results of this study do not depend on the precise form of the method
employed.

As described previously, the orientation of the swimming cell can be
fitted to the governing equation for a dipolar spheroid, Eq. (2). For uni-
planar flow in the vertical x-z plane, the vorticity is ω = ωj and the non-zero
components of the rate-of-strain tensor are E11 = −E33, and E13 = E31. In
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this case, with p = (sin θ, 0, cos θ)T , where θ is the angle from the vertical,
Eq. (2) yields

θ̇ = −
1

2B
sin θ +

ω

2
+ α0 [E11 sin(2θ) + E13 cos(2θ)] . (15)

For shear flow of the form u = ωzi, the axes of the straining flow are situated
at ±π/4 from the vertical. Hence, we obtain

θ̇ = −β sin θ + e + α0e sin(2[θ + π/4]), (16)

where e = ω/2 = E13 = E31 and β = 1/2B is the maximum rate of reorien-
tation.

If there is no imposed flow then an estimate for β, and thus the effective
gyrotactic reorientation time B, can be calculated by fitting the angular
velocity Ω = θ̇j obtained from the simulations (Eq. (14)) to Eq. (16) with
e = 0:

β =
Ω2

sin θ
. (17)

Hence, the effective viscous resistance parameter α⊥ can be computed from
Eq. (1).

Consider a cell placed within a shear flow, u = ωzi, with non-zero rate-of-
strain components E13 = E31 = e and vorticity ω = 2e. Estimates for β and
the effective cell eccentricity α0 can be obtained via fitting the simulation
results (from solving Eq. (14)) to Eq. (16). The fitting process is carried out
using a non-linear least squares approach, and can fit α0, β and e at once,
or α0 on its own. To fit α0 alone, we set e in Eq. (16) to the value from the
imposed flow and use either the instantaneous values or the time-averaged
values of β, derived from solving Eq. (16) under no flow conditions. Fitting
all three parameters at the same time has the advantage of providing a little
more room for manoeuvre; less accurate estimates of α0 are obtained if e
and β are constrained (see the second test problem in the Appendix). For
an accurate fit it is important to record the behaviour of the cell over a wide
range of orientations. Hence, simulations are performed for a single flagellar
beat, consisting of T time-steps, for Nθ unique initial orientation angles θ0,
such that θ0 = nπ/Nθ for n = −(Nθ − 2), − (Nθ − 4), · · · , Nθ.

To impose a shear flow about a swimming cell we construct a shear box.
The shear box consists of a set of nodes distributed around the surface of
a cuboid of equal height and depth, 2d, with the longest dimension lying
along the x-axis, of length 2l. The nodes are given a prescribed velocity,
dictated by their location on the surface, but their positions are not updated:
u(x, y,±d) = (±ωd, 0, 0), u(x,±d, z) = u(±l, y, z) = (ωz, 0, 0), where ω =
2e. The shear box is depicted in Figure 3.
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l

u(x, y, d) = ωdi

u(x, y,−d)) = −ωdi

u(l, y, z)) =
ωzi

u(−l, y, z)) =
ωzi

d
x

z

Figure 3: An Illustration of the boundary conditions for the shear box of
width and height 2d and length 2l and ω = 2e. For the front and back walls
the boundary conditions are u(x,±d, z)) = ωzi.

3 Results

The method of regularized Stokeslets, together with a no-slip boundary con-
dition on the cell surface and the cell force and torque balance, is utilized to
obtain estimates for the swimming speed and angular velocity of a biflagel-
late cell. In order to obtain approximate solutions, the system is formulated
as a resistance problem, Eq. (14), and an iterative linear solver is employed
to obtain the associated mobility problem.

The biflagellate model is constructed as a mesh of discrete points rep-
resenting a prolate spheroidal body, with eccentricity α0 = 0.3320, and two
flagella. The flagella have a prescribed beat, with the five strokes as in
Fig. 2. For the shear problem, the cell is placed within a shear box and is
free to rotate about the j axis (see Fig. 1A).

Unlike the simple examples in the Appendix, a swimming cell has a
flagellar beat comprised of many time-steps. To limit computational time,
while maintaining a satisfactory degree of accuracy for the standard imple-
mentation of the numerical method, 630 nodes are placed on the body and
2168 on the shear box. The flagella are represented by 6-sided prisms, con-
structed from a flagellar centre-line with 25 nodes. As the spacing of the
nodes differs, the regularisation parameters for the body, the flagella and
the box are necessarily different: ǫb = 0.0314, ǫf = 0.01 and ǫs = 0.8192
(non-dimensionalized with respect to body length) for the body, flagella and
shear box, respectively. This is a consequence of the inter-dependency of the
spacing and the appropriate regularisation parameter (Cortez, 2001; Cortez
et al., 2005).
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3.1 No Flow

The orientation rates, β, for the bottom-heaviness model are shown in Ta-
ble 1 for all five strokes; β is obtained via Eq. (17). The results show that for
the realistic RNR beat the rate of orientation is approximately 20 % larger
than for the I beat. This mainly is due to the motion of the cell during the
effective stroke. For the I beat, the motion of the piece-wise linear flagella
generates a larger rotational viscous drag, which counteracts the effects of
the gravitational torque. For the RNR beat, the viscous drag generated by
the flagella is less and, unlike the I beat it steadily decreases throughout the
effective stroke. The remaining beats have orientation rates between the I
and RNR beats. The estimates for β for a cell subject only to sedimentation
torques are listed in the third column of Table 1, from which a noticeable
decrease is evident. For the realistic RN beats sedimentation does not have
as great an effect as bottom-heaviness on reorientation: the RNR beat has a
decrease of 47%, while the RNL beat has a decrease of 40%. Contrary to the
results for the bottom-heaviness model, the I beat exhibits the quickest rates
of orientation, which is over 30% larger than the RNR beat. For the dual
force-torque model, β takes a value of approximately the sum of the two in-
dividual models (see Table 1). As a result, the beat patterns that produced
intermediate orientation rates, for both mechanisms, have the greatest rates
of reorientation.

Due to the relationship between β and B the trends that were evident for
the orientation rates are the reciprocal of those observed for the reorientation
time. In particular, if a cell reduces its centre-of-mass offset to zero then
it would take a biflagellate with an I beat an extra 3 s to reorient with the
sedimentation mechanism alone, and for a cell with a realistic RNR beat this
becomes an extra 5 s. Neglecting the effects of sedimentation can also lead
to longer reorientation times; dual mechanism estimates are approximately
half those of single mechanism estimates for certain beat patterns.

Along with the angular velocity, solving Eq. (14) for the right-hand vec-
tor provides the cell’s translational velocity U, which can be employed to find
the mean swimming and sedimentation velocities. Taking the initial angle
of orientation to be θ0 = 0, we find that the average swimming speeds with
just the bottom-heavy mechanism, Ub, are equal to 62.35, 21.95, 75.1, 49.35,
and 49.15 µm s−1 for the I,F,R, RNL, RNR beats, respectively. The mean
sedimentation speed, Us, can be obtained from the difference between the
mean swimming speeds for the bottom-heavy mechanism, Ub, and that for
the dual mechanism. The results are similar for the different strokes, with
Us = 2.4760 µm s−1, 2.4777 µm s−1, 2.5016 µm s−1, 2.4558 µm s−1 and
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Table 1: To examine the relative contributions of sedimentation and bottom-
heaviness with regard to reorientation, we performed calculations with both
of these mechanisms, and with each mechanism separately. In particular, we
computed values for the maximum reorientation rate (i.e. at |θ| = π/4), β,
the dimensionless viscous torque parameter, α⊥ and the reorientation time,
B. The values are displayed for five distinct beat patterns I, RNR, RNL,
R, F (see Fig. 2). The data show that both reorientation mechanisms are
equally important, and complementary in the sense that they yield reori-
entation constants that are almost independent of the flagellar beat when
both mechanisms are included.

Beat bottom-heaviness sedimentation torque both

β (s−1)
I 0.1037 0.0864 0.1908

RNR 0.1236 0.0656 0.1897
RNL 0.1195 0.0727 0.1926

R 0.1148 0.0790 0.1949
F 0.0976 0.0839 0.1830

α⊥

I 10.0104 12.0060 5.4390
RNR 8.3977 15.8160 5.4719
RNL 8.6866 14.2802 5.3878

R 9.0449 13.1359 5.3243
F 10.6406 12.3802 5.6788

B (s)
I 4.8223 5.7837 2.6201

RNR 4.0454 7.6191 2.6360
RNL 4.1846 6.8739 2.5955

R 4.3572 6.3280 2.5649
F 5.1208 5.9480 2.7326
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2.4517 µm s−1, for the I, F, R, RNR and RNL beats, respectively.
Flow fields for the realistic RNR beat are displayed in Fig. 4. The images

show the streamlines and velocity contours of a biflagellate approaching the
end of its effective stroke. During the effective stroke, the magnitude of the
velocity is greatest close to the body and around the tips of the flagella.
The flow produced by the flagella causes eddies to appear at the side of
the body; the flagella drag fluid toward the posterior end of the cell, while
the forward motion of the body causes fluid to move toward the anterior
end. Significantly, the fluid is forced to leave the plane of flagella as can be
seen from the streamlines. The recovery stroke induces a more complicated
sequence of flows that leads the cell to move backwards and is also associated
with eddies.

A B

Figure 4: The flow-fields generated by a biflagellate swimmer with an RNR-
beat approaching the end of the effective stroke. (A) The streamlines show
how the motion of the flagella cause vortices to appear at the sides of the
body, which expel fluid out of the plane. (B) A density plot of velocity
magnitude of the swimming biflagellate, where darker tones signify higher
values. Here, it is evident that the strength of the flow is less, the further
we get from the cell. For this particular aspect of the beat pattern the tips
of the flagella generate large fluid velocities. In general, while the strength
of the flow remains high close to the body, the parts of the flagella that
do most work depend on the aspect of the beat (data not presented). Far
enough away from the cell (∼ 102 body lengths) the magnitude of the mean
flow velocity decays as r−1 when sedimentation is included (i.e. a three-
dimensional Stokeslet); with no sedimentation, the flow decays as r−2 (a
Stokes doublet).
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3.2 Shear flow

For a shear flow, with rate-of-strain e = 0.5 × 10−2 s−1, the reorientation
time is only slightly affected by the introduction of shear, compare Tables 1
and 2; the change is less than 0.2% over all beat patterns. When the rate-
of-strain is increased to e = 5 s−1 the subsequent change in B is O(10−3) s
for the RNR, R, and F beats, while for the I and RNL beats the change in
B is O(10−4) s.

Table 2: Estimates for the effective cell eccentricity, the maximum reorien-
tation rate and the reorientation time, denoted α0, β and B, respectively,
for a cell with five distinct beat patterns in a shear flow with rate-of-strain
e = 0.5 × 10−2 s−1, incorporating both reorientation mechanisms.

Beat Pattern α0 β (s−1) B (s)

I 0.3379 0.1905 2.6247
RNR 0.0646 0.1894 2.6399
RNL 0.1501 0.1924 2.5988

R 0.3528 0.1947 2.5681
F 0.2335 0.1830 2.7326

Significantly, Table 2 also provides data for the dependence of the effec-
tive cell eccentricity, α0, on the flagellar beat pattern. The largest values of
α0 are for the I and R beats, with both estimates within the 0.31−0.4 range
predicted elsewhere (Pedley and Kessler, 1990; Jones et al., 1994; Jones,
1995). However, the difference between these beats and the realistic RN
beats is large, particularly in the case of the RNR beat, which yields an
effective self-propelled particle that is more spherical than spheroidal. The
RNL beat’s effective eccentricity is not quite as small, but is less than half
that of the idealized I and R beats.

The variation in α0 for different values of e is small whilst e is below
a certain threshold. When e > 10 s−1 we see a slight reduction in the
approximated values of α0, and by e = 50 s−1 the straining motion of the
fluid forces the cell to rotate at a rate comparable with the flagellar beat
frequency, leading to resonance effects (shown for the RNR and I beats in
Fig. 5A and Fig. 5B, respectively). The same characteristics are evident
with the other beat patterns, as in Fig. 5C. The rate at which the values
decrease differs a little between beats, with the realistic beat patterns being
most affected by the large shear rate.
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Obtaining good estimates for α0 requires much computational time (whichever
numerical method is employed) and, furthermore, requires a sensitive cam-
era with a large frame rate to capture the complete sequence of flagellar
positions. Therefore, a technique to compute the eccentricity from an un-
ordered collection of irregularly obtained frames is desirable. To this end,
consider a single computation on a cell with its flagella frozen in an “aver-
age” position. For simplicity, we choose the simplest possible average, the
mean over time of individual node positions. Comparisons between the ec-
centricity calculated using the full beat pattern, α0 and using the average
beat pattern, ᾱ0, are shown in Figure 5D. For all beat patterns increasing
the number of time-steps causes α0 to converge to values close to those in
Table 2. For the realistic beat patterns eleven time-steps are adequate for
convergence to 4 decimal places and for the R and F beats we require 8 and
25 beats, respectively. This suggests that when the number of time-steps in
a beat exceeds the original sampling data no further improvements in the
eccentricity estimates are achieved.

The estimate for ᾱ0 converges more slowly. The RNR beat converges to
a value of ᾱ0 = 0.0137, which is approximately a fifth of the converged value
of α0 in Table 2. Similarly the I beat converges to ᾱ0 = 0.3825 in roughly the
same number of time-steps and overestimates α0 by 14%. The convergence
of the remaining three beat patterns is a lot slower. The RNL beat converges
to a value of ᾱ0 = 0.114 when the beat is averaged over roughly 60 time-
steps, which is an under estimate of about 25%. However, these estimated
values are all within ±0.05 of the converged values, suggesting that the
technique can provide a computationally and experimentally cheap means
of establishing bounds on the effective cell eccentricity.

4 Discussion

In this paper, we have demonstrated how it is possible to obtain estimates for
key parameters that can describe the behaviour of swimming, negatively-
buoyant, bottom-heavy, biflagellated, microorganisms. In particular, we
have employed the method of regularized Stokeslets in three-dimensions
to obtain numerical approximations of the fluid flow around the freely-
swimming cells and their swimming speeds and rotation rates. The result-
ing motion was then fit to an exact description for a self-propelled spheroid.
As in Jones (1995), five different beat patterns were investigated: an ide-
alized beat pattern (Jones et al., 1994; Jones, 1995), I; a flexible flagella
model (Fauci, 1993), F; drawings from experiments (Ringo, 1967), R; and
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high-speed photographic observations (Rüffer and Nultsch, 1985), with ei-
ther right-symmetric, RNR, or left-symmetric, RNL, flagella. Furthermore,
three methods of gravitactic cell reorientation were explored, resulting from
either bottom-heaviness, a sedimentary torque due to the fore-aft body-
flagella asymmetry, and a combination of both. The relative importance of
these two mechanisms is still debated in the literature, although the consen-
sus is that both will play some role.

Previously, three-dimensional modelling approaches have either simply
assumed that the cells can be represented as self-propelled spheroids (Pedley
and Kessler, 1990) or have applied resistive force theory (Jones et al., 1994;
Jones, 1995). However, we find that the details of the flagellar beat are vital
to the cell’s behaviour. Johnson and Brokaw (1979) found that the resistive
force theory approximation is good is some situations but inadequate in in-
stances where the flagella beat close to a relatively large body. We also find
that one needs to look beyond resistive force theory for an accurate anal-
ysis of the swimming behaviour of biflagellates, which beat their relatively
short flagella in close proximity to a similarly sized body. The method of
regularized Stokeslets has been successfully applied to a wide range of prob-
lems, and its implementation, usefulness and accuracy are laid out in the
literature (Cortez et al., 2005) and the Appendix, for some test problems.
By formulating a mobility problem for a cell with a carefully prescribed
flagellar beat pattern in a shear box it is possible to study the cell’s gyrotac-
tic (balancing gravitational and viscous torques) reorientation mechanisms.
The taxes can lead to cells accumulating at upper boundaries or in locally
downwelling flow, and may cause hydrodynamic instabilities, termed bio-
convection. Therefore, we have measured the effective cell swimming speed,
gyrotactic reorientation parameter and eccentricity. The effective cell ec-
centricity is important as it determines the cell’s swimming behaviour in
straining flows.

Our results indicate that the behaviour of non-interacting, swimming bi-
flagellates can be modelled as self-propelled spheroids, with a high degree of
accuracy under conditions of no-flow and in a shear flow. Furthermore, we
find that sedimentation and bottom-heaviness torques play a commensurate
and complementary role in the reorientation of the cell. The sedimentation
mechanism is preferred by Roberts (2006), who argues that even though
translation due to sedimentation is negligible relative to translation due to
cell swimming, the rotation induced by this sedimentary motion is not. On
the other hand, the benefits of the bottom-heaviness mechanism have been
expounded by Kessler amongst others (Kessler, 1986; Pedley and Kessler,
1990; Jones et al., 1994). The fact that both mechanisms are of equal mea-
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sure is unexpected. That they complement each other, such that a small
reduction in one leads to an increase in the other, can be explained as fol-
lows. An increase in sedimentation torque for a cell swimming at an angle
to the vertical relies on a greater average extension of the flagella towards
the anterior of the cell, which leads to a larger viscous torque that is to be
balanced with the fixed gravitational torque, thus reducing the impact of
bottom-heaviness in leading the cell to orient towards the vertical.

The five beat patterns employed here lead to different estimates for the
gyrotactic reorientation time, B, which is proportional to the viscous torque
parameter, α⊥, and inversely related to the maximum reorientation rate,
β. The values of these fitted parameters are reported in full in the results
section. To compare with previous results, we note that for the I beat with
the bottom-heaviness mechanism alone our computation reveals a value of
α⊥ = 10.0 that is a little smaller than the estimate provided by Jones
et al. (1994) of α⊥ = 12.6, leading also to a smaller value of B. For this
mechanism, the values of α⊥ for the realistic beat patterns are smaller still.
The value of α⊥ estimated for the model of Pedley and Kessler (1990) was
6.8, which led to a reorientation time of B = 3.4 s, lower than our value
of B = 4.1 s for an average realistic beat. Interestingly, when we include
the combined mechanism (bottom-heaviness and sedimentation torques) the
results provide a lower value still, giving B = 2.6 s. For a cell with a
sedimentation torque mechanism, Roberts (2006) estimated the maximum
reorientation rate β = 0.0663 s−1, using a similar approach to (Jones et al.,
1994). This value is in good agreement with the results obtained here for
the sedimentation torque only model. As noted above, rather than compete,
the sedimentation and gravitational torque mechanisms act in unison, and
for the dual mechanism we not only observe a reduction in the reorientation
time B, but we also discover that the flagellar geometry does not have a
significant bearing on this time. The Hill and Häder (1996) analysis of
experiments on swimming C. nivalis measured B to be 2.7 s, approximately
4% larger than our results for the experimentally determined RNR and RNL
beats with the dual reorientation mechanism, suggesting that biflagellate
swimmers reorient through a combination of bottom-heaviness and shape
asymmetry.

One major aspect presented in this paper is the calculation of the effec-
tive eccentricity of the cell over one beat, α0, and how the minutiae of the
enforced flagellar kinematics have a pronounced effect on this estimate. Pre-
vious analyses based on self-propelled spheroids estimated α0 = 0.31 (Pedley
and Kessler, 1990) and resistance force theory with an idealized beat sug-
gested α0 = 0.40 (Jones et al., 1994), which concurs with the results obtained
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for the idealized beat patterns here. However, estimates based on the realis-
tic beat patterns show that the cell’s effective eccentricity is much smaller.
The estimates suggest that a zero value of the cell eccentricity is both quali-
tatively and quantitatively a good approximation, so that the time-averaged
cell over one beat effectively swims as a sphere. Biologically this might offer
an advantage, although it is hard to pin down the details without further
study over a range of organisms. A significant question is whether other
micro-organisms adapt their flagellar beat depending on their body geome-
try in order to reduce or optimize their effective eccentricity. The methods
presented herein allow this question to be investigated. Work is in progress
on this open problem, particularly with reference to the salt tolerant alga
Dunaliella salina.

We should note that whilst the RNR and RNL beat patterns appear to
be much more biologically relevant than the other three, there are still some
issues associated with them. Most importantly, the variable apparent length
of the flagella is either due to insufficient image contrast at the flagellar tips
or for three-dimensional motion out of the plane. Furthermore, the natural
helical trajectory of the cell contributes (and is due) to the latter. The
solution to this problem must involve improved imaging to a) obtain better
projected image contrast and b) to determine the three-dimensional nature
of the beat. We have opted to extrapolate the flagella in this computational
study, rather than scale each of the images separately as in Jones et al.
(1994), to ensure that the flagellar motion is smooth and appears natural.
It is clear that a more accurate data set of flagellar strokes is critical to
understanding the effective swimming behaviour of the cells. Additionally,
such a data set should quantify the natural variation amongst cells.

In this paper, we have also proposed a method to estimate the effective
cell eccentricity by averaging the beat pattern directly from images of swim-
ming cells and performing the computations on this average. We find that
an estimate for the eccentricity using this technique can be made within
±0.05 of the full temporally resolved method. Hence, with an established
error bound, we can use this method to reduce the computational time in-
volved in obtaining α0. This technique will also be useful when the images
of the flagella on the swimming cells have been obtained in an unordered or
irregular manner.

The current computations reveal the interesting flows produced by swim-
ming C. reinhardtii, where the streamlines and velocity contours for a single
snapshot of an RNR beat are shown in Fig. 4 A and Fig. 4 B respectively.
The streamlines show that the motion of the flagella creates vortices at the
sides of the body, which move relative to the body and flagella. These vor-
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tices are responsible of the expulsion of fluid from the plane of the flagella,
and could provide a mechanism for the transport of nutrients. The fine
details of these flows, including comparisons with recent experimental ob-
servations (Drescher et al., 2010; Guasto et al., 2010), are beyond the scope
of the current manuscript and will be presented elsewhere.

A Method calibration

A.1 Example 1: Terminal settling velocity of a spherical par-

ticle

For a sedimenting spherical particle in an unbounded fluid the Stokes drag
must balance the external body forces. Hence, the terminal settling speed
is UT = 2a2(ρs − ρ)g/9µ, where a is the sphere radius and ρs is the sphere
density. For a = 5 × 10−5 cm, ρs = 1.04 gm cm−3, ρ = 0.998 gm cm−3,
g = 980 cm s−2 and µ = 10−2 gm cm−1 s−1, then UT = 2.3287×10−6 cm s−1.

Using Eq. (14) we can obtain a numerical estimate for the settling ve-
locity. For a non-rotating sphere there is no external torque and the net
force is given by Eq. (12). Further, as a consequence of the position of the
nodes remaining constant with respect to the sphere’s origin, U is a 3N
vector of zeros. The nodes on the sphere are generated using a cubic patch
system, providing an approximately equal distribution of abscissa along the
surface of the sphere. With the boundary and equilibrium conditions spec-
ified we can construct the grand resistance matrix in Eq. (14), then solve
for the right hand vector. For a sphere with fluid and particle properties as
above, and N = 726 nodes on the surface, the numerical estimate for the
swimming speed U = 2.3295 × 10−6 cm s−1; within 0.04% of the analytical
result. Improvements to the estimate can be obtained by refining the level
of discretization: for N = 2166, U = 2.3289 × 10−6 cm s−1. By choosing
fewer nodes on the sphere the error between analytical and numerical results
increases, as is the case when the regularization parameter ǫ is much larger
than the discretization size.

This example not only supports the use of the numerical method, but
it is also relevant to biflagellate swimming; one of the mechanisms for cell
orientation involves the effects of sedimentation on the cell.



Swimming biflagellates in shear flows 27

A.2 Example 2: Estimating spheroid eccentricity in shear

flow

Numerical estimates for the eccentricity of a neutrally buoyant bottom-
heavy spheroid, where the centre-of-mass is offset from the centre-of-buoyancy
by a factor h, may be obtained through solution of the mobility prob-
lem. The spheroid is placed at the centre of a shear box, which gen-
erates a shear flow with rate-of-strain e. The bottom-heaviness implies
there is a gravitational torque acting on the cell, thus Lext is given by
Eq. (13). The abscissa for the spheroid are generated as before and are
static with respect to the centre-of-buoyancy. Hence, U is zero and we can
solve Eq. (14) for the angular velocity. Consider planar motion, so only
one component of the angular velocity is non-zero, and use Eq. (16) to
obtain the eccentricity α0 and maximum orientation rate β. Exact solu-
tions can also be obtained (Pedley and Kessler, 1990), with α0 given by
Eq. (1) and β = hmg/µvα⊥, where m and v are the mass and volume of the
spheroid. The viscous torque parameter α⊥ for a spheroid is given by (Pedley
and Kessler, 1990) α⊥ = (α2

1 − 1)2(α2
1 + 1)4/

{

(2 + γ(2α4
1 − 3α2

1 − 1))α2
1

}

,

where γ = cosh−1(α1)/α1

√

α2
1
− 1 and α1 is the ratio of semi-major to

semi-minor axes.

Table 3: Values of exact and estimated cell eccentricity, α0, and gyrotaxis
parameter β for spheroids with 630 nodes distributed around the surface.
The spheroid is placed within a shear box of width 80 body lengths, and
height and depth 10 body lengths, where a body length is equal to the major
axis of the spheroid. The rate-of-strain for the flow is e = 5.5 × 10−2s−1

Exact Numerical

α0 β α0 β e (s−1)
0.3320 0.0057 0.3415 0.0055 0.055
0.2764 0.0059 0.2857 0.0057 0.055
0.2165 0.0061 0.2253 0.0059 0.055
0.1521 0.0063 0.1597 0.0061 0.055
0.0833 0.0065 0.0869 0.0064 0.055
0.0103 0.0066 0.0111 0.0064 0.055

The exact and numerical estimates for a fixed rate-of-strain e = 5 ×
10−2 s−1 and fixed discretization size are shown in Table 3; m = 5.2 ×
10−10gm, h = 10−5 cm, and the other parameters as before. The numerical
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estimates are obtained by fitting all variables in Eq. (16); a three parame-
ter fit improves the accuracy compared to fitting α0 alone. Conducting a
three parameter fit for different rates-of-strain, e = 2.5×10−2, 2.5×10−1, 5×
10−1, 7.5×10−1 s−1, the fitted value of e is accurate to within 6%. Increasing
the number of nodes on the body improves the numerical estimate. Finally
the dimensions and number of nodes located on the surface of the shear box
also have a role in how accurate the method is. By increasing the number of
nodes on the box there is a reduction in discretization size and, consequently,
a smaller regularization parameter can be employed, concurrent with a re-
duction in the numerical errors. Furthermore, when the spacing between
nodes is decreased, less fluid escapes through the boundary of the box. An
increase in the number of nodes on the body by 60% sees a decrease in the
error between exact and numerical values of 45%. Altering the aspect ratio
of the box has no great effect on α0 if the spacing between the nodes remains
the same. However, if the width is made too small or the height or depth
too large the shear will not be properly formed in the plane of interest and
there may be unwanted boundary effects.
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Figure 5: Plots of the effective cell eccentricity α0 against the shear rate e.
(A) and (B) show how the eccentricity, for the RNR and I beats, respectively,
remains almost constant for small e, but for large e the vorticity induces the
cell to tumble, which resonates with the natural beat cycle of the cell and
leads to oscillations in the approximation for α0. (C) plots results for all
five beat patterns, indicating similar trends. (D) provides a comparison
between the effective eccentricity estimates using a full beat and using an
average beat by plotting |α0− ᾱ0| as a function of the number of time-steps,
T . Twenty orientations (Nθ = 20) were tested with 3098 nodes on the
swimmer and box, requiring T × Nθ simulations for each configuration and
a couple of days total computation time on a workstation.


